甲醇水汽液平衡
化工原理课程设计甲醇和水.doc

目录摘要 (3)Abstract (3)引言 (1)第1章设计条件与任务 (2)1.1设计条件 (2)1.2设计任务 (2)第2章设计方案的确定 (3)2.1操作压力 (3)2.2进料方式 (3)2.3加热方式 (3)2.4热能的利用 (3)第3章精馏塔的工艺设计 (5)3.1全塔物料衡算 (5)3.1.1原料液、塔顶及塔底产品的摩尔分数 (5)3.1.2原料液、塔顶及塔底产品的平均摩尔质量 (5)3.1.3物料衡算进料处理量 (5)3.1.4物料衡算 (5)3.2实际回流比 (6)3.2.1最小回流比及实际回流比确定 (6)3.2.2操作线方程 (7)3.2.3汽、液相热负荷计算 (7)3.3理论塔板数确定 (7)3.4实际塔板数确定 (7)3.5精馏塔的工艺条件及有关物性数据计算 (8)3.5.1操作压力计算 (8)3.5.2操作温度计算 (8)3.5.3平均摩尔质量计算 (8)3.5.4平均密度计算 (9)3.5.5液体平均表面张力计算 (10)3.6精馏塔的塔体工艺尺寸计算 (11)3.6.1塔径计算 (11)3.6.2精馏塔有效高度计算 (13)第4章塔板工艺尺寸的计算 (14)4.1精馏段塔板工艺尺寸的计算 (14)4.1.1溢流装置计算 (14)4.1.2塔板设计 (15)4.2提馏段塔板工艺尺寸设计 (15)4.2.1溢流装置计算 (15)4.2.2塔板设计 (16)4.3塔板的流体力学性能的验算 (16)4.3.1精馏段 (16)4.3.2提馏段 (18)4.4板塔的负荷性能图 (19)4.4.1精馏段 (19)4.4.2提馏段 (21)第5章板式塔的结构 (23)5.1塔体结构 (23)5.1.1塔顶空间 (23)5.1.2塔底空间 (23)5.1.3人孔 (23)5.1.4塔高 (23)5.2塔板结构 (24)第6章附属设备 (24)6.1冷凝器 (24)6.2原料预热器 (24)第7章接管尺寸的确定 (26)7.1蒸汽接管 (26)7.1.1塔顶蒸汽出料管 (26)7.1.2塔釜进气管 (26)7.2液流管 (26)7.2.1进料管 (26)7.2.2回流管 (26)7.2.3塔釜出料管 (26)第8章附属高度确定 (28)8.1筒体 (28)8.2封头 (28)8.3塔顶空间 (28)8.4塔底空间 (28)8.5人孔 (28)8.6支座 (28)8.7塔总体高度 (28)第9章设计结果汇总 (30)设计小结与体会 (32)参考文献 (33)摘要课程设计不同于平时的作业,在设计中需要我们自己做出决策,即自己确定方案、选择流程、查取资料、进行过程和设备计算,并要求自己的选择作出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
二甲醚-甲醇-水三元体系汽液平衡的测定与计算

p s i r a e w ih n r a i g ha e nc e s d t i c e sn pr s ur e s e。 bu d c e s d t e r a e w ih nc e s n t m pe a u e T h r od a i t i r a i g e rtr. em yn m c c lul to f v p — i i e u lbru a a o m e h t rm e h n — a e e n r y t m wa a re a c a i n o a or l ・ qu d q ii i m d t f di t yle he — t a olw t r t r a y s s e ・ ・ s c rid ou u i g t e ho ba e o e a i n t by s n he m t d s d n qu to of t t — c i iy oe fc e , w ih s a e a tv t c fiint t PR e ua i n or u a iy q to f f g ct c e fc e sofv p a e a d N RT L qu ton f r a tv t o fi int f l i p s o f iint a orph s n e a i o c i iy c e fce s o i d ha e, a he c lul t d qu nd t a c a e
Zh ngz u Un v r iy , Zhe e ho i e st ngz u 4 00 ho 50 2, H e nan, Chi na)
Absr c : The io he m a a o -i ui qu lbru a a f r di e hy t rm e ha lw a e e n r s t m ta t s t r lv p r lq d e ii i m d t o m t le he — t no — t r t r a y yse we e m e s r d a 3 3. 5 r a u e t 3 1 K , 35 .1 K , 37 .1 K a 3 . 5 3 5 3 5 nd 93 1 K i s l— uc n y g t t d t tc n a e fs ki g t pe a ia e s a i e ii rum e 1 T h e f c pr s ur nd e p r t e qu lb i c l. e fe t of e s e a t m e a ur on a r lq i qu lbru v po — i u d e ii i m of i e hy e h r d m t l t e —
化工原理课程设计——水与甲醇精馏 精典版

目 录前 言............................................... 错误!未定义书签。
第一节 设计方案.................................................... 5 1.1操作条件的确定 ................................................ 5 1.操作压力的确定 ................................................ 5 2.进料状态 ...................................................... 5 3.加热方式 ..................................................... 6 4.回流比 ........................................................ 6 1.2确定设计方案的原则 ............................................ 7 第二节 工艺流程图................................................... 7 第三节 板式精馏塔的工艺计算........................................ 8 3.1 物料衡算 ...................................................... 8 3.3 理论塔板数的计算 .............................................. 9 3.4实际板数的确定 ............................................... 11 第四节 塔径塔板工艺尺寸的确定...................................... 13 4.1 各设计参数 .. (13)4.1.1 操作压力精m p ............................ 错误!未定义书签。
甲醇-水精馏化工原理课程设计

《化工原理课程设计》报告10000kg/h 甲醇~水精馏装置设计一、概述 (3)1.1 设计依据 (3)1.2 技术来源 (3)1.3 设计任务及要求 (3)二、计算过程 (4)1 设计方案及设计工艺的确定 (4)1.1 设计方案 (4)1.2.设计工艺的确定 (4)1.3、工艺流程简介 (4)2. 塔型选择 (5)3. 操作条件的确定 (5)3.1 操作压力 (5)3.2 进料状态 (5)3.3加热方式的确定 (6)3.4 热能利用 (6)4. 有关的工艺计算 (6)4.1精馏塔的物料衡算 (9)4.1.1 原料液及塔顶、塔底产品的摩尔分率 (9)4.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (10)4.1.3物料衡算 (10)4.2 塔板数的确定 (10)4.2.1 理论板层数NT的求取 (10)4.2.3 热量衡算 (12)4.3 精馏塔的工艺条件及有关物性数据的计算 (14)4.3.1 操作压力的计算 (14)4.3.2 操作温度的计算 (14)4.3.3 平均摩尔质量的计算 (15)4.3.4 平均密度的计算 (15)4.3.5 液相平均表面张力的计算 (16)4.3.6 液体平均粘度的计算 (17)4.4 精馏塔的塔底工艺尺寸计算 (18)4.4.1塔径的计算 (18)4.4.2 精馏塔有效高度的计 (19)4.5 塔板主要工艺尺寸的计算 (19)4.5.1溢流装置的计算 (19)4.5.2 塔板布置 (21)4.6 筛板的流体力学验算 (24)4.6.1 塔板压降 (24)4.6.2 液面落差 (25)4.6.3 液沫夹带 (26)4.6.4 漏液 (26)4.6.5 液泛 (27)4.7 塔板负荷性能图 (27)4.7.1、液漏线 (27)4.7.2、液沫夹带线 (28)4.7.3、液相负荷下限线 (29)4.7.4、液相负荷上限线 (29)4.7.5、液泛线 (29)5.热量衡算 (32)5.1塔顶换热器的热量衡算 (33)5.2塔底的热量计算 (33)5.3、热泵的选型 (36)5.4、塔底料液和热蒸气预热进料液 (36)5.5、水蒸汽加热进料液 (37)三、辅助设备的计算及选型 (38)(一)、管径的选择 (38)1、加料管的管径 (38)2、塔顶蒸汽管的管径 (38)3、回流管管径 (38)4、料液排出管径 (39)(二)、泵的选型 (39)1、原料液进入精馏塔时的泵的选型 (39)2、塔顶液体回流所用泵的型号 (39)(三)、储罐选择 (40)1、原料储槽 (40)2、塔底产品储槽 (40)3、塔顶产品储槽 (40)四、费用的计算 (41)(一)设备费用的计算 (41)1、换热器费用的计算 (41)2、精馏塔的费用计算 (42)泵的费用 (42)储槽费用 (42)输送管道费用 (43)分液槽费用 (44)(二)操作费用的计算 (44)1、热蒸汽的费用 (44)2、冷却水的费用 (44)3、泵所用的电费 (44)4、总费用 (44)参考文献 (45)主要符号说明 (46)对本设计的评述 (49)一、概述塔设备是最常采用的精馏装置,无论是填料塔还是板式塔都在化工生产过程中得到了广泛的应用,在此我们作板式塔的设计以熟悉单元操作设备的设计流程和应注意的事项是非常必要的。
化工原理王志魁第五版习题解答:第六章 蒸馏

第六章蒸馏相平衡【6-3】甲醇(A)-丙醇(B)物系的汽液平衡服从拉乌尔定律。
试求:(1)温度80℃t =、液相组成.05x =(摩尔分数)时的汽相平衡组成与总压;(2)试求总压为.10133kPa 、液相组成.04x =(摩尔分数)时的汽液相平衡温度与汽相组成;(3)液相组成.06x =、汽相组成.084y =时的平衡温度与总压。
组成均为摩尔分数。
用Antoine 方程计算饱和蒸气压(kPa)甲醇.lg ..15749971973623886A p t =-+ 丙醇.lg .137514674414193B p t =-+式中t 为温度,℃。
解(1) 80℃t =时,..1811,5093A B p kPa p kPa==BA Bp p x p p -=-总压()() ....18115093055093116A B B p p p x p kPa=-+=-⨯+=汽相组成 (181105)0781116A p x y p ⨯=== (2)已知..10133,04,求、p kPa x x y==.10133p kPa =时,甲醇沸点为64.7℃,丙醇沸点为97.2℃,所求汽液相平衡温度必在64.7℃与97.2℃之间。
假设75℃t =计算.1511,41A B p kPa p kPa == 液相组成....1013341054804151141B A Bp p x p p --===>--计算的x 值大于已知的x 值,故所假设的温度t 偏小,重新假设大一点的t 进行计算。
将3次假设的t 与计算的x 值列于下表,并在习题6-3附图1上绘成一条曲线,可知.04x =时的平衡温度.795℃t =。
习题6-3附表计算次数第一次第二次第三次假设/t ℃758085x0.5480.3870.252习题6-3附图1.795℃t =时,.1779A p kPa= 汽相组成.. ..177904=070210133A p x y p ⨯==(3)已知..06,084,求,x y t p==计算().(.) .().(.)1084106351061084AB p y x x y p --===-- 待求的温度t ,就是/.35A B p p =时的温度,用试差法计算。
甲醇 乙醇 水 汽液平衡

