同底数幂乘除法练习题

合集下载

专题04 整式的乘除(原卷版)

专题04 整式的乘除(原卷版)

专题04整式的乘除【热考题型】【知识要点】知识点一幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

nm n m a a a +=·(其中m、n 为正整数)【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

例:a·a 2=a 1+2=a 33)乘数a 可能是有理数、单项式或多项式。

4)如果底数互为相反数时可先变成同底后再运算。

5)逆用公式:n m n m a a a ·=+(m,n 都是正整数)【扩展】三个或三个以上同底数幂相乘时,也具有这一性质,即pn m p n m a a a a ++=··(m,n,p 都是正整数)考查题型一同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ()A.aB.3aC.2a2D.a3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210C.1610D.2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为()A.8B.6C.5D.2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A.0.11B.1.1C.11D.11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnnm a a =)((其中m,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

整式乘除复习总结练习(有知识点填空、基本题)

整式乘除复习总结练习(有知识点填空、基本题)

初二数学整式的乘除复习练习§14.1幂的运算§14.1.1同底数幂的乘法1、同底数幂的乘法公式:m n a a ∙= (m 、n 均为正整数) 同底数幂的乘法法则:同底数幂相乘,底数 ,指数 。

2、公式逆用:m na +=(m 、n 均为正整数) 一、填空题1.计算:103×105= .2.计算:(a -b )3·(a -b )5= .3.计算:a·a 5·a 7= .4. 计算:a(____)·a 4=a 20.(在括号内填数)二、选择题1.32x x ∙的计算结果是( ) A.5x ; B.6x ; C.8x ; D.9x . 2.下列各式中,①824x x x =∙,②6332x x x =∙,③734a a a =∙,④1275a a a =+,⑤734)()(a a a =-∙-.正确的式子的个数是( )A.1个;B.2个;C.3个;D.4个.三、解答题1、计算:62753m m m m m m ∙+∙+∙;2、已知8=m a ,32=n a ,求n m a+的值.§14.1.2幂的乘方1、幂的乘方公式:)(a m n = (m 、n 均为正整数) 幂的乘方法则:幂的乘方,底数 ,指数 。

2、公式逆用:mna =( )m =( )n (m 、n 均为正整数)一、选择题1.计算(x 3)2的结果是( )A .x 5B .x 6C .x 8D .x 92.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a二、填空题1.12x =( )2 =( )6 =( )3 =( )4 2.(a 3)4=_____.3.若x 3m =2,则x 9m =_____. §14.1.3积的乘方1、积的乘方公式:)(ab n = (n 为正整数)积的乘方法则:积的乘方,等于把积的每一个因式分别 ,再把所得的幂 。

苏科版七年级数学下册8.1-同底数幂的乘法-课时提优(包含答案)

苏科版七年级数学下册8.1-同底数幂的乘法-课时提优(包含答案)

8.1同底数幂的乘法课时提优一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2 2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5 4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x 5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26 6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.67.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.88.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6二.填空题9.计算:a2•a3=.10.若2x=3,2y=5,则2x+y=.11.计算:(﹣m)3•m4=.12.计算x•x3+x4的结果等于.13.若a3•a m=a9,则m=.14.(﹣p)2•(﹣p)3=.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.16.计算:105×(﹣10)4×106=.三.解答题17.已知x a+b=6,x b=3,求x a的值.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=;=;=.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.答案与解析一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:原式=a1+2=a3.故选:A.【点评】本题考查了同底数幂的乘法,注意底数不变指数相加.2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.【点评】本题考查了同底数幂的乘法:同底数幂相乘,底数不变,指数相加,即a m•a n =a m+n(m,n是正整数).3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5【分析】根据合并同类项的法则以及同底数幂的乘法法则解答即可.【解答】解:A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x•x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5﹣x5=x5,故选项D符合题意.故选:D.【点评】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x【分析】根据幂的意义解答即可.【解答】解:3x2可以表示为x2+x2+x2,故选项A符合题意;x2•x2•x2=x6,故选项B不合题意;x+x+x=3x,故选项C不合题意;x•x•x=x3,故选项D不合题意.故选:A.【点评】本题主要考查了幂的乘方的意义,熟练掌握幂的运算法则是解答本题的关键.5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26【分析】分别根据同底数幂的乘法法则,合并同类项的法则,幂的乘方的定义以及同底数幂的除法法则逐一判断即可.【解答】解:a3•a2=a5,故选项A不合题意;b4+b4=2b4,故选项B不合题意;23=8,故选项C不合题意;27÷2=26,正确,故选项D符合题意.故选:D.【点评】本题主要考查了幂的运算、有理数的乘方以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.6【分析】根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;【解答】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.【点评】本题考查同底数幂的乘法;熟练掌握同底数幂的乘法法则是解题的关键.7.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.8【分析】根据x+y﹣3=0,可得:x+y=3,据此求出2x•2y的值是多少即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2x•2y=2x+y=23=8.故选:D.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.8.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣a)3•a3=﹣a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.二.填空题9.计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.10.若2x=3,2y=5,则2x+y=15.【分析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.【点评】此题考查了同底数幂的乘法.此题比较简单,注意掌握公式的逆运算.11.计算:(﹣m)3•m4=﹣m7.【分析】根据同底数幂的乘法解答即可.【解答】解:(﹣m)3•m4=﹣m7,故答案为:﹣m7【点评】此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.12.计算x•x3+x4的结果等于2x4.【分析】根据同底数幂的乘法,即可解答.【解答】解:x•x3+x4=2x4,故答案为:2x4【点评】此题考查同底数幂的乘法,关键是根据法则计算.13.若a3•a m=a9,则m=6.【分析】根据同底数幂的运算即可求出答案.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:6【点评】本题考查同底数幂的乘除法,解题的关键是正确理解同底数幂的乘法运算,本题属于基础题型.14.(﹣p)2•(﹣p)3=﹣p5.【分析】同底数幂的乘法:底数不变,指数相加.【解答】解:(﹣p)2•(﹣p)3=(﹣p)2+3=(﹣p)5=﹣p5;故答案是:﹣p5.【点评】本题考查了同底数幂的乘法.同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.【分析】利用幂的乘方公式和同底数幂公式计算即可【解答】解:∵a=﹣b﹣c,∴c=﹣a﹣b15c=15﹣a﹣b=15﹣a•15﹣b=(15a)﹣1•(15b)﹣1=25﹣1•9﹣1==【点评】本题考查了幂的运算,熟练运用幂的乘方公式和同底数幂公式计算是解题的关键.16.计算:105×(﹣10)4×106=1015.【分析】直接利用同底数幂的乘法运算法则化简得出答案.【解答】解:原式=105×104×106=1015.故答案为:1015.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.三.解答题17.已知x a+b=6,x b=3,求x a的值.【分析】根据同底数幂的乘法法则求解.【解答】解:x a=x a+b÷x b=6÷3=2.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=2;=4;=6.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=log a MN(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.【分析】(1)根据对数的定义,把求对数的数写成底数数的幂即可求解;(2)根据(1)的计算结果即可写出结论;(3)利用对数的定义以及幂的运算法则a m•a n=a m+n即可证明.【解答】解:(1)∵4=22,16=24,64=26,∴=2;=4;=6.(2)4×16=64,+=;(3)log a N+log a M=log a MN.证明:log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m•a n=a m+n,∴log a MN=log a a m+n=m+n,故log a N+log a M=log a MN.故答案是:2,4,6.【点评】本题考查了同底数的幂的乘法,正确理解题意,理解对数的定义是关键.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.【分析】(1)由题意可S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,由②﹣①即可求得答案;(2)由4+12+36+…+4×340=4×(1+3+32+33+…+340),然后令S=4×(1+3+32+33+…+340)①,将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,由②﹣①即可求得答案.【解答】解:(1)令S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,②﹣①得:S=2101﹣2;(2)∵4+12+36+…+4×340=4×(1+3+32+33+…+340),令S=4×(1+3+32+33+…+340)①,∴将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,②﹣①得:2S=4×(341﹣1),∴S=2×(341﹣1).【点评】此题考查了同底数幂的乘法的应用.此题难度适中,注意理解题意,掌握解题方法.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.【分析】(1)根据a⊗b=10a×10b代入数据即可;(2)根据所给例子对应代入即可得到答案.【解答】解:(1)7⊗8=107×108=1015;(2)(a+b)⊗c=10a+b×10c=10a+b+c,a⊗(b+c)=10a×10b+c=10a+b+c,∴(a+b)⊗c与a⊗(b+c)相等.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂相乘,底数不变,指数相加.。

