高能束表面改性技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
12
离子束和电子束的不同
高速电子在撞击材料时,质量小速度大,
动能几乎全部转化为热能,使材料局部熔化、 气化。它主要通过热效应完成。
而离子本身质量较大,惯性大,撞击材料
时产生了溅射效应和注入效应,引起变形、 分离、破坏等机械作用和向基体材料扩散, 形成化合物产生复合、激活的化学作用。这 种处理称为离子束表面改性。
面处理。对激光束、电子束而言、高能束表面改
性金属表面将会产生200~800MPa的残余压应力,
从而大大提高了金属表面的疲劳强度。
6、由于高能束作用面积小,金属本身的
热容量足以使被处理的表面骤冷,其冷却速 度高达104℃/s以上。保证完成马氏体的转变;
在急冷条件下,可抑制碳化物的析出,从而 减少脆性相的影响。并能获得隐晶马氏体组 织。
因此、可以应用在尺寸很小的工件或工 件中凹陷部分,盲孔的底部等用普通加 热方法难以实现的特殊部位。
.
7
4、高能束加热的可控性能好,通过磁场或电场
信号对激光束、电子束、离子束的强度、位置、 聚焦等参数可用计算机精确控制,便于实现自动 化处理。
5、
高能束热源,尤其是激光束可以远距离传输
或通过真空室对特种放射性或易氧化材料进行表
.
10
电子束是一种高能量密度的热源
电子束被高压电场加速而获得很高的动能,再在磁 场聚焦下成为高能密度电子束。
当它以极高的速度冲击到材料表面极小面积上时, 其能量大部分转变为热能。这样便可把大于千瓦级 的能量集中到直径为几微米的点内,从而获得高达 109W/cm2左右的功率密度。
如此高的功率密度,可使被冲击部分的材料在几分 之一秒内升高到摄氏几千度以上,当热量还没有来 得及传导扩散时,就可把局部材料瞬时熔化、气化
由于高能束加热速度快,奥氏体长大及碳原 子和合金原子的扩散受到抑制,可获得细化 和超细化的金属表面。
高能束表面改性是靠工件自身冷却淬火,它 不需要任何冷却介质。因此处理环境清洁, 无污染。
§12.1.2 高能束表面改性的类型
一、按高能束束流特征分类
按目前高能束的工业应用和发展状况,分为激光 束、电子束和离子束。
激光相变硬化是以高能密度的激光束快速 照射工件,使其需要硬化的部位瞬间吸收 光能并立即转化成热能,而使激光作用区 的温度急剧上升,形成奥氏体。
此时工件基体仍处于冷态,并与加热区之 间有极高的温度梯度。
因此.一旦停止激光照射,Βιβλιοθήκη Baidu热区因急冷 而实现工件的自冷淬火。
.
18
2、激光相变硬化的特点:
(1) 极快的加热速度(104~106℃/s)和冷却速 度(106~108℃/s),这比感应加热的工艺周 期短,通常只需约0.1s即可完成淬火。因此生 产率高。
及蒸发。这种处理为电子束表面改性。
.
11
离子束和电子束基本类似,
也是在真空条件下将离子源产生的离子束经 过加速、聚焦、使之作用在材料表面。
所不同的是,除离子与负电子的电荷相反带 正电荷外,主要是离子的质量比电子要大千 万倍。例如,氢离子的质量是电子的7.2万 倍。由于质量较大,故在同样的电场中加速 较慢,速度较低;但一旦加速到较高速度时, 离子束比电子束具有更大的能量。
换一句话讲,它是一种利用激光改变金 属或合金表面化学成分的技术。
.
31
激光合金化的方式如 图所示。
利用高功率激光处理 的优点在于可以节约 大量的具有战略价值 或贵重元素、形成具 有特殊性能的非平衡 相或非晶态、晶粒细 化、提高合金元素的 固溶度和改善铸造零 件的成分偏析。
激光表面合金化的许多效果可以用 快速加热和随后的急冷加以解释
(3)通过离子注入、粉末冶金、高温爆炸冲击 以及固态反应等,直接由固态晶体形成非晶。
.
23
因此,从广义看,凡是以激光为手段而获得 金属玻璃的方法,如激光气相沉积法和激光 溅射沉积法等均可称激光非晶化。
狭义的激光非晶化是指将激光作用于材料, 使材料表面薄层熔化,同时在熔体与基体之 间保持极高的温度梯度。以确保液体金属以 大于一定的临界速度急冷到某特征温度以下, 抑制晶体形核和生长,从而获得非晶态金属。
.
