塑料成型加工中经常要用到热稳定剂
稀土在塑料中的应用
5 .稀 土在 塑 料 中 的其 它应 用
5 1稀土的防老化性能 . 口口塑料成型加工时加入某种稀土化合物可大大延缓 塑 料 制 品 的老 化寿 命 。在 塑料 异 型 材 生产 中加 入 05 .份稀 土化合物和 同样配方不加稀土化合 物进行 氙
( )随着氧化稀土的增加 ,聚丙烯中 1结晶的相 2 3
火焰燃烧炉 。
此外 ,我国在西部开发 中,西气 东输 的 目的主要 是解 决沿途各大 中城市因燃 煤而造 成的严 重环境 污 染 。其 中天然气 作为 民用燃料 占有很 大 的比例 。所 以,天然气催化燃烧炉 的市场前景是十分好的 。天然
气催 化燃烧炉和天然气催 化燃烧热水器是高效节能和
口口稀土尼龙板与普通M 尼龙板相比,寿命提 高5 % C 0 以上。耐磨度提高一倍 ,且不污染原料 ,瓷产 品一级
品 率提 高5 以上 。 %
稀土无毒稳定剂具有下述特点 : ( )所选稀土 1
品种为弱碱性 ,有助于吸附聚氯乙烯分解时释放 出的 氯化氢 ,而游 离氯化氢 是聚氯 乙烯 继续 分解 的促 进
外力 最 小 。
5 6氧化稀土 于 10 8 ℃下在密 炼机 中混 合均匀 ,在 10C 模压成型 ,经测试 ,其 性能 8 "下
如下 :
口口稀土磁性塑料可采用浇铸 、注塑、挤 出、涂饰等
工艺 生产 。
口 ( )结 晶和熔 融:氧化稀土 改性聚丙烯形成的结 1 晶是 Q和 1的共 生晶,且随稀土含量的增加 ( %~ 3 1 2 %)结 晶峰向高温方 向移动 ( ~9 3 2 ℃)。
发 光 塑 料 制 品 时 , 填 加 有 机 染 料 ,该 染 料 在 35 4
化过程 中,加入稀土改性剂 ,改变了M 尼龙 的结晶形 C 态和结 晶度,加大 了聚合分子量,分子量分布更趋一
高分子材料成型加工唐颂超第三版第2-0章课后习题答案(仅供参考)
高分子材料成型加工Chapter2-10 课后习题答案(仅供参考)Chapter2 高分子材料学1. 分别区分“通用塑料”和“工程塑料” 、“热塑性塑料”和“热固性塑料” ,并请各举2、3 例。
答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有PE、PP、PVC 、PS 等工程塑料是指拉伸强度大于50MPa 冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。
工程塑料有PA、PET 、PBT、POM 等。
热塑性塑料:加热时变软以至流动,冷却变硬。
这种过程是可逆的、可以反复进行。
如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。
热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。
此后,再次加热时,已不能再变软流动了。
正是借助这种特性进行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺寸的制品。
这种材料称为热固性塑料。
酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料都是热固性塑料。
2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。
聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。
包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。
不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而所有的高聚物都可以在合适的条件下发生取向。
(2)结晶是某些局部区域内分子链在三维空间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链沿特定方向发生较为规整排列。
(3)结晶是在分子链内部和分子链之间的相互作用下发生的,外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。
1塑料热稳定剂种类划分
1塑料热稳定剂种类划分热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。
常用的稳定剂按照主要成分分类可分为盐基类、脂肪酸皂类、有机锡化合物、复合型热稳定剂及纯有机化合物类。
1)盐基类热稳定剂:盐基类稳定剂是指结合有“盐基”的无机和有机酸铅盐,这类稳定剂具有优良的耐热性、耐候性和电绝缘性,成本低,透明性差,有一定毒性,用量一般在0.5%~5.0%。
(文章来源环球聚氨酯网)2)脂肪酸类热稳定剂:该类热稳定剂是指由脂肪酸根与金属离子组成的化合物,也称金属皂类热稳定剂,其性能与酸根及金属离子的种类有关,一般用量为0.1%~3.0%。
3)有机锡类热稳定剂:该类热稳定剂可与聚氯乙烯分子中的不稳定氯原子形成配位体,而且在配位体中有机锡的羧酸酯基与不稳定的氯原子置换。
这类热稳定剂的特点是稳定性高、透明性好、耐热性优异,不足之处是价格较贵。
4)复合型热稳定剂:该类热稳定剂是以盐基类或金属皂类为基础的液体或固体复合物以及有机锡为基础的复合物,其中金属盐类有钙—镁—锌、钡—钙—锌、钡—锌和钡—镉等;常用的有机酸如有机脂肪酸、环烷酸、油酸、苯甲酸和水杨酸等。
5)有机化合物热稳定剂:该类热稳定剂除少数可单独使用的主稳定剂(主要是含氮的有机化合物)外,还包括高沸点的多元醇及亚磷酸酯,亚磷酸酯常与金属稳定剂并用,能提高复合材料的耐候性、透明性,改善制品的表面色泽。
2PVC热稳定剂的作用机理1)吸收中和HCL,抑制其自动催化作用。
这类稳定剂包括铅盐类、有机酸金属皂类、有机锡化合物、环氧化合物、酚盐及金属硫醇盐等。
它们可与HCL反应,抑制PVC脱HCL的反应。
2)置换PVC分子中不稳定的烯丙基氯原子抑制脱PVC。
如有机锡稳定剂与PVC分子的不稳定氯原子发生配位结合,在配位体中,有机锡与不稳定氯原子置换。
3)与多烯结构发生加成反应,破坏大共轭体系的形成,减少着色。
不饱和酸的盐或酯含有双键,与PVC分子中共轭双键发生双烯加成反应,从而破坏其共轭结构,抑制变色。
塑料中使用的添加剂
用于塑料成型加工品的一大类助剂,包括增塑剂、热稳定剂、抗氧剂、光稳定剂、阻燃剂、发泡剂、抗静电剂、防霉剂、着色剂和增白剂(见颜料)、填充剂、偶联剂、润滑剂、脱模剂等。
其中着色剂、增白剂和填充剂不是塑料专用化学品,而是泛用的配合材料。
塑料助剂是在聚氯乙烯工业化以后逐渐发展起来的。
20世纪60年代以后,由于石油化工的兴起,塑料工业发展甚快,塑料助剂已成为重要的化工行业。
根据各国塑料品种构成和塑料用途上的差异,塑料助剂消费量约为塑料产量的8%~10%。
目前,增塑剂、阻燃剂和填充剂是用量最大的塑料助剂。
增塑剂一类可以在一定程度上与聚合物混溶的低挥发性有机物,它们能够降低聚合物熔体的粘度以及产物的玻璃化温度和弹性模量。
其作用机理是基于增塑剂分子对聚合物分子链间引力的削弱。
增塑剂是最早使用的塑料助剂。
19世纪下半叶,就曾采用樟脑和邻苯二甲酸酯作硝酸纤维素的增塑剂。
1935年聚氯乙烯工业化后,增塑剂得到广泛应用。
目前,约80%用于聚氯乙烯和氯乙烯共聚物,其余用于纤维素衍生物、聚醋酸乙烯酯、聚乙烯醇、天然和合成橡胶。
软质聚氯乙烯平均外加45%~50%(质量,下同)增塑剂。
由于不需或仅少量添加增塑剂的硬质聚氯乙烯的迅速发展,增塑剂在许多工业发达国家的增长率已低于聚氯乙烯。
中国聚氯乙烯软质制品仍占很大比例,故增塑剂仍将有较快的发展。
邻苯二甲酸酯类是增塑剂的主体,其产量约占增塑剂总产量的80%左右,其中邻苯二甲酸二辛酯(简称DOP)是最重要的品种。