5.1同底数幂的乘法(1)

5.1同底数幂的乘法(1)

(7).计算:x x x x x x
5 5 4 6 3
7
x
5 5
x
4 6
x
10
3 7
x x x
10 10
3x
10
练一练:
运用同底数幂的乘法法则计算下
列各式,并用幂的形式表示结果:
(1) 2 7 × 23
(2) (-3) 4 × (-3)7
(3) (-5) 2 × (-5)3 × 54 (4) (x+y) 3× (x+y) 解: (1) 2 7 × 23 = 27+3 = 210
l
(3) (3) (3)
(4) a a a
m n
(5)78×73=
( 6)x3 · x2
78 + 3 = 711 ;
· x5
x3 +2+ 5
10 x = ;
判一判
2.下面的计算对不对?如果不对,怎样改正?
× ) (2)b5 + b5 = b10 (×) (1)b5 · b5= 2b5 ( b5 · b5= b10 b5 + b5 = 2b5 (3)x2 · x3 = x6 ( × ) (4)(-7)8 · 7 3 = (-7)11 (× ) x2 · x3 = x5 (-7)8 · 73 = 711 (5 ) a · a6 = a6 (× ) (6)m + m3 = m4 (× ) a· a6 = a7 m + m3 = m + m 3
开头问题:2002年9月,一个国际空间站研究小组发 现了太阳系以外的第100颗行星,距离地球约100光 年。1光年是光经过一年所行的距离,光的速度大约 3×105km/s。这颗行星距离地球多远(一年为365天计 算,结果保留三个有效数字)?

整式的乘除_知识点及习题含答案

整式的乘除_知识点及习题含答案
(3)x3m-n·x2m-3n·xn-m(4)(-2)·(-2)2·(-2)3·…·(-2)100
7.已知ax=2,ay=3,求ax+y的值.
8.已知4·2a·2a+1=29,且2a+b=8,求ab的值.
9.据不完全统计,全球平均每小时大约产生5.1×108吨污水排入江河湖海,那么一个星期大约有几吨污水污染水源?(每天以24小时计算,结果用科学计数法表示)
6.(1)-8×109(2)xm+n(3)-8a10(4)-7a12(5)-5x2y4
7.(1)2×5,6(2)4×25,20(3)1(4)0.25(5)32
8.144
9.2.4×107厘米2
10.(1)13+23+33+43+53=152
(2)13+23+…+103=552
(3)13+23+……+n3=[ ]2
C.(a+b)(a+b)2D.a+b(a+b)2
3.下列各式中,不能用同底数幂的乘法法则化简的是()
A.(a+b)(a+b)2B.(a+b)(a-b)2
C.-(a-b)(b-a)2D.(a+b)(a+b)3(a+b)2
4.下列计算中,错误的是()
A.2y4+y4=2y8B.(-7)5·(-7)3·74=712
(3)(53)4=______;(54)3=________.
你发现了什么规律?用式子表示出来.
【综合提高】
9.灵活运用幂的乘方法则和同底数幂的乘法法则,以及数学中的整体思想,还可以解决较复杂的问题,例如:已知ax=3,ay=2,求ax+y的值.

最新北师大版数学七年级下册第一章-整式的乘除知识点总结及练习题

最新北师大版数学七年级下册第一章-整式的乘除知识点总结及练习题

(B)(5x-1)(1-5x)=25x2-1 (D)(x-3)(x-9)=x2-27 18.如
果 x2-kx-ab=(x-a)(x+b),则 k 应为…………………………………(

(A)a+b (B)a-b (C)b-a
(三)计算(每题 4 分,共 24 分)
19.(1)(-3xy2)3·( 1x3y)2; 6

6.(1 )-2+0=
;4101×0.2599=

3
7.20 2×19 =1 (
)·( )=

33
8.用科学记数法表示-0.0000308=

9.(x-2y+1)(x-2y-1)2=( )2-( )2=

10.若(x+5)(x-7)=x2+mx+n,则 m=
,n=

(二)选择题(每小题 2 分,共计 16 分)
☆☆☆ 北师大版数学七年级【下册】 一、 同底数幂的乘法
第一章 整式的乘除
同底数幂的乘法法则: am an amn (m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要
注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数 a 可以是一个具体的数字式字母,也可以是
一个单项或多项式; ②指数是 1 时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相 同才能相加;
第4页
20.用简便方法计算:(每小题 3 分,共 9 分)
(1)982;
(2)899×901+1;
(3)(10 )2002·(0.49)1000. 7
(四)解答题(每题 6 分,共 24 分) 21.已知 a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab 的值.