This article was downloaded by: [Dalhousie University]On: 15 January 2013, At: 07:11Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKPhysics and Chemistry of Liquids: AnInternational JournalPublication details, including instructions for authors andsubscription information:/loi/gpch20Phase equilibria of binary mixturescontaining methyl acetate, water,methanol or ethanol at 101.3 k PaV.H. Álvarez a , S. Mattedi b , M. Iglesias c , R. Gonzalez-Olmos c &J.M. Resa da Chemical Engineering School, State University of Campinas, P.O.Box 6066, Campinas-SP 13081-970, Brazilb Chemical Engineering Department, Polytechnic School, FederalUniversity of Bahia, Rua Aristides Novis, 2 Federação, 40210-630Salvador-BA, Brazilc PF&PT Research T eam, Department of Chemical Engineering,T echnical High School of Engineering, University of Santiago deCompostela, Rúa Lope Gómez de Marzoa, 15782 Santiago deCompostela, Españad Departamento de Ingeniería Química, Universidad del PaísVasco, Apartado 450, 01006 Vitoria, EspañaVersion of record first published: 27 Jan 2011.PLEASE SCROLL DOWN FOR ARTICLEsources. The publisher shall not be liable for any loss, actions, claims, proceedings,demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Physics and Chemistry of Liquids Vol.49,No.1,January 2011,52–71Phase equilibria of binary mixtures containing methyl acetate,water,methanol or ethanol at 101.3kPaV.H.Alvarez a ,S.Mattedi b *,M.Iglesias c ,R.Gonzalez-Olmos c and J.M.Resa d aChemical Engineering School,State University of Campinas,P.O.Box 6066,Campinas-SP 13081-970,Brazil;b Chemical Engineering Department,Polytechnic School,Federal University of Bahia,Rua Aristides Novis,2Federac ¸a ˜o,40210-630Salvador-BA,Brazil;cPF&PT Research Team,Department of Chemical Engineering,Technical High School of Engineering,University of Santiago de Compostela,Ru´a Lope Go ´mez de Marzoa,15782Santiago de Compostela,Espan ˜a;dDepartamento de Ingenierı´aQuı´m ica,Universidad del Paı´s Vasco,Apartado 450,01006Vitoria,Espan ˜a(Received 3April 2009;final version received 1May 2009)Isobaric vapor–liquid equilibria data at 101.3kPa were reported for the binary mixtures (methyl acetate þ(water or methanol or ethanol),methanol þ(water or ethanol)and (ethanol þwater)).The experimental data were tested for thermodynamic consistency by means of the Wisniak method and were demonstrated to be consistent.The experimental data were correlated using Wilson,NRTL and UNIQUAC models for the activity coefficients and predicted using the UNIFAC and PSRK equation of state for testing theirs capability.The results show that the obtained data for the studied binary systems are more reliable than other published data.Keywords:phase equilibria;associating binary mixture;correlation,modelling errors1.IntroductionThermodynamic measurements and phase equilibria of ethanol,water and the different flavour components (alcohols,aldehydes and acetates,so-called congeners)in distillated alcoholic beverages are of practical interest to the food industry since industrial procedures applied are closely related to their temperature and pressure dependence in order to obtain a high quality final product.In the last few years,published studies have highlighted a clear need for accurate information about these types of mixtures,in order to develop and optimise industrial techniques.Despite the considerable effort invested in the field of thermodynamic properties,a great scarcity of data is observed in the available literature for mixtures of components present in commercial distillated alcoholic beverages.Such properties are strongly dependent on hydrogen bond potency of hydroxyl or polar groups,chain length,isomeric structures and molecular package.After decades of study,there is still much room for improvement in our ability to understand the behavior of these systems and add accurate data to the available literature.Simulation and optimisation are not used in*Corresponding author.Email:silvana@ufba.brISSN 0031–9104print/ISSN 1029–0451online ß2011Taylor &FrancisDOI:10.1080/00319100903012403D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013the right manner in this matter,with an overestimation of equipment size or high energy-consuming conditions being usually applied due to inaccurate calculations.The difficulties of simulation in these types of processes,as well as possible errors derived from that,have been commented upon previously [1].As a continuation of previous work related to alcoholic beverages [2–4],this work is part of a research project whose objective is to measure thermodynamic properties and vapour–liquid equilibrium (VLE)data for different systems involved in most distillation processes to benefit subsequent studies of modelling and simulation.In this work,the VLE at 101.3kPa was determined for binary systems:methyl acetate þwater,methyl acetate þmethanol,methyl acetate þethanol,methanol þwater,methanol þethanol and ethanol þwater.These mixtures also have some special characteristics.The concentration of the solute in the vapor phase is small and shows molecular association.Thermodynamic consistency was achieved to validate the new experimental data.In this way,data obtained have lower deviations when compared with previously published data;thereby,the information of available literature was improvement.The –’approximation was used to fit the experimental data and obtain the UNIFAC Dortmund model [5],which was used for VLE prediction.Also,the predictive Soave–Redlich–Kwong (PSRK)model proposed by Holderbaum and Gmehling [6]was used in the ’–’approximation.2.Experimental sectionAll chemicals were Lichrosolv quality (Merck Farma y Quımica S.A.).The pure components were recently acquired and kept in an inert argon atmosphere after the bottles were opened.The materials were degassed ultrasonically and dried over molecular sieves Type 4A or 3A,1/16in.Chromatographic (GLC)analysis gave purities of 0.998for methyl acetate,methanol and ethanol,with maximum water contents of 6.8Â10À3, 1.5Â10À2and 2.2Â10À2mass%(Metrohm 737KF coulometer),respectively.Water was millipore quality with organic total mass 55ppb and resistivity of 18.2M cm.The densities and refractive indices at 298.15K,as well as normal boiling points,were within recommended values and are shown in Table 1.Table 1.Observed physical properties of pure compounds and literature data (densities ( ),refractive indices (n D )at 298.15K,and normal boiling points (T b )).Mw (kg kmol À1)(kg m À3)n DT b (K)Obs.Lit.Obs.Lit.Obs.Lit.Methyl acetate 74.080a 0.926740.9273b 1.35850 1.3589b 329.82330.4a 0.9279c 1.3614c 330.09d Water 18.015a 0.99700.99705c 1.33250 1.33250c 373.15373.15a Methanol 32.042a 0.786650.78664b 1.32645 1.32652b 337.86337.7a 0.78664c 1.32652c 337.85d Ethanol46.069a0.785020.78509b 1.359221.35941b 352.07351.4a 0.78504c1.35941c351.44dNote:a See [7];b See [8];c See [9];d See [10].Physics and Chemistry of Liquids 53D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013The system used to measure VLE data was a dynamic recirculating apparatusdescribed previously [11,12].The equilibrium temperature was measured with a digital platinum 100resistance thermometer with an accuracy of Æ0.1K.For the pressure measurement,a digital manometer regulator (Divatronic DT1model),manufactured by Leybold with an accuracy of Æ0.1kPa,was used.Both vapour and liquid phase compositions for the systems were determined by measurements of physical properties (density and refractive index)and application of mathematical correlations,published earlier by the authors [13–16].The accuracy of the composition measurements on each phase was estimated as better than Æ0.001in molar fraction for each mixture.The VLE experimental data at 101.3kPa of the studied binary systems are compiled in Table 2.Table 2.Observed vapour-liquid equilibrium data for different binary systems.x 1y 1T (K)1 2 1 2 s 1 s 2Methyl acetate (1)þwater (2)0.0020.14095.6423.732 1.0090.9790.9910.9350.9930.0050.29590.3923.206 1.2260.9780.9920.9410.9940.0140.57777.8121.348 2.0150.9770.9950.9550.9960.0220.68271.2719.808 2.6560.9770.9970.9610.9970.0290.73966.9018.413 3.2160.9770.9990.9650.9970.0420.79461.9016.207 4.0320.977 1.0010.9690.9980.7120.83557.45 1.158 4.9640.978 1.0030.9720.9980.8000.86156.99 1.080 5.0790.978 1.0040.9730.9980.8730.89456.67 1.041 5.1640.979 1.0060.9730.9980.8730.89556.67 1.041 5.1640.979 1.0060.9730.9980.9300.93356.54 1.024 5.2070.981 1.0080.9730.9980.9910.98956.621.0205.2030.983 1.0110.9730.998Methyl acetate (1)þmethanol (2)0.0090.02764.00 2.417 1.0090.9750.9830.9670.9830.0540.14561.90 2.259 1.0960.9750.9830.9690.9840.0740.18661.14 2.194 1.1300.9750.9830.9690.9840.1030.24060.12 2.101 1.1770.9740.9830.9700.9850.1040.24260.09 2.097 1.1780.9740.9830.9700.9850.1210.26959.58 2.048 1.2030.9740.9830.9710.9850.1230.27259.52 2.042 1.2060.9740.9830.9710.9850.1450.30658.88 1.978 1.2380.9740.9840.9710.9860.1480.30958.82 1.971 1.2410.9740.9840.9710.9860.1650.33258.39 1.924 1.2630.9750.9840.9720.9860.1990.37357.63 1.834 1.3040.9750.9850.9720.9860.2160.39157.30 1.794 1.3220.9750.9850.9720.9860.2660.43856.45 1.680 1.3700.9750.9860.9730.9870.2950.46256.05 1.621 1.3930.9760.9860.9730.9870.3270.48655.65 1.558 1.4170.9760.9870.9730.9870.3540.50555.36 1.509 1.4350.9760.9880.9740.9870.3710.51655.19 1.480 1.4460.9760.9880.9740.9870.4190.54554.80 1.406 1.4710.9770.9890.9740.9870.4400.55754.65 1.375 1.4800.9770.9890.9740.9870.4850.58254.37 1.3151.4990.9780.9900.9740.988(Continued )54V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Table 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.5190.59954.21 1.274 1.5100.9780.9900.9740.9880.5370.60954.13 1.254 1.5160.9780.9910.9750.9880.6320.65853.87 1.164 1.5350.9790.9930.9750.9880.6360.66053.86 1.160 1.5360.9790.9930.9750.9880.6730.68053.83 1.132 1.5390.9800.9930.9750.9880.6960.69353.83 1.116 1.5400.9800.9940.9750.9880.7190.70753.84 1.102 1.5400.9810.9950.9750.9880.7420.72153.87 1.089 1.5390.9810.9950.9750.9880.7950.75754.02 1.063 1.5320.9830.9970.9750.9880.8850.83754.65 1.035 1.4980.986 1.0010.9740.9870.9240.88155.12 1.030 1.4730.988 1.0030.9740.9870.9810.96556.191.029 1.4160.992 1.0080.9730.987Methyl acetate (1)þethanol (2)0.0110.05076.972.541 1.0110.9790.9790.9560.9800.0390.16574.47 2.420 1.1160.9780.9780.9580.9810.0890.31070.97 2.231 1.2870.9790.9790.9610.9830.1210.37869.19 2.121 1.3850.9790.9800.9630.9840.1740.46566.77 1.955 1.5350.9800.9810.9650.9850.2570.55864.02 1.734 1.7290.9820.9830.9670.9870.2670.56663.75 1.711 1.7490.9820.9830.9670.9870.2920.58763.11 1.653 1.7990.9820.9840.9680.9870.3160.60562.58 1.604 1.8420.9830.9840.9680.9870.3250.61162.39 1.585 1.8580.9830.9840.9680.9870.3360.61962.17 1.563 1.8760.9830.9850.9690.9870.3690.63961.55 1.502 1.9280.9840.9850.9690.9880.3740.64261.46 1.493 1.9360.9840.9850.9690.9880.4370.67660.48 1.392 2.0240.9850.9870.9700.9880.5340.72259.28 1.266 2.1380.9860.9880.9710.9890.5510.73059.10 1.248 2.1560.9860.9890.9710.9890.5760.74058.85 1.223 2.1810.9870.9890.9710.9890.6360.76758.30 1.169 2.2380.9880.9900.9720.9890.6370.76758.29 1.168 2.2390.9880.9900.9720.9890.6610.77858.09 1.150 2.2600.9880.9910.9720.9890.6920.79257.84 1.128 2.2870.9890.9910.9720.9890.6990.79657.79 1.124 2.2920.9890.9920.9720.9890.7520.82157.42 1.094 2.3340.9900.9930.9720.9890.7600.82557.37 1.089 2.3400.9900.9930.9720.9890.7650.82857.34 1.087 2.3430.9910.9930.9720.9890.7680.83057.32 1.085 2.3450.9910.9930.9720.9890.8080.85157.09 1.069 2.3730.9920.9940.9720.9900.8160.85657.04 1.066 2.3790.9920.9950.9730.9900.8610.88456.84 1.052 2.4040.9930.9960.9730.9900.8620.88456.83 1.052 2.4050.9930.9960.9730.9900.8820.89856.75 1.047 2.4160.9940.9970.9730.9900.9240.93056.64 1.040 2.4330.9960.9990.9730.990Methanol (1)þwater (2)0.00010.00199.65 2.425 1.0130.9860.9920.9560.9920.0010.00999.46 2.384 1.0190.9860.9920.9560.9920.0100.07597.79 2.313 1.0820.9850.9920.9580.9920.0640.32190.812.0171.4000.9850.9930.9640.994(Continued )Physics and Chemistry of Liquids55D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Table 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.1030.42587.38 1.8511.5960.9850.9940.9670.9940.2170.59681.04 1.5162.0520.9860.9960.9720.9950.3060.67277.93 1.355 2.3310.9870.9970.9740.9960.3160.67977.62 1.340 2.3610.9870.9980.9750.9960.3830.72275.80 1.256 2.5470.9880.9990.9760.9960.4430.75774.35 1.198 2.7080.988 1.0000.9770.9960.4440.75774.32 1.197 2.7120.988 1.0000.9770.9960.5320.80272.44 1.133 2.9390.989 1.0010.9780.9970.6320.84770.52 1.0843.1950.990 1.0020.9790.9970.6760.86769.73 1.068 3.3070.991 1.0030.9800.9970.6890.87269.49 1.064 3.3430.991 1.0030.9800.9970.6960.87569.37 1.062 3.3600.991 1.0030.9800.9970.7680.90668.12 1.044 3.5520.992 1.0040.9810.9970.7700.90668.11 1.043 3.5530.992 1.0040.9810.9970.8270.93067.16 1.034 3.7080.992 1.0050.9810.9970.8960.95866.05 1.026 3.8980.993 1.0060.9820.9970.9140.96665.75 1.025 3.9520.993 1.0070.9820.9970.9330.97365.46 1.0244.0040.993 1.0070.9820.9970.9370.97565.40 1.024 4.0150.993 1.0070.9820.9970.9720.98964.86 1.023 4.1150.994 1.0080.9830.9970.9770.99164.78 1.023 4.1300.994 1.0080.9830.9970.9770.99164.771.023 4.1320.994 1.0080.9830.997Methanol (1)þethanol (2)0.0180.03477.71 1.152 1.0060.9850.9790.9750.9790.0960.16776.08 1.139 1.0730.9860.9790.9760.9800.1710.27774.65 1.127 1.1360.9870.9790.9770.9810.1790.28974.49 1.126 1.1430.9870.9790.9770.9810.1820.29374.44 1.125 1.1450.9870.9790.9770.9810.2460.37673.31 1.115 1.1990.9880.9800.9780.9820.2750.41172.83 1.110 1.2230.9890.9800.9780.9820.2870.42672.62 1.108 1.2340.9890.9800.9780.9820.2940.43472.51 1.107 1.2390.9890.9800.9780.9820.3120.45572.22 1.104 1.2540.9900.9810.9780.9820.3260.46972.01 1.102 1.2650.9900.9810.9780.9830.4000.54770.90 1.090 1.3250.9910.9820.9790.9830.4230.56970.57 1.087 1.3440.9920.9820.9790.9830.4420.58770.31 1.084 1.3590.9920.9830.9790.9830.4590.60270.09 1.081 1.3710.9930.9830.9800.9840.5340.66769.12 1.070 1.4290.9950.9840.9800.9840.5690.69668.69 1.065 1.4560.9950.9850.9800.9840.5800.70568.56 1.063 1.4640.9960.9850.9800.9840.5980.71968.35 1.061 1.4780.9960.9850.9810.9850.5990.72068.34 1.060 1.4780.9960.9850.9810.9850.6820.78267.42 1.050 1.5390.9980.9870.9810.9850.7260.81366.98 1.044 1.5690.9990.9880.9810.9850.7610.83866.63 1.041 1.593 1.0000.9890.9820.9850.7630.83966.61 1.041 1.595 1.0000.9890.9820.9850.8760.91665.57 1.032 1.671 1.0040.9910.9820.9860.9410.95965.041.030 1.712 1.0060.9930.9820.986Ethanol (1)þwater (2)0.0150.17095.99 5.8380.9740.9810.9910.9650.9930.0320.27692.695.1331.0990.9800.9920.9680.993(Continued )56V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.Data treatment3.1.VLE consistency dataPhase equilibrium data should be tested in order to assure and guarantee an acceptable quality and reliability of VLE data.Available literature offers different procedures to test the thermodynamic consistency of a set of data for isothermal or isobaric condition.The thermodynamic consistency of the measured VLE data have been tested with the Wisniak method [17]to reject possible inconsistent equilibrium points from the experimental determined collection.According to this test,two experimental points (a)and (b)are thermodynamically consistent when:D 5D maxð1ÞTable 2.Continued.x 1y 1T (K) 1 2 1 2 s 1 s 20.0460.33690.68 4.624 1.1860.9800.9920.9690.9940.0680.39888.50 3.978 1.2880.9800.9920.9710.9940.0790.42087.72 3.717 1.3280.9800.9920.9720.9940.1190.47385.80 2.991 1.4300.9790.9930.9730.9950.1630.50884.54 2.454 1.5030.9790.9930.9740.9950.1900.52483.99 2.215 1.5360.9790.9940.9750.9950.2060.53283.72 2.094 1.5530.9790.9940.9750.9950.2320.54483.33 1.933 1.5770.9790.9940.9750.9950.2360.54683.27 1.908 1.5810.9790.9940.9750.9950.2390.54783.23 1.896 1.5840.9790.9940.9750.9950.2810.56582.70 1.698 1.6180.9790.9940.9760.9950.2860.56782.64 1.675 1.6220.9790.9940.9760.9950.2910.56982.59 1.658 1.6250.9790.9940.9760.9950.3030.57482.45 1.614 1.6340.9790.9950.9760.9950.3440.59082.01 1.486 1.6630.9790.9950.9760.9950.3670.59981.79 1.427 1.6780.9790.9950.9760.9950.3800.60581.66 1.396 1.6870.9790.9950.9760.9950.3920.61081.55 1.371 1.6950.9790.9950.9760.9950.3970.61281.50 1.360 1.6980.9790.9950.9770.9950.4100.61781.38 1.336 1.7070.9790.9950.9770.9950.4120.61881.36 1.332 1.7080.9790.9950.9770.9950.4810.64880.76 1.224 1.7510.9800.9960.9770.9950.5270.66980.40 1.171 1.7770.9800.9960.9770.9950.6170.71579.77 1.094 1.8250.9800.9980.9780.9960.6880.75479.36 1.053 1.8570.9810.9990.9780.9960.7220.77579.19 1.037 1.8710.9810.9990.9780.9960.7570.79779.04 1.023 1.8840.982 1.0000.9780.9960.8510.86278.770.997 1.9090.983 1.0020.9780.9960.8980.89978.720.988 1.9150.984 1.0030.9780.9960.9080.90878.720.987 1.9160.984 1.0040.9780.9960.9310.92878.730.984 1.9160.984 1.0040.9780.9960.9440.94178.750.983 1.9160.985 1.0050.9780.9960.9470.94378.750.983 1.9160.985 1.0050.9780.9960.9670.96378.790.9821.9140.9851.0060.9780.996x 1,Liquid-phase mole fraction;y 1,vapour-phase mole fraction;T ,boiling temperature; 1and2,activity coefficients; 1and 2,fugacity coefficients; s 1and s2,fugacity coefficients at saturation at 101.3kPaPhysics and Chemistry of Liquids57D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013where D max is the maximum deviation with a value of 3,D is the local deviation,which is expressed as:D ¼100L ÀW L þW,ð2Þwhere L and W are each side temperature function integrals on liquid compositionfor the Wisniak test [13].The correlations for heat of vapourisation (J kmol À1)and density liquid (kmol m À3)used are:D vap H ¼A 1ÀT r ðÞðB þCT r þDT 2r Þð3Þ ¼AB 1þð1ÀT =C ÞDðÞ,ð4Þwhere,T is the temperature in K,T r is the reduced temperature and the constants A ,B ,C and D are shown in Table 3.The physical properties used were taken from Diadem Public v1.2[10],and the activity coefficients were calculated as shown in the next section.Table 4shows the values for the integrals L and W calculated for the thermodynamic consistent test and the values for the deviation D .Also,this table shows that the condition D 5D max satisfies all systems.Therefore,the thermo-dynamic consistency of the binary VLE data reported in this work is confirmed.Table 3.Coefficients for heat of vapourisation and density liquid,Equations (3)and (4).Compound D T (K)A B C D Ethanol 159–514a557890000.3124500159–514b 1.62880.274695140.23178Methanol 175–512a 504510000.3359400175–512b 2.32670.27073512.50.24713Methyl acetate 175–506a 449200000.368500175–506b 1.130.2593506.550.2764Water273–647a 520530000.31990À0.2120.25795300–380b,c5.77830.3124462.25450.05977aInterval for heat vapourisation,b interval for liquid density,c calculated from [14].Table 4.Results of the thermodynamic consistency test;L,W and D are variables defined in Equation (2).System (1)þ(2)L W D Methyl acetate þwater 19.8420.30 1.15Methyl acetate þmethanol 5.10 5.00 1.05Methyl acetate þethanol 6.59 6.81 1.61Methanol þwater 7.527.560.30Methanol þethanol 1.48 1.470.18Ethanol þwater7.217.260.3758V.H.A´lvarez et al.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.2.Equilibrium equation and activity coefficientsThe activity coefficients ( i )of the components were calculated from the following equation:i ¼y i Èi Px i P o i,ð5Þwere x i and y i are the liquid and vapor mole fractions in equilibrium,Èi is the vaporphase correction factor,P is the total pressure and P o i is the vapour pressure of pure component i .These vapour pressures were calculated from the Antoine equation:log P ¼A i ÀB ii,ð6Þwhere,P is the vapor pressure in mmHg,T is temperature in C and the constants A i.,B i and C i are reported in Table 5.The value constants for the pure compounds were obtained in literature by Riddick et al .[9].The vapour phase correction factor is given by:Èi ¼ i sat i exp ÀV i ðP ÀP o iÞRT !,ð7Þwhere i is the fugacity coefficient of component i in the mixture, sat iis the fugacity coefficient at saturation condition and V i is the molar volume of component i in the liquid phase calculated using the correlation of the liquid density.Fugacity coefficients were calculated with PSRK model,where the expression proposed by Mathias and Copeman [18]is used to evaluate (T )in the PSRK model:ðT Þ¼1þc 1ð1ÀT 0:5r Þþc 2ð1ÀT 0:5r Þ2þc 3ð1ÀT 0:5r Þ3ÂÃ2for T r 51,ð8Þwhere,T r is the reduced temperature and T c is the critical temperature,while c 1,c 2and c 3are empirical parameters.These parameters for the pure compounds were calculated in this work and are shown in Table 5.The physical properties for the pure components used in the PSRK model were taken from [10]and shown in Table 6.The calculated fugacity and activity coefficients are shown in Table 2for all data points.Table 5.Antoine and Mathias and Copeman pound A i a B i a C i a D T (K)b C 1c c 2c C 3cEthanol 8.3221718.10237.52296.9–463.2 1.4125300.287222À1.496099Methanol7.8981474.08229.13292.0–461.3 1.433991À0.7681150.226212Methyl acetate 7.0651157.622219.724277.1–462.7 1.069537À0.759819 1.492479Water8.0121695.167230.41276.6–590.91.093544À0.6730560.699288aSee [19];b see [18];c calculated in this work.Physics and Chemistry of Liquids59D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 20133.3.Modelling –Correlation modelThe VLE data were correlated in the –’approximation,where the PSRK equation of state was used to evaluate the fugacity coefficients,as the thermodynamic model in a bubble-point calculation.The description of the models applied here (Wilson,NRTL,and UNIQUAC)is freely available in the literature [7]and hence it is not discussed here.In the ’approximation,the Wilson,NRTL and UNIQUAC models were used instead of the UNIFAC model to calculate the excess Gibbs energy in the PSRK model.Theoretically,the range for the parameters A ij (Wilson,NRTL and UNIQUAC)is defined as (À104,104)J mol À1.Since this is a very wide range based on physical considerations,it is extremely likely that it will contain the globally optimal parameter values.Renon and Prausnitz [18]explain that the range for ij with theoretical bases can have values from 0.2to 0.55.To evaluate these parameters,the regression was performed using a genetic algorithm code,implemented and fully explained in the study by Alvarez et al .[19],with the minimisation of the overall objective function (Q ).Q ¼X N j ¼1½y exp 1jÀy cal 1j = y2þX N j ¼1½T cal ÀT exp = T ÀÁ2,ð9Þwhere y is the accuracy in the vapour mole fraction (10À3), T is the accuracy in the temperature (10À1),N is the number of data sets,y i is the molar fraction of the component i and the superscript ‘exp’and ‘cal’are the experimental and calculated values,respectively.The fitting parameters of these models and deviations are shown Table 7,the relative percent deviations in temperature and vapour phase compositions are calculated by Valderrama and Alvarez [20]:D T j j %¼100N XN i ¼1T cali ÀT exp i T expi ð10ÞD y %¼100N X N i ¼1y cal i Ày exp i y exp i,ð11Þwhere N is the number of data sets,T is the temperature,y i is the vapour molarfraction of the component i and the superscript ‘exp’and ‘cal’are the experimental and calculated values,respectively.Also,this table shows that all models present similar deviations in temperature and concentration in vapour phase,with a slightly better performance of the UNIQUAC model.The modelling of VLE data areTable 6.Physical properties for components:T c,critical temperature;P c,critical pressure;!,acentric factor;and uniquac parameters r and q .Compound T c (K)P c (bar)!r q Ethanol 514.061.50.644 2.11 1.97Methanol512.581.00.566 1.43 1.43Methyl acetate 506.647.50.331 2.80 2.58Water647.1221.20.3450.921.4D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013presented in T Àx 1Ày 1diagrams shown in Figures 1–6.In Figure 7,comparisons between models desviations using Equation (11)are shown for all binary systems,it is easy to observe that UNIQUAC model has a good agreement between experimental and calculated composition vapor phase.Table 7.Correlation parameters for activity coefficients and average deviation for the studied systems.ModelA 12(KJ mol À1)A 21(KJ mol À1)j D T j %(K)j D y 1j %j D y 2j %Methyl acetate (1)þwater (2)Wilson3249.1878660.5650.27 2.9512.96NRTL ( 12¼0.415)3276.9667494.2400.050.73 2.36UNIQUAC c 2216.998959.0940.100.42 1.46UNIFAC ––0.060.75 2.08PSRK––0.39 3.25 6.52Methyl acetate (1)þmethanol (2)Wilson À75.0113815.6350.020.190.47NRTL ( 12¼0.534)1927.7051181.4910.020.190.50UNIQUAC c 2922.085À594.6130.020.220.43UNIFAC ––0.020.310.52PSRK ––0.16 2.63 1.86Methyl acetate (1)þethanol (2)Wilson 467.4572721.9650.020.230.95NRTL ( 12¼0.550)1772.0651504.5650.020.25 1.00UNIQUAC c1667.680À178.6690.030.36 1.03UNIFAC ––0.060.61 1.30PSRK ––0.23 1.93 2.24Methanol (1)þwater (2)Wilson 173.8432373.1030.040.54 3.87NRTL ( 12¼0.550)75.5062425.8120.04 1.01 3.08UNIQUAC c À1289.7642072.2820.050.35 2.12UNIFAC ––0.080.45 1.39PSRK ––0.070.530.77Methanol (1)þethanol (2)Wilson À309.2071565.2990.030.230.66NRTL ( 12¼0.200)4229.869À2822.0700.020.260.60UNIQUACc1412.023À763.4080.030.230.64UNIFAC ––0.020.380.97PSRK ––0.020.440.71Ethanol (1)+water (2)Wilson2083.97763953.53670.250.39 1.16NRTL ( 12¼0.550)734.705007.820.180.92 1.46UNIQUAC c À495.04021988.10910.210.75 1.58UNIFAC ––0.220.330.82PSRK ––0.09 1.84 2.46Mean Wilson 0.100.76 3.34NRTL0.060.56 1.50UNIQUAC 0.070.39 1.21UNIFAC 0.080.47 1.18PSRK0.161.772.43D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013Figure 1.T Àx 1Ày 1diagram for methyl acetate (1)þwater (2)at 101.3kPa:(.)experimentalliquid phase;( )experimental vapour phase;(—)UNIQUAC correlation;(---)UNIFACprediction.Figure 2.T Àx 1Ày 1diagram for methyl acetate (1)þmethanol (2)at 101.3kPa:(.)experimental liquid phase;( )experimental vapour phase;(—)UNIQUAC correlation;(---)UNIFAC prediction.D o w n l o a d e d b y [D a l h o u s i e U n i v e r s i t y ] a t 07:11 15 J a n u a r y 2013。
计算题(蒸馏)