生产规模较小的增塑剂有:己二酸和癸二酸的酯类(具有良好耐寒性),磷酸酯类(具有阻燃作用),环氧油和环氧酯类(与热稳定剂有协同作用),偏苯三酸酯和季戊四醇酯(耐热性较好),氯化石蜡(辅助增塑剂和阻燃增塑剂),烷基磺酸苯酯(辅助增塑剂)。
热稳定剂主要功能是防止加工时的热降解,也有防止制品在长期使用过程中老化的作用。
用量较大的是聚氯乙烯和氯乙烯共聚物的热稳定剂。
热稳定剂在软质制品中的用量为2%左右,而在硬质制品中为3%~5%。
PVC稳定剂简介
PVC 【1 】稳固剂简介英文化工术语:Stabilizer, Inhibiter.什么是稳固剂?1.广义地讲,能增长溶液.胶体.固体.混杂物的稳固机能化学物都叫稳固剂.它可以减慢反响,保持化学均衡,下降概况张力,防止光.热分化或氧化分化等感化.广义的化学稳固剂起源平常普遍,重要依据配方设计者的设计目标,可以灵巧的运用任何化学物以达到产品品德稳固的目标.2.狭义地讲,主如果指保持高聚物塑料.橡胶.合成纤维等稳固,防止其分化.老化的试剂.纯的PVC树脂对热极为迟钝,当加热温度达到90Y:以上时,就会产生稍微的热分化反响,当温度升到120C后分化反响加剧,在150C,10分钟,PVC树脂就由本来的白色慢慢变成黄色—红色—棕色—黑色.PVC树脂分化进程是因为脱HCL反响引起的一系列连锁反响,最后导致大分子链断裂.防止PVC热分化的热稳固机理是经由过程如下几方面来实现的.经由过程捕获PVC热分化产生的HCl,防止HCl的催化降解感化.铅盐类重要按此机理感化 ,此外还有金属皂类.有机锡类.亚磷酸脂类及环氧类等.•置换生动的烯丙基氯原子.金属皂类.亚磷酸脂类和有机锡类可按此机理感化.•与自由基反响,终止自由基的反响.有机锡类和亚磷酸脂按此机理感化.•与共扼双键加成感化,克制共扼链的增长.有机锡类与环氧类按此机理感化.•分化过氧化物,削减自由基的数量.有机锡和亚磷酸脂按此机理感化.•钝化有催化脱HCl感化的金属离子.统一种稳固剂可按几种不合的机理实现热稳固目标.铅盐类铅盐类是PVC最经常运用的热稳固剂,也是十分有用的热稳固剂,其用量可占PVC 热稳固剂的70%以上.铅盐类稳固剂的长处:热稳固性优良,具有长期热稳固性,电断气缘机能优良,耐候性好,价钱低.铅盐类稳固剂的缺陷:疏散性差.毒性大.有初期着色性,难以得到透明成品,也难以得到光鲜色彩的成品,缺少润滑性,易产生硫污染.经常运用的铅盐类稳固剂有:(1)三盐基硫酸铅分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’.三盐基硫酸铅是最经常运用的稳固剂品种,一般与二盐亚磷酸铅一路并用,因无润滑性而需配人润滑剂.重要用于PVC硬质不透明成品中,用量一般2~7份.(2)二盐基亚磷酸铅分子式为2PbO.PbHPO3.H2O,代号为DL,简称二盐,白色粉末,密度为6.1g/cm3.二盐基亚磷酸铅的热稳固性稍低于三盐基硫酸铅,但耐候机能好于三盐基硫酸铅.二盐基亚磷酸铅常与三盐基硫酸铅并用,用量一般为三盐基硫酸铅的1/2.(3)二盐基硬脂酸铅代号为DLS,不如三盐基硫酸铅.二盐基亚磷酸铅经常运用,具有润滑性.常与三盐基硫酸铅.二盐基亚磷酸铅并用,用量为0.5—1.5份.复合铅盐稳固剂铅盐稳固剂价钱低廉,热稳固性好,一向被普遍运用,但铅盐的粉末渺小,配料和混杂中,其粉尘被人吸入会造成铅中毒,为此,科技人员又研讨出一种新型的复合铅盐热稳固剂.这种复合助剂采取了共生反响技巧将三盐.二盐和金属皂在反响系统内以初生态的晶粒尺寸和各类润滑剂进行混杂,以包管热稳固剂在PVC系统中的充分疏散,同时因为与润滑剂共熔融形成颗粒状,也防止了因铅粉尘造成的中毒.复合铅盐稳固剂包涵了加工所须要的热稳固剂组份和润滑剂组份,被称作为全包装热稳固剂.它具有以下的长处:(1)复合热稳固剂的各类组份在其临盆进程中可得到充分混杂,大幅度改良了与树脂混杂疏散的平均性.(2)配方混应时,简化了计量次数,削减了计量错误的概率及由此所带来的损掉.(3)轻便了辅料的供给和贮备,有利于临盆.质量治理.(4)供给了无尘临盆产品的可能性,改良了临盆前提.总之,复合热稳固剂有利于范围临盆,为铅盐热稳固剂的成长供给了新的偏向.复合铅盐稳固剂一个重要指标是铅的含量,今朝所临盆的复合铅盐稳固剂含铅量一般为20%-60%;在PVC塑料门窗型材临盆上的用量为3.5—6份金属皂类简介为用量仅次于铅盐的第二大类主稳固剂,其热稳固性虽不如铅盐类,但兼具润滑性.金属皂类可所以脂肪酸(月桂酸.硬脂酸.环烷酸等)的金属(铅.钡.镉.锌.钙等)盐,个中以硬脂酸盐最为经常运用,其生动性大小次序为:Zn盐?Cd盐?Pb盐?Ca盐7.Ba盐.金属皂类一般不单独运用,经常为金属皂类之间或与铅盐及有机锡等并用.除Gd.Pb外都无毒,除Pb.Ca外都透明,无硫化污染,因而普遍用于软质PVC中,如无毒类.透明类成品等.经常运用的金属盐类稳固剂有(1)硬脂酸锌(ZnSt),无毒且透明,用量大后,易引起“锌烧”成品变黑,常与Ba.Ca皂并用.(2)硬脂酸镉(CdSt),为一重要的透明稳固剂品种,毒性较大,不耐硫化污染,克制初期变色才能大,常与Ba皂并用.(3)硬脂酸铅(PbSt),热稳固性好,可兼做润滑剂.缺陷为易析出,透明差,有毒且硫化污染轻微,常与Ba.Cd皂并用.(4)硬脂酸钙(CaSt),加工机能好.热稳固才能较低,无硫化污染,无毒,常与Zn皂并用.(5)硬脂酸钡(BaSt),无毒,长期热稳固性好,抗硫化污染,透明,常与Pb.Ca皂并用.复合品种经常运用的有:Ca/Zn(无毒.透明).Ba/Zn(无毒.透明).Ba/Cd(有毒.透明)及Ba/Cd/Zn.有机锡类有机锡类为热稳固剂中最有用的,在透明和无毒成品中运用最普遍的一类,其凸起长处为:热稳固性好,透明性好,大多半无毒.缺陷为价钱高,无润滑性.有机锡类大部分为液体,只有少数为固体.可以单独运用,也常与金属皂类并用.有机锡类热稳固剂重要包含含硫有机锡和有机锡羧酸盐两类.(1)含硫有机锡类:重要为硫醇有机锡和有机锡硫化物类稳固剂,与Pb.Cd皂并用会产生硫污.含硫有机锡类透明性好.重要品种有:a.二巯基乙酸异辛酯二正辛基锡(DOTTG),外不雅为淡黄色液体,热稳固性及透明性极好,无毒,参加量低于2份.b.二甲基二巯基乙酸异辛酯锡(DMTFG),外不雅为淡黄澄清液体,为无毒.高效.透明稳固剂,经常运用于扭结膜及透明膜中.(2)有机锡羧酸盐:稳固性不如含硫有机锡,但无硫污染,重要包含脂肪酸锡盐和马来酸锡盐.重要品种有:a.二月桂酸二正丁基锡(DBTL)淡黄色液体或半固体,润滑性优良,透明性好,但有毒,常与Cd皂并用,用量1-2份;与马来酸锡及硫醇锡并用,用量0.5—1份.b.二月桂酸二正辛基锡(DOTL),有毒且价高,润滑性优良,经常运用于硬PVC中,用量小于1.5份.c.马来酸二正丁基锡(DBTM),白色粉末,有毒,无润滑性,常与月桂酸锡并用,不成与金属皂类并用于透明成品中.有机锑类具有优良的初期色相和色相保持性,尤其是在低用量时,热稳固性优于有机锡类,特殊适于用双螺杆挤出机的PVC配方运用.有机锑类重要包含硫醇锑盐类.巯基乙酸酯硫醇锑类.巯基羧酸酯锑类及羧酸酯锑类等.国内的锑稳固剂重要以三巯基乙酸异辛酯锑(ST)和以ST为重要成分的复合稳固剂STH—I和STH-Ⅱ两种为主.五硫醇锑为透明液体,可用作透明片.薄膜.透明粒料的热稳固剂.STH-I可以代替京锡C-102,可克制PVC的初期着色,热稳固性好,成品透明,色彩鲜艳,STH—Ⅱ无毒,重要用于PVC水管等.稀土稳固剂选材多为稀土氧化物和稀土氯化物为主,其氧化物和氯化物多为镧.铈.镨.钕等轻稀土元素的单一体或混杂体.