专题1-8 同底数幂的除法(拓展提高)(解析版)

专题1-8 同底数幂的除法(拓展提高)(解析版)

专题1.8 同底数幂的除法(拓展提高)一、单选题1.下列计算正确的是( )A .2223a a a +=B .824a a a ÷=C .324a a a ⋅=D .()236a a = 【答案】D【分析】根据合并同类项法则,同底数幂的乘法和除法,幂的乘方运算法则对四个选项依次判断即可.【详解】解:A 选项,2223a a a +≠,故A 选项不符合题意;B 选项,8264a a a a ÷=≠,故B 选项不符合题意;C 选项,3254a a a a ⋅=≠,故C 选项不符合题意;D 选项,()236a a =,故D 选项符合题意. 故选:D .【点睛】本题考查了合并同类项法则,同底数幂的乘法和除法,幂的乘方运算法则,熟练掌握这些知识点是解题关键.2.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a -【答案】B【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意;C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.3.2a m =,3b m =,4c m =,则a b c m +-的值为.( )A .1B .1.5C .2D .2.5【答案】B【分析】根据幂的运算的逆运算,把所求变成同底数幂相乘和除法即可.【详解】解:=a a c b b c m m m m +-⨯÷,=234⨯÷=1.5故选:B .【点睛】本题考查了幂的运算,解题关键是熟练运用幂的运算的逆运算,把所求式子变形.4.下列运算:①236a a a ⋅=;②()236a a =;③55a a a ÷=;④333()ab a b =.其中结果正确的有( ) A .1个B .2个C .3个D .4个【答案】B 【分析】按照幂的运算法则直接判断即可.【详解】解:①235a a a ⋅=,原式错误;②()236a a =,原式正确; ③551a a ÷=,原式错误;④333()ab a b =,原式正确;故选:B .【点睛】本题考查了幂的运算,熟记幂的运算法则,注意它们之间的区别是解题关键.5.太阳到地球的距离约为81.510km ⨯,光的速度约为53.010/km s ⨯,则太阳光到达地球的时间约为( ) A .50sB .2510s ⨯C .3510s ⨯D .4510s ⨯ 【答案】B【分析】根据太阳到地球的距离除以光的速度,即可得出太阳光到达地球的时间.【详解】∵太阳到地球的距离约为1.5×108km ,光的速度约为3.0×105km/s , ∴太阳光到达地球的时约为:(1.5×108)÷(3.0×105)=5×102(s ).故选:B .【点睛】本题主要考查了同底数幂的除法以及科学记数法,熟记幂的运算法则是解答本题的关键. 6.若33333333333m k +++⋅⋅⋅+=个(1k >,k ,m 都为正整数),则m 的最小值为( ) A .3B .4C .6D .9 【答案】B【分析】计算3333333333333m k k +++⋅⋅⋅+=⋅=个,再利用同底数幂的除法,结合1k >,k ,m 都为正整数求得m的最小值.【详解】∵3333333333333mk k +++⋅⋅⋅+=⋅=个∴33m k -=.∵1k >,k ,m 都为正整数,∴k 的最小值为3,此时m 取得的最小值为4,故选B .【点睛】本题考查同底数幂的除法.关键在于找到k 与m 之间的关系.二、填空题7.计算423287x y x y -÷的结果等于___________.【答案】4xy -【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键8.已知9a =8,3b =4,则32a -b =__________;【答案】2【分析】根据幂的乘方法则以及同底数幂的除法法则计算即可.【详解】∵9a =(3a )2=8,3b =4,∴32a -b =(3a )2÷3b =8÷4=2,故答案为:2【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.9.若x ,y 均为实数,432021x =,472021y =,则4347xy xy ⋅=______x y +;11x y+=_______. 【答案】2021 1【分析】根据同底数幂乘法、积的乘方、幂的乘方等计算法则进行等量代换即可.【详解】解:∵432021x =,472021y =∴(432021)x y y =,(472021)y x x =,4347(43)(47)202120212021xy xy x y y x y x x y +⋅=⨯=⨯=,故答案为:2021;∵=4)3(4347202147xy xy xy xy =⋅⨯,即20212021xy x y +=,∴xy x y =+, ∴111x y x y xy++==, 故答案为:1.【点睛】本题主要考查同底数幂乘法、积的乘方、幂的乘方等知识点,熟练掌握以上知识点的运算法则是解决本题的关键.10.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________.【答案】4 3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案. 【详解】解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.11.已知10m =20,10n 15=,则10m ﹣n =__;9m ÷32n =____ 【答案】100 81【分析】根据同底数幂的除法可得第一个空的值及m 与n 的关系,根据幂的乘方及同底数幂的除法即可得出第二个空的答案.【详解】解:∵10m =20,10n 15=, ∴10m ﹣n =10m ÷10n 1205=÷=100; ∴m ﹣n =2,9m ÷32n =32m ÷32n =32m ﹣2n =32(m ﹣n )=34=81.故答案为:100;81.【点睛】本题考查了同底数幂的除法,根据法则计算是解题的关键.12.月球距离地球约为3.84×105千米,一架飞机速度约为8×102千米/时,若坐飞机飞行这么远的距离需__________天.【答案】20【分析】根据题意列出运算式子,再计算同底数幂的除法即可得.【详解】由题意得:()5224203.8410810⨯⨯÷÷=,即若坐飞机飞行这么远的距离需20天,故答案为:20.【点睛】本题考查了同底数幂除法的实际应用,依据题意,正确列出运算式子是解题关键.13.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________. 【答案】256【分析】由新规定的运算可得3a =5,3b =6,m=32a-b ,再将32a-b ,转化为2(3)3a b后,再代入求值即可. 【详解】解:由于(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a a bb m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.14.下列有四个结论.其中正确的是__.①若(x ﹣1)x +1=1,则x 只能是2;②若(x ﹣1)(x 2+ax +1)的运算结果中不含x 2项,则a =1;③若a +b =10,ab =2,则a ﹣b =2;④若4x =a ,8y =b ,则23y ﹣2x 可表示b a. 【答案】②④【分析】根据多项式乘多项式、幂的乘方、同底数幂除法、零指数幂、完全平方公式等逐一进行计算即可.【详解】解:①若(x ﹣1)x +1=1,则x 是2或﹣1.故①错误;②若(x ﹣1)(x 2+ax +1)的运算结果中不含x 2项,∵(x ﹣1)(x 2+ax +1)=x 3+(a ﹣1)x 2+(1﹣a )x ﹣1,∴a ﹣1=0,解得a =1,故②正确;③若a +b =10,ab =2,∵(a ﹣b )2=(a +b )2﹣4ab =100﹣8=92,则a ﹣b =±③错误; ④若4x =a ,8y =b ,则23y ﹣2x =(23)y ÷(22)x =8y ÷4x =b a.故④正确. 所以其中正确的是②④.故答案为:②④.【点睛】本题考查多项式乘多项式、幂的乘方、同底数幂除法、零指数幂、完全平方公式等.熟练掌握相关公式是解题关键.三、解答题15.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭ (4)852()()()x y y x y x -÷-⋅-.【答案】(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --;(4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.16.已知2m a =,3n a =.(1)求2m n a +的值;(2)23m n a -的值.【答案】(1)18;(2)427【分析】(1)先将2m n a +变形为()22=m n m n a a a a ,再代入m a ,n a 的值求解;(2)将23m n a -变形为()()23m n a a ÷,再代入m a ,n a 的值求解即可. 【详解】解:(1)原式2m n a a =()2=m n a a把2m a =,3n a =代入上式中 ()222318m n a a =⨯=(2)原式=23m n a a -()()23m n a a =÷ 把2m a =,3n a =代入上式中()()232342327m n a a ÷=÷= 故答案为:(1)18;(2)427. 【点睛】本题考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.17.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.【答案】(1)2;(2)8;(3)52. 【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)∵8,2322m n ==,∴()22222283264322m n m n -=÷=÷=÷=;∴22m n -的值为2.(2)∵2330x y +-=,∴233x y +=,∴232334822228x y x y x y +⋅=⋅===;∴48x y ⋅的值为8.(3)∵2222510x x x +++⋅=,∴2331010x x +-=,∴233x x +=-, ∴52x =, ∴x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.18.(1)填空()10222-=()21222-=()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;【答案】(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,∵左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,∴左边=右边,∴2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101②由②-①得:a =2101-1∴20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法. 小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.【答案】(1)27;(2)32x =. 【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b+=⨯÷ 2423333a b +=⨯÷4433a b +-=4343a b -+=∵4310a b -+=∴431a b -=-∴原式1433327-+===;(2)∵24222296x x ++-=∴2222222926x x ++-=⨯∴()22222196x +-=⨯∴229326x +⨯=∴22232x +=∴22522x +=∴225x += ∴32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.20.阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地.若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log ,log a a M m N n ==,则,n m M a N a ==.m n m n M N a a a +∴⋅=⋅=.由对数的定义得log ()a m n M N +=⋅又log log a a m n M N +=+log ()log log a a a M N M N ∴⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 32=___________;②3log 27=_______,③7log l =________;(2)求证:log log log (0,1,0,0)a a a M M N a a M N N=->≠>>; (3)拓展运用:计算555log 125log 6log 30+-.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a M N =log a M -log a N 的逆用,将所求式子表示为:5125630log ⨯,计算可得结论.【详解】解:(1)①∵5232=,∴2log 32=5,②∵3327=,∴3log 27=3,③∵071=,∴7log 1=0;(2)设log a M =m ,log a N =n ,∴m a M =,n a N =, ∴m n m n M a a a N -÷==, ∴log aM m n N =-, ∴log log log a a a M M N N=-; (3)555log 125log 6log 30+- =5125630log ⨯ =5log 25=2.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.。