计算题(蒸馏)计算题(蒸馏)进料状态与最⼩回流⽐1、精馏塔采⽤全凝器,⽤以分离苯和甲苯组成的理想溶液,进料状态为汽液共存,两相组成如下:x F=0.5077,y F=0.7201。
(1) 若塔顶产品组成x D=0.99,塔底产品的组成为x W=0.02,问最⼩回流⽐为多少?塔底产品的纯度如何保证?(2) 进料室的压强和温度如何确定。
(3) 该进料两组份的相对挥发度为多少?(R min=1.271,通过选择合适的回流⽐来保证;α=2.49).2、常压连续操作的精馏塔来分离苯和甲苯混和液,已知进料中含苯0.6(摩尔分数),进料状态是汽液各占⼀半(摩尔数),从塔顶全凝器取出馏出液的组成为含苯0.98(摩尔分数),已知苯—甲苯系统在常压下的相对挥发度为2.5。
试求:(1)进料的汽液相组成;(2)最⼩回流⽐。
(液相0.49;汽相0.71;R min=1.227)3、最⼩回流⽐与理论板数⽤⼀连续精馏塔分离苯—甲苯混合液,原料中含苯0.4,要求塔顶馏出液中含苯0.97,釜液中含苯0.02(以上均为摩尔分数),R=4。
求下⾯两种进料状况下最⼩回流⽐R min。
及所需理论板数:(1)原料液温度为25℃;(2)原料为汽液混合物,汽液⽐为3 :4。
已知苯—甲苯系统在常压下的相对挥发度为2.5。
(R min=1.257,N T=10,第5块加料;R min =2.06,N T=11,第6块加料)4、物料恒算:1kmol/s的饱和汽态的氨—⽔混合物进⼈⼀个精馏段和提馏段各有1块理论塔板的精馏塔分离,进料中氨的组成为0.001(摩尔分数)。
塔顶回流为饱和液体,回流量为1.3kmol/s,塔底再沸器产⽣的汽相量为0.6kmol/s。
若操作范围内氨—⽔溶液的汽液平衡关系可表⽰为y=1.26x,求塔顶、塔底的产品组成。
(x D=1.402?10-3,x W=8.267?10-4)5、操作线⽅程⼀连续精馏塔分离⼆元理想混合溶液,已知精馏段某层塔板的⽓、液相组成分别为0.83和0.70,相邻上层塔板的液相组成为0.77,⽽相邻下层塔板的⽓相组成为0.78(以上均为轻组分A的摩尔分数,下同)。
甲醇-水填料精馏塔的课程设计