稀土元素有着类似且平常生动的化学性质,有着浩瀚的轨道可作为中间离子接收配位体的孤对电子,同时稀土金属离子有较大的离子半径,与无机或有机配位体重要经由过程静电引力形成离子配键,作为络合物的中间原子,常以d2SP3.d4dP3.f3d5Ssp3等多种杂化情势形成配位数为6—12的络合物.稀土元素优良的力学机能及其分组道理都与稀土元素的几何性质有关.因为原子和离子的半径是决议晶体的构型.硬度.密度和熔点等物理性质的重要身分,在常温.常压前提下,稀土金属镧.镨.钕呈双六方晶体构造,而铈呈立方晶体密集(面心)构造,当温度.压力变更时,多半稀土金属产生晶型改变.因为镧系压缩,镧系元素的原子半径.原子体积随原子序数增长而减小,密度随原子序数增长而增长,但铈与镧.镨.钕比拟,有平常现象.在镧.铈.镨.钕中,镧的化学性质是最生动,但三价镧与C1只能生成RECl正络合物,并且此络合物不稳固,而铈.镨这些高价的稀土离子与Cl生成络合物的才能比三价的镧要强,它们与Cl配体能生成稳固的负络离子,是以,在稀土热稳固剂的选材上要分解镧.铈.镨.钕的各自长处,在不合的运用范围,用其高纯单一体.混杂体或合理搭配.稀土离子为典范的硬阳离子,即不轻易极化变形的离子,它们与金属硬碱的配位原子,如氧的络合才能很强.稀土化合物对CaC03的偶联感化,因为稀土离子和PVC链的氯离子之间消失强配位互相感化,有利于剪切力的传递从而使稀土化合物能有用地加快PVC的凝胶化,即可促进PVC塑化,又可起到加工助剂ACR的感化.同时,稀土金属离子与CPE中的C1配位,可使CPE加倍施展其增韧改性的感化.这些效能施展的充分与否.均衡与否,与稀土复合物中的复配助剂有着相当大的关系,复合物中的润滑系统.加工改性系统都至关重要,是以复配工艺的利害直接影响着稀土多功效复合稳固剂的效能.稀土稳固剂功效机能优良的稀土稳固剂应具有以下功效:(1)优良的热稳固机能静态动态热稳固性,均与京锡8831相当,好于铅盐及金属皂类,是铅盐的三倍及Ba/Zn复合稳固剂的4倍.可复配成为无毒.透明的,还可部分代替有机锡类稳固剂而普遍运用.稀土稳固剂的感化机理为捕获HCl和置换烯丙基氯原子,与环氧类的帮助稳固剂具有较好的协同感化.(2)偶联感化具有优良的偶联感化,与铅盐比拟,与PVC有很好的相容感化,对于PVC-CaCO,系统偶联感化较好,有利于PVC塑料门窗异型材强度的进步.用稀土稳固剂加工的PVC型材的焊角强度比铅盐稳固剂的PVC型材焊角强度要高,原料价钱也高一些.(3)增韧感化与PVC树脂和增韧剂CPE的优越的相容性以及与CaCO3,的偶联感化,使PVC树脂在加工中塑化平均,塑化温度低,型材的耐冲击机能较好.稀土稳固剂无润滑感化,应与润滑剂一路参加, 今朝我国临盆的稀土复合稳固剂是将稀土.热稳固剂和润滑剂复配而成的,参加量一般为4-6份.重要的帮助热稳固剂品种帮助垫稳固剂本身不具有热稳固感化,只有与主稳固剂一路并用,才会产生热稳固后果,并促进主稳固剂的稳固后果.帮助热稳固剂一般不含金属,是以也称为非金属热稳固剂.帮助热稳固剂的重要品种有:(1)亚磷酸酯类.是一重要的帮助热稳固剂,与Ba/Cd.Ba/Zn复合稳固剂及Ca/Zn复合稳固剂等有协同感化,重要用于软质PVC透明配方中,用量为0.1—1份.(2)环氧化合物类,与金属皂类有协同感化,与有机锡类稀土稳固剂并用后果好,用量为2-5份,经常运用的品种为环氧大豆油.环氧脂.(3)多元醇类,重要有季戊四醇.木糖醇.甘露醇等,可与Ca/Zn复合稳固剂并用.。
塑料成型用的物料及其配制
项目一 塑料成型用物料的组成及其特性
(2) POM的结晶度高,熔融温度范围窄,有明显的熔点。熔体的茹度对 剪切速率较敏感。
(3) POM的热稳定性差,加工温度不宜超过250℃,若温度过高,受热 时间长,会引起物料分解,逸出有强烈刺激性气味的甲醛气体。因此, POM成型时,在保证物料充分塑化的前提下,应尽量降低温度,缩短物 料在高温下的停留时间。
很好的耐磨性、韧性和抗冲击强度,主要用作具有自润滑作用的齿轮和 轴承。尼龙的耐油性好,阻透性优良,无嗅、无毒,是性能优良的包装 材料。 聚酞胺大分子链中都含有亚甲基和酞胺基团,只是不同品种所含基团数 目不同。结构形式基本相似,因此,各种聚酞胺品种有共同的成型特性。 (1) PA易受潮。
上一页 下一页 返回
用性能要求来选择几种增塑剂配合使用。
上一页 下一页 返回
项目一 塑料成型用物料的组成及其特性
上一页 下一页 返回
项目一 塑料成型用物料的组成及其特性
PV C可用挤出、注塑、压延等成型加工方法成型,其成型加工特性为: (1) PVC的加工稳定性极不好,是热塑性塑料中最差的品种;其160℃的
熔融温度高于140℃的分解温度,因此纯PV C树脂不通过改性处理是难 以用熔融塑化的方法来加工生产的。常用有两种改性方法:一是在树脂中 加入热稳定剂,提高PV C的分解温度;二是在树脂中加入增塑剂,降低 PV C的熔融温度。 (2)高温下某些金属离子会加剧PV C的降解,如铁、镐等重金属离子, 所以要严格控制重金属离子的含量,加工前进行磁选,设备要镀铬以防 止产生铁锈。
带有金属嵌件。
上一页 下一页 返回
项目一 塑料成型用物料的组成及其特性
( 5 ) PS易着色,可与有机或无机着色剂混合,制成各种色泽鲜艳的制 品。
pvc热稳定剂检验标准
pvc热稳定剂检验标准
PVC热稳定剂检验标准。
PVC热稳定剂是一种常用的塑料添加剂,它能够有效地延长PVC制品的使用
寿命,提高其耐热性能。
而热稳定剂的质量直接影响着PVC制品的质量和性能,
因此制定和执行严格的检验标准对于保障PVC制品质量具有重要意义。
首先,对于PVC热稳定剂的外观和物理性质进行检验。
外观检验主要包括观
察样品的颜色、形状和杂质等情况,确保产品无异物、无色差、无结块等现象。
物理性质检验则包括密度、粒度、熔点等指标的测试,以确保产品符合相关的物理性能要求。
其次,对于PVC热稳定剂的化学成分进行检验。
化学成分检验是确保产品符
合国家标准和客户要求的重要手段,包括主要成分含量、有害物质含量等指标的测试,以保证产品不含有害物质,符合环保要求。
此外,还需要对PVC热稳定剂的热稳定性能进行检验。
热稳定性是衡量热稳
定剂质量优劣的重要指标,通过热重分析、热稳定性测试等手段来评定产品的热稳定性能,以确保产品能够在高温环境下保持稳定性能。
最后,对PVC热稳定剂的应用性能进行检验。
应用性能检验是验证产品是否
适用于实际生产的关键环节,包括加工性能、成型性能、热稳定性能等方面的测试,以确保产品能够满足客户的实际需求。
总之,严格执行PVC热稳定剂的检验标准,对于保障产品质量、提升产品竞
争力具有重要意义。
只有通过科学严谨的检验手段,确保产品符合相关标准和要求,才能够赢得客户的信任和市场的认可。
希望各生产企业能够重视产品质量,加强对PVC热稳定剂的检验工作,不断提升产品质量,为行业发展做出积极贡献。
塑料成型添加剂
塑料成型添加剂塑料成型加工添加剂一大类助剂,包括增塑剂、热稳定剂、抗氧剂、光稳定剂、阻燃剂、发泡剂、抗静电剂、防霉剂、着色剂和增白剂(见颜料)、填充剂、偶联剂、润滑剂、脱模剂等。
其中着色剂、增白剂和填充剂不是塑料专用化学品,而是泛用的配合材料。
塑料助剂是在聚氯乙烯工业化以后逐渐发展起来的。
20世纪60年代以后,由于石油化工的兴起,塑料工业发展甚快,塑料助剂已成为重要的化工行业。
根据各国塑料品种构成和塑料用途上的差异,塑料助剂消费量约为塑料产量的8%~10%。
目前,增塑剂、阻燃剂和填充剂是用量最大的塑料助剂。
增塑剂一类可以在一定程度上与聚合物混溶的低挥发性有机物,它们能够降低聚合物熔体的粘度以及产物的玻璃化温度和弹性模量。
其作用机理是基于增塑剂分子对聚合物分子链间引力的削弱。
增塑剂是最早使用的塑料助剂。
19世纪下半叶,就曾采用樟脑和邻苯二甲酸酯作硝酸纤维素的增塑剂。
1935年聚氯乙烯工业化后,增塑剂得到广泛应用。
目前,约80%用于聚氯乙烯和氯乙烯共聚物,其余用于纤维素衍生物、聚醋酸乙烯酯、聚乙烯醇、天然和合成橡胶。
