高炉冲渣水余热回收解决方案-仟亿达

合集下载

钢铁厂余热发电

钢铁厂余热发电
谢谢观看
余热发电部
联系电话:010 56874500/01
干熄焦余热发电
定义:所谓干熄焦,是相对湿熄焦而言的,是指采用惰性气体将 红焦降温冷却的一种熄焦方法。通常CDQ是焦炭干法熄焦 的简称,Coke Dry Quenching 。
原理: 在干熄焦过程中,1000℃的红焦从干熄炉顶
部装入, 130℃的低温惰性循环气体由循环风机鼓 入干熄炉冷却段红焦层内,吸收红焦显热,冷却后 的焦炭(低于200℃ )从干熄炉底部排出,从干熄 炉环形烟道出来的高温惰性气体流经干熄焦锅炉进 行热交换,锅炉产生蒸汽,冷却后的惰性气体由循 环风机重新鼓入干熄炉,惰性气体在封闭的系统内 循环使用。
低温余热发电技术------面向钢铁余热方向 燃气轮机——蒸汽轮机联合发电
煤气燃烧余热发电
燃气轮机——蒸汽轮机联合循环发电流程图
低温余热发电技术------面向钢铁余热方向
设备 煤气燃烧余热发电
170t/h 燃气轮机尾气联合循环锅 炉(高炉煤气与焦炉煤气)
联合循环汽轮机
低温余热发电技术------面向钢铁余热方向
钢铁厂余热发电简介
北京仟亿达科技有限公司
余热发电部
低温余热发电技术------面向钢铁余热方向
仟亿达致力于余热发电行业
工业余热发电行业是国家新兴节能环保行业之一,符合国家关于节
能和资源综合利用政策,同时也蕴藏着巨大的市场空间。目前,公司 与多家专业科研单位合作,承担建材行业中的水泥窖、冶金行业中的 高炉煤气、烧结机、转炉、等工业余热回收,采用余热锅炉产生的蒸 汽带动汽轮机发电机组发电。
的结构形式,又可分为带式、环式、格式、塔式和盘式。鼓风环冷 是目前应用较普遍的一种方式。
低温余热发电技术------面向钢铁余热方向

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析文章结合高炉冲渣水的余热特点,提出了三种余热回收方案,并针对其可行性进行了分析。

标签:高炉;冲渣水;余热回收;可行性前言在当前经济全球化的背景下,能源危机的不断深化,使得节能降耗可持续发展受到了社会各界的广泛关注。

钢铁作为我国国民经济的支柱产业,同时也是耗能大户,在生产过程中,会产生大量的余热,以高炉冲渣水为例,其温度可以达到95℃左右,一般都是在进入空冷塔冷却后,对水资源进行循环利用,但是其中蕴含的热量却白白浪费,而且对于周边环境造成了热污染。

对此,做好高炉冲渣水余热回收工作,是非常重要的。

1 高炉冲渣水余热特点高炉冲渣水余热的热源温度相对较低,但是流量巨大,而且由于水中蕴含相应的化学物质,对于普通钢材有着一定的腐蚀性,做好高炉冲渣水余热的回收工作,不仅能够有效减少能源的浪费,还可以保护周边环境,其重要性是不言而喻的。

在钢铁企业中,一般情况下,高炉冲渣水采用的是浊环水,能够减少对于水资源的消耗,但是其在冷却过程中大量的热量散失,造成了一定的浪费,而且冲渣过程中产生的二氧化硫、硫化氢等物质会在大气中形成酸雨,造成严重的环境污染,因此,如何对高炉冲渣水余热进行回收利用,是當前钢铁企业需要重点研究的课题。

2 高炉冲渣水余热回收方案从目前来看,对于高炉冲渣水余热的回收,主要是以下三种方案。

2.1 采暖在对高炉冲渣水进行沉淀过滤后,进行相应的水热交换,通过循环泵,将采暖水输送至采暖用户。

将余热回收用于采暖的方法,具有投资少、设备简单、散热少、余热利用率高等优点,不过也存在两个方面的问题,一是由于采用的是浊环水,容易出现感到堵塞和腐蚀的现象,维护起来比较困难,对于换热设备的要求较高;二是只能在冬季使用,无法全年回收余热。

因此,如果采用这种方案,经济效益相对较差,而且对于余热的回收利用率低。

2.2 发电在对高炉冲渣水进行沉淀、过滤等预处理后,导入换热器,此时冲渣水的温度降低到40-50℃,之后回归到高炉供冲渣使用,可以对一定的余热进行回收。

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术通过对高炉冲渣水余热回收利用的几种方式的对比,分析了传统换热设备在余热回收项目中的优缺点,并提出真空相变换热技术在冲渣水余热回收中的优势,其较好地解决了传统冲渣水换热器设备堵塞、耗损、腐蚀、结晶等一系列问题。