摘要:填料塔为连续接触式的气液传质设备,与板式塔相比,不仅结构简单,而且具有生产能力大,分离填料材质的选择,可处理腐蚀性的材料,尤其对于压强降较低的真空精馏操作,填料塔更显示出优越性。
本文以甲醇-水的混合液为研究对象,因甲醇-水系统在常压下相对挥发度相差较大,较易分离,所以此设计采用常压精馏。
根据物料性质、操作条件等因素选择填料塔,此设计采用泡点进料、塔底再沸器和塔顶回流的方式,将甲醇—水进行分离的填料精馏塔。
通过甲醇—水的相关数据,对全塔进行了物料衡算和热料衡算,得出精馏产品的流量、组成和进料流量、组成之间的关系,进而得到精馏塔的理论板数。
分析了进料、塔顶、塔底、提馏段、精馏段的流量及其物性参数。
对精馏段和提留段的塔径及填料层高度进行了计算,以确定塔的结构尺寸。
对塔内管径、液体分布器、筒体壁厚进行了选型计算,从而得到分离甲醇—水混合物液的填料精馏塔。
关键词:填料塔;流量;回流比;理论板数;工艺尺寸第一章:设计任务书 (1)一、设计题目 (1)二、操作条件 (1)三、填料类型 (1)四、设计内容 (2)第二章:工艺设计计算 (2)一、设计方案的确定 (2)二、精馏塔的物料衡算 (3)三、理论塔板数的确定 (3)四、精馏塔的工艺条件及有关物性数据的计算 (8)五、精馏塔塔体工艺尺寸的计算 (10)六、填料层压降的计算 (13)七、筒体壁厚的计算 (14)八、管径的计算 (14)九、液体分布器简要设计 (16)第三章:结论 (18)一、设计感想 (18)二、全章主要主要符号说明 (19)三、参考资料: (20)第一章:设计任务书一、设计题目在抗生素类药物生产过程中,需要用甲醇溶媒洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶媒进行精馏得到含水量≤0.3%(质量分数)的甲醇溶媒。
设计要求废甲醇溶媒的处理量为4t/h,塔底废水中甲醇含量≤0.5%(质量分数)。
精馏作业任务答案解析

6-3. 甲醇(A)—丙醇(B)物系的气—液平衡服从拉乌尔定律。
试求: (1)温度t=80℃、液相组成x =0.5(摩尔分数)时的汽相平衡组成与总压;(2)总压为101.33kPa 、液相组成x =0.4(摩尔分数)时的汽—液平衡温度与汽相组成;(3)液相组成x=0.6、汽相组成y=0.84时的平衡温度与总压。
组成均为摩尔分数。
用Antoine 方程计算饱和蒸汽压(kPa )甲醇 86.23899.157419736.7lg +-=t P oA丙醇 19314.137574414.6lg +-=t P oB式中,t 为温度,℃。
解:(1) 当t=80℃时,甲醇258.286.23899.157419736.7lg =+-=t P oA1.181=⇒oA P (KPa) 丙醇70.119314.137574414.6lg =+-=t P oB ??????9.50=⇒o B P (KPa)又∵液相组成5.09.501.1819.50=--=--=p P P P P x o B o A o B∴所求的总压116=p (kPa) ∴汽相平衡组成PxP y o A =1161.1815.0⨯=78.0=(2)总压oB oA P P P 6.04.033.101+==联立Antoine 方程可解得 汽液平衡温度C t o 6.79=,可得:甲醇饱和蒸汽压53.178=oA P (KPa)丙醇饱和蒸汽压07.50=oB P (KPa)∴汽液组成为pxP y oA =33.10153.1784.0⨯=705.0=(3)∵液相组成6.0=x ,汽相组成84.0=y∴P P P oB oA =+4.06.0,P P oA 84.06.0= 联立二式可求得27=o B o A P P 即oB o A o B o A P P P T P lg 27lg lg 2+=⇒=即19314.137574414.627lg 86.23899.157419736.7+-+=+-t t ∴平衡温度=t 总压=P6-7. 甲醇和丙醇在80℃时的饱和蒸气压分别为181.1kPa 和50.93kPa 。
甲醇水气液平衡数据

甲醇水气液平衡数据介绍甲醇和水是常见的溶液系统,在工业中有广泛的应用。
了解甲醇水溶液中的气液平衡数据对于工艺设计和操作控制都非常重要。
本文将对甲醇水溶液的气液平衡数据进行全面、详细、完整且深入地探讨。
甲醇水溶液的气液平衡甲醇水溶液的气液平衡是指在一定温度和压力下,甲醇和水之间在气相和液相之间的平衡。
这个平衡与溶液的浓度、温度、压力等因素密切相关。
影响因素甲醇水溶液的气液平衡受到以下几个主要因素的影响:1.温度:温度是影响气液平衡的重要因素之一。
随着温度的升高,甲醇水溶液的气相组分增加,液相组分减少。
2.压力:压力对气液平衡的影响主要表现在饱和汽相压力和液相浓度之间的关系上。
3.浓度:甲醇水溶液的浓度对气液平衡有着重要的影响。
随着甲醇浓度的增加,液相的沸点升高,汽相的过饱和度和逸度增加。
实验方法为了获得甲醇水溶液的气液平衡数据,可以采用以下实验方法:1.饱和蒸发法:将甲醇水溶液放入闭口容器中,保持一定温度和压力条件,等待溶液的气液平衡达到稳定。
利用饱和蒸发法可以测定饱和汽相压力和液相浓度。
2.沸点测定法:通过测量甲醇水溶液的沸点来间接获得气液平衡数据。
沸点随着甲醇浓度的升高而升高。
3.硬件模拟:通过建立物理模型,通过模拟计算得到甲醇水溶液的气液平衡数据。
数据分析和应用甲醇水溶液的气液平衡数据对于工业领域具有重要意义。
可以通过数据分析和应用来改进工艺设计和操作控制。
1.蒸馏过程优化:利用甲醇水溶液的气液平衡数据,可以优化蒸馏过程中的操作条件,提高分离效率和产量。
2.故障诊断:通过监测甲醇水溶液的气液平衡数据,可以及时发现系统运行中的问题并进行相应的故障诊断。
3.溶剂选择:在某些工艺中,需要选择合适的溶剂来达到特定的分离效果。
甲醇水溶液的气液平衡数据可以作为选择溶剂的依据。
4.反应控制:在某些反应中,甲醇和水的浓度变化对反应速率和产物选择性有着重要影响。
通过了解甲醇水溶液的气液平衡数据,可以控制反应的过程和结果。
甲醇-水系统甲醇回收精流塔设计