软质聚氯乙烯平均外加45%~50%(质量,下同)增塑剂。
由于不需或仅少量添加增塑剂的硬质聚氯乙烯的迅速发展,增塑剂在许多工业发达国家的增长率已低于聚氯乙烯。
中国聚氯乙烯软质制品仍占很大比例,故增塑剂仍将有较快的发展。
邻苯二甲酸酯类是增塑剂的主体,其产量约占增塑剂总产量的80%左右,其中邻苯二甲酸二辛酯(简称DOP)是最重要的品种。
生产规模较小的增塑剂有:己二酸和癸二酸的酯类(具有良好耐寒性),磷酸酯类(具有阻燃作用),环氧油和环氧酯类(与热稳定剂有协同作用),偏苯三酸酯和季戊四醇酯(耐热性较好),氯化石蜡(辅助增塑剂和阻燃增塑剂),烷基磺酸苯酯(辅助增塑剂)。
热稳定剂主要功能是防止加工时的热降解,也有防止制品在长期使用过程中老化的作用。
用量较大的是聚氯乙烯和氯乙烯共聚物的热稳定剂。
热稳定剂在软质制品中的用量为2%左右,而在硬质制品中为3%~5%。
s-eed 热稳定剂 成分
s-eed 热稳定剂成分
热稳定剂是一种添加剂,用于提高塑料在高温加工和使用过程
中的稳定性。
它可以有效减少或防止塑料在加工和使用过程中因热
氧化而产生的降解、变色、裂纹和降低物理性能等问题。
热稳定剂
的成分通常包括有机锡化合物、金属皂、有机磷化合物、酚类化合
物等。
有机锡化合物是常用的热稳定剂成分之一,如甲基锡、辛酸锡、醋酸锡等,它们可以有效地阻止或减缓塑料在高温条件下的分解。
金属皂是另一类常见的热稳定剂成分,如铅皂、钙锌皂等,它们能
够在塑料加工过程中中和盐类酸,防止塑料发生降解反应。
有机磷
化合物也被广泛应用于热稳定剂中,如磷酸酯、磷酸盐等,它们能
够抑制塑料的热氧化降解反应。
此外,酚类化合物也常被用作热稳
定剂的成分,如苯酚、双酚A等,它们能够有效地捕捉自由基,延
缓塑料的老化过程。
总的来说,热稳定剂的成分多种多样,不同类型的塑料可能需
要不同种类和比例的热稳定剂成分来实现最佳的热稳定效果。
因此,在实际应用中,需要根据具体的塑料类型、加工工艺和使用条件等
因素来选择合适的热稳定剂成分和配方。
同时,热稳定剂的使用也需要符合相关的法律法规和标准,以确保产品的质量和安全。
塑料助剂品种及选用速查手册
塑料助剂品种及选用速查手册摘要:一、塑料助剂的概述1.塑料助剂的定义2.塑料助剂的作用3.塑料助剂的分类二、塑料助剂的品种及性能1.增塑剂2.热稳定剂3.抗氧剂4.光稳定剂5.着色剂6.阻燃剂7.偶联剂8.抗静电剂9.成核剂10.增强剂及填充剂三、塑料助剂的选用1.选用原则2.具体选用方法3.实例分析四、塑料助剂的应用领域1.包装行业2.建筑行业3.交通行业4.电子电器行业5.其他领域正文:一、塑料助剂的概述塑料助剂,也称为塑料添加剂,是在塑料成型加工过程中为了提高塑料的加工性能或改善塑料本身性能而需要添加的化合物。
这些助剂可以赋予塑料新的性能,如降低成型温度、增加柔软度、提高耐热性、增强稳定性等。
根据作用机理和性能的不同,塑料助剂可以分为多个品种。
二、塑料助剂的品种及性能1.增塑剂:提高塑料的柔软性和可塑性,降低成型温度。
如邻苯二甲酸酯类、磷酸酯类等。
2.热稳定剂:提高塑料的热稳定性,防止热分解。
如钡锌稳定剂、钙锌稳定剂等。
3.抗氧剂:延缓塑料的氧化过程,提高塑料的耐候性。
如酚类、醌类等。
4.光稳定剂:提高塑料的耐光性能,防止紫外线引起的降解。
如紫外线吸收剂、光屏蔽剂等。
5.着色剂:赋予塑料各种颜色。
如有机颜料、无机颜料等。
6.阻燃剂:提高塑料的阻燃性能。
如卤素阻燃剂、磷系阻燃剂等。
7.偶联剂:改善塑料与其他材料的界面性能。
如硅烷偶联剂、钛酸酯偶联剂等。
8.抗静电剂:赋予塑料抗静电性能。
如烷基磷酸酯类、脂肪酸酯类等。
9.成核剂:提高塑料的结晶性能。
如金属盐类、有机化合物类等。
10.增强剂及填充剂:提高塑料的力学性能和降低成本。
如玻璃纤维、碳酸钙等。
三、塑料助剂的选用1.选用原则:根据塑料的类型、加工工艺、制品性能要求和成本等因素选择合适的助剂品种和用量。
2.具体选用方法:参考相关资料,如产品手册、技术规范等,了解助剂的性能、用途、注意事项等,结合实际情况进行选用。
3.实例分析:例如,在聚氯乙烯(PVC)制品中,根据加工工艺和制品性能要求,可以选择适当的增塑剂、热稳定剂和抗氧剂等助剂。
浅析塑料加工的主要助剂及其应用
浅析塑料加工的主要助剂及其应用为实现对聚合物加工性能的改善,需要结合实际科学应用塑料助剂。
在聚氯乙烯树脂当中适当增加增塑剂。
是降低其成型温度的方式之一,进而提升制品的柔软性。
在制备过程当中,如果想要获取隔音、抗震、隔热的泡沫塑料,则需要将适当的发泡剂加入其中。
部分塑料存在热分解温度与成型加工温度较为相似的现象,需要借助热稳定剂的作用成型。
这可进一步说明,塑料助剂在塑料成型加工当中起到的重要作用与价值。
一、科学应用增塑剂和热稳定剂增塑剂是现代塑料工业最大的助剂品种,对促进塑料工业特别是聚氯乙烯工业的发展起着决定性作用。
凡能和树脂均混合,混合时不发生化学变化,但能降低物料的玻璃化温度和塑料成型加工时的熔体黏度,且本身保持不变,或虽起化学变化但能长期保留在塑料制品中并能改变树脂的某些物理性质,具有这些性能的液体有机化合物或低熔点的固体,均称为增塑剂。
增塑剂是一类增加聚合物树脂的塑性,赋予制品柔软性的助剂,也是迄今为止产耗量最大的塑料助剂类别。
增塑剂主要用于PVC软制品,同时在纤维素等极性塑料中亦有广泛的应用。
盐基性铅盐类、金属皂类以及亚磷酸脂类等有机辅助稳定剂大面积应用于工业当中,其中还会涉及到多元醇类、二酮类以及环氧化合物类等多种有机辅助稳定剂。
复合稳定剂品种主要是在融合自主稳定剂、辅助稳定剂以及其他助剂的基础上综合而成,在热稳定剂市场当中,复合稳定剂的作用相当重要。
聚甲醛从本质上来说是一种工程塑料,其综合性能相当良好,应用范围逐渐拓宽,但是受到特殊分子结构的影响,聚甲醛在热稳定性能方面存在一定的不足。
这也是导致热甲醛在熔融加工过程中出现断链以及热降解等多种问题的重要因素,最终引发连续的脱甲醛反应。
可利用多种方法顺利捕捉体系产生的自由基,最为广泛的就是加入适当抗氧剂。
整个体系的自动氧化循环过程,因受到抗氧剂影响而被中断,最终起到抗氧稳定的目标。
二、客观分析加工改性剂和抗冲击改性剂在硬质PVC加工过程中使用的流动改性助剂,就是指传统意义上的加工改性剂,改善塑化性能以及提升树脂熔体黏弹性是加工改性剂的最终目标。
PVC稳定剂简介
PVC稳定剂简介之答禄夫天创作英文化工术语:Stabilizer, Inhibiter.什么是稳定剂?1、广义地讲,能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂.它可以减慢反应,坚持化学平衡,降低概况张力,防止光、热分解或氧化分解等作用.广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以到达产物品质稳定的目的.2、狭义地讲,主要是指坚持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂.纯的PVC树脂对热极为敏感,当加热温度到达90Y:以上时,就会发生轻微的热分解反应,当温度升到120C后分解反应加剧,在150C,10分钟,PVC树脂就由原来的白色逐步酿成黄色—红色—棕色—黑色.PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后招致年夜分子链断裂.防止PVC热分解的热稳定机理是通过如下几方面来实现的.通过捕捉PVC热分解发生的HCl,防止HCl的催化降解作用.铅盐类主要按此机理作用 ,另外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等.•置换活泼的烯丙基氯原子.