真空相变换热器有效地利用了此项技术,在钢厂高炉冲渣水余热回收利用中值得推广利用,具有广阔的应用前景,可以实现较好的经济效益和环保及社会效益。

标签:换热器;真空相变;高炉冲渣水;余热回收1 概述高温熔渣作为高炉炼铁的附属产物,其经过水淬工艺处理后将产生70~90℃的高温冲渣水,这些具有大量余热的冲渣水具有成分复杂、悬浮物多的特点,尤其是其中含有矿棉类纤维等成分,极易造成沉积钩挂、堵塞,同时其渣粒也会造成管道的严重磨损。

长期以来,人们采用直接或间接的换热器来利用冲渣水的余热,都达不到理想的换热及运行效果。

高炉冲渣水若直接作为采暖热水,会在采暖管道及散热器中产生淤积、堵塞;若间接换热,则同样会在传统的换热器中发生堵塞、腐蚀、结晶、磨损等问题,无法长周期有效使用。

综上,如何全面、有效地利用高炉冲渣水便成了一个亟待解决的现实问题。

2 真空相变换热技术简介由于水的沸点会随着压力的变化而相应地变化,所以,通过降低水所在周围环境的压力大小,从而使水在低压环境下沸腾,进而转化为水蒸气,这些水蒸气便可以被我们充分利用与循环水进行相变换热,从而达到了余热回收的目的。

2.1 高炉冲渣水的水质分析高炉冲渣水的余热回收具有其鲜明的特点,有必要对其水质进行简单地分析。

高炉渣的主要成分为CaO、SiO2、AL2O3等物质,冲渣水是高炉渣在1400℃左右的熔融状态下水淬形成的,故在其水淬过程中会将高炉渣的一些成分溶解在水中,再加上冲渣水作为冷却高炉渣的重复利用循环水,不断往复地冲渣过程中冲渣水也不断地被浓缩,从而使高炉渣中可以溶于水的物质达到了一个饱和的状态。

笔者从某钢厂冲渣水提供的水质报告得到以下数据。

科技成果——高炉冲渣水直接换热回收余热技术

科技成果——高炉冲渣水直接换热回收余热技术

科技成果——高炉冲渣水直接换热回收余热技术适用范围钢铁行业冶金行业炼铁、炼铜等生产过程高炉冲渣水余热回收利用行业现状高炉炼铁熔渣经水淬后产生大量60-90℃的冲渣水,其中含有大量悬浮固体颗粒和纤维。

目前,我国高炉冲渣水余热主要采用过滤直接供暖及过滤换热供暖方式进行利用,但存在容易在管道或换热设备内发生淤积堵塞、过滤反冲频繁取热量少、产生次生污染等问题,无法长时间使用,因此多年来冲渣水余热未得到全面有效利用。

按照我国钢铁生产产量8亿t,按350kg渣比计算,由冲渣水带走的高炉渣的物理热量约占炼铁能耗的8%左右,能源浪费巨大。

该技术自2013年推广至今,已实施26座高炉,总供暖面积达1400多万平米,实现节能量20万tce/a,CO2减排约52万t/a。

成果简介1、技术原理高炉炼铁冲渣水含有大量60-90℃低品位热量,该技术采用专用冲渣水换热器,无需过滤直接进入换热器与采暖水换热,加热采暖水,用于采暖或发电,从而减少燃煤消耗并减少污染物的排放,达到节能减排的目的。

冷却后的冲渣水继续循环冲渣,对于带有冷却塔的因巴等冲渣工艺,可以关闭冷却塔进一步节约电能消耗;而对于没有冷却塔的冲渣工艺,冲渣水降温后减少了冲渣水蒸发量,进一步减少水消耗。

采用该技术,无需过滤,工艺流程短,运行及维护成本低,取热过程仅仅取走渣水热量,不影响高炉正常运行,无次生污染,整体运行可靠,适宜于长周期运行。

2、关键技术(1)直接换热技术。

开发了专用冲渣水换热器,解决了纤维钩挂堵塞和颗粒物淤积堵塞问题,冲渣水无需过滤即可直接进入换热器与采暖水进行换热。

(2)抗磨损技术。

冲渣水含有大量固体颗粒物,不仅容易淤积堵塞,而且极易磨损,该技术通过板型、材质、结构、流速等方面的控制解决了磨损问题。

(3)自动运行控制技术。

根据高炉规模和冲渣工艺的不同特点,研发了系列工艺流程与之配套,大型高炉两侧冲渣的切换技术以及可靠的直接换热技术保证了自动运行的可实施性。

高炉冲渣水的余热利用

高炉冲渣水的余热利用

高炉冲渣水的余热利用摘要:随着科技的不断发展我国高炉冲渣水余热利用以及存在的问题,采用平流沉淀与普通快滤池相结合的工艺处理冲渣水,利用高炉水冲渣余热进行换热后进水温度明显提高,取得了较好效果。