化工原理课程设计说明书设计题目:甲醇-水系统甲醇回收精流塔设计设计者:专业:化学工程和工艺学号:指导老师:2013 年12 月27 日目录一前言---------------------------------------------------------4二.工艺流程确定和说明------------------------------------------5三.工艺计算和主体设备设计--------------------------------------61.工艺条件----------------------------------------------------62.汽液平衡关系及平衡数据--------------------------------------63.塔的物料衡算------------------------------------------------7 4.物料性质计算----------------------------------------------105.气液负荷计算-----------------------------------------------156.塔和塔板主要工艺尺寸计算-----------------------------------16四.配套设备选型-----------------------------------------------191.换热器-----------------------------------------------------192.储槽计算---------------------------------------------------213.接管的选型-------------------------------------------------224.泵---------------------------------------------------------245.温度计-----------------------------------------------------266.压力计-----------------------------------------------------267.液位计-----------------------------------------------------268.流量计-----------------------------------------------------269.设备一览表-------------------------------------------------27五.选用符号说明-----------------------------------------------28六.参考文献---------------------------------------------------29七.后记-------------------------------------------------------29八.附录(工艺流程简图)-----------------------------------------30 一.前言甲醇,又名木醇,分子式为CH3OH,分子量:32.04.本品为有特殊气味的易挥发、易燃烧的液体.有毒,人饮后能致盲.比重0.791(20℃),沸点64.50℃,能和水和多数有机溶剂混溶.三.工艺计算及主体设备设计1.工艺条件系统进料:25ºC处理量:15,000吨/年进料浓度:20%(质量)处理要求:塔顶浓度≧98%(质量)塔底浓度≦0.2%(质量)塔顶压强:109.5kPa(绝压)塔釜压强:115kPa塔顶冷凝全凝器.塔底再沸器间壁加热.进塔物料状态:泡点进料冷却水温:28ºC加热蒸汽:0.2 Mpa年工作:7200小时年工作日:300天,连续操作2.汽液平衡关系及平衡数据温度t/℃液相中甲醇摩尔分数x A汽相中甲醇摩尔分数y A100 0.0 0.0 96.4 0.02 0.134 93.5 0.04 0.23491.2 0.06 0.304 89.3 0.08 0.365 87.7 0.10 0.418 84.4 0.15 0.517 81.7 0.20 0.579 78.0 0.30 0.665 75.3 0.40 0.729 73.1 0.50 0.779 71.2 0.60 0.825 69.3 0.70 0.870 67.6 0.80 0.915 66.0 0.90 0.958 65.0 0.95 0.979 64.5 1.0 1.0 表1:甲醇-水汽液平衡数据Tx/y C E图2:甲醇-水体系t-x-y相平衡曲线图3.塔的物料衡算3.1由质量分率求甲醇水溶液的摩尔分率:()()/0.20/32.040.1233/1/0.20/32.0410.20/18.02F A F F A F B a M x a M a M ===+-+-()()/0.98/32.040.9650/1/0.98/32.0410.98/18.02D A D D A D B a M x a M a M ===+-+-()()/0.002/32.040.001126/1/0.002/32.0410.002/18.02W A W W A W B a M x a M a M ===+-+-3.2.全塔物料衡算 F=平均分子量总生产时间年处理量1⨯15000100017200606032.040.123318.020.8767s ⨯=⨯⨯⨯⨯+⨯ =29.3s mol /则有:F D W F D W D W 29.3Fx Dx Wx 0.9650D 0.001126W 29.30.1233=++=⎧⎧⎨⎨=+⨯+⨯=⨯⎩⎩ 解得 W=25.58s mol / D=3.71s mol / 3.3求解R Min ,R,N Min ,N T采用图解法求解最小理论塔板数,作图(a)图解法求解最小理论塔板数-全图(b)图解法求解最小理论塔板数-局部放大图图3:图解法求解最小理论板数由图读知Nmin=6.9-1=5.9原料泡点进料,故x q=x F=0.1233,从图可知y q=0.4653,故有:D q Min q q 0.96500.46531.41680.46530.1126x y R y x -=--==-对于指定的物系,R Min 只取决于分离要求,即设计型计算中达到一定分离程度所需回流比的最小值,实际操作回流比应大于最小回流比.但增大回流比,起初显著降底所需塔板层数,设备费用明显下降.再增加回流比,虽然塔板层数仍可继续减少,但下降的非常慢.和此同时,随着回流比的加大,塔内上升蒸气量也随之增加,致使塔径、塔板面积、再沸器、冷凝器等设备尺寸相应增大.因此,回流比增至某一数值时,设备费用和操作费用同时上升,回流比的采用原则是使设备费用和操作费用的总费用最小.通常,适宜回流比的数值范围为R=(1.1~2.0)R Min .本设计取R=1.4116 R Min =1.4116R Min =2所以精馏段操作线方程方程为1121×0.96501133n n D n R y x x x R R +=+=+++因为泡点进料,所以q 线方程为f x x ==0.1233 采用图解法求解理论塔板数(a)图解法求解理论塔板数-全图(b)图解法求解理论塔板数-局部放大图4:图解法求解理论塔板数由图可得,理论塔板数为N T =13.3-1=12.3 或采用吉利兰图(R-Rmin)/(R+1)=(2-1.4168)/3=0.1944在0.1到0.9范围内 X=(R-Rmin)/(R+1) Y=(N-Nmin)/(N+2)Y=0.545827-0.591422X+0.002743/X=0.445 Nmin=5.9N=12.2和图解法近似,证明计算无误. 4.物料性质计算 4.1平均温度m t 由安托尼方程;lg CT BA P +-=︒(︒P 5,10;Pa T ⨯,K )查表得: 表2:安托尼方程参数)1(D BD D AD D x P x P P -⋅︒+⋅︒=列方程式得0.965*Exp[11.9643-3626.55/(T-34.29)]+0.035*Exp[11.6834-3816.44/(T-46.13)=1.095由mathmatic 解得塔顶温度D t =67.2℃⋅︒=AW W P P (1)w BW w x P x +︒⋅-列方程式得0.001126*Exp[11.9643-3626.55/(T-34.29)]+0.998874*Exp[11.6834-3816.44/(T -46.13)]=1.15参数物种ABC甲醇 11.9673 3626.55 -34.29 水11.68343816.44-46.13由mathmatic 由解得塔釜温度W t =103.5℃F AF P P =︒⋅(1)F BF F x P x +︒⋅-列方程式得0.1123*Exp[11.9643-3626.55/(T-34.29)]+0.8877*Exp[11.6834-3816.44/(T-46.13)]=(1.095+1.15)*6.2/12.2 由mathmatic 解得进料温度F t =96℃(9667.2)/281.6t =+=精馏段℃(96103.5)/299.5t =+=提馏段℃4.2平均分子量 塔顶 x =0.917y =0.965M l =0.917*32.04+0.083*18.02=30.88kg/kmol M v =0.965*32.04+0.035*18.02=31.55kg/kmol进料板 x =0.1233y =0.0986M l =0.1233*32.04+0.8767*18.02=19.75kg/kmol M v =0.0986*32.04+0.9014*19.02=20.30kg/kmol塔釜 x =0.000282 y =0.001126M l =18.02kg/mol M v =18.02kg/mol精馏段 x =(0.1233+0.917)/2=0.520y =(0.0986+0.9650)/2=0.531M l =0.520*32.04+0.480*18.02=25.31kg/kmol M v =0.531*32.04+0.469*18.02=25.46kg/kmol提馏段 x =0.061y =0.049M l =0.061*32.04+0.939*18.02=18.88kg/kmol M v =0.049*32.04+0.951*18.02=18.71kg/kmol4.3平均液相密度 塔顶0.98D a = 进料板0.2F a = 塔釜0.002a = 精馏段0.59a = 提馏段0.101a =查得81.6℃下甲醇3744/kg m ρ= 水3970.8/kg m ρ= 由1ABLm LA LBa a ρρρ=+10.5910.59744970.5Lmρ-=+ 得: 精馏段液体平均密度Lm ρ=823kg/m 3查得99.5℃下甲醇3716/A Kg m ρ= 水3958.4/B Kg m ρ= 由10.10110.101716958.4LFmρ-=+ 得: 提馏段液体平均密度LFm ρ=927kg/m 3 4.4塔的压力塔顶的压力:109.5 kPa塔釜的压力:101.3kPa+13.7kPa=115.0kPa 所以精馏塔的压力降为:D W P P P -=∆=5.5kPa 塔顶压力D P =109.5kPa,取每层塔板压力降P ∆=5.512=0.46kPa 精馏塔平均压强P=111.1kPa 提馏塔平均压强P=113.85kPa 4.5平均气相密度3m Vm Vm P M 111.125.460.976/RT 8.31475.5273.2kg m ρ⨯⨯(精馏)(精馏)(精馏)===(精馏)(+)3m Vm Vm P M 113.8518.71/RT 8.31493273.2kg m ρ⨯⨯(提馏)(提馏)(提馏)===0.700(提馏)(+)4.6液体粘度L A ALn T Bμ=- 查得A B 甲醇 555.30 260.64 水658.25283.16塔顶: 67.2℃时555.30555.300.499267.2273.15260.64LA Log μ=-=-+658.25658.250.390967.2273.15283.16LB Log μ=-=-+ln ln (1)ln LD A LA A LB x x μμμ⨯+-=0.6094LD cp μ= 进料板: 96℃时 555.30555.300.626596273.15260.64LA Log μ=-=-+658.25658.250.541796273.15283.16LBLog μ=-=-+ ln ln (1)ln LF A LA A LB x x μμμ⨯+-=0.5362LF cp μ= 塔釜: 103.5℃时 555.30555.300.6564103.5273.15260.64LA Log μ=-=-+658.25658.250.5772103.5273.15283.16LB Log μ=-=-+ln ln (1)ln LW A LA A LB x x μμμ⨯+-=0.5202LW cp μ=精馏段平均液相粘度 0.53620.6094(0.5728cp 2Lm μ+精馏)==提馏段平均液相粘度 0.53620.5202(0.5282cp 2Lm μ+精馏)==4.7液体表面张力计算t=67.2℃,查甲醇表面张力16.0mN/m 水表面张力0.65mN/m, 塔顶液体表面张力160.9650.6530.03515.46/D mN m σ=⨯+⨯= t=81.6℃, 查甲醇表面张力17.2mN/m 水表面张力0.64mN/m, 进料板液体表面张力17.20.12330.640.8767 2.682/F mN m σ=⨯+⨯= t=103.5℃, 查甲醇表面张力14.6mN/m 水表面张力0.59mN/m, 进料板液体表面张力0.59/F mN m σ=精馏段液体表面张力15.46 2.689.07/2mN m σ+== 提馏段液体表面张力0.59 2.681.65/2mN m σ+==4.8塔的工艺条件和物料性质列表系统进料: 25ºC 处理量: 15000吨/年 进料浓度: 20%(质量)处理要求: 塔顶浓度≧98%(质量) 塔底浓度≦0.2%(质量) 塔顶冷凝 全凝器. 塔底再沸器 间壁加热. 进塔物料状态: 泡点进料 回流比: 2 冷却水温: 28ºC 加热蒸汽: 0.2 Mpa 年工作: 7200小时 年工作日:300天连续操作 表3:工艺条件列表物料性质 提馏段 精馏段 平均温度 81.6℃ 99.5℃ 平均液相分子量 18.88kg/kmol 25.31kg/kmol 平均气相分子量 18.71kg/kmol 25.46kg/kmol 平均液相密度 927kg/m 3 823kg/m 3 平均气相密度 0.700kg/m 3 0.976 kg/m 3 液体粘度0.5728cp0.5282cp液体表面张力 9.07mN/m 1.65mN/m 平均压力 111.1kPa 113.85kPa(a)物料性质 塔顶 进料 塔釜 平均温度 67.2℃96℃ 103.5℃ 平均液相分子量 30.88 kg/mol 19.75 kg/mol 18.02kg/mol 平均气相分子量 31.55 kg/mol 20.30 kg/mol 18.02 kg/mol 平均压力 109.5kPa 112.7kPa 115.0kPa 液体粘度 0.6094cp 0.5362cp 0.5202cp 液体表面张力15.46mN/m2.682mN/m 0.590mN/m(b)表4:物料性质列表5.气液负荷计算 5.1精馏段汽相负荷计算(1)(21) 3.7111.1/V L D R D mol s =+=+=+⨯=3(11.125.46100.283/V Vm W V M kg s -=⨯⨯⨯精馏)==5.2精馏段液相负荷计算2 3.717.42/L RD mol s ==⨯=3(7.4225.31100.188/L Lm W L M kg s -=⨯⨯⨯精馏)== 5.3提馏段汽相负荷计算'11.1/V V mol s =='3(11.118.71100.208/V Vm W V M kg s -=⨯⨯⨯提馏)==5.4提馏段液相负荷计算 '36.57/L L F mol s =+=''3(36.5718.88100.690/L Lm W L M kg s -=⨯⨯⨯提馏)== 6.塔和塔板主要工艺尺寸计算 6.1填料选择甲醇-水不属于难分离系统,腐蚀性较小,采用金属阶梯环DN38填料,查表得填料因子=Φ160. 6.2塔径计算 6.2.1精馏段塔径计算横坐标0.50.50.1880.976()0.0230.283823V L V L W W ρρ=⨯()= 查埃克特通用关联图得 纵坐标20.2()0.205V F Lu g ρψμρΦ= L 974.5826.8ρψρ===水 1.179 20.2*160*1.1790.976()0.57280.2059.81823u =f u =3.169m/s对于不同填料,所采用的泛点率(操作空塔和泛点气速之比)不同.对于散装填料: U/U f =0.6~0.85 对于规整填料: U/U f =0.6~0.95因设计的填料塔采用的是散装填料,加压操作应取较高泛点率,故取泛点率为0.85即 u=0.85f u =2.693m/s Vs=nRT/P=11.1*8.3145*348.7/167500=0.1929m 3/s 440.19290.3022.693S V m u ππ⨯==⨯ 6.2.2提馏段塔径计算 横坐标0.50.5''0.6900.700()0.091''0.208927V L V L W W ρρ=⨯()= 纵坐标20.2()0.149V F Lu g ρψμρΦ=L 963.2 1.028937.0ρψρ===水 20.2*160*1.0280.700()0.52820.1499.81927.0u =f u =3.624m/su=0.85f u =3.080m/sVs=nRT/P=7.428*8.3145*348.7/167500=0.1286m 3/s 440.19290.2823.080S V m u ππ⨯==⨯ 6.2.3圆整计算圆整,取D=0.32m224'40.193' 2.400/3.140.32' 2.4000.7573.169'0.50.85S F FV u m s D u u u u π⨯===⨯==<< 6.3塔高H 计算等板高度法,取HETP =0.4m Z=HETP*N T =12.2*0.4=4.88m对于计算出的填料层高度,还应留出一定的安全系数.根据设计经验,填料层的设计高度一般为()Z Z 5.1~3.1=',取 1.385 6.759Z Z m '== 6.4压降P ∆的计算 6.4.1精馏段220.20.22.4160 1.1790.976()()0.57280.1189.81823V F L L u g ρψμρΦ⨯⨯=⨯⨯= 0.50.50.1880.976()0.0230.283823V L V L W W ρρ=⨯()= 查埃克特通用关联图得:1009.81/PPa m Z∆=⨯ (09.8170.554P Pa ∆⨯⨯⨯精馏)=10=3804.36.4.2提馏段220.20.22.4160 1.0280.700()()0.52820.0669.81927.0V F L L u g ρψμρΦ⨯⨯=⨯⨯= 0.50.5''0.6900.700()0.091''0.208927.0V L V L W W ρρ=⨯()= 查埃克特通用关联图得:609.81/PPa m Z∆=⨯ (609.81 5.20.5541695.6P Pa ∆⨯⨯⨯提馏)==6.4.3P P '∆∆与检验:'()()P P P ∆=∆+∆精馏提馏=3804.3+1695.6=5499.9kPa'55005499.90.000020.055500P P P ∆-∆-==<∆所以假设成立,D =0.32m 6.5计算结果列表进料口F 塔顶D 塔釜W 进料量(mol/s ) 29.29 3.71 25.58 浓度(摩尔分率) 0.1233 0.9650 0.001126 压力(KPa ) 112.3 109.5 115 温度(℃) 9667.2 103.5 表5:物料衡算表 塔径D N 塔高H 填料层压降P ∆ 误差分析E ∆ 0.32m6.759m5.499KPa0.002%表6: 填料塔参数表1.1原料液换热器根据《化工设计》书可知K 的取值范围一般在400-600W/m 2℃,由于换热器在使用过程中会形成污垢,导致K 的减小, 故取K=450 W/m 2℃ 查《化学工程手册》可得:原料液25C ︒,进料温度96C ︒,原料液的质量分率为=F a 0.2 25C ︒时,)/(2.4),/(5.211K kg kJ C K kg kJ C PB PA ⋅=⋅= 96C ︒时, 222.85/(), 4.24/()PA PB C kJ kg K C kJ kg K =⋅=⋅原料液于25C ︒预热至87C ︒的平均热容12122.5 2.852.67/()2.5ln ln2.85PA PA PA PA PA C C C kJ kg k C C --===⋅ 12124.2 4.24 4.22/()4.2ln ln42.4(1)0.2 2.67(10.2) 4.22 3.91/()PB PB PB PB PB P F PA F PB C C C kJ kg k C C C a C a C kJ kg k --===⋅=+-=⨯+-⨯=⋅15000000/7200/36000.579/F m kg s ==则预热器原料液吸收的热量为:Q=0.579 3.9171160.74/F P m C t kJ s ⋅⋅∆=⨯⨯= 预热器采用120℃的过热蒸汽预热 水蒸气 120℃ → 120℃ 甲醇水 25℃ ← 96℃Δt 95℃ 24℃ 平均温差2121952451.695ln ln24m t t t C t t ∆-∆-∆===︒∆∆ 传热面积A=32160.7410 6.9245051.6m Q m K t ⨯==∆⨯选用浮头式换热器,选用型号为:F B 325-5-40-2,公称直径325mm,公称压力402/cm kgf ,2管程,排管数32根,管子为5.225⨯Φ,换热面积为5m,计算传热面积7.4m.标准图号为:JF001.计算值大于所需的实际传热面积,故符合要求.1.2塔顶冷凝器假设冷流体从25℃升至40℃,热流体从气体冷凝为液体 甲醇的沸点在60摄氏度度左右, 67℃时,查得甲醇、水的汽化潜热:1074/107432.041634412.7/A r KJ Kg KJ Kmol ==⨯= 1850/185018.014833327.4/B r KJ Kg KJ Kmol ==⨯=KmolKJ x r x r r D B D A /34375)9650.01(4.333279650.07.34412)1(=-⨯+⨯=-+=⨯⨯逆流换热,采用水冷却(6725)(6740)33.956725ln6740m t ---∆==--℃取2400/()K W m K =⋅ 11.1/V mol s = 据热量衡算可得: 211.13437528.0940033.95m V r S m K t ⨯⨯===∆⨯ 查《化工工艺设计手册》上册(第一版) 选取U 型管式换热器 型号为YA 325-25-64/64-4图号为JY006 1.3塔底再沸器103℃时 查得甲醇、水的汽化潜热:998/99832.041631977.5/A r KJ Kg KJ Kmol ==⨯= 2250/225018.014840533.3/B r KJ Kg KJ Kmol==⨯=KmolKJ x r x r r w B w A /66.40523001127.013.40533001127.05.31977)1)=(-(-⨯+⨯=⨯+⨯=逆流换热, 采用130℃的水蒸气加热130********W t t ∆=-=-=℃取2400/()K W m K =⋅ s mol V V /03.8'==2''11.140531.441.6640027V r S m K t ⨯⨯===⨯∆⨯ 查《化工工艺设计手册》上册(第一版),选用立式虹吸式重沸器,型号为:GCH600-16-30,公称直径600mm,公称压力162/cm kgf ,管子数32根,标准图号为:JB1146-71.计算值大于所需的实际传热面积,故符合要求. 2 储槽选型在本设计任务中的储槽有原料液储槽和中间槽两种,而储槽的存储量是储槽设计及选型的主要参数.故应从储槽的存储量来设计. 2.1原料液储槽原料液的存储量是要保证生产能正常进行,主要根据原料生产情况及供应周期而定的.一般说来,应保证在储槽装液60%~80%,如不进料仍能维持运作24小时.取装料60%~80%是因为在工业中为了安全,储槽一般要流出一定的空间.该设计任务中,取储槽装料70%,即装填系数为0.7.原料液温度为t=25℃,此时进料液中各物料的物性是:甲醇:3/3.797m kg A =ρ 质量浓度0.2A a = 水: 3/9.996m kg B =ρ 质量浓度0.8B a =进料液体积流量:BBA A S a a V ρρ⨯⨯+⨯=7200100010000720010001000031000010000.21000010000.81.463/7200797.37200996.9m h ⨯⨯⨯⨯=+=⨯⨯所需的储槽体积:32424 1.46350.0750.70.7S V V m ⨯===进料槽原料储槽工作于常温、常压下,甲醇是一级防爆品, 综合以上因素,最终选用选用卧式椭圆形封头容器(JB1422-74),选图号为:R28-2.5-32的卧式椭圆形封头容器, 公称容积Vg=63m 3,计算计算值V=63.9m 3,筒体公称直径Dg=3000mm,筒体壁厚S=8mm,筒体长度L=8000mm,封头厚度S 1=12mm,材质A 3F,允许腐蚀裕度1.5,设备重量8150Kg.4.2.2 中间槽:中间槽是储存回流量及出料的储罐.甲醇精馏过程为连续生产,中间槽的设计依据是中间槽装液60%~80%能保持至少1~2个小时的流量,该设计任务中,槽装液70%,即取安全系数为0.7,保持流量2小时. 进料槽的体积流量:()31(21) 3.71 3.631.55 1.623/777.434D S D R DM V m h ρ++⨯⨯⨯'===中间槽实际体积322 1.6234.6370.70.7S S V V m '⨯===中间槽的工作压力取常压,根据文献,可用立式平底锥盖容器系列(JB1422-74).选取图号为:R23A-00-16公称容积,43m V g =计算体积309.4m V =计,工作体积384.3m V =工,筒体公称直径g D =1400mm,壁厚5mm,高度2400mm,材质F A 3,设备重量672Kg. 3.接管的选型管径的设计是根据流体的特性、工艺要求及基建费用和运转、维修费用的经济比较确定,因为管径大,则壁厚,重量增加,阀门、管件尺寸也增加,使基建费用增加;管径小,则管内流速增加,流体阻力增加,动力消耗即运转费用增加.在设计过程中,对所有的管道都进行这样的经济比较是不可能的,一般用常用流速的经验值来计算管径.初步选定流体的流速后,通过计算或查管径算图来确定管径,最后圆整到符合公称直径的要求. 3.1 进料管的设计 进料量流量 731.510/72000.000609/950.6023600FS LFmm V m s ρ⨯===⨯ 一般液体流速经验值为1.5~31-⋅s m ,现取进料管中流速13u m s -=⋅, 则进料口管径D 为:440.0006090.016116.13SV D m mm uππ⨯====⨯选用为管道为冷扎无缝钢管(YB231—64),外径20mm,壁厚2.2mm,管内径15.6mm 大于D,满足要求. 3.2 塔顶气体出口管 塔顶气体摩尔流量为 V=(R+1)D=11.1mol/s31.55g/VD M k kmol =3109.531.551.103/D VD VD D DP M kg m RT RT ρ⨯=== 311.131.550.317/1.103VMVD Vs m s VDρ⨯=== 管内气体流速的经验值u=15 1-⋅s m 管径440.0003175.1915SV d mm uππ⨯===⨯选用管道为冷扎无缝钢管(YB231-64),外径6mm,壁厚0.25mm,管内5.5mm, 大于d 满足要求 3.3回流进口管回流液的摩尔流量为L=RD=7.42mol/s 回流液的平均密度3/434.777m kg LDm =ρ 回流液的体积流量37.4231.550.000301/777.434LDLDmLM Vs m s ρ⨯===取回流液流速为u=1.5m/s,回流管内径为 440.0003010.016016.01.5Vsd m mm uππ⨯====选用管道为冷扎无缝钢管(YB231-64),外径20mm,壁厚0.5mm,管内16mm 大于d,满足要求. 3.4 再沸器出口管V '=V=11.1mol/skmolkg M VWm /0385.18=311518.03850.902/8.314(103.5273.15)W VWmVW W P M kg m RT ρ⨯===⨯+ 311.118.03850.222/0.902VWmVmV M Vs m s ρ'⨯===取管内气体流速u=15 1-⋅s m ,则再沸器所需管内径:440.2220.1373137.315SV d m mm uππ⨯====⨯选用管道为热扎无缝钢管(YB231-64),外径150mm,壁厚6mm,管内径138 mm大于d,满足要求. 3.5 釜液输出管h kmol L /5921.86='336.5718.020.0006897/955.537LWmLWmL M Vs m s ρ'⨯===取釜液流速u=1.5m/s,则釜液输出管所需内径为:440.00068970.024224.21.5Vsd m mm uππ⨯====选用管道为冷扎无缝钢管(YB231-64),外径28mm,壁厚1mm,管内径26mm 大于d,满足要求. 4.泵 4.1 进料泵进料液在25℃下,各物料的密度为:甲醇:39.795-⋅=m Kg A ρ 水: 395.996-⋅=m Kg B ρ 进料液的平均密度3602.95085.996193.0189.795193.0111-⋅=-+=-+=m kg a a LBF LA FL ρρρ 进料液的流量 731.510/72000.000609/950.6023600L FQ m s ρ⨯===⨯取泵的安全系数为1.1,进料泵的设计流量31.10.00067/Q Q m s '===2.4123/m h进料液由进料泵打到进料板处,提馏段理论板数5.2,提馏段填料层高度:5.2 1.3850.4 2.88TZ N HETP m ''=⨯=⨯⨯= 进料泵最小扬程=提馏段填料层高度+塔底预留空间及裙座高,本次设计任务中,塔底预留空间及裙座高可取1.5m.进料泵扬程 H=2(提馏段填料层高度+1.5m )=2(2.88 1.5)⨯+=8.76m 选用IS65-50-125,转速1450r/min, 流量15m 3/h,扬程8.8m,轴功率0.21kw,泵重50kg,效率53%. 4.2回流泵料液在67℃下冷凝回流,前已算得 3/434.777m kg LDm =ρ回流流量30.1880.8712/777.434LLDmW Q m s ρ===取安全系数为1.2,则回料泵的设计流量311.10.9583Q Q m h -'==⋅ 回流泵扬程 H=2(总填料层高度+1.5m )=)5.19.6(2+⨯=16.6m选用IS50-32-125离心泵,转速2900r/min,流量15m 3/h,扬程18.5m,轴功率1.26kw,泵重32kg,效率55%. 5 温度计根据该设计任务,温度范围在150℃内.根据文献(4),可选用镍铬-铜镍(WRKK)型热电偶,分度号为E,套管材料1Cr18Ni9Ti,外径d=2mm,测量范围0~300℃,允差值±3℃.最高使用温度700℃,公称压力P ≤500kgf/cm 2.也可选用WRK -240型隔爆镍铬-铜镍热电偶,分度号E,结构特征:固定螺纹安装,测温范围0~600℃,公称压力P100kgf/cm 2. 6 压力计选用压力测量仪表时,要考虑其量程、精度及介质性质和使用条件因素,该设计任务压力不高,变动不大,工业用精度要求为1.5至2.5级,介质无腐蚀性不易堵塞.压力表安装的地方,应力求避免振动和高温的影响.取压管的内墙面和设备或管道的内壁应平整.无凸出物或毛刺以保证正确取得静压力.被测介质温度超过60℃时,取压口至阀门见或阀门至压力表间应有冷凝管.根据该设计任务,查阅文献(4),选用电接点压力表.电接点压力表有触点装置,在被测压力逾出上下限时能实现自动控制,发讯和报警.适合在周围环境适度为-40~60℃,相对湿度不大于80%下使用.根据该设计任务,查阅文献(1)选用防爆型电接点压力表YX -160-B 3C,精度等级 1.5级,测温范围2.5kgf/cm 2. 7 液位计 7.1 原料槽液位计该设计任务中,原料槽采用卧式椭球形封头容器,筒体公称直径3m,故所选液位计测量范围大致在0~3m,希望实现自动控制, 查阅文献(4),可选用ULF-2型电远传翻板式液位计,该液位计能就地指示和远传液位,可和ULFX-2型液位数字显示报警仪配套使用.ULF-2-H ⅢC 防爆远传翻板液位计和ULF-2-H ⅢC 防爆液位数字显示报警仪配套使用,可用于爆炸危险场合的液位测量.ULFX-2,ULF-2-H ⅢC 适合在环境温度-10℃~40℃和相对湿度不大于80%下使用,电源电压为220V,50Hz. 8.1进料管流量计根据该设计任务,选用LZJ-40A型,测量比1:10,测量范围250~2500(L/h),单机精度1.5,互换精度2.5,转子材料不锈钢,允许被测介质状况:-20~120℃,压力≤6kgf/cm2.8.2 回流管流量计根据该设计任务,选用LZJ-25A型,测量比1:10,测量范围100~1000(L/h),单机精度1.5,互换精度2.5,转子材料不锈钢,允许被测介质状况:-20~120℃,压力≤6kgf/cm2.9.设备一览表五.选用符号说明英文希腊文A 安托尼方程系数ρ密度 kg/m3B 安托尼方程系数μ粘度 Pa·sC 安托尼方程系数热容 kJ/(kg.℃)Φ填料因子 m-1D 直径 m塔顶产品摩尔流量kmol/h Ψ液体密度校正系数上下标说明F 进料摩尔流量 kmol/h A 甲醇g 重力加速度 m/s2 B 水HETP 填料层等板高度 m D 塔顶产品K 传热系数 w/(m2·℃) F 进料M 物料质量流量 kg/h摩尔质量 kg/kmolf 泛点N 理论板数i 纯组分P 压力 Pa L 液体Q 传热量 kJ/h Min 最小量r 汽化潜热 kJ/kg m 平均值S 换热器面积 m2 s 饱和蒸汽T 绝对温度 K V 气体或蒸汽t 摄氏温度℃平均u 流体流速 m/s '提馏段V 容器体积 m塔内蒸汽量 mol/s体积流量 m3/sW 塔釜产品摩尔流量kmol/hx 物料摩尔分率Z 理论填料层高度 m六.参考文献1.《化工传质和分离过程》贾绍义,柴诚敬化学工业出版社2.《化工流体流动和传热》柴诚敬,张国亮化学工业出版社3.《化工热力学》陈钟秀,顾飞燕,胡望明化学工业出版社4.《化工设计》黄璐,王保国化学工业出版社5.《化工工艺设计手册》国家医药管理局上海医药设计院化学工业出版社7.《中国化工机械设备大全》蔡源众,成都科技大学出版社8.《甲醇工学》房鼎立,宋维端,肖任坚,朱炳辰审定化学工业出版社9.《化工设备机械基础》董大勤化学工业出版社10.《化工设备机械基础课程设计指导书》詹长福机械工业出版社11.《化工设备机械基础课程设计指导书》蔡纪宁,张秋翔化学工业出版社七.后记。
常压下甲醇和水的气液平衡数据