金属皂类、亚磷酸脂类和有机锡类可按此机理作用.•与自由基反应,终止自由基的反应.有机锡类和亚磷酸脂按此机理作用.•与共扼双键加成作用,抑制共扼链的增长.有机锡类与环氧类按此机理作用.•分解过氧化物,减少自由基的数目.有机锡和亚磷酸脂按此机理作用.•钝化有催化脱HCl作用的金属离子.同一种稳定剂可按几种分歧的机理实现热稳定目的.铅盐类铅盐类是PVC最经常使用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC热稳定剂的70%以上.铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低.铅盐类稳定剂的缺点:分散性差、毒性年夜、有早期着色性,难以获得透明制品,也难以获得鲜明色彩的制品,缺乏润滑性,易发生硫污染.经常使用的铅盐类稳定剂有:(1)三盐基硫酸铅分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’.三盐基硫酸铅是最经常使用的稳定剂品种,一般与二盐亚磷酸铅一起并用,因无润滑性而需配人润滑剂.主要用于PVC硬质不透明制品中,用量一般2~7份.(2)二盐基亚磷酸铅分子式为2PbO.PbHPO3.H2O,代号为DL,简称二盐,白色粉末,密度为6.1g/cm3.二盐基亚磷酸铅的热稳定性稍低于三盐基硫酸铅,但耐候性能好于三盐基硫酸铅.二盐基亚磷酸铅常与三盐基硫酸铅并用,用量一般为三盐基硫酸铅的1/2.(3)二盐基硬脂酸铅代号为DLS,不如三盐基硫酸铅、二盐基亚磷酸铅经常使用,具有润滑性.常与三盐基硫酸铅、二盐基亚磷酸铅并用,用量为0.5—1.5份.复合铅盐稳定剂铅盐稳定剂价格昂贵,热稳定性好,一直被广泛使用,但铅盐的粉末细小,配料和混合中,其粉尘被人吸入会造成铅中毒,为此,科技人员又研究出一种新型的复合铅盐热稳定剂.这种复合助剂采纳了共生反应技术将三盐、二盐和金属皂在反应体系内以初生态的晶粒尺寸和各种润滑剂进行混合,以保证热稳定剂在PVC体系中的充沛分散,同时由于与润滑剂共熔融形成颗粒状,也防止了因铅粉尘造成的中毒.复合铅盐稳定剂包容了加工所需要的热稳定剂组份和润滑剂组份,被称作为全包装热稳定剂.它具有以下的优点:(1)复合热稳定剂的各种组份在其生产过程中可获得充沛混合,年夜幅度改善了与树脂混合分散的均匀性.(2)配方混合时,简化了计量次数,减少了计量毛病的概率及由此所带来的损失.(3)简便了辅料的供应和贮备,有利于生产、质量管理.(4)提供了无尘生产产物的可能性,改善了生产条件.总之,复合热稳定剂有利于规模生产,为铅盐热稳定剂的发展提供了新的方向.复合铅盐稳定剂一个重要指标是铅的含量,目前所生产的复合铅盐稳定剂含铅量一般为20%-60%;在PVC 塑料门窗型材生产上的用量为3.5—6份金属皂类简介为用量仅次于铅盐的第二年夜类主稳定剂,其热稳定性虽不如铅盐类,但兼具润滑性.金属皂类可以是脂肪酸(月桂酸、硬脂酸、环烷酸等)的金属(铅、钡、镉、锌、钙等)盐,其中以硬脂酸盐最为经常使用,其活泼性年夜小顺序为:Zn盐?Cd盐?Pb 盐?Ca盐7.Ba盐.金属皂类一般不独自使用,经常为金属皂类之间或与铅盐及有机锡等并用.除Gd、Pb外都无毒,除Pb、Ca外都透明,无硫化污染,因而广泛用于软质PVC中,如无毒类、透明类制品等.经常使用的金属盐类稳定剂有(1)硬脂酸锌(ZnSt),无毒且透明,用量年夜后,易引起“锌烧”制品变黑,常与Ba、Ca皂并用.(2)硬脂酸镉(CdSt),为一重要的透明稳定剂品种,毒性较年夜,不耐硫化污染,抑制早期变色能力年夜,常与Ba皂并用.(3)硬脂酸铅(PbSt),热稳定性好,可兼做润滑剂.缺点为易析出,透明差,有毒且硫化污染严重,常与Ba、Cd皂并用.(4)硬脂酸钙(CaSt),加工性能好、热稳定能力较低,无硫化污染,无毒,常与Zn皂并用.(5)硬脂酸钡(BaSt),无毒,长期热稳定性好,抗硫化污染,透明,常与Pb、Ca皂并用.复合品种经常使用的有:Ca/Zn(无毒、透明)、Ba/Zn(无毒、透明)、Ba/Cd(有毒、透明)及Ba /Cd/Zn.有机锡类有机锡类为热稳定剂中最有效的,在透明和无毒制品中应用最广泛的一类,其突出优点为:热稳定性好,透明性好,年夜大都无毒.缺点为价格高,无润滑性.有机锡类年夜部份为液体,只有少数为固体.可以独自使用,也常与金属皂类并用.有机锡类热稳定剂主要包括含硫有机锡和有机锡羧酸盐两类.(1)含硫有机锡类:主要为硫醇有机锡和有机锡硫化物类稳定剂,与Pb、Cd皂并用会发生硫污.含硫有机锡类透明性好.主要品种有:a、二巯基乙酸异辛酯二正辛基锡(DOTTG),外观为淡黄色液体,热稳定性及透明性极好,无毒,加入量低于2份.b、二甲基二巯基乙酸异辛酯锡(DMTFG),外观为淡黄廓清液体,为无毒、高效、透明稳定剂,经常使用于扭结膜及透明膜中.(2)有机锡羧酸盐:稳定性不如含硫有机锡,但无硫污染,主要包括脂肪酸锡盐和马来酸锡盐.主要品种有:a、二月桂酸二正丁基锡(DBTL)淡黄色液体或半固体,润滑性优良,透明性好,但有毒,常与Cd皂并用,用量1-2份;与马来酸锡及硫醇锡并用,用量0.5—1份.b、二月桂酸二正辛基锡(DOTL),有毒且价高,润滑性优良,经常使用于硬PVC中,用量小于1.5份.c、马来酸二正丁基锡(DBTM),白色粉末,有毒,无润滑性,常与月桂酸锡并用,不成与金属皂类并用于透明制品中.有机锑类具有优秀的早期色相和色相坚持性,尤其是在低用量时,热稳定性优于有机锡类,特别适于用双螺杆挤出机的PVC配方使用.有机锑类主要包括硫醇锑盐类、巯基乙酸酯硫醇锑类、巯基羧酸酯锑类及羧酸酯锑类等.国内的锑稳定剂主要以三巯基乙酸异辛酯锑(ST)和以ST为主要成份的复合稳定剂STH—I和STH-Ⅱ两种为主.五硫醇锑为透明液体,可用作透明片、薄膜、透明粒料的热稳定剂.STH-I可以取代京锡C-102,可抑制PVC的早期着色,热稳定性好,制品透明,颜色鲜艳,STH—Ⅱ无毒,主要用于PVC水管等.稀土稳定剂选材多为稀土氧化物和稀土氯化物为主,其氧化物和氯化物多为镧、铈、镨、钕等轻稀土元素的单一体或混合体.稀土元素有着相似且异常活泼的化学性质,有着众多的轨道可作为中心离子接受配位体的孤对电子,同时稀土金属离子有较年夜的离子半径,与无机或有机配位体主要通过静电引力形成离子配键,作为络合物的中心原子,常以d2SP3、d4dP3、f3d5Ssp3等多种杂化形式形成配位数为6—12的络合物.稀土元素优良的力学性能及其分组原理都与稀土元素的几何性质有关.因为原子和离子的半径是决定晶体的构型、硬度、密度和熔点等物理性质的重要因素,在常温、常压条件下,稀土金属镧、镨、钕呈双六方晶体结构,而铈呈立方晶体密集(面心)结构,当温度、压力变动时,大都稀土金属发生晶型转变.由于镧系收缩,镧系元素的原子半径、原子体积随原子序数增加而减小,密度随原子序数增加而增加,但铈与镧、镨、钕相比,有异常现象.在镧、铈、镨、钕中,镧的化学性质是最活泼,但三价镧与C1只能生成RECl正络合物,而且此络合物不稳定,而铈、镨这些高价的稀土离子与Cl生成络合物的能力比三价的镧要强,它们与Cl配体能生成稳定的负络离子,因此,在稀土热稳定剂的选材上要综合镧、铈、镨、钕的各自优点,在分歧的应用范围,用其高纯单一体、混合体或合理搭配.稀土离子为典范的硬阳离子,即不容易极化变形的离子,它们与金属硬碱的配位原子,如氧的络合能力很强.稀土化合物对CaC03的偶联作用,由于稀土离子和PVC链的氯离子之间存在强配位相互作用,有利于剪切力的传递从而使稀土化合物能有效地加速PVC的凝胶化,即可增进PVC塑化,又可起到加工助剂ACR 的作用.同时,稀土金属离子与CPE中的C1配位,可使CPE更加发挥其增韧改性的作用.这些效能发挥的充沛与否、平衡与否,与稀土复合物中的复配助剂有着相当年夜的关系,复合物中的润滑体系、加工改性体系都至关重要,因此复配工艺的好坏直接影响着稀土多功能复合稳定剂的效能.