关键词:余热;冲渣水;采暖前言随着能源与环境问题的日益突出,我国钢铁企业对节能降耗的重视程度进一步提高。

充分挖掘企业内余热余能的回收潜能,降低产品成本,创造新的经济效益,成为新形势下钢铁企业的重要工作之一。

高炉冲渣水作为一种低温废热源,具有温度稳定、流量大的特点,如何让冲渣水发挥余热利用的效益,也逐渐成为一个研究课题。

目前我国高炉炉渣处理工艺主要是水淬渣工艺方式。

高炉内1400℃~1500℃的高温炉渣,经渣口流出,在经渣沟进入冲渣流槽时,以一定的水量、水压及流槽坡度,使水与熔渣流成一定的交角,冲击淬化成合格的水渣。

在炼铁工序中,冲渣消耗的新水占新水总耗的50% 以上。

冲制1吨水渣大约消耗新1~1.2 吨,循环用水量约为10吨左右。

按照我国钢铁生产产量5 亿吨,按350 千克渣比计算,仅用于冲渣的新水消耗就超过1.5亿吨,占钢铁工业新水消耗的4%。

由冲渣水带走的高炉渣的物理热量占炼铁能耗的8%左右,大约相当于21千克/标煤(按350 千克/ 吨铁计算)。

循环水池的水温范围60℃-85℃,属于工业低温废热源,如果不加以利用,这部分能量就会被白白浪费。

1、冲渣水处理高炉冲渣水进入水渣池沉淀后,以1200~1500 m³/h的流量通过DN700管道流出,进入平流沉淀池进一步沉淀,沉淀后的水自流到普通快滤池进行过滤,过滤后的水进入采暖泵房吸水池,通过供水泵组加压送至采暖区供采暖循环使用。

采暖回水进入反冲洗水塔及冲渣水泵房吸水池,供高炉水力冲渣及普通快滤池反冲洗使用。

其中普通快滤池的反冲洗排水排入旋流沉淀池,通过提升泵提升到冲渣池进行冲渣使用,沉渣用抓斗抓出2、超滤进水及输送管网2.1 超滤进水情况二期软水站生产水能力为1600 m³/h,其中需要将1200 m³/h 的生产水从2℃加温至20 ℃,以满足超滤进水温度及水量需求。

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用高炉熔融炉渣的温度高达1400℃~1500℃,其热量大,属于高品质的余热资源。

我国高炉渣的处理工艺主要采用水淬处理,大量高温炉渣通过冲渣水进行冷却,产生大量温度为70℃~85℃的热水。

通常,为了保证冲渣水的循环利用,需要将这部分冲渣水沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣,或自然降温后继续循环冲渣。

这个过程损失了大量的热量,既造成了能源的浪费,又对环境造成了污染。

高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。

目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。

冲渣水余热发电是一种最有价值的研发方向,但因其技术要求相对较高,投资回收期较长,目前还处于研究开发阶段。

利用冲渣水采暖或作浴池用水,已经被北方地区的部分钢厂使用,并带来较好的经济效益。

高炉水渣含有CaO、SiO2、MgO、Al2O3和少量的Fe2O3,pH值大于7,呈弱碱性。

高炉水渣杂质在冲渣水中以固体颗粒或悬浮物的形式存在,日积月累,杂质会使采暖系统中的管道、阀门、散热器发生大面积淤积、堵塞,所以高炉冲渣水作为采暖热源时不适于直接使用。

通过间接换热的形式重复利用冲渣水进行采暖或作为浴池用水是高炉冲渣水利用的技术点,而高炉冲渣水专用换热器适用于换热介质在高悬浮物、高黏度等恶劣工况下的实体应用。

冲渣水余热回收出利器冲渣水专用换热器是由螺旋状扁管换热元件制造而成的新型高效换热器,螺旋扁管的截面为椭圆形,其管内外流道均呈螺旋状,获得国家实用新型专利。

该换热器在使用过程中具有以下特点:压降小。

管壳式换热器在壳程为了减少死区和短路设置了一定数量的折流板,相应地增加了阻力,而螺旋扁管的应用使得壳程中介质的曲折流动变为直接螺旋流动,没有死区,不必设置折流板。

取消折流板降低了阻力,并大大提高了热传递效率。

冲渣水专用换热器和螺旋板式换热器的压降≤30kPa,而板式换热器和固定管板式换热器的压降均为50kPa~100kPa。

钢铁企业高炉冲渣水余热利用技术分析

钢铁企业高炉冲渣水余热利用技术分析

钢铁企业高炉冲渣水余热利用技术分析摘要:随着社会经济快速发展,钢铁行业取得了巨大进步,这对于促进我国工业化水平提升起到了重要的推动作用。

但是钢铁企业在工业生产中的能耗较大,而且在生产过程中还会产生大量余热,如果不能合理利用,则会导致能源损耗严重,不利于保障企业的可持续发展。

对此,针对高炉冲渣水余热进行科学利用对于帮助钢铁企业降低能耗并实现能源节约,同时促进自身绿色环保发展具有重要意义。

本文主要分析了钢铁企业生产中高炉冲渣水余热的特点,并出了具体的余热利用技术,以期为钢铁企业余热科学利用提供指导。

关键词:钢铁企业;高炉冲渣水;余热利用在钢铁企业生产过程中,高炉冲渣水属于低温性的废热源,其具有温度稳定而且流量大的特点,如果将此项资源直接浪费掉,不仅会给钢铁企业造成极大损失,同时也会对周边环境造成极大污染。