常压下甲醇和水的气液平衡数据在常压下,甲醇和水的气液平衡数据可不只是一些冷冰冰的数字,而是能让我们从生活中的角度去理解的科学小秘密。
你看,甲醇,这种液体,看似普通,其实在很多地方都有它的身影,尤其是在化学反应中,它可是个常客。
不仅如此,它还常常和水“打交道”,它俩的混合性,讲究得很。
你可能会问,水和甲醇的气液平衡又是什么呢?其实简单来说,就是在特定条件下,水和甲醇蒸气的量与液体中的浓度是怎么平衡的。
这就像是你和你的朋友一起玩一个有趣的游戏。
假设你俩都有自己的气场——一个是甲醇的气场,另一个是水的气场。
在特定温度和压力下,你俩的气场就会“互相妥协”,各自占有一个合理的份额。
这也就是所谓的气液平衡,明白了吧?而常压下,这个“妥协”的过程会受到许多因素的影响,尤其是温度。
随着温度的变化,气体的蒸发速度和液体的浓度都会发生变化,直到达成某种平衡。
所以,搞清楚甲醇和水的气液平衡,就能知道在不同条件下,它们会以什么样的比例存在。
咱们再来细细分析一下这两个“老搭档”。
在常压下,水的蒸汽压比甲醇要低很多。
什么意思呢?就是说,在同样的温度下,水分子跃跃欲试的速度没甲醇那么高。
你可以想象,甲醇像个特别爱动的家伙,水则稍微稳重一些。
当两者一起蒸发时,甲醇的蒸气压力自然会比水大。
你知道的,蒸气压大的那位总是“占优势”,它往往会更容易逃离液体的束缚,形成气体。
所以,甲醇和水的气液平衡就不是简单的两者各占一半,往往甲醇会在气体中占据更大的一部分。
我们来看看这些数据。
实际上,甲醇和水的气液平衡图,可以通过实验测得,它是温度和压力的函数。
当温度升高时,水和甲醇的蒸气压都会增加,但水的增长幅度没有甲醇那么大。
换句话说,甲醇的“逃跑”速度会更快一些。
而当温度降下来时,甲醇的蒸气压比水要低得多,它俩的气液平衡就会发生变化。
你可以想象,低温下,甲醇就像是被“束缚”住了,而水则相对自由。
可别小看这些变化,它们对我们日常生活中的很多现象都有影响。
汽液平衡

一、实验目的1.测定甲醇—水二元体系在常压下的气液平衡数据,绘制相图。
2.通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能。
3.应用NRTL方程关联实验数据。
二、实验原理气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。
化工生产中的蒸馏和吸收等分离过程设备的设计、改造以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。
化工生产过程均涉及相间物质传递,故气液平衡数据的重要性是显而易见的。
随着化工生产的不断发展,现有气液平衡数据远不能满足需要。
许多物系的平衡数据,很难由理论直接计算得到,必须由实验测定。
相平衡研究的经典方法是首先测定少量的实验数据,然后选择合适的模型关联,进而计算平衡曲线;这其中,最常用到的是状态方程法和活度系数法。
气液平衡数据实验测定方法有两类,即间接法和直接法。
直接法中有静态法、流动法和循环法等。
其中以循环法应用最为广泛。
若要测得准确的气液平衡数据,平衡釜的选择是关键。
现已采用的平衡釜形式有多种,且各有特点,应根据待测物系的特征,选择适当的釜型。
平衡釜的选择原则是易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。
用常规的平衡釜测定平衡数据,需样品量多,测定时间长。
本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快。
以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。
图1 平衡法测定气液平衡原理图当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:常压下,气相可视为理想气体,1=i ϕ;再忽略压力对液体逸度的影响,i p =i f 从而得出低压下气液平衡关系式为:式中P ——体系压力(总压);0i p ——纯组分i 在饱和温度下饱和蒸汽压;i i x y 、——分别为组分i 在液相和气相中的摩尔分率;i γ——组分i 的活度系数。
甲醇水汽液平衡