27
激光熔凝原理与激光非晶化基本一致
通常激光熔凝处理的特点是激光能量密 度和扫描速度均远小于激光非晶化。
因为激光熔凝处理时,其表面熔化深度 大,有时可以mm为单位计量(激光非晶 化以u计量),并且熔体冷凝时,冷却速 度没有激光非晶化必须保证V临的限制。 因而不要求超快速加热和急冷。
.
28
激光熔凝处理后的工件,通常不 再经后续磨光加工就直接使用
这类涂覆材料可以是金属或合金,也可以是 非金属、还可以是化合物及其混合物。这是 其它表面技术难以实现的。
在涂覆过程中,涂覆层与基体表面通过熔合 结合在一起。
激光涂覆的方式与激光合金化相似,其区别 在于涂层材料与基体材料混合程度的不同。
.
34
激光涂覆的优点:
1. 激光涂覆具有涂层成分几乎不受基体成分 的干扰和影响、稀释度小;
.
15
§12.2.3 激光表面改性技术
激光表面改性包含多种工艺:
激光相变硬化(淬火); 激光熔凝; 激光熔覆和合金化; 激光非晶化和微晶化; 激光冲击硬化等。 它们各自的特点如表12-3所示。
.
16
各种激光表面改性工艺的特点
工艺方法 激光淬火
功率密度(W/ cm2)
104~105
冷却速度 (℃/s)
(5) 对工件的许多特殊部位,例如槽壁,槽底, 小孔、盲孔、深孔以及腔筒内壁等,只要能 将激光照射到位,均可实现激光淬火。
(6) 工艺过程易实现电脑控制的生产自动化。
二、激光非晶化和熔凝
激光非晶化和熔凝,以及接下来论述的激光合金化 与涂覆,均有共同的特点。
激光能量密度均较高,在激光作用于材料时表面都 要形成一层熔体。
激 光 (Laser) 的 英 文 全 称 为 : light
amplification by stimulated emission of radiation的简称。其含义是受激发射的光放大。 用这种光束对材料进行辐射时,可使材料表面的 温度瞬时上升至相变点、熔点甚至沸点以上,从 而使材料表面产生一系列物理的或化学的现象。 这种处理方法称为激光束表面改性。
第12章 高能束表面改性技术
.
1
第12章 高能束表面改性技术
§12.1 §12.2 §12.3 §12.4
概论 激光表面改性技术 电子束表面改性 离子束表面改性
.
2
§12.1 概论
§12.1.1 高能束表面改性的定义和特点
当高能束发生器输出功率密度达到103W/ cm2以上的能束,定向作用在金属表面,使 其产生物理、化学或相结构转变,从而达 到表面改性的目的,这种处理方式称为高 能束表面改性。
因此高能束表面改性时允许金属表面温度在熔化 温度和相变Ac1点之间变化,尽管过热度较大,而 不致发生过热或过烧现象。
激光束、电子束、离子束经过聚焦后作用在金属 表面上的特征几乎完全相同。例如高能束作用在 金属表面,其过热度和过冷度均大于常规热处理, 因此表面硬度也高于常规处理5~10HRC。
.
5
用表面合金化的方法代替整体合金以节约金 属资源一直是世界范围内材料工作者的重要 研究内容之一、
常规的表面合金化方法就是化学热处理。它 利用高温下的扩散使合金元素渗入基体,以 获得表面合金层。
.
30
1、激光合金化
激光合金化就是在高能束激光的作用下, 将一种或多种合金元素快速熔入基体表 面,从而使基体表层具有特定的合金成 分的技术。
104~105
激光合金化
104~106
104~105
激光熔覆
104~106
104~106
激光非晶化
106~1010
106~1010
激光冲击硬 化
109~1012
104~106
.
作用区深度 (mm) 0.2~3
0.2~2
0.2~1
0.01~0.1
0.02~0.2
17
一、激光相变硬化(激光淬火)
1、 激光相变硬化原理
(2) 仅对工件局部表面进行激光淬火,且硬化层 可精确控制,因而它是精密的节能表面改性技 术。激光淬火后工件变形小,几乎无氧化脱碳 现象,表面光洁程度高,故可成为工件加工的 最后工序。
.
19
(3) 激光淬火的硬度可比常规淬火提高15%~ 2O%。铸铁激光淬火后,其耐磨性可提高3~ 4倍。
(4) 可实现自冷淬火,不需水或油等淬火介质, 避免了环境污染。
二、按相变类型分类
激光束、电子束、离子束作为一种高能密度 的热源,作用在金属表面所产生的相变、熔 化、气化效应是一致的。
通常将高能束表面改性分为:高能束相变硬 化处理、高能束熔敷(也称涂覆或溶覆)处理、 高能束合金化、高能束非晶化、高能束冲击 硬化以及高能束气相沉积等。
.