为了更好地利用高炉冲渣水余热,就必须要积极探索其具备的特点,并基于此分析可利用的方向,从而提高余热利用效能,为钢铁企业带来更大经济效益,也为其后续高质量发展提供基础支持。

一、钢铁企业高炉冲渣水余热特点1、余热资源潜力大高炉冲渣水具有低温余热热点,虽然温度不高,但由于流量庞大,成为了重要的能源回收点[1]。

例如在一个年产铁量达250万吨的大型高炉中,每小时可产生高达2200立方米的循环冲渣热水,等量冲渣水热负荷估计达到40兆瓦,由此可见其巨大的能源回收潜力,若能高效利用低温余热,不仅能显著降低能源消耗,还能减轻环境热污染。

目前,冲渣热水通过冷却后循环使用或自然降温,其间大量热能未被充分利用,如果能开应用高效的热能回收和利用技术如热泵系统或低温余热发电技术等,可以有效转换热能为发电或供暖等其他用途,不仅对钢铁企业降低能源成本和提升环保水平有着重要意义,也对推动整个工业领域的绿色转型和可持续发展具有积极影响。

2、具有强腐蚀性在现代钢铁生产过程中,为应对日益严格的环保标准,许多钢铁厂开始循环利用各工序产生的含盐废水作为高炉冲渣用水,虽然有效减少了废水排放,但却使得冲渣水的腐蚀性显著增强。

1080m^3高炉冲渣水余热回收工艺

1080m^3高炉冲渣水余热回收工艺

过滤器易被堵塞 的问题 ,适合 在沙漠地区长期稳定地使用。
导 流 罩 ,以 减轻
图2
滤清器 的负担 。
收稿 日期 :2 0 1 2 — 1 2 — 0 8
采 用新型空 气过 滤解决方 案设 计 的前 1 0 台机房发 到伊
【 编辑 :郭 霄】
2 0 1 3 f - 6 )  ̄ I 中 国 设 备 工 程
三 、 工 艺 流 程
图1 热力 系统流程 图
为 了保证 采暖 系统冬季 运行 的安全性 和稳定 性 ,另从
如图 1 所示 ,冲渣后 的 高炉冲渣 循环水 经底 滤过 滤后 , 它们需要 的通风 量相对于整个机房 的通 风量来说少 之又少 , 因此 清理滤 网的间隔时间可 以延长至 1 周 以上 ,保证 了机器
水器 进入凝结 水箱 ,蒸 汽冷凝水 可作 为补水 补到采 暖循环 水 系统 。采 暖循环水经 换热器 后 由5 0 %变为6 0 ℃ ,外 供采
渣水 回水管网。出底 滤池 冲渣 水管道管径为 l 0 2 0 m m,管道
直埋 ,埋深6 m,设 0 . o l 坡度 ,坡 向吸水 井方 向 ,外壁 采用 环氧 沥青漆加强级 防腐 。管 道设切断 闸阀 ,阀门设 于现浇 混凝 土阀 门井 内,阀门井尺 寸L B = 2 5 0 0 m m X 2 0 0 0 mm,井 底标高一 7 . 3 2 3 m。管道 在渣 池处 加法兰盖封堵 管道 ,待采 暖 系统投用时拆除法兰盖。 冲渣水 回水管 网管径 为5 0 0 mm。从热 力换热 站敷 设 至
摘 要 :介绍了西宁特钢集团公司通过对高炉冲渣水余 热的 回收利用 , 在节能减排方面取得 的成就。
关键词 :冲渣水 ;图拉法 ;凝结水 ;底滤池

高炉富氢冶金渣余热回收及综合利用方案(二)

高炉富氢冶金渣余热回收及综合利用方案(二)

高炉富氢冶金渣余热回收及综合利用方案一、实施背景随着全球对能源和环境问题的关注度不断提高,钢铁工业作为高能耗、高排放的行业,急需进行产业结构改革和绿色发展。

高炉富氢冶金渣余热回收及综合利用是其中的重要环节。

本方案旨在通过开发高效、环保的富氢冶金渣余热回收技术,实现钢铁工业的节能减排和资源循环利用。

二、工作原理高炉富氢冶金渣余热回收及综合利用方案主要采用富氢冶金渣显热回收技术,通过热交换器将冶金渣中的余热转化为高压水蒸气,再利用蒸汽发电或者供热,实现能源的二次利用。