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

北师大初一数学7年级下册 第1章(整式的乘除)1.7同底数幂的除法和整式的除法 一课一练(含答案)

《同底数幂的除法和整式的除法》习题2一、选择题1.下列计算正确的是( )A .248a a a ∙=B .352()a a =C .236()ab ab =D .624a a a ÷=2.下列计算正确的是( )A .325()m m =B .3710m m m ⋅=C .236(3)9m m -=-D .632m m m ÷=3.计算下列各式,结果为5x 的是( )A .()32x B .102x x ÷C .23x x ⋅D .6x x-4.下列计算中,结果是8m 的是( )A .()42m B .24•m m C .122m m ÷D .24m m +5.下列计算方法正确的是( )A .20212021a a a ⨯⨯=B .20212021a a a -÷=C .20212021a a a ++=D .20212021a a a --=6.下列运算正确的是( )A .236a a a⋅=B .842a a a÷=C .532a a -=D .()2224ab a b -=7.在①42a a ⋅,②()32a -,③212a a ÷,④23a a ⋅,⑤33a a +,计算结果为6a 的个数是( )A .1个B .2个C .3个D .4个8.马虎在下面的计算中只做对了一道题,他做对的题目是( )A .3515a a a⋅=B .()236a a -=C .()3326y y =D .632a a a ÷=9.下列运算正确的是( ).A .6212x x x ⋅=B .623x x x +=C .()268x x =D .()624x x x -÷=10.下列运算中,正确的是( )A .623a a a ÷=B .246a a a -=⋅C .333()ab a b =D .246()a a =11.()2334a bc ab ⎛⎫-÷- ⎪⎝⎭的商为:( )A .214a cB .14acC .294a cD .94ac12.已知32228287m n a b a b b ÷=,则m 、n 的值为( )A .4,3m n ==B .4,1m n ==C .1,3m n ==D .2,3m n ==13.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y14.在等式210()5b b ÷=-中,括号内应填入的整式为( )A .-2bB .bC .2bD .-3b15.一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( )A .12x4B .14x4C .12x 4yD .12x216.已知M 2(2)x - =53328182x x y x --,则M =( )A .33491x xy ---B .33491x xy +-C .3349x xy -+D .33491x xy -++17.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n)的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n18.计算:(﹣6x 3+9x 2﹣3x )÷(﹣3x )=( )A .2x 2﹣3xB .2x 2﹣3x +1C .﹣2x 2﹣3x +1D .2x 2+3x ﹣119.若长方形的面积是2226a ab a -+,长为2a ,则这个长方形的周长是( )A .626a b -+B .226a b -+C .62a b-D .320.计算()3214217(7)x x x x -+÷-的结果是( )A .23x x -+B .2231x x -+-C .2231x x -++D .2231x x -+21.已知被除式是x 3+3x 2﹣1,商式是x ,余式是﹣1,则除式是( )A .x 2+3x ﹣1B .x 2+3xC .x 2﹣1D .x 2﹣3x +122.计算(﹣4a 2+12a 3b)÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab23.一个长方形的面积为2x 2y ﹣4xy 3+3xy ,长为2xy ,则这个长方形的宽为( )A .x ﹣2y 232+B .x ﹣y 332+C .x ﹣2y +3D .xy ﹣2y 32+24.已知A=2x ,B 是多项式,在计算B÷A 时,小强同学把B÷A 误看了B+A ,结果得2x2-x ,则B÷A 的结果是( )A .2x2+xB .2x2-3xC .1+2x D .32x -25.面积为9a 2−6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a −2b +1B .2a −3bC .2a −3b +1D .3a −2b26.若2x 与一个多项式的积为3222x x x -+,则这个多项式为( )A .221x x -+B .2424x x -+C .2112x x -+D .212x x -二、计算题1.计算(1)232232213(-a b)ab a b 334() (2)223-5a 3ab -6a ()(3)()()223x x -+ (4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦(5)()34221242ayay ay ⎛⎫-⋅÷ ⎪⎝⎭(6)()()()33332424ax a x ax -÷2.化简求值.(1)求(1)(21)2(5)(2)x x x x -+--+的值,其中15x =.(2)先化简,再求值:()()()()2233102x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中3x =-,12y =.(3)先化简,再求值:(x ﹣y )(x ﹣2y )﹣(3x ﹣2y )(x +3y ),其中x =4,y =﹣1.(4)先化简,再求值:()()()()223443x y x y x y y ⎡⎤-+-÷⎣⎦-﹣,(其中x =﹣4,y =3).(5)先化简,再求值(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b),其中11.54a b =-=,.三、解答题1.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.2.已知:53a =,58b =,572c =.(1)求)(25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.3.王老师给学生出了一道题:先化简,在求值:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-),其中12a =,1b =-.同学们看了题目后发表不同的看法.小张说:“条件1b =-是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若m x 的值等于此题计算的结果,试求2m x 的值.答案一、选择题1.D .2.B .3.C4.A .5.B .6.D .7.A .8.B .9.D .10.C .11.B .12.A .13.D .14.A .15.A.16.D .17.C .18.B .19.A .20.B .21.B.22.A .23.A24.D.25.A.26.C 二、计算题1.(1)232232213(-a b)ab a b334()6324328132794a b a b a b ⎛⎫⎛⎫⎛⎫=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭6233428132794a b ++++=-⨯⨯119281a b =-;(2)223-5a 3ab -6a ()3251530a b a =-+;(3)()()223x x -+22436x x x =-+-226x x =--;(4)()()222323x x y xy y x x y x y ⎡⎤---÷⎣⎦()32223223x y x y x y x y x y =--+÷()3222223x y x y x y=-÷322222323x y x y x y x y=÷-÷2233xy =-.(5)原式3448361242a y ay a y ⎛⎫=⋅÷ ⎪⎝⎭344138161242a y+-+-⎡⎤⎛⎫=⨯÷⎢⎥ ⎪⎝⎭⎢⎥⎣⎦8232a y =23256a y =(6)原式396123384a x a x a x =-÷396312384a x a x --=-393984a x a x =-394a x =2.(1)解:(x-1)(2x+1)-2(x-5)(x+2)=2x 2+x-2x-1-2x 2-4x+10x+20=5x+19,当15x =时,原式=5×15+19=20.(2)原式()222226932102x xy y x xy y y x =++--+-÷=()2242x xy x-+÷=2x y -+当3x =-,12y =时,原式314=+=.(3)原式=(x 2﹣2xy ﹣xy+2y 2)﹣(3x 2+9xy ﹣2xy ﹣6y 2)=x 2﹣3xy+2y 2﹣3x 2﹣7xy+6y 2=﹣2x 2﹣10xy+8y 2当x =4,y =﹣1时,原式=﹣2×42﹣10×4×(﹣1)+8×(﹣1)2=﹣32+40+8=16(4)】解:()()()()223443x y x y x y y ⎡⎤--+-÷⎣⎦﹣=()()2222412941643x xy y x xy xy y y -+-+-+÷-=()()23133xy yy +÷-=133x y --,当x =﹣4,y =3时,原式=4-13=-9.(5)(3a+2b)(2a ﹣3b)﹣(a ﹣2b)(2a ﹣b)=(6a 2+4ab ﹣9ab ﹣6b 2)﹣(2a 2-4ab ﹣ab+2b 2)=6a 2+4ab ﹣9ab ﹣6b 2﹣2a 2+4ab+ab ﹣2b 2=4a 2﹣8b 2,当a=﹣1.532=-,b=14时,原式=4×(32-)2﹣8×(14)2=9-12=172.三、解答题1.解:(1)①()()2323232222248m nm n m n m n ab +=⋅=⋅=⋅=;②()()2224646232222222248mnm nmnmna b-=÷=÷=÷=;(2)343526281622222x x x +⨯⨯=⨯⨯==,得3526x +=,解得7x =.2.解(1)∵53a =,∴)(22539a==;(2)∵53a =,58b =,572c =,∴5537252758a c ab cb-+⨯⨯===;(3)∵22(5)53898725a b c ⨯=⨯=⨯==,∴255a b c +=,即2c a b =+.3.解:(1)小张说的有道理,理由如下:222(2)(2)2(2(216)(2)a b a b a b ab a b a +-+-+-÷-)22222(2)2(44)(8)a b a ab b b ab =-+-++-+2222248828a b a ab b b ab =-+-+-+212a =∵化简得结果为212a ,212a 中不含字母b ∴条件1b =-是多余的,小张说的有道理.(2)当12a =时,2211212()2a =⨯3=由题意得:3m x =,222()39m m x x ===∴.即2m x 的值为9.。