ropt 1.01670 1.01772 1.02178 1.02687 1.03195 1.03703 1.04212 R/Rmin 1.000 1.001 1.005 1.01 1.015 1.02 1.025年总费用1344560.33 1329387.811318482.11314831.5% 2.37% 1.22% 0.39% 0.07% 0.06% 0.08% 0.11% ropt 1.04720 1.05228 1.05533 1.05737 1.06754 1.07770 1.08787 R/Rmin 1.03 1.035 1.038 1.04 1.05 1.06 1.07年总费用% 0.25% 0.36% 0.42% 0.46% 0.77% 1.05% 1.41% ropt 1.09804 1.10820 1.11837 1.22004 1.32171 1.42338 1.52505 R/Rmin 1.08 1.09 1.1 1.2 1.3 1.4 1.5年总费用% 1.73% 2.06% 2.67% 6.57% 10.67% 14.94% 19.25% ropt 1.62672 1.72839 1.83006 1.93173 2.0334 0 0R/Rmin 1.6 1.7 1.8 1.9 2 0 0年总费用1557936.51607201.2% 36.56% 41.37% 46.48% 51.27% 56.16% 31.05% 35.19%附录二甲醇—水汽液平衡数据(摩尔组成)t x y t x y100.00 0.00 0.000 75.30 0.40 0.729 96.40 0.02 0.134 73.10 0.50 0.779 93.50 0.04 0.234 71.20 0.60 0.825 91.20 0.06 0.304 69.30 0.70 0.870 89.30 0.08 0.365 67.60 0.80 0.915 87.70 0.10 0.418 66.00 0.90 0.958 84.40 0.15 0.517 65.00 0.95 0.979 81.70 0.20 0.579 64.50 1.00 1.000 78.00 0.30 0.665附录一甲醇—水系统的主要物理性质附录三优化设计程序源代码优化程序'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34Text2.Text = 0.3151Text3.Text = 128.97Text4.Text = 0.982Text5.Text = 35373.48Text6.Text = 64.93Text7.Text = 1Text8.Text = 1.0167Text9.Text = 7200Text10.Text = 3.73Text11.Text = 0.125Text12.Text = 6.22Text13.Text = 0.005Text14.Text = 7860Text15.Text = 5.4464Text16.Text = 0.462Text17.Text = 6Text18.Text = 15674.4Text19.Text = 0.0002Text20.Text = 4.1875Text21.Text = 20Text22.Text = 2000Text23.Text = 1Text24.Text = 6.5Text25.Text = 487Text26.Text = 0.72Text27.Text = 0.03Text28.Text = 1.01Text29.Text = 2Text30.Text = 0.0001Text31.Text = " "Text32.Text = " "Text33.Text = " "Text34.Text = " "Text35.Text = " "Text36.Text = " "Text37.Text = " "Text38.Text = " "Text39.Text = " "Text40.Text = " "Text41.Text = " "Text42.Text = " "Text43.Text = " "Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求RoptDim Aa#, Bb#, W#(1 To 50), i%, K%, N#, M%, R1#, R2#, ε# Dim JJ1#, JJ2#Aa = 1.01 * Rmin: Bb = 2 * Rmin '搜索区间[Aa,Bb]W(1) = 1: W(2) = 2: W(3) = 3: i = 1: ε= 0.0001Do While W(i + 2) <= ((Bb - Aa) / ε)i = i + 1W(i + 2) = W(i) + W(i + 1)LoopR1 = Aa + (Bb - Aa) * W(i) / W(i + 2): JJ1 = j(R1)N = i + 2: K = 1: M = 0Do While K <> N - 1If M = 0 ThenR2 = Aa + (Bb - Aa) * W(N - K) / W(N - K + 1)JJ2 = j(R2)ElseR1 = Aa + (Bb - Aa) * W(N - K - 1) / W(N - K + 1)JJ1 = j(R1)End IfIf JJ1 < JJ2 ThenBb = R2: R2 = R1: JJ2 = JJ1: M = 1ElseAa = R1: R1 = R2: JJ1 = JJ2: M = 0End IfK = K + 1LoopR = (Aa + Bb) / 2Ropt = RJJ = j(R)Text31.Text = RoptText32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)H = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977)X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub调整ROPT程序:'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34 Text2.Text = 0.3151 Text3.Text = 128.97 Text4.Text = 0.982 Text5.Text = 35373.48 Text6.Text = 64.93 Text7.Text = 1Text8.Text = 1.0167 Text9.Text = 7200 Text10.Text = 3.73 Text11.Text = 0.125 Text12.Text = 6.22 Text13.Text = 0.005 Text14.Text = 7860 Text15.Text = 5.4464 Text16.Text = 0.462 Text17.Text = 6Text18.Text = 15674.4 Text19.Text = 0.0002 Text20.Text = 4.1875 Text21.Text = 20 Text22.Text = 2000 Text23.Text = 1Text24.Text = 6.5 Text25.Text = 487 Text26.Text = 0.72 Text27.Text = 0.03 Text28.Text = 1.01 Text29.Text = 2Text30.Text = 0.0001 Text31.Text = " " Text32.Text = " " Text33.Text = " " Text34.Text = " " Text35.Text = " " Text36.Text = " " Text37.Text = " " Text38.Text = " " Text39.Text = " " Text40.Text = " " Text41.Text = " " Text42.Text = " " Text43.Text = " " Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求Ropt R = Text31.TextRopt = RJJ = j(R)Text32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)If DT < 1 ThenDT = Int(DT * 10 + 1) / 10ElseDT = Int(DT * 5 + 1) * 0.2End IfH = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167 V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977) X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub目录1 前言------------------------------------------------------------------------------------------------12 方案论证2.1 精馏塔类型----------------------------------------------------------------------------------1 2.2 精馏压力-------------------------------------------------------------------------------------1 2.3 进料方式-------------------------------------------------------------------------------------1 2.4 填料类型-------------------------------------------------------------------------------------2 2.5 加热方式-------------------------------------------------------------------------------------22.6 塔材料类型----------------------------------------------------------------------------------23 数学模型的建立3.1 精馏塔塔体年投资折旧费及维修费用-------------------------------------------------3 3.2 冷凝器年运转费用-------------------------------------------------------------------------4 3.3 直接蒸汽加热费用-------------------------------------------------------------------------53.4 填料年折旧费-------------------------------------------------- --54 数学模型的求解4.1 数学模型决策变量分析-------------------------------------------------------------------5 4.2 主要工艺参数的求解----------------------------------------------------------------------54.2.1 塔径的计算-----------------------------------------------------------------------------54.2.2 塔板数的计算-------------------------------------------------------------------------64.2.2.1 相平衡关系的表示--------------------------------------------------------------64.2.2.2 N的计算--------------------------------------------------------------------------64.2.3 冷凝器年运转费用的计算------------------ ----------------------- ----------------74.2.3.1 冷却水用量及冷凝器传热面积的计算- -------------------------------------74.2.3.2 冷凝器冷却水最佳出口温度的确定-----------------------------------------74.2.4 直接加热蒸气费用的计算----------------------------------------------------------8 4.3 数学模型的求解------------------------------------------------------- --------------------84.3.1 单变量最优化方法--------------------------------------------- ----------------------84.3.2 优化设计程序框图-------------------------------------------- -----------------------84.3.2.1 函数调用关系--------------------------------------------------------------------95 优化设计计算5.1 数据预处理---------------------------------------------------------------------------------105.1.1 进塔物料的计算----------------------------------------------------------------------105.1.2 塔顶蒸气温度的计算----------------------------------------------------------------105.1.3 等板高度的计算----------------------------------------------------------------------10Ⅰ5.1.4 产品汽化潜热的计算----------------------------------------------------------------115.1.5 最小回流比的确定-------------------------------------------------------------------115.1.6 填料单价的计算----------------------------------------------------------------------115.2. 塔径的计算---------------------------------------------------------------------------------13 5.3 填料层高度的计算-------------------------------------------------------------------------13 5.4 精馏塔塔体年投资折旧费及维修费用的计算-----------------------------------------13 5.5 冷凝器年运转费用的计算----------------------------------------------------------------145.5.1 冷凝器冷却水最佳出口温度的确定----------------------------------------------145.5.2 冷却水用量及冷凝器传热面积的计算-------------------------------------------145.5.3 精馏塔塔体年投资折旧费及维修费用的计算----------------------------------15 5.6 再沸器年运转费用的计算----------------------------------------------------------------15 5.7 填料年折旧费用的计算-------------------------------------------------------------------15 5.8 汽液负荷-------------------------------------------------------------------------------------155.8.1 气相负荷-------------------------------------------------------------------------------155.8.2 液相负荷-------------------------------------------------------------------------------155.9 年总费用与回流比的关系--------------------------------------------------------------156 填料塔水力学性能校核6.1 泛点率校核--------------------------------------------------------------------------------- 17 6.2 径比校核-------------------------------------------------------------------------------------17 6.3 喷淋密度校核-------------------------------------------------------------------------------176.4 填料塔压降----------------------------------------------------------------------------------177 附属设备的设计与选型7.1 塔顶冷凝器--------------------------------------------------------------------------------- 187.1.1 冷凝器传热量-------------------------------------------------------------------------187.1.2 冷凝器传热推动力-------------------------------------------------------------------187.1.3 初估冷凝器传热面积----------------------------------------------------------------197.1.4 冷凝器传热系数的校核-------------------------------------------------------------197.1.5 冷凝器传热面积的校核-------------------------------------------------------------227.1.6 冷凝器壳程、管程流动阻力-------------------------------------------------------22 7.2 接管选型------------------------------------------------------------------------------------ 247.2.1 进料口接管的选型-------------------------------------------------------------------247.2.2 冷却水接管的选型-------------------------------------------------------------------257.2.3 塔顶蒸气接管选型------------------------------------------------------------------ 25Ⅱ7.2.4 塔顶产品接管选型-------------------------------------------------------------------257.2.5 塔底产品接管选型-------------------------------------------------------------------267.2.6 塔顶产品回流接管选型-------------------------------------------------------------267.2.7 塔底加热蒸气接管选型------------------------------------------------------------- 26 7.3 冷却水输送泵7.3.1 塔高的计算---------------------------------------------------------------------------277.3.2 冷却水输送泵选型------------------------------------------------------------------27 7.4 填料支承结构-------------------------------------------------------------------------------28 7.5 液体分布装置-------------------------------------------------------------------------------287.7 液体收集再分布装置----------------------------------------------------------------------298 设计结果汇总------------------------------------------------------------------------------------299 设计心得------------------------------------------------------------------------------------------31 参考文献---------------------------------------------------------------------------------------------- 31 附录一甲醇和水部分物性参数-----------------------------------------------------------------32 附录二甲醇—水汽液平衡数据(摩尔组成)-------------------------------------------------33 附录三优化设计程序源代码--------------------------------------------------------------------34化工原理课程设计学生姓名:黄圣楠学号:081000115专业班级:10级生工(1)班____指导教师:张星___2013年1月24日。
化工原理课程设计说明书——(甲醇-水)

目录一.概述 (3)1.设计原始条件 (3)2.板式塔类型 (3)3.工艺流程选定 (4)二.精馏塔物料衡算 (4)三、经济费用估算 (5)1.最小回流比Rmin计算(图解法) (5)2.精馏塔气、液相负荷 (7)3.精馏、提镏段操作方程 (7)4.理论塔板数N (8)5.总板效率ET和实际板数NT (8)6.塔径估算 (9)7.年总费用估算 (11)四.精馏塔塔体工艺尺寸计算 (14)1.最适回流比Ropt的求取 (14)2.精馏塔气、液相实际负荷 (15)3.精馏、提镏段操作方程 (15)4.理论塔板数N (15)五、塔板主要工艺尺寸及流体力学性能计算 (16)1.塔径初选 (16)2.塔径初步核算 (17)3.堰及降液管设计(选用齿形堰) (18)4.孔布置 (19)5.干板压降h和塔板压降P h (19)c6.漏液计算并验其稳定性 (20)7.校核液泛情况 (20)8.雾沫夹带 (21)9.计算结果整理 (21)六.描绘负荷性能图(第一块塔板) (22)1.漏液线 (22)2.过量雾沫夹带线 (22)3.液泛线 (22)4.液相上限线 (23)5.液相下限线 (23)6.操作线 (23)七描绘负荷性能图 (24)第一块板(精馏段第一块板) (24)八附属设备的设计 (29)1.塔高计算 (29)2.泵的设计和选型 (29)4.冷却器选用 (32)5.塔底再沸器的选用 (33)6.全凝器选用 (33)(图一) 由图一查得,x F =0.3152时,泡点进料t b =77.1℃ 此时进料状况 参数q=1, 所以q 线方程为:f x x用图解法,在图二上做q 线,与相平衡线交与e 点(0.3152, 0.6758),所以,最小回流比为: 8889.03152.06758.06758.09964.0min =--=--=e e e D x y y x R取操作回流比为:33.18889.05.15.1min =⨯=⨯=R R2.精馏塔气、液相负荷精馏段:)/(26.4269.3133.1h kmol D R L =⨯=⨯= ())/(95.7369.3133.21h kmol D R D L V =⨯=+=+= 提镏段:)/(65.14239.10026.42h kmol qF L L =+=+=')/(95.7370.6865.142h kmol W L V =-=-'='3.精馏、提镏段操作方程换热器费用)/(1645002000年元==A C F 7.3冷却水费用30℃时,)/(174.4,K kg kJ C pc ⋅=水 5=∆t ℃ s kg t C Q Q m pc /296.375174.413.1724.76132=⨯+=∆⋅+=冷)/(44.3222371000/3.080003600296.37年元=⨯⨯⨯=Cw 7.4蒸气费用150.9℃时,水的潜热kg kj r /4.21159.150=s kg r Q Q m /4647.0)(9.15041=+=蒸年)(元/22.29442421000/220800036004647.0s =⨯⨯⨯=C7.5 年总费用年)(元/368065805.1)(33.0=+++⨯=w s F D C C C C C 四.精馏塔塔体工艺尺寸计算1.最适回流比Ropt 的求取通过对R/Rmin 与费用关系的优化计算,选取Ropt=1.1Rmin总费用与R/Rmin 的关系如图所示。
化工原理甲醇