同时,蒸汽还可以用于生产过程中的其他环节,如石灰石分解、矿石焙烧等,进一步提高了能源利用效率。

三、实施计划步骤1. 收集高炉冶金渣:将高炉冶炼产生的冶金渣收集起来,准备下一步处理。

2. 渣水分离:将冶金渣中的水分和渣进行分离,得到富氢冶金渣。

3. 余热回收:将富氢冶金渣中的余热通过热交换器转化为高压水蒸气。

4. 蒸汽利用:将高压水蒸气用于发电、供热或者生产工艺中,实现能源的二次利用。

5. 渣综合利用:将渣进行综合利用,如制备微晶玻璃、生产矿渣水泥等。

四、适用范围本方案适用于钢铁企业中的高炉车间、烧结车间、连铸车间等,能够有效地将冶金渣中的余热回收利用,提高能源利用效率,同时减少环境污染。

五、创新要点1. 开发高效、环保的富氢冶金渣余热回收技术,提高能源回收率;2. 将回收的余热转化为高压水蒸气,再用于发电、供热或生产工艺中,实现能源的二次利用;3. 将冶金渣进行综合利用,制备微晶玻璃、矿渣水泥等高附加值产品;4. 采用先进的自动化控制系统,实现整个工艺流程的智能化控制,提高生产效率和产品质量;5. 针对不同车间的实际情况,提供个性化的解决方案,满足企业的实际需求。

六、预期效果1. 提高能源利用效率:通过回收冶金渣中的余热并二次利用,能够提高能源利用效率20%以上。

2. 减少环境污染:采用本方案能够减少冶金渣的排放量,减轻对环境的污染。

3. 降低生产成本:通过回收和二次利用能源,能够降低企业的生产成本,提高经济效益。

高炉冲渣水直接换热余热回收技术

高炉冲渣水直接换热余热回收技术

高炉冲渣水直接换热余热回收技术
炉炼铁熔渣经水淬后产生大量 60-95℃冲渣水,蕴含了巨大热量,但其中含有大量固体颗粒和矿物纤维,并具有腐蚀性,很难利用其热量,三十年来国内外众多钢铁企业尝试利用冲渣水余热采暖,但仍未得到全面有效利用,特别是大型高炉未见应用。

天津华赛尔历时多年反复研究、试验取得了突破性成果,开发出全球独创、世界领先的“高炉冲渣水直接换热余热回收技术”,本技术系统冲渣水不设置沉淀过滤装置、直接进入“冲渣水换热器”与采暖水进行换热,技术优势在于:全水量取热、回收热量大、流程简单、易于操作,可实现无人值守运行;与高炉冲渣系统无缝对接不干扰高炉运行,适用于各种水冲渣工艺;一个采暖季连续不停车运转;占地小,易于实施;只取热量,无次生污染;运行成本低,维护量小。

“高炉冲渣水直接换热余热回收技术”已获得国家专利 13 项,其中 4 项发明专利,并已成功实施了 20 座高炉的冲渣水余热回收项目用于供热,其中 19 座炼铁高炉,1 座铜冶炼炉,两座 4350 立方米大型炼铁高炉,总供热面积达到 1200 万平米。

其技术成熟、可靠,适用范围广,既可远距离大规模应用于城市集中供热,也可以小规模应用于厂区内供热和生活热水供应;既可应用大型高炉,也可应用于小高炉;既可用炼铁,也可用于炼铜等冶金行业。

宽通道焊接板式换热器在高炉冲渣水余热回收系统中的应用

宽通道焊接板式换热器在高炉冲渣水余热回收系统中的应用

宽通道焊接板式换热器在高炉冲渣水余热回收系统中的应用摘要:近年来。

随着钢铁企业节能降耗、资源综合利用水平不断提高,加强能源优化利用、发展循环经济、余热利用已成为钢铁企业发展的趋势。

特别是以往难于利用的高炉冲渣水的低温余热资源,传统的换热器无法满足长周期运行,采用宽通道焊接式板式换热器可以有效解决此问题;可以实现较好的经济效益。

关键词:冲渣水;余热回收;宽通道焊接板式换热器一、冲渣水热量回收工艺简介高炉冲渣时,大量水急剧熄灭熔渣时,首先使冲渣水的温度急剧上升,甚至可以达到接近100℃,这些冲渣水低温余热利用率较低;其次是受到熔渣的影响,使水的组成发生很大变化。