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

*13.下列各式的计算中,不正确的个数是( ) ①100÷10-1=10; ②10-4×(2×7)0=1 000; ③(-0.1)0÷(-2-1)-3=8; ④(-10)-4÷(-10-1)-4=-1. A.4 B.3 C.2 D.1
【点拨】①100÷10-1=1÷110=10,正确; ②10-4×(2×7)0=1104×1=0.000 1,不正确; ③(-0.1)0÷(-2-1)-3=1÷(-23)=1÷(-8)=-18,不正确; ④(-10)-4÷(-10-1)-4=10-4÷104=10-8,不正确.故选 B.
解:设 M=1+3-1+3-2+…+3-2 024,①
则 3M=3+1+3-1+…+3-2 023,②
②-①得
2M=3-3-2
024,即
M=3-32-2
024
.
所以原式=3-3-2 2
024
.
(2)1+3-1+3-2+…+3-n.
解:设 N=1+3-1+3-2+…+3-n,① 则 3N=3+1+3-1+…+3-n+1,② ②-①得 2N=3-3-n,即 N=3-23-n.所以原式=3-23-n.
【点拨】本题探索使等式成立的 x 的值时,运用了分类讨论思想, 在讨论时要考虑周全. 解:①当 2x+3=1 时,x=-1; ②当 2x+3=-1 时,x=-2,但是指数 x+2 023=2 021 为奇数, 所以舍去; ③当 x+2 023=0 时,x=-2 023,且 2×(-2 023)+3≠0, 所以符合题意.综上所述,x 的值为-1 或-2 023.
A.2a5-a B.2a5-1a C.a5
D.a6
*7.若(t-3)2-2t=1,则t可以取的值有( C ) A.1个 B.2个 C.3个 D.4个