稀土稳定剂功能性能优良的稀土稳定剂应具有以下功能:(1)优异的热稳定性能静态静态热稳定性,均与京锡8831相当,好于铅盐及金属皂类,是铅盐的三倍及Ba/Zn复合稳定剂的4倍.可复配成为无毒、透明的,还可部份取代有机锡类稳定剂而广泛应用.稀土稳定剂的作用机理为捕捉HCl和置换烯丙基氯原子,与环氧类的辅助稳定剂具有较好的协同作用.(2)偶联作用具有优良的偶联作用,与铅盐相比,与PVC有很好的相容作用,对PVC-CaCO,体系偶联作用较好,有利于PVC塑料门窗异型材强度的提高.用稀土稳定剂加工的PVC型材的焊角强度比铅盐稳定剂的PVC型材焊角强度要高,原料价格也高一些.(3)增韧作用与PVC树脂和增韧剂CPE的良好的相容性以及与CaCO3,的偶联作用,使PVC树脂在加工中塑化均匀,塑化温度低,型材的耐冲击性能较好.稀土稳定剂无润滑作用,应与润滑剂一起加入, 目前我国生产的稀土复合稳定剂是将稀土、热稳定剂和润滑剂复配而成的,加入量一般为4-6份.主要的辅助热稳定剂品种辅助垫稳定剂自己不具有热稳定作用,只有与主稳定剂一起并用,才会发生热稳定效果,并增进主稳定剂的稳定效果.辅助热稳定剂一般不含金属,因此也称为非金属热稳定剂.辅助热稳定剂的主要品种有:(1)亚磷酸酯类.是一重要的辅助热稳定剂,与Ba/Cd、Ba /Zn复合稳定剂及Ca/Zn复合稳定剂等有协同作用,主要用于软质PVC透明配方中,用量为0.1—1份.(2)环氧化合物类,与金属皂类有协同作用,与有机锡类稀土稳定剂并用效果好,用量为2-5份,经常使用的品种为环氧年夜豆油、环氧脂.(3)多元醇类,主要有季戊四醇、木糖醇、甘露醇等,可与Ca /Zn复合稳定剂并用.。
塑料助剂的基本知识
塑料助剂的基本知识用于塑料成型加工品的一大类助剂,包括增塑剂、热稳定剂、抗氧剂、光稳定剂、阻燃剂、发泡剂、抗静电剂、防霉剂、着色剂和增白剂(见颜料)、填充剂、偶联剂、润滑剂、脱模剂等。
其中着色剂、增白剂和填充剂不是塑料专用化学品,而是泛用的配合材料。
塑料助剂是在聚氯乙烯工业化以后逐渐发展起来的。
20世纪60年代以后,由于石油化工的兴起,塑料工业发展甚快,塑料助剂已成为重要的化工行业。
根据各国塑料品种构成和塑料用途上的差异,塑料助剂消费量约为塑料产量的8%~10%。
目前,增塑剂、阻燃剂和填充剂是用量最大的塑料助剂。
1、增塑剂一类可以在一定程度上与聚合物混溶的低挥发性有机物,它们能够降低聚合物熔体的粘度以及产物的玻璃化温度和弹性模量。
其作用机理是基于增塑剂分子对聚合物分子链间引力的削弱。
增塑剂是最早使用的塑料助剂。
19世纪下半叶,就曾采用樟脑和邻苯二甲酸酯作硝酸纤维素的增塑剂。
1935年聚氯乙烯工业化后,增塑剂得到广泛应用。
目前,约80%用于聚氯乙烯和氯乙烯共聚物,其余用于纤维素衍生物、聚醋酸乙烯酯、聚乙烯醇、天然和合成橡胶。
软质聚氯乙烯平均外加45%~50%(质量,下同)增塑剂。
由于不需或仅少量添加增塑剂的硬质聚氯乙烯的迅速发展,增塑剂在许多工业发达国家的增长率已低于聚氯乙烯。
中国聚氯乙烯软质制品仍占很大比例,故增塑剂仍将有较快的发展。
邻苯二甲酸酯类是增塑剂的主体,其产量约占增塑剂总产量的80%左右,其中邻苯二甲酸二辛酯(简称DOP)是最重要的品种。
生产规模较小的增塑剂有:己二酸和癸二酸的酯类(具有良好耐寒性),磷酸酯类(具有阻燃作用),环氧油和环氧酯类(与热稳定剂有协同作用),偏苯三酸酯和季戊四醇酯(耐热性较好),氯化石蜡(辅助增塑剂和阻燃增塑剂),烷基磺酸苯酯(辅助增塑剂)。
2、热稳定剂主要功能是防止加工时的热降解,也有防止制品在长期使用过程中老化的作用。
用量较大的是聚氯乙烯和氯乙烯共聚物的热稳定剂。
塑料成型工艺期末考试重点
1、塑料成型是将塑料(聚合物及所需助剂)转变为实用材料或塑料制品的一门工程技术。
2、离模膨胀的原因:聚合物熔体在流动时,由于大分子构象的变化,产生可回复的弹性形变,因而发生了弹性效应。
3、熔体破碎现象原因:当剪切速率过大超过一定极限值时,从模口出来的挤以物,其表面变得粗糙、失去光泽、粗细不匀和弯曲,这种现象被称为“鲨鱼皮症”。
此时如再增大剪切速率,挤出物会成为波浪形、竹节形或周期件螺旋形,在极端严重的情况下,会断裂。
熔体破碎定义:挤出物表面出现凹凸不平或外形发生畸变或断裂的总称。
4、结晶:是大分子链段由无规堆砌向三维空间有序排列的过程。
结晶度:聚合物结晶区域所占的比例。
结晶对性能的影响:(1)高聚物结晶后,抗透气性、耐酸碱腐蚀性、耐氧老化、耐油性均有提高。
另外结晶可提高塑料纤维类高聚物的热变形温度,即耐高温、耐热性。
(2)物理机械性能冲击强度降低、拉伸强度提高、硬度增加。
结晶度对密度与光学性质的影响(3)光学性能及产品尺寸的稳定性结晶度越高,晶粒尺寸越大,透光率下降。
结晶度越高,产品的尺寸越稳定。
5、拉伸取向:聚合物在受到外力拉伸时,大分子、链段或微晶等结构单元沿受力方向拉伸取向。
拉伸定向:在玻璃化温度和熔点之间,拉伸可以促进分子做整齐排列,即拉伸定向。
6、降解的原因:聚合物在热、力、氧、水、光、超声波和核辐射等作用下,往往会发生降解的化学反应,从而使其性能劣化。
降解的实质:(1)断链(2)交联(3)分子链结构的改变(4)侧基的改变(5)综合作用7、交联的定义:成型时,这些分子通过自带的基团的作用或自带反应点与交联剂的作用而交联在一起。
8、增塑剂的作用:经过增塑的聚合物,其软化点(或流动温度)、玻璃化温度、脆性、硬度、抗张强度、弹性模量等均将下降,而耐寒性、柔顺性、伸长率等则会提高。
增塑机理:聚合物大分子链常会以次价力而使它们彼此之间形成许多聚合物—聚合物的联结点,从而使聚合物具有刚性。
这些联结点在分子热运动中是会解而复结的,而且十分频繁。
《高分子材料加工工艺》复习资料习题答案
《⾼分⼦材料加⼯⼯艺》复习资料习题答案⾼分⼦材料加⼯⼯艺第⼀章绪论1.材料的四要素是什么?相互关系如何?答:材料的四要素是:材料的制备(加⼯)、材料的结构、材料的性能和材料的使⽤性能。
这四个要素是相互关联、相互制约的,可以认为:1)材料的性质与现象是新材料创造、发展及⽣产过程中,⼈们最关注的中⼼问题。
2)材料的结构与成分决定了它的性质和使⽤性能,也影响着它的加⼯性能。
⽽为了实现某种性质和使⽤性能,⼜提出了材料结构与成分的可设计性。
3)材料的结构与成分受材料合成和加⼯所制约。
4)为完成某⼀特定的使⽤⽬的制造的材料(制品),必须是最经济的,且符合社会的规范和具有可持续发展件。
在材料的制备(加⼯)⽅法上,在材料的结构与性能关系的研究上,在材料的使⽤上,各种材料都是相互借鉴、相互渗透、相互补充的。
2.什么是⼯程塑料?区分“通⽤塑料”和“⼯程塑料”,“热塑性塑料”和“热固性塑料”。
答:按⽤途和性能分,⼜可将塑料分为通⽤塑料和⼯程塑料。
产量⼤、价格低、⽤途⼴、影响⾯宽的⼀些塑料品种习惯称之为通⽤塑料。
⼯程塑料是指拉伸强度⼤于50MPa,冲击强度⼤于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变⼩、⾃润滑、电绝缘、耐腐蚀性优良等的、可替代⾦属⽤作结构件的塑料。
但这种分类并不⼗分严格,随着通⽤塑料⼯程化(亦称优质化)技术的进展,通过改性或合⾦化的通⽤塑料,已可在某些应⽤领域替代⼯程塑料。
热塑性塑料⼀般是线型⾼分⼦,在溶剂可溶,受热软化、熔融、可塑制成⼀定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加⼯。
例如:PE、PP、PVC、ABS、PMMA、PA、PC、POM、PET、PBT。
热固性塑料⼀般由线型分⼦变为体型分⼦,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成⼀定形状,在热或固化剂作⽤下,⼀次硬化成型;⼀当成型后,再次受热不熔融,达到⼀定温度分解破坏,不能反复加⼯。