冲渣水中含沉渣、浮渣、悬渣和渣棉。

高炉冲渣水渣的主要成分是硅酸钙和硅酸铝,沉渣和浮渣都很容易除掉,但是悬渣和渣棉除去非常困难,容易造成管道及换热器的磨损及腐蚀。

如果采用一般的间壁式换热器,同样存在堵塞、腐蚀、磨损等问题,无法长周期温稳定运行。

这也是困扰高炉冲渣水有效利用的一个难题。

由于冲渣水中含有很多杂质,不能直接作为采暖热水使用。

常规换热器容易堵塞。

采用宽通道焊接式板式换热器加热采暖水。

采暖水用于供热等,实现冲渣水的余热利用。

二、实例介绍2.1某钢厂渣水换热器设计配置某钢冲渣水余热利用主体为2#、3#高炉,2#高炉体积2800m³,3#高炉体积4800 m³,冲渣水温度85℃。

每台高炉两个出渣口,冲渣水换热器按冲渣水池配置确定。

每台高炉按出渣口分别配置换热设备,独立使用、间歇式运行,但也可以两个出渣口共用一组换热设备。

设备配置:2#高炉共配置2组换热器,每组2台,单台换热器面积950㎡,即换热器数量4台。

3#高炉共配置2组换热器,每组3台,单台换热器面积1100㎡,即换热器数量6台。

表1:主要工况参数85 6555 802.2宽通道焊接式板式换热器介绍图1 宽通道焊接式板式换热器简图该设备采用立式宽通道焊接板式换热器,宽通道侧流道间距可以实现12-30mm,介质中含固体颗粒或悬浮物直径≤10mm都可以适用,且通道光滑,流体流动顺畅、无滞留、无死区,避免介质中固体颗粒物或悬浮物的沉积、堵塞通道等现象的发生。

高炉冲渣水余热回收的利用技术概述

高炉冲渣水余热回收的利用技术概述

高炉冲渣水余热回收的利用技术概述随着能源的不断应用和开发,在世界范围内,能源问题已经成为我们发展过程中的重要问题。

我国作为世界范围内的能源大国,占据着世界上第二多的能源资源,但是我国的人均能源储量还不到世界平均水平的一半,总体来看,我国的能源人均占有量还处在较为落后的状态,和世界上的发达国家还有很大的距离。

在能源的使用效率问题上我国也存在着较大的差距。

基于上述差距,我国现阶段的能源问题就是要节约能源,提升能源的利用效率。

作为我国的经济发展的根基,我国的钢铁行业在我国的经济发展过程中扮演着非常重要的角色,发挥着巨大的作用。

但是钢铁行业在我国的发展过程中也存在着诸多的缺点。

例如对我国的能源消耗过大,同时对我国的环境危害过大等。

钢铁行业在推动能源转变的过程中会产生余热以及余能。

在现阶段我国在余热以及余能的回收以及利用问题上还存在很多的问题,利用效率很低。

虽然在实际的回收过程中,大部分的余热以及余能能够被回收,但是占据很大比例的低温余热还是没有充分地回收利用,根据有关部门的数据分析,这一部分的回收利用为零。

例如在生产过程中的高炉冲渣水产生的余热就白白地流失浪费了。

因此我国的钢铁行业在这一方面的发展前景非常好,有很大的发展潜力。

在我国的钢铁行业的高温炼铁相关工艺中,产生的炉渣温度能够达到1000℃,高温通常应用在水泥的生产过程中。

高温冲渣水具有3个主要的特点。

第一个特点是有较低的热源温度;第二个特点是流量巨大;第三个特点是对普通材质的钢材具有严重的腐蚀。

高温冲渣水一半情况下采用自然冷却的方式进行冷却处理。

在实际的操作过程中还有很多的利用方式,本文针对利用的主要方式进行阐述和分析。

1 高温冲渣水的应用一:采暖应用通常情况下,在冬季高温冲渣水能够达到53℃,在极寒的天气下水温还是能够达到49℃以上,我们通过合理的采暖布局并且配置相关的供暖设施,能够将室内的供暖温度控制在17℃以上。

其工作原理如图1所示。

利用冲渣水进行供暖是一种能源再利用,除了增加必要的供暖设备等投资外,这种方式的供暖不使用或者消耗能源,供暖费用消耗不大。

高炉冲渣水余热回收利用

高炉冲渣水余热回收利用

高炉冲渣水余热回收利用作者:张燕来源:《中国科技博览》2016年第05期[摘要]采暖季节各厂区、办公楼等主要以蒸汽作为能源介质,向各采暖用户供热。

为进一步实现节能降耗,增加企业自发电量,现将银山前区高炉冲渣水余热回收,作为采暖换热介质,向银山前区周边冬季采暖用户供热,改造后将极大降低厂区非生产用蒸汽消耗量,满足发电机能源需求,实现真正的节能降耗。

[关键词]高炉冲渣水余热利用中图分类号:TK 文献标识码:A 文章编号:1009-914X(2016)05-0013-011.现状分析(1)高炉冲渣系统概况银山前区2座1080m3高炉,水冲渣系统共用一个渣池。