沈阳化工大学化工原理课程设计说明书专业:制药工程班级:制药1102学生姓名:黄奎兴学号:11220223指导老师:王国胜设计时间:2014.5.20----2014620成绩:____________化工原理课程设计任务书设计题目:分离甲醇-水混合液的填料精馏塔二原始数据及条件生产能力:年生产量甲醇1万吨(年开工300天)原料:甲醇含量为30% (质量百分数,下同)的常温液体分离要求:塔顶甲醇含量不低于95%,塔底甲醇含量不高于0.3%。
建厂地区:沈阳三设计要求(一)•一份精馏塔设计说明书,主要内容要求:(1)•前言(2).流程确定和说明(3)•生产条件确定和说明(4)•精馏塔设计计算(5)•主要附属设备及附件选型计算(6)•设计结果列表(7).设计结果的自我总结与评价(8).注明参考和试用的设计资料(9).结束语(二)•绘制一份带控制点工艺流程图。
(三)•制一份精馏塔设备条件图四.设计日期:2013年5月20日至6月20日、八、,刖言精馏塔分为板式塔和填料塔两大类。
填料塔又分为散堆填料和规整填料两种。
板式塔虽然结构较简单,适应性强,宜于放大,在空分设备中被广泛采用。
但是,随着气液传热、传质技术的发展,对高效规整填料的研究,一些效率高、压降小、持液量小的规整填料的开发,在近十多年内,有逐步替代筛板塔的趋势。
实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。
对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B 物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合o精馏塔底部是加热区,温度最高;塔顶温度最低。
精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。
精馏塔的优点:归纳起来,规整填料塔与板式塔相比,有以下优点:1)压降非常小。
气相在填料中的液相膜表面进行对流传热、传质,不存在塔板上清液层及筛孔的阻力。
在正常情况下,规整填料的阻力只有相应筛板塔阻力的1/5 〜1/6 ; 2)热、质交换充分,分离效率高,使产品的提取率提高;3)操作弹性大,不产生液泛或漏液,所以负荷调节范围大,适应性强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ropt 1.01670 1.01772 1.02178 1.02687 1.03195 1.03703 1.04212 R/Rmin 1.000 1.001 1.005 1.01 1.015 1.02 1.025年总费用1344560.33 1329387.811318482.11314831.5% 2.37% 1.22% 0.39% 0.07% 0.06% 0.08% 0.11% ropt 1.04720 1.05228 1.05533 1.05737 1.06754 1.07770 1.08787 R/Rmin 1.03 1.035 1.038 1.04 1.05 1.06 1.07年总费用% 0.25% 0.36% 0.42% 0.46% 0.77% 1.05% 1.41% ropt 1.09804 1.10820 1.11837 1.22004 1.32171 1.42338 1.52505 R/Rmin 1.08 1.09 1.1 1.2 1.3 1.4 1.5年总费用% 1.73% 2.06% 2.67% 6.57% 10.67% 14.94% 19.25% ropt 1.62672 1.72839 1.83006 1.93173 2.0334 0 0R/Rmin 1.6 1.7 1.8 1.9 2 0 0年总费用1557936.51607201.2% 36.56% 41.37% 46.48% 51.27% 56.16% 31.05% 35.19%附录二甲醇—水汽液平衡数据(摩尔组成)t x y t x y100.00 0.00 0.000 75.30 0.40 0.729 96.40 0.02 0.134 73.10 0.50 0.779 93.50 0.04 0.234 71.20 0.60 0.825 91.20 0.06 0.304 69.30 0.70 0.870 89.30 0.08 0.365 67.60 0.80 0.915 87.70 0.10 0.418 66.00 0.90 0.958 84.40 0.15 0.517 65.00 0.95 0.979 81.70 0.20 0.579 64.50 1.00 1.000 78.00 0.30 0.665附录一甲醇—水系统的主要物理性质附录三优化设计程序源代码优化程序'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34Text2.Text = 0.3151Text3.Text = 128.97Text4.Text = 0.982Text5.Text = 35373.48Text6.Text = 64.93Text7.Text = 1Text8.Text = 1.0167Text9.Text = 7200Text10.Text = 3.73Text11.Text = 0.125Text12.Text = 6.22Text13.Text = 0.005Text14.Text = 7860Text15.Text = 5.4464Text16.Text = 0.462Text17.Text = 6Text18.Text = 15674.4Text19.Text = 0.0002Text20.Text = 4.1875Text21.Text = 20Text22.Text = 2000Text23.Text = 1Text24.Text = 6.5Text25.Text = 487Text26.Text = 0.72Text27.Text = 0.03Text28.Text = 1.01Text29.Text = 2Text30.Text = 0.0001Text31.Text = " "Text32.Text = " "Text33.Text = " "Text34.Text = " "Text35.Text = " "Text36.Text = " "Text37.Text = " "Text38.Text = " "Text39.Text = " "Text40.Text = " "Text41.Text = " "Text42.Text = " "Text43.Text = " "Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求RoptDim Aa#, Bb#, W#(1 To 50), i%, K%, N#, M%, R1#, R2#, ε# Dim JJ1#, JJ2#Aa = 1.01 * Rmin: Bb = 2 * Rmin '搜索区间[Aa,Bb]W(1) = 1: W(2) = 2: W(3) = 3: i = 1: ε= 0.0001Do While W(i + 2) <= ((Bb - Aa) / ε)i = i + 1W(i + 2) = W(i) + W(i + 1)LoopR1 = Aa + (Bb - Aa) * W(i) / W(i + 2): JJ1 = j(R1)N = i + 2: K = 1: M = 0Do While K <> N - 1If M = 0 ThenR2 = Aa + (Bb - Aa) * W(N - K) / W(N - K + 1)JJ2 = j(R2)ElseR1 = Aa + (Bb - Aa) * W(N - K - 1) / W(N - K + 1)JJ1 = j(R1)End IfIf JJ1 < JJ2 ThenBb = R2: R2 = R1: JJ2 = JJ1: M = 1ElseAa = R1: R1 = R2: JJ1 = JJ2: M = 0End IfK = K + 1LoopR = (Aa + Bb) / 2Ropt = RJJ = j(R)Text31.Text = RoptText32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)H = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977)X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub调整ROPT程序:'定义全局变量Dim J1#, J2#, J3#, J4#, JJ#Dim N#, R#, Ropt#Dim lilunbanshu#, jinliaoweizhi%, tajing#, chukouwendu#, chuanremianji#, zongtagao#, tiliuduanbanshu#, jinliuduanbanshu#Dim XF#, F#, q#, XD#, D#, td#, rD#, po#, u#, Rmin#, t1#, Cw#, Cp#, SI#, HETP#Dim Co#, HA#, f1#, f2#, a#, b#, FL#, θ#, ρ#, bo#, Fc#'优化所需参数Public Sub Form_Load()XF = 0.3151: F = 402.34: q = 1XD = 0.982: D = 128.97: td = 64.93: rD = 35373.48: po = 101.3u = 5.4464: Rmin = 1.0167t1 = 20: Cw = 0.0002: Cp = 4.1875: Co = 0.03: cpa = 15674.4HETP = 0.462: HA = 6f1 = 1: f2 = 6.5: a = 487: b = 0.72: SI = 3.73FL = 6.22: θ= 7200: ρ= 7860: bo = 0.005: Fc = 0.125Text1.Text = 402.34 Text2.Text = 0.3151 Text3.Text = 128.97 Text4.Text = 0.982 Text5.Text = 35373.48 Text6.Text = 64.93 Text7.Text = 1Text8.Text = 1.0167 Text9.Text = 7200 Text10.Text = 3.73 Text11.Text = 0.125 Text12.Text = 6.22 Text13.Text = 0.005 Text14.Text = 7860 Text15.Text = 5.4464 Text16.Text = 0.462 Text17.Text = 6Text18.Text = 15674.4 Text19.Text = 0.0002 Text20.Text = 4.1875 Text21.Text = 20 Text22.Text = 2000 Text23.Text = 1Text24.Text = 6.5 Text25.Text = 487 Text26.Text = 0.72 Text27.Text = 0.03 Text28.Text = 1.01 Text29.Text = 2Text30.Text = 0.0001 Text31.Text = " " Text32.Text = " " Text33.Text = " " Text34.Text = " " Text35.Text = " " Text36.Text = " " Text37.Text = " " Text38.Text = " " Text39.Text = " " Text40.Text = " " Text41.Text = " " Text42.Text = " " Text43.Text = " " Text44.Text = " "Text45.Text = " "Text46.Text = " "Text47.Text = " "End Sub'主程序Private Sub Command1_Click() '菲波拿契法求Ropt R = Text31.TextRopt = RJJ = j(R)Text32.Text = RminText45.Text = Ropt / RminText33.Text = lilunbanshuText34.Text = zongtagaoText40.Text = J1Text41.Text = J2Text42.Text = J3Text43.Text = J4Text44.Text = JJText37.Text = tajingText38.Text = chukouwenduText39.Text = chuanremianjiText46.Text = Ropt * DText47.Text = (Ropt + 1) * DText35.Text = tiliuduanbanshu * HETPText36.Text = jinliuduanbanshu * HETPEnd Sub'J函数Public Function j(R#) As DoubleCall jjj1(R#, J1#)Call jjj2(R#, J2#)Call jjj3(R#, J3#)Call jjj4(R#, J4#)j = J1 + J2 + J3 + J4End Function'求J1Public Sub jjj1(R#, J1#)Dim DT#, H#, Ws#, CH#Call tabanshu(R#, N#)DT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)If DT < 1 ThenDT = Int(DT * 10 + 1) / 10ElseDT = Int(DT * 5 + 1) * 0.2End IfH = N * HETP + HAWs = 3.14 * DT * (H + 0.8116 * DT) * bo * ρ'ρ为碳钢的密度CH = FL * Exp(6.95 + 0.1808 * Log(Ws) + 0.02468 * (Log(Ws)) ^ 2 + 0.0158 * H / DT)J1 = SI * (Fc + 0.06) * CHtajing = DTzongtagao = HEnd Sub'求J2Public Sub jjj2(R#, J2#)Dim xx1#, xx0#, CD#, ff#, df#, t2#, AD#, KD#KD = 2000: xx1 = 70Do '牛顿迭代法求冷却水最佳出口温度t2xx0 = xx1CD = 1.3 * SI * a * b * f1 * f2 * Fc * ((R + 1) * D * rD / (td - t1)) ^ (b - 1) / KD ^ bff = -Cw * θ/ Cp + CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (1 - b) * (xx0 - 1 - Log(xx0))df = CD * ((xx0 - 1) / xx0 / Log(xx0)) ^ (2 - b) * ((b - 1) * (xx0 - 1 - Log(xx0)) ^ 2 / (xx0 - 1) ^ 2 + Log(xx0))xx1 = xx0 - ff / dfLoop Until Abs(xx1 - xx0) < 0.000001t2 = td - (td - t1) / xx1 't2optchukouwendu = t2AD = (R + 1) * D * rD * Log((td - t1) / (td - t2)) / KD / (t2 - t1) '传热面积chuanremianji = ADJ2 = Cw * θ* (R + 1) * D * rD / Cp / (t2 - t1) + 1.3 * SI * Fc * f1 * f2 * a * AD ^ bEnd Sub'求J3Public Sub jjj3(R#, J3#)Dim Z#, Cz#Cz = 0.03Z = ((R + 1) * D - (1 - q) * F) * 18J3 = Z * Cz * θEnd Sub'求J4Public Sub jjj4(R#, J4#)Dim ho#, cpa!, HETP!cpa = 15674.4: HETP = 0.462Call tabanshu(R#, N#)ho = N * HETPDT = Sqr((R + 1) * D * 22.4 / (3600 * 0.785 * u) * (273 + td) / 273 * 101.3 / po)J4 = 3.14 / 4 * DT ^ 2 * ho * cpa * FcEnd Sub'塔板数的计算Public Sub tabanshu(R#, N#)Dim ye#, XW#Dim X!(100), Y!(100), xx!(100), i%, n1#td = 64.93: F = 402.34: XD = 0.982: XF = 0.3151: ηd = 0.999: D = 128.97: Rmin = 1.0167 V = (R + 1) * D: W = F + V - D: XW = (F * XF - D * XD) / Wi = 1: Y(1) = 0.982: X(1) = 0.9702DoIf X(i) > XF ThenY(i + 1) = R * X(i) / (R + 1) + XD / (R + 1)n1 = i + 1 + (X(i) - XF) / (X(i) - X(i + 1))ElseY(i + 1) = W * (X(i) - XW) / VIf X(i) < XW Then Exit DoEnd Ifi = i + 1xx(i) = (Y(i) / (3.3874 * (1 - Y(i)))) ^ (1 / 0.7977) X(i) = xx(i) / (1 + xx(i))LoopN = i - 1 + (X(i - 1) - XW) / (X(i - 1) - X(i))lilunbanshu = Ntiliuduanbanshu = n1jinliuduanbanshu = N - n1End Sub目录1 前言------------------------------------------------------------------------------------------------12 方案论证2.1 精馏塔类型----------------------------------------------------------------------------------1 2.2 精馏压力-------------------------------------------------------------------------------------1 2.3 进料方式-------------------------------------------------------------------------------------1 2.4 填料类型-------------------------------------------------------------------------------------2 2.5 加热方式-------------------------------------------------------------------------------------22.6 塔材料类型----------------------------------------------------------------------------------23 数学模型的建立3.1 精馏塔塔体年投资折旧费及维修费用-------------------------------------------------3 3.2 冷凝器年运转费用-------------------------------------------------------------------------4 3.3 直接蒸汽加热费用-------------------------------------------------------------------------53.4 填料年折旧费-------------------------------------------------- --54 数学模型的求解4.1 数学模型决策变量分析-------------------------------------------------------------------5 4.2 主要工艺参数的求解----------------------------------------------------------------------54.2.1 塔径的计算-----------------------------------------------------------------------------54.2.2 塔板数的计算-------------------------------------------------------------------------64.2.2.1 相平衡关系的表示--------------------------------------------------------------64.2.2.2 N的计算--------------------------------------------------------------------------64.2.3 冷凝器年运转费用的计算------------------ ----------------------- ----------------74.2.3.1 冷却水用量及冷凝器传热面积的计算- -------------------------------------74.2.3.2 冷凝器冷却水最佳出口温度的确定-----------------------------------------74.2.4 直接加热蒸气费用的计算----------------------------------------------------------8 4.3 数学模型的求解------------------------------------------------------- --------------------84.3.1 单变量最优化方法--------------------------------------------- ----------------------84.3.2 优化设计程序框图-------------------------------------------- -----------------------84.3.2.1 函数调用关系--------------------------------------------------------------------95 优化设计计算5.1 数据预处理---------------------------------------------------------------------------------105.1.1 进塔物料的计算----------------------------------------------------------------------105.1.2 塔顶蒸气温度的计算----------------------------------------------------------------105.1.3 等板高度的计算----------------------------------------------------------------------10Ⅰ5.1.4 产品汽化潜热的计算----------------------------------------------------------------115.1.5 最小回流比的确定-------------------------------------------------------------------115.1.6 填料单价的计算----------------------------------------------------------------------115.2. 塔径的计算---------------------------------------------------------------------------------13 5.3 填料层高度的计算-------------------------------------------------------------------------13 5.4 精馏塔塔体年投资折旧费及维修费用的计算-----------------------------------------13 5.5 冷凝器年运转费用的计算----------------------------------------------------------------145.5.1 冷凝器冷却水最佳出口温度的确定----------------------------------------------145.5.2 冷却水用量及冷凝器传热面积的计算-------------------------------------------145.5.3 精馏塔塔体年投资折旧费及维修费用的计算----------------------------------15 5.6 再沸器年运转费用的计算----------------------------------------------------------------15 5.7 填料年折旧费用的计算-------------------------------------------------------------------15 5.8 汽液负荷-------------------------------------------------------------------------------------155.8.1 气相负荷-------------------------------------------------------------------------------155.8.2 液相负荷-------------------------------------------------------------------------------155.9 年总费用与回流比的关系--------------------------------------------------------------156 填料塔水力学性能校核6.1 泛点率校核--------------------------------------------------------------------------------- 17 6.2 径比校核-------------------------------------------------------------------------------------17 6.3 喷淋密度校核-------------------------------------------------------------------------------176.4 填料塔压降----------------------------------------------------------------------------------177 附属设备的设计与选型7.1 塔顶冷凝器--------------------------------------------------------------------------------- 187.1.1 冷凝器传热量-------------------------------------------------------------------------187.1.2 冷凝器传热推动力-------------------------------------------------------------------187.1.3 初估冷凝器传热面积----------------------------------------------------------------197.1.4 冷凝器传热系数的校核-------------------------------------------------------------197.1.5 冷凝器传热面积的校核-------------------------------------------------------------227.1.6 冷凝器壳程、管程流动阻力-------------------------------------------------------22 7.2 接管选型------------------------------------------------------------------------------------ 247.2.1 进料口接管的选型-------------------------------------------------------------------247.2.2 冷却水接管的选型-------------------------------------------------------------------257.2.3 塔顶蒸气接管选型------------------------------------------------------------------ 25Ⅱ7.2.4 塔顶产品接管选型-------------------------------------------------------------------257.2.5 塔底产品接管选型-------------------------------------------------------------------267.2.6 塔顶产品回流接管选型-------------------------------------------------------------267.2.7 塔底加热蒸气接管选型------------------------------------------------------------- 26 7.3 冷却水输送泵7.3.1 塔高的计算---------------------------------------------------------------------------277.3.2 冷却水输送泵选型------------------------------------------------------------------27 7.4 填料支承结构-------------------------------------------------------------------------------28 7.5 液体分布装置-------------------------------------------------------------------------------287.7 液体收集再分布装置----------------------------------------------------------------------298 设计结果汇总------------------------------------------------------------------------------------299 设计心得------------------------------------------------------------------------------------------31 参考文献---------------------------------------------------------------------------------------------- 31 附录一甲醇和水部分物性参数-----------------------------------------------------------------32 附录二甲醇—水汽液平衡数据(摩尔组成)-------------------------------------------------33 附录三优化设计程序源代码--------------------------------------------------------------------34化工原理课程设计学生姓名:黄圣楠学号:081000115专业班级:10级生工(1)班____指导教师:张星___2013年1月24日。