幂的运算综合

幂的运算综合

期末专题03 幂的运算综合(江苏专用)一、单选题1.(2022春·江苏南京·七年级统考期末)计算()32a a -g 的结果是( )A .6aB .6a -C .5aD .5a -【答案】D 【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a -g =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.2.(2022春·江苏泰州·七年级校考期末)下列计算正确的是( )A .236a a a ×=B .236()a a =C .33(2)2a a =D .1025a a a ¸=【答案】B【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【详解】解:A 、235a a a ×=,原计算错误,该选项不符合题意;B 、()326a a =,正确,该选项符合题意;C 、()3328a a =,原计算错误,该选项不符合题意;D 、1028a a a ¸=,原计算错误,该选项不符合题意;故选:B .【点睛】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2022春·江苏苏州·七年级校考期末)化简32a a ×的结果是( )A .aB .6aC .5aD .9a 【答案】C【分析】根据同底数幂的乘法法则即可得.【详解】解:325a a a ×=,【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解题关键.4.(2022春·江苏连云港·七年级校考期末)下列各个计算中,正确的是( )A .3a ·2a =6a B .3a +2a =4a C .()23a =6a D .a +22a =32a 【答案】C【分析】根据同底数幂的乘法法则、整式的加法法则、幂的乘方法则逐项计算,即可得出正确答案.【详解】解:33522a a a a +×==,故A 选项计算错误,不合题意;3a 与2a 不是同类项,不能合并,故B 选项计算错误,不合题意;()23326a a a ´==,故C 选项计算正确,符合题意;a 与2a 不是同类项,不能合并,故D 选项计算错误,不合题意;故选C .【点睛】本题考查同底数幂的乘法、幂的乘方、合并同类项等,熟练掌握各运算法则是解题的关键.5.(2022春·江苏淮安·七年级校考期末)下列运算中,正确的是( )A .22433æö=ç÷èøB .a5÷a3=a2C .a2·a3=a6D .a2+a2=a4【答案】B 【分析】根据有理数的乘方运算、同底数幂相乘,同底数幂相除,合并同类项,逐项判断即可求解.【详解】解:A 、22439æö=ç÷èø,故本选项错误,不符合题意;B 、532a a a ¸=,故本选项正确,符合题意;C 、235·a a a =,故本选项错误,不符合题意;D 、2222a a a +=,故本选项错误,不符合题意;故选:B .【点睛】本题主要考查了有理数的乘方运算、同底数幂相乘,同底数幂相除,合并同类项,熟练掌握相关运算法则是解题的关键.6.(2022春·江苏淮安·七年级校考期末)某种细菌的半径约为0.00000025米,数据0.00000025用科学记数法表示为( )A .0.25×710-B .2.5×710-C .2.5×610-D .25×610-【分析】根据绝对值小于1的数表示成科学记数法的形式表示即可.【详解】解:70.00000025 2.510-=´.故选:B【点睛】本题考查了把绝对值小于1的数表示成科学记数法,其形式为10(110)n a a -´£<,n 为正整数,且n 为原数的第一个非零数字起左边的零的个数,包括小数点前的零.7.(2022春·江苏连云港·七年级校考期末)某种植物果实的质量只有0.0000000076克,用科学记数法表示是( )A .97.610´克B .77.610-´克C .87.610-´克D .97.610-´克【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -´,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000007697.610,-=´故选A【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -´,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.(2022春·江苏南京·七年级校考期末)下列运算中,正确的是()A .623x x x ¸=B .224x x x +=C .326()x x -=-D .325()()x x x -×-=-【答案】D【分析】根据同底数幂的除法判断A 选项;根据合并同类项判断B 选项;根据幂的乘方与积的乘方判断C 选项;根据积的乘方和同底数幂的乘法判断D 选项.【详解】解:A .原式4x =,故该选项不符合题意;B .原式22x =,故该选项不符合题意;C .原式6x =,故该选项不符合题意;D .原式325x x x =-×=-,故该选项符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法,合并同类项,幂的乘方与积的乘方,掌握m n mn a a =(),n n n ab a b =()是解题的关键.9.(2022春·江苏苏州·七年级校考期末)下列运算正确的是( )A .326a a a ×=B .236()a a =C .33(2)2a a -=-D .336a a a +=【答案】B 【分析】根据同底数幂的乘法运算法则,幂的乘方运算法则,积的乘方运算法则,合并同类项法则计算即可.【详解】解:A 、3256a a a a ×=¹,故该选项不符合题意;B 、236()a a =,故该选项符合题意;C 、333(2)82a a a -=-¹-,故该选项不符合题意;D 、33362a a a a +=¹,故该选项不符合题意;故选:B .【点睛】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟练掌握相关的运算法则是解答本题的关键.10.(2022春·江苏扬州·七年级校联考期末)下列计算正确的是( )A .236()a a -=B .1226a a a ¸=C .426a a a +=D .56a a a ×=【答案】D【分析】根据积的乘方和幂的乘方运算法则,同底数幂的乘法和除法的运算法则,合并同类项法则逐项计算即可.【详解】解:A .236()a a -=-,故该选项不符合题意;B .12210a a a ¸=,故该选项不符合题意;C .4a 与2a 不属于同类项,不能合并,故该选项不符合题意;D .56a a a ×=,故该选项符合题意.故选:D .【点睛】本题主要考查积的乘方,幂的乘方,同底数幂的除法,同底数幂的乘法,合并同类项,解答的关键是对相应运算法则的掌握.11.(2022春·江苏南京·七年级统考期末)石墨烯是目前世界上最薄、最坚硬的纳米材料,单层石墨烯的厚度仅为0.00000000034m .用科学记数法表示0.00000000034是( )A .93410-´B .103.410-´C .93.410-´D .100.3410-´【答案】B【分析】科学记数法的表现形式为10n a ´的形式,其中110a £<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:100.000000000343410-=´.故选:B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.(2022春·江苏镇江·七年级统考期末)下列运算结果正确的是( )A .824a a a ¸=B .236a a a ×=C .235()a a a -×=D .336()a a =【答案】C【分析】根据同底数幂的乘除法则,幂的乘方法则逐项计算即可.【详解】解:A 、826a a a ¸=,原式错误;B 、235a a a ×=,原式错误;C 、23235()a a a a a -×=×=,正确;D 、339()a a =,原式错误;故选:C .【点睛】本题考查了同底数幂的乘除,幂的乘方,熟练掌握运算法则是解题的关键.13.(2022春·江苏淮安·七年级统考期末)将0.000021用科学记数法可表示为( )A .50.2110-´B .42.110-´C .52.110-´D .52110-´【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(2022春·江苏泰州·七年级统考期末)下列各式,计算结果为6a 的是( )A .24a a +B .7a a ¸C .23a a ×D .()42a 【答案】B【分析】根据合并同类项,单项式的除法,同底数幂的乘法,幂的乘方逐项计算即可求解.【详解】解:A. 2a 与4a 不是同类项,不能合并,故该选项不符合题意;B. 7a a ¸6a =,符合题意,C. 23a a ×5a =,不符合题意,D. ()42a 8a =,不符合题意,故选B .【点睛】本题考查了合并同类项,单项式的除法,同底数幂的乘法,幂的乘方,正确的计算是解题的关键.15.(2022春·江苏泰州·七年级统考期末)观察下列树枝分叉的规律图,若第n 个图树枝数用Y n 表示,则94Y Y -的值为( ).1Y 1= 2Y 3= 3Y 7= 4Y 15=A .482´B .4152´C .4312´D .4332´【答案】C【分析】根据图形找到规律,进而计算94Y Y -即可求解.【详解】解:根据图形可得11121Y ==-,22321Y ==-,33721Y ==-,441521Y ==-,…,21n n Y =-,()949445494212122221312Y Y \-=--+=-=´-=´.故选:C .【点睛】本题考查了图形类规律,同底数幂的乘法运算,找到规律是解题的关键.二、填空题16.(2022春·江苏泰州·七年级统考期末)人体中红细胞的直径约为0.0000077m ,将0.0000077用科学记数法表示为___________.【答案】67.710-´【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -´,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000777.710-=´,故答案为:67.710-´.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -´,其中1||10a £<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.(2022春·江苏镇江·七年级统考期末)如果38m =,312n =,那么3m n +的值为 __.【答案】96【分析】逆用同底数幂的乘法进行计算,进而得出答案.【详解】解:当38m =,312n =时,则33381296m n m n +=´=´=.故答案为:96.【点睛】本题考查了同底数幂的乘法运算,熟练掌握同底数幂的乘法的逆用,是解题的关键.18.(2022春·江苏宿迁·七年级统考期末)《苔》中的诗句:“白日不到处,青春恰自来,苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为___________.【答案】68.410-´【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为10n a -´,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000848.410-=´.故答案为:68.410-´.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成10n a -´的形式,其中1||10a £<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).19.(2022春·江苏宿迁·七年级统考期末)已知3m a =,2n a =,则m n a +的值为______________.【答案】6【分析】根据同底数幂乘法的逆运算,即可求解.【详解】解:∵3m a =,2n a =,∴326m n m n a a a +=×=´=.故答案为:6【点睛】本题主要考查了同底数幂乘法的逆运算,熟练掌握m n m n a a a +=×(其中m ,n 是正整数)是解题的关键.20.(2022春·江苏淮安·七年级校考期末)已知一种细胞的直径约为2.13×410-cm ,请问2.13×410-这个数原来的数是 _____.【答案】0.000213【分析】利用绝对值小于1的数的科学记数法的表示方法的逆运算求解即可.【详解】解:42.13100.000213-´=,故答案为:0.000213.【点睛】题目主要考查绝对值小于1的数的科学记数法的表示方法的逆运算,熟练掌握运算法则是解题关键.三、解答题21.(2022春·江苏连云港·七年级校考期末)计算:(1)()20211-+212-æö-ç÷èø()0π1---3-(2)2()322a a -·4a +()342a +2a 【答案】(1)1-(2)61228a a a ++【分析】(1)先计算乘方、负整数次幂、零次幂、去绝对值,再进行加减;(2)先计算幂的乘方、同底数幂的乘法、积的乘方,再进行加减.(1)解:()20211-+212-æö-ç÷èø()0π1---3-2111312=-+--æö-ç÷èø1413=-+--1=-;解:2()322a a -·4a +()342a +2a 6612282a a a a ++=-61228a a a =++.【点睛】本题考查有理数的混合运算、整式的混合运算等,涉及负整数次幂、零次幂、幂的乘方、同底数幂的乘法、积的乘方等知识点,掌握各运算法则并正确计算是解题的关键.22.(2022春·江苏淮安·七年级统考期末)计算:(1)()0321220223p ---+æöç÷èø;(2)()422962m m m m m ×-+¸.【答案】(1)0(2)-14m 8【分析】(1)根据实数的零指数幂、负整数指数幂运算法则等知识进行计算即可;(2)根据同底数幂的乘法、积的乘方、同底数幂的除法运算法则进行计算即可.【详解】(1)023(1202232)()p ---+198=-+0=;(2)26249()2m m m m m×-+¸26424912m m m +´-=-+88816m m m =-+814m =-.【点睛】本题考查了零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、同底数幂的除法的运算法则等知识,掌握相关的运算法则是解答本题的关键.23.(2022春·江苏淮安·七年级校考期末)计算:(1)()()2020162123 3.14p ----¸-;(2)3a ∙()45283+--a a a .【答案】(1)14-【分析】(1)先计算有理数的乘方运算,然后计算加减即可;(2)先计算同底数幂的乘法及乘方运算,然后计算加减法即可.【详解】(1)解:原式1491=---¸149=---14=-;(2)原式8883a a a =+-8a =-.【点睛】题目主要考查有理数的乘方及零次幂的运算,同底数幂的乘法及乘方运算,合并同类项,熟练掌握各个运算法则是解题关键.24.(2022春·江苏淮安·七年级校考期末)已知am =2,an =3,求:(1)am +n 的值;(2)a 2m ﹣n 的值.【答案】(1)6(2)43【分析】(1)根据同底数幂的乘法的逆运算求解即可;(2)根据同底数幂的除法的逆运算和幂的乘方的逆运算进行求解即可.【详解】(1)解:∵2m a =,3n a =,∴6+=×=m n m n a a a ;(2)解:2m a =,3n a =,∴2m na -2m na a =¸()()2=¸m n a a 223=¸43=¸43=.【点睛】本题主要考查了同底数幂乘法的逆运算,同底数幂除法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.25.(2022春·江苏泰州·七年级校考期末)计算:(1)()1012022-23-æö-+--ç÷èø;(2)()32427·2x x x x x -+¸.【答案】(1)-4(2)66x -【分析】(1)先计算零次幂和负指数幂及绝对值,再计算有理数的加减即可;(2)先计算同底数幂的乘除法及积的乘方,再合并同类项即可.【详解】(1)解: ()101202223-æö-+---ç÷èø ,()132=+--,4=-;(2)解:()324272x x x x x +¸g ﹣,6668x x x =-+,66x =-【点睛】本题考查了零次幂、负指数幂、绝对值、同底数幂的乘除法及积的乘方,熟练掌握各运算法则是解题的关键,分数负指数幂的计算是解题的易错点.26.(2022春·江苏泰州·七年级校考期末)计算:(1)4021(3)3p --+-+;(2)52382(2)x x x x x ×+-¸.【答案】(1)19(2)68x 【分析】(1)根据整数指数幂,零指数幂以及负整数指数幂的运算法则先化简,然后再计算加减即可;(2)运用同底数幂乘法,积的乘方以及同底数幂除法的运算法则先化简,然后再合并同类项即可.(1)解:4021(3)3p --+-+1119=-++=19;(2)解:52382(2)x x x x x ×+-¸6668x x x =+-68x =.【点睛】本题考查了实数的混合运算以及整式的四则混合运算,解题的关键是熟练掌握相关运算法则并灵活运用.27.(2022春·江苏扬州·七年级校联考期末)计算:(1)202(2)(2019π)2--+--;(2)232482(2)2a a a a a -+×-¸.【答案】(1)194(2)67a -【分析】()1先算乘方,零指数幂,负整数指数幂,最后算加减即可;()2先算积的乘方,单项式乘单项式,同底数幂的除法,最后合并同类项即可.【详解】(1)解:202(2)(2019π)2--+--1414=+- 194=;(2)解:232482(2)2a a a a a -+×-¸66682a a a =-+-67a =-.【点睛】本题主要考查单项式乘单项式,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握.28.(2022春·江苏宿迁·七年级统考期末)计算:2202201(1)( 3.14)2p -æö-+--ç÷èø.【答案】4【分析】根据乘方运算法则、零指数幂和负整数指数幂的运算法则进行计算即可.【详解】解:()()22022011 3.142p -æö-+--ç÷èø=141+-=4.【点睛】本题主要考查了实数的混合运算,熟练掌握乘方运算法则、零指数幂和负整数指数幂的运算法则,是解题的关键.29.(2022春·江苏泰州·七年级统考期末)如果a b c Ä=,则c a b =,例如283Ä=,则328=.(1)根据上述规定,若327x Ä=,则x =________.(2)记35a Ä=,36b Ä=,390c Ä=,求a 、b 、c 之间的数量关系.【答案】(1)3(2)1a b c++=【分析】(1)根据新定义运算直接可得结果;(2)根据同底数幂的乘法运算结合新定义即可求解.(1)解:∵327x Ä=∴327x =3327=Q 3x \=故答案为:3(2)解:∵35a Ä=,36b Ä=,390c Ä=,∴35,36,390a b c ===56390´´=Q 3333ca b \´´=即133a b c ++=1a b c \++=【点睛】本题考查了新定义运算,同底数幂的乘法运算,理解新定义是解题的关键.30.(2022春·江苏宿迁·七年级统考期末)计算:(1)()101342p -æö---+ç÷èø(2)()22432a a a ×+【答案】(1)-1(2)65a 【分析】(1)原式分别计算011(3)1,|4|4,()22p --=-==,然后再进行加减运算即可;(2)原式分别根据同底数幂的乘法,积的乘方和幂的乘方运算法则计算各项后,再合并即可得到答案.(1)()101342p -æö---+ç÷èø=1-4+2=-1;(2)()22432a a a ×+=()22+4232a a +g =664a a + =65a 【点睛】本题主要考查了整式的运算,熟练掌握运算法则是解答本题的关键.。