渣池总容积为7200m3,每小时的循环量约为5000m3/h。

每座高炉的循环水量为2500m3/h,水泵运行方式为2用1备。

两座高炉日均产量5500吨,渣比350kg/t~400kg/t。

两座1080m3高炉冲渣水循环流量最大1400m3/h。

(2)高炉冲渣系统设备参数(见表1)冲渣水水质参数(见表2)(3)采暖季供暖期:每年11月1日到次年3月31日。

2.冲渣水余热换热改造方案在银山前区两座高炉冲渣水池东北侧新建高炉冲渣水余热利用换热站、水泵站、供回水管道、银前区采暖系统改造、配套电气系统以及土建辅助系统。

新建高炉冲渣水余热利用独立运行,uliyphauv不影响高炉冲渣系统的安全稳定运行。

1)①冲渣水参数:,冬季水温70~90℃。

选定热源水温75℃。

冲渣水理论取水量:580m3/h。

②取热方式:冲渣水直接换热式。

③系统组成:冲渣水循环换热系统+供暖循环系统。

2)冲渣水采暖系统(1)冲渣水循环系统:①冲渣水循环系统流程:沉渣池—→引水管渠—→渣浆泵—→污水换热器—→沉渣池②冲渣水取水:按1400m3/h流量设计冲渣水取水系统。

在沉渣池侧壁开口,做引水管渠,经引水管渠将冲渣水引至冲渣水换热站,在引水管渠二端设沉沙井。

引水管渠当量管径1.15m。

③冲渣水换热器:系统采用冲渣水换热器。

钢厂余热回收项目方案

钢厂余热回收项目方案

钢厂余热回收项目方案一、高炉冲渣水余热的利用钢铁产业是耗能大户,在消耗能源的同时会产生大量的余热余能。

目前,钢铁产业余热余能的回收利用率相当低,其中,高温余热比较容易回收,在节能降耗的技术改造中已大部分得到回收;但低温余热的回收却几乎为零,如高炉冲渣水的余热,大多被浪费掉。

应该指出,低温余热约占总余热的35%,因此,钢铁产业的低温余热存在着巨大的回收潜力。

如何实现高炉冲渣水的余热利用,是一个具有重大意义的节能课题。

钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。

目前,大多数炼铁企业的处理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。

这一过程中能够产生大量温度在80~95℃的热水。

通常,为了保证冲渣水的循环利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。

这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。

高炉冲渣水低温余热的特点是:热源温度较低,但其流量却相当大。

回收高炉冲渣水的余热,既能节约能源,又能保护环境,具有重要的意义。

目前,提出对冲渣水余热的回收方式有:利用冲渣水采暖或作浴池用水;冲渣水余热发电。

冲渣水余热发电无疑是一种最有价值的研发方向,但其技术含量相当高,目前还处于研究阶段关于高炉冲渣水余热回收发电系统的一般思路是:该系统主要由循环工质蒸汽发生器、动力机、工质循环增压泵和发电机组成。

高炉冲渣水进入余热蒸汽发生器,放出热量,循环工质进入余热蒸汽发生器中吸收热量汽化为工质蒸汽。

工质蒸汽进入动力机中,推动动力机转动,并带动发电机产生电能。

其中动力机本身具有减温减压的功能。

液态工质在增压泵的作用下进入余热蒸汽发生器中再次吸收热量,循环往复。

要实现这一系统的正常运行,关键是选择合适的循环工质。

针对钢铁厂高炉冲渣水温度低,流量大的特点,为了能够高效回收低温余热,需要采用低沸点的循环工质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仟亿达高炉冲渣水余热回收利用解决方案一、高炉冲渣水余热利用背景
钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。

目前,大多数炼铁企业的处
理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。

这一过程中能够产生大量温度在80~95℃的热水。

通常,为了保证冲渣水的循环
利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。

这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。

目前,高炉冲渣水余热回收利用技术主要应用于余热发电、冬季采暖和浴池用水。

二、高炉冲渣水余热利用解决方案
2.1余热发电
基本原理为:炼铁厂高炉冲渣水排出时温度为80~95℃,经沉淀清除杂质预处理后进人
特殊设计的蒸发换热器和预热换热器,将高炉冲渣水热量传递给换热介质,温度降至约5O℃,再送回高炉冲渣,从而回收一定量的余热。

换热介质在换热器内吸收热量后变成80℃的过
热蒸气,然后进入气轮机膨胀做功,带动发电机转动,输出电能。

做功后的换热介质变成低压过热蒸气,进入冷凝器放出热量,变成低温、低压的液体换热介质,然后由泵送至换热器中吸热,再次变成过热蒸气推动气轮机膨胀做功。

如此连续循环,将高炉冲渣水中的热量源源不断地提取出来,转换成电能。

图1、高炉冲渣水余热发电工艺流程图
冷凝器冷却方式包括水冷式和风冷式2种。

其中,水冷式冷凝器投资较低,投资回收期较短,但运行过程需补充冷却水;风冷式冷凝器净发电量较少,但不需要冷却水,比较适合干旱缺水地区。

2.2螺杆膨胀机余热发电简介
螺杆膨胀机是一种专门回收各种低品位热能发电的高新技术新型发电机组,具有通用性强、热能适用广、使用维护安全便捷、节能高效等技术特点,在不影响用户正常生产的前提下实现节能减排和经济增效的投运效果。