如PF(酚醛树脂)、UF(脲醛树脂)、MF(三聚氰胺甲醛树脂)、EP(环氧树脂)、UP(不饱和树脂)等。
常用塑料助剂种类及作用
9.抗静电剂 抗静电剂的功能在于降低聚合物制品的表面电阻,消除静电积累可能导致 的静电危害。按照使用方式的不同,抗静电剂可以分为内加型和涂敷型两 种类型。内加型抗静电剂是以添加或共混的方式配合到塑料配方中,成型 后从制品的内部迁移到表面或形成导电网络,进而达到降低表面电阻泄放 电荷的目的。涂敷型抗静电剂是以涂布或浸润的方式附着在塑料制品的表 面,藉此吸收环境中的水分,形成能够泄放电荷的电解质层。从化学物质 的组成来看,传统的抗静电剂几乎无一例外地属于表面活性剂类化合物, 包括季铵盐类阳离子表面活性剂,烷基磺酸盐类阴离子表面活性剂,烷醇 胺、烷醇酰胺和多元醇脂肪酸酯等非离子表面活性剂等。然而,新出现的 “高分子量永久型抗静电剂”打破了这种常规,它们一般系亲水性的嵌段 共聚物,以共混合金的方式与基础树脂配合,通过形成导电通道传导电荷。 与表面活性剂类抗静电剂相比,这种高分子量永久型抗静电剂不会因迁移、 挥发和萃取而损失,因而抗静电性持久稳定,并极少受环境湿度的影响。
一、塑料助剂:备注来自又叫塑料添加剂,是聚合物(合成树脂)进行成型加工时为改善其加
工性能或为改善树脂本身性能所不足而必须添加的一些化合物。例如,为 了降低聚氯乙烯树脂的成型温度,使制品柔软而添加的增塑剂;又如为了 制备质量轻、抗振、隔热、隔音的泡沫塑料而要添加发泡剂;有些塑料的 热分解温度与成型加工温度非常接近,不加入热稳定剂就无法成型。因而, 塑料助剂在塑料成型加工中占有特别重要的地位。用于塑料成型加工品的 一大类助剂,包括增塑剂、热稳定剂、抗氧剂、光稳定剂、阻燃剂、发泡 剂、抗静电剂、防霉剂、着色剂和增白剂、填充剂、偶联剂、润滑剂、脱 模剂等。其中着色剂、增白剂和填充剂不是塑料专用化学品,而是泛用的 配合材料。
性和抗冲击改性剂新的含义。对此,国内外已有大量的专著和文献见诸报 道。
PVC稳定剂的作用机理及用途
PVC稳固剂的感化机理及用处【1 】热稳固剂是PVC加工不成缺乏的重要助剂之一,PVC热稳固剂运用的份数不久不多,但其感化是伟大的.在PVC加工中运用热稳固剂可以包管PVC不轻易降解,比较稳固.PVC加工中经常运用的热稳固剂有碱式铅盐类稳固剂.金属皂类稳固剂.有机锡稳固剂.稀土稳固剂.环氧化合物等.PVC降解机制庞杂, 不合稳固剂的感化机制也不雷同,所达到的稳固后果也有所差别. 1. PVC的热降解机理PVC在100~150℃显著分化,紫外光.机械力.氧.臭氧.氯化氢以及一些活性金属盐和金属氧化物等都邑大大加快PVC的分化.PVC的热氧老化较庞杂,一些文献报导将PVC的热降解进程分为两步.(一)脱氯化氢:PVC聚合物分子链上脱去生动的氯原子产生氯化氢,同时生成共轭多烯烃;(二)更长链的多烯烃和芳环的形成:跟着降解的进一步进行,烯丙基上的氯原子极不稳固易脱去,生成更长链的共轭多烯烃,即所谓的“拉链式”脱氢,同时有少量的C-C键的断裂.环化,产生少量的芬芳类化合物.个平分化脱氯化氢是导致PVC老化的重要原因.关于PVC的降解机理比较庞杂,没有同一的定论,研讨者提出的重要有[4]自由基机理.离子机理和单分子机理.2. PVC的热稳固机理在加工进程中,PVC的热分化对于其他的性质转变不大,主如果影响了成品的色彩,参加热稳固剂可以克制产品的初期着色性.当脱去的HCl质量分数达到0.1%,PVC的色彩就开端转变.依据形成的共轭双键数量标不合,PVC会呈现不合种色彩(黄.橙.红.棕.黑).假如PVC热分化进程中有氧气消失的话,则将会有胶态炭.过氧化物.羰基和酯基化合物的生成.但是在产品运用的长时光内,PVC的热降解对材料的机能影响很大,参加热稳固剂可以延迟PVC降解的时光或者降低PVC降解的程度.在PVC加工的进程中参加热稳固剂可以克制PVC的降解,那么热稳固剂的起到的重要感化有:经由过程代替不稳固的氯原子.接收氯化氢.与不饱和部位产生加成反响等方法克制PVC分子的降解.幻想的热稳固剂应当具有多种功效:(1)置换生动.不稳固的代替基,如衔接在叔碳原子上的氯原子或烯丙基氯,生成稳固的构造;(2)接收并中和PVC加工进程中放出的HCl,清除HCl的主动催化降解感化;(3)中和或钝化对降解起催化感化的金属离子及其它有害杂质;(4 )经由过程多种情势的化学反响可阻断不饱和键的中断增长,克制降解着色;(5)最好对紫外光有防护屏障感化.3. PVC稳固剂.感化机理及用处3.1 铅盐稳固剂铅盐稳固剂[7]可分为3类:(1)单纯的铅盐稳固剂,多半是含有PbO的盐基性盐;(2)具有润滑感化的热稳固剂,主如果脂肪酸的中性和盐基性盐;(3)复合铅盐稳固剂,以及含有铅盐和其它稳固剂与组分的协同混杂物的固体和液体复合稳固剂.铅盐稳固剂的热稳固感化较强,具有优越的介电机能,且价钱低廉,与润滑剂合理配比可使PV C树脂加工温度范围变宽,加工及后加工的产品德量稳固,是今朝最经常运用的稳固剂.铅盐稳固剂重要用在硬成品中.铅盐类稳固剂具有热稳固剂好.电机能优良,价廉等特色.但是铅盐有毒,不克不及用于接触食物的成品, 也不克不及制得透明的成品, 并且易被硫化物污染生成黑色的硫化铅.3.2 金属皂类稳固剂硬脂酸皂类热稳固剂一般是碱土金属(钙.镉.锌.钡等)与硬脂酸.月桂酸等皂化制取.产品种类较多,各有其特色.一般来说润滑性硬脂酸优于月桂酸,而与PVC相容性月桂酸优于硬脂酸. 金属皂因为能接收HCl,某些品种还能经由过程其金属离子的催化感化以脂肪酸根代替活性部位的Cl原子,是以可以对PVC起到不合程度的热稳固感化.PVC工业中少少是有单一的金属皂化合物,而平日是几种金属皂的复合物.罕有的是钙锌皂类稳固剂.依据Frye-horst机理,钙/锌复合稳固剂稳固机理可以为:起首锌皂与PVC链上烯丙基氯反响,然后钙皂.锌皂与氯化氯反响生成不稳固的金属氯化物.这时,作为中央序言的帮助稳固剂再把氯原子转移到钙皂中去,使锌皂再生,延迟了具有促进脱氯化氢感化的氯化锌的生成.钙锌类稳固剂可作为无毒稳固剂,用在食物包装与医疗器械.药品包装,但其稳固性相对教低,钙类稳固剂用量大时透明度差,易喷霜.钙锌类稳固剂一般多用多元醇和抗氧剂来进步其机能,国内已经有效于硬质管材的透明钙锌复合稳固剂消失.3.3 有机锡稳固剂有机锡中的烷基锡平日是甲基.正丁基.正辛基等三种.日本临盆的大多是丁基锡类,欧洲辛基锡类更广泛一些,这是欧洲承认的尺度无毒稳固剂,美国则甲基锡用的较为多一些.经常运用的有机锡类稳固剂有三大类:(1)脂肪族酸盐类,主如果指二月桂酸二丁基锡.二月桂酸二正辛基锡等;(2)马来酸盐类,主如果指马来酸二丁基锡.双(马来酸单丁酯)二丁基锡.马来酸二正辛基锡等;(3)硫醇盐类,个中双(硫基羧酸) 酯是用量最多.有机锡类热稳固剂机能较好,是用于PVC硬成品与透明成品的较好品种,尤其辛基锡几乎成为无毒包装成品不成缺乏的稳固剂,但其价钱较贵.有机锡热稳固剂(巯基乙酸锡)对PVC有很好的稳固后果.尤其是液态的有机锡稳固剂,比拟较固体的热稳固剂,液态的有机锡稳固剂可以或许更好的与PVC树脂混杂.有机锡稳固剂(巯基乙酸锡)可以代替聚合物上的不稳固的Cl原子,使PVC树脂具有长期稳固性和初期色彩保持性.并提出巯基乙酸锡的稳固机理:(1)S原子可以代替不稳固的Cl原子,是以克制了共轭多烯烃的生成.(2)HCl作为PVC热降解的产品,又可以加快共轭多烯烃的生成.而巯基乙酸锡可以接收产生的HCl.3.4 稀土稳固剂稀土类热稳固剂重要包含资本丰硕的轻稀土镧.铈.钕的有机弱酸盐和无机盐.有机弱酸盐的种类有硬脂酸稀土.脂肪酸稀土.水杨酸稀土.柠檬酸稀土.月桂酸稀土.辛酸稀土等.