北师大版数学七年级下册第一章整式的乘除第1节同底数幂的乘法课后练习

北师大版数学七年级下册第一章整式的乘除第1节同底数幂的乘法课后练习

第一章整式的乘除第1节同底数幂的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.若(7×106)(5×105)(2×10)=a ×10n ,则a ,n 的值分别为( )A .a =7,n =11B .a =5,n =12C .a =7,n =13D .a =2,n =13 2.(﹣a )2•a 3=( )A .﹣a 5B .a 5C .﹣a 6D .a 63.如果xm =2,xn =14,那么xm +n 的值为( ) A .2 B .8 C .12 D .2144.我们知道:若am =an (a >0且a ≠1),则m =n .设5m =3,5n =15,5p =75.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ;①m +n =2p ﹣1;①n 2﹣mp =1.其中正确的是( )A .①①B .①①C .①①D .①①①5.计算28+(-2)8所得的结果是( )A .0B .216C .48D .296.下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A .1B .2C .3D .47.下列运算中,正确的是( )A .4312=a a aB .()32639a a =C .23•a a a =D .()224ab ab = 8.下列计算正确的是( )A .()()43224a a a a -⋅-⋅-=-B .()()43224a a a a -⋅-⋅-=C .()()4329a a a a -⋅-⋅-=-D .()()4329a a a a -⋅-⋅-= 9.201120102009222--其结果是( )A .20092B .20102C .20092-D .数太大,无法计算评卷人得分二、填空题10.已知92781m n⨯=,则646m n--的值为______.11.计算23()()a a-⋅-的结果等于_____________.12.已知2x+3y﹣1=0,则9x•27y的值为______.13.计算(x﹣y)2(y﹣x)3(x﹣y)=__(写成幂的形式).14.计算:235m m⋅=______.15.已知53x=,54y=,则25x y+的结果为______ .16.如图,正方形的边长为()1a a>,将此正方形按照下面的方法进行剪贴:第一次操作,先沿