工业热液(75℃以上)的应用范围:
热水温度150℃以上,可以直接用“螺杆膨胀动力机组+冷凝器”回收发电
热水温度70-150℃范围,可以采用“双循环螺杆膨胀动力机组+冷凝器”回收发电
图2、螺杆发电流程图
2.3冬季采暖
高炉冲渣水在渣池中沉淀后仍含有很多炉渣杂质,不能满足采暖系统水质要求,所以高炉冲渣水必须过滤才能进入采暖系统。

采暖循环水泵应采用热水泵,1用1备。

对于流量较大的采暖系统,可增设l台流量为设计流量70%的热水泵,在室外采暖计算温度较高时使用,使采暖系统的温度调节实现分阶段调节。

采暖蓄水池水温通常可达70℃以上,当室外温度升高时,水温也会随之升高,所以采暖系统供水温度可达7O一8O℃,供水和回水温差为10℃。

当采暖期室外温度较低时,可向采暖蓄水池补充蒸汽,以提高供水温度。

2.4浴池用水
采用高炉冲渣水作为浴池用水的热源,该工艺的特点如下:
1)余热易回收。

高炉冲渣水水温高达85℃,浴池用水温度一般为40℃,采用换热器可以很容易回收高炉冲渣水的余热,使水温达到浴池用水温度。

2)热水输送方便。

由于采暖管道已铺设至厂区及家属区,所以热水输送管道路由的选择及工程测量均可省略。

另热水输送量不是很大,热水输送管道可直接架设在采暖回水管道上,从而节省大量的钢材消耗。

3)换热器安装方便。

渣水分离系统设有22m×3m×12m的热水井,换热器安装在热水井中,可不受形状和数量的限制。

同时,自制的换热器重量轻、价格低,在换热面积相同的情况下,自制换热器的重量仅为标准换热器重量的1/6,价格仅为标准换热器重量的1/7。

4)换热效率高。

渣水分离系统具有充足的给水水源,能使给水在不加压的情况下通过换热
器进入蓄水池,从而很经济地完成换热功能。

其中,换热器结构采用u型排管形式。

泵房及热水输送管道布置如图3所示:
给排水系统如图4所示。

三、高炉冲渣水的渣水分离技术
炉渣水淬方式分为渣池水淬和炉前水淬2种,高炉冲渣水一般指炉前水淬所产生的废水。

因为冲渣过程对循环水质要求较低,所以高炉冲渣水经渣水分离后即可循环使用,温度高一些也不会影响冲渣效果,因而,在高炉冲渣水系统中,可将空冷塔设计成只有补充水系统而无排污系统的循环系统。

高炉冲渣水渣水分离的方式主要有渣滤法、槽式脱水法(RASA拉萨法)和转鼓脱水法(INBA印巴法)3种。

1.1渣滤法
渣滤法是将炉渣和高炉冲渣水的渣水混合物引入滤池,由炉渣作为滤料,使炉渣和高炉冲渣水通过滤池时将炉渣截流在滤池内,并将高炉冲渣水过滤排出。

过滤后的高炉冲渣水中悬浮物含量很少,且在渣滤过程中可降低高炉冲渣水的暂时硬度,滤料也不必反复冲洗,故高炉冲渣水循环使用较易实现。

但滤池占地面积大,一般需几个滤池轮换作业,且难以实现自动控制,所以渣滤法只适用于小高炉的渣水分离。

1.2槽式脱水法
槽式脱水法是将高炉冲渣水用泵打入脱水槽内,槽底和槽壁均由不锈钢丝网制成,犹如滤
池,但脱水面积远大于滤池,且占地面积较小。

脱水后的水渣由脱水槽下部的阀门控制排出,装车外运;脱水槽出水夹带浮渣,将其与浮渣一并送入沉淀池,沉淀后的水渣再返回脱水槽,溢流水经冷却循环使用。

1.3转鼓脱水法
转鼓脱水法是将炉渣和高炉冲渣水的渣水混合物引至1个转动的圆筒形设备内,使炉渣和高炉冲渣水均匀分配后进人转鼓。

转鼓的外筒是由不锈钢丝编织的网格结构,所以进入转鼓的炉渣和高炉冲渣水很快得到分离。

高炉冲渣水通过炉渣和转鼓外筒从转鼓的下部流出,炉渣则随转鼓一起做圆周运动。

当炉渣被带到转鼓的上部时,依靠自重落至转鼓中心的输出皮带机上,由输出皮带机将炉渣运出,实现高炉冲渣水与炉渣的分离。

由于所有的炉渣均在转鼓内被分离,没有浮渣产生,所以不必再设置沉淀设施,显著提高了渣水分离效率。

相关文档
最新文档