稀土稳固剂的感化机理初步研讨为:(1)稀土镧系元素的特别电子构造(最外层2个电子.次外层8个电子构造,有很多空轨道)所决议,其空轨道能级差很小,在外界热力氧感化下或在极性基团感化下,外层或次外层电子被激化,可以与PVC链上不稳固的Cl配位,并且可以与PVC加工平分化出来的氯化氢形成配位络合物,同时稀土元素与氯元素之间有较强的吸引力,可起到掌握游离氯元素的感化,从而能阻拦或延缓氯化氢的主动氧化连锁反响,起到热稳固感化.(2)稀土多功效稳固剂可对PVC加工中的氧和PVC本身含有的离子型杂质进行物理吸附,并进入稀土多功效稳固剂的晶格穴中,防止了它们对母体C—Cl键的冲击振动.是以,经由过程稀土多功效稳固剂的感化,可以进步PVC脱HCl的活化能,从而延缓PVC塑料的热降解.(3)稀土化合物中适合的阴离子基团能起置换PVC大分子上的烯丙基氯原子的感化,清除这个降解弱点,也能达到稳固的目标.稀土稳固剂国内研讨的比较多.总体来说,稀土热稳固剂的稳固后果优于金属皂类稳固剂,具有较好的长期热稳固,并与其他种类稳固剂之间有广泛的协同效应,具有优越的耐受性,不受硫的污染,储存稳固,无毒环保的长处.此外,稀土元素与CaCO3具有奇特的偶联感化,同时促进PVC塑化后果,因而可以增长Ca CO3的用量,削减加工助剂ACR的运用,有效地降低成本.稀土对聚氯乙烯的稳固感化的特色在于其奇特的协同感化.稀土与某些金属.配位体和助稳固剂恰当合营,能极大的进步稳固感化.3.5 其他稳固剂3.5.1 环氧类环氧大豆油.环氧亚麻子油.环氧妥尔油能.环氧硬脂酸丁酯.辛酯等环氧类化合物是聚氯乙烯经常运用的副热稳固剂,它们与上述稳固剂合营运用有较高的协同感化,具有光稳固性和无毒之长处,实用于软质,特别是要吐露于阳光下的软质FVC成品,平日不必于硬质PVC成品,其缺陷是易渗出.有研讨指出,将环氧的葵花子油添加到含有不合的金属皂盐(Ba/Cd和Ca/Zn)PVC中,经由过程对材料的热稳固性的测定,发明葵花子油与金属皂盐具有很好的协同感化,可以或许加强P VC材料的热稳固性,剖析了协同感化产生的原因:降解产生的HCl被葵花子油和金属皂盐接收了,HCl浓度减小同时降低PVC的脱HCl速度(HCl对PVC降解有催化感化),进步了PVC的热稳固性.3.5.2 多羟基类季戊四醇.木糖醇等多羟基化合物都对PVC有必定的热稳固感化,是PVC经常运用的副热稳固剂.经由过程脱氯化氢速度和热稳固性试验,发明不含重金属和锌类热稳固剂的PVC/多羟基化合物热稳准时光延伸到200℃,其稳固后果与多羟基化合物的类型和羟基数量有关,尤其是含端位羟基的多羟基化合物促进PVC长期热稳固性,接收降解时产生的HCl.3.5.3 其他亚磷酸盐.β-二酮.二氢嘧啶等都可作为PVC的帮助热稳固剂,接收产生的HCl,延缓PVC变色.4 PVC热稳固剂的今朝状态及成长趋向进入21世纪后,因为全球对情况呵护的请求日益严厉,限制重金属稳固剂的律例日益加剧,使热稳固剂的临盆及花费进一步向无毒.低毒.复合高效偏向成长,无铅.无镉化已引起蓬勃国度的广泛看重,替代产品不竭消失和运用,铅.镉(特别是镉)稳固剂的运用已呈慢慢降低的态势,消失了一些无毒或者是低毒的热稳固剂(若有机锡类化合物.钙\锌皂盐.稀土稳固剂等).尽管近年我国的复合型.无毒和低毒的热稳固剂临盆与开辟取得了相当的成绩,但是与世界先辈程度比拟消失很多的缺乏和较多差距(如品种少,临盆范围小等).我国新型热稳固剂临盆与运用远远不克不及知足国内PVC工业的成长,一些比较高级的PVC成品所需的热稳固剂还重要依附于进口.我国PVC工业的快速成长,为热稳固剂行业的成长供给了优越的市场包管和辽阔的成长空间,同时也对热稳固剂行业提出了更高的请求.加强我国新型热稳固剂研讨和开辟,应当看重一下几点:(一)加强原有无铅无镉钙锌稳固剂的研讨和改良,进步原有产品德量;(二)依据原料起源和市场散布,慢慢树立相对分散的大范围助剂临盆厂群;(三)合营其他PVC助剂的开辟和临盆,成长多元复合式产品,进一步削减资本糟蹋和情况污染,带动“绿色”助剂财产的可中断成长.。
塑料助剂功能及分类
塑料助剂功能及分类塑料助剂是指那些为改善它的加工特性和使用性能而分布于聚合物中,对聚合物分子结构又无明显影响的物质。
因此合成聚合物时所用的那些助剂不包括在塑料助剂之内。
影响塑料制品质量的三大要素是树脂、助剂、加工。
可见助剂在塑料工业中占有重要地位。
应该重视塑料助剂的发展,因为它是一种精细化工产品,只要在塑料中添加少量即能起很大作用,而助剂品种的多少和质量的优劣直接与塑料制品的应用密切有关。
如果没有各类热稳定剂,聚氯乙烯就成为不可加工的树脂而失去实用价值,没有增塑剂就不存在软质聚氯乙烯制品,不加光稳定剂和抗氧剂则聚丙烯和聚乙烯在室外的使用寿命大为缩短;没有阻燃剂塑料就不能广泛地应用于房屋建筑、汽车、飞机、船舶等领域;没有玻璃纤维等增强剂就不存在玻璃钢等增强塑料;不加颜料或染料之类的着色剂就住所有的塑料制品只呈单调的本色。
由此可见,助剂在一定程度上决定了塑料应用的可能性及其使用范围。
在为数众多的塑料助剂中如何恰当地选用,这要取决于理论指导和经验积累的结果。
人们首先考虑的是这种助剂对改善性能所起的效果大小及其卫生性。
助剂效果大小又与它同树脂的相溶性和挥发性有关。
如果助剂与树脂的相溶性好,助剂的分布就均匀,两种分子间可能存在一定的作用力,助剂分子就难以向塑料表面迁移,因此所起的作用就可持久。
对液状助剂和增塑剂则希望是高沸点的,这样才不会在该种塑料加工温度下大量挥发,容易保持增塑作用。
塑料制品总要与人接触,特别是那些食品包装用材对人的健康更有密切关系,因此必须要符合卫生要求。
各类铅盐对聚氯乙烯是高效的热稳定剂,但是无论在加工操作时还是制成聚氯乙烯塑料制品后的缓慢迁出都对所接触的人体有害,所以逐渐为其它无毒或低毒的钡、锌盐类所代替。
有时塑料中需加几种助剂,而助剂之间存在"协同"或"对抗"作用的现象应子注意。
所谓"协同作用"是指两种助剂配合使用后比单独用时的效果大,而'对抗作用"恰为相反。
低温环氧胶 热稳定剂
低温环氧胶热稳定剂
低温环氧胶可能需要热稳定剂来保持其稳定性。
以下是一些常见的低温环氧胶热稳定剂:
1. 聚乙烯基己内酰胺:它是一种常用的增塑剂,可以改善低温韧性并提高粘度稳定性。
2. 硬脂酸、软脂酸和十八烷醇等有机锡助剂:这些可以提高胶水的柔韧性和抗冲击性,同时保持低温下的稳定性。
3. 一些低分子质量聚酰胺:如邻苯二甲酸二丁酯和磷酸三甲酚酯等也可用作低温环氧胶的热稳定剂。
需要注意的是,不同的环氧树脂需要选择合适的热稳定剂以达到最佳效果,具体应根据产品说明和使用环境来确定。
在使用过程中,还应定期检查产品质量以确保其在储存和使用过程中的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的主要功能是防止加工时的热降解,也有防止制
品在长期使用过程中老化的作用。用量较大的是
聚氯乙烯和氯乙烯共聚物的热稳定剂。
。热稳定剂在软质制品中的用量为2%左右,而在
硬质制品中为3%~5%。塑料成型加工中经常要
用到的热稳定剂主要类别:A:盐基性铅盐:盐基
性铅盐(即碱式铅盐)如三盐基
碳酸铅和二盐基亚磷酸铅,使用最早,目前仍大
量采用。其耐热性、电绝缘性、耐候性均较好,
价格低,但有毒,不透明,分散性通常将镉皂和钡皂,钙皂和锌
皂并用,以产生协同效应。镉皂毒性大,钡皂也
有一定毒性,但钙皂和锌皂无毒。C:有机锡:是
近来发展最快的类别,具有良好的透
明性,许多品种的耐热性和耐候性十分突出,是
硬质透明制品必不可少的热稳定剂。D:有机辅助
稳定剂:二胇基醋酸异辛酯、二正辛基锡是应用
最广的无毒稳定剂。亚磷酸酯和环氧
化合物,作为辅助稳定剂常用作复合稳定剂的组
分。E:复合稳定剂:有通用的镉-钡(锌)、耐硫
化污染的钡-锌、无毒的钙-锌以及有机锡复合物等
类型,多为液态。0c67f
0e 密度计