14
§12.2 激光表面改性技术
在激光加热过程中,其表面熔化层与它 下面的基体之间存在着极大的温度梯度。 在激光作用下,其加热速率和冷却速率 可达到105~109℃/s。
通过快速加热和快速冷却导致了许多特 殊的化学特征和显微结构的变化,从而 达到改善材料表面性能的目的。
.
33
2、激光涂覆的概念
激光涂覆就是用激光在基体表面覆盖一层薄 的具有特定性能的涂覆材料。
2. 涂层厚度可以准确控制; 3. 涂层与基体的结合为冶金结合,十分牢固、 4. 加热变形小、 5. 热作用区也很小、 6. 整个过程很容易实现在线自动控制。
.
35
稀释度
激光涂覆的目的在于提高工件表面的耐蚀、耐 磨、耐热、减摩及其它特性。而涂层内基体材 料的熔入多少所引起的涂层成分变化的大小将 直接影响到涂层的使用性能。
.
26
激光熔凝的主要特点有:
1、表面熔化时一般不添加任何合金元素,熔凝
层与材料基体是天然的冶金结合。
2、在激光熔凝过程中,可以排除杂质和气体,
同时急冷重结晶获得的组织有较高的硬度、耐 磨性和抗蚀性。
3、其熔层薄,热作用区小,对表面粗糙度和工
件尺寸影响不大。有时可以不再进行后续磨光 而直接使用。
4、表面熔层深度远大于激光非晶化。
它们共同的问题均要弄清表层熔体的特性(如熔体 的化学成分及其均匀性,熔池中熔体的对流与传 热),液一固界面特性及其移动速度,凝固后材料 的组织结构和性质等。
但是,它们有各自不同的技术目的和工艺条件。
.
21
1、激光非晶化原理
非晶态金属材料(金属玻璃)有极为优异的 机械、电磁和化学性能,其应用日益广泛。
.
3
归纳起来,高能束表面改性的 共同特点是:
1、高能束热源作用在材料表面上的
功率密度高、作用时间极其短暂,即 加热速度快、冷却速度亦快,处理效 率高。
高能束表面改性的加热速度在理论上 讲可以达到1012℃/s。
.
4
当高能束加热金属时,加热速 度高达5×103℃/s以上
在如此高的加热速度下,金属共析转变温度在Ac1 点上升100℃以上。
金属玻璃可以理解为液体金属通过超急冷而 凝固。
金属玻璃微观结构的基本特征是原子在空间 的排列是长程无序而短程有序。
.
22
常见的制造金属玻璃方法可分为三类:
(1)液体金属超急冷凝固法。如液体金属通过 高速转动的抛光紫铜辊形成非晶薄带或丝, 以及激光表面快速熔凝和电子束表面快速熔 凝等。
(2)金属通过稀释态凝聚形成非晶。如通过激 光、辉光放电、电解等手段沉积形成非晶。
2、
高能束表面改性是靠束流作用在金属表面 上,对金属进行加热,属非接触式加热, 没有机械应力作用。
由于高能束加热速度和冷却速度都很快, 而且束斑小,被处理材料周围热影响区极 小、热应力极小,因此工件变形也小。
.
6
3、
高能束加热的面积可根据需要任意选择, 一般大面积处理,可采用高能束叠加扫 描方法。所获得的最小加热面积取决于 高能束聚焦后的最小光斑。
因此,对激光熔凝处理后的表面形貌质量有 所要求。
在激光熔凝处理时,熔化区形成的高温度梯 度,导致了在表层形成高的应力梯度和熔体 中的环流运动。
例如,在铁的熔体中环流的运动速度可达 150mm/s。熔体内部压力的变化需要相应 的补偿。它由熔池表面的弯曲来给予,从而 影响表面形貌。
.
29
四、激光合金化与涂覆
.
24
表12-4 几种材料形成非晶的临 界冷却速度Lc
材料 纯 钢 铝
Lc >1010 108 (K/s)
Fe83 B17 106
Fe40Ni 40P14B6 105~6
Cu50 Zr50 104
Ni60 Nb40
102
.
25
三、激光熔凝
激光熔凝也称激光熔化淬火。
激光熔凝是将激光束加热工件表面至熔 化到一定深度,然后自冷使熔层凝固, 获得较为细化均质的组织和所需性质的 表面改性技术。
相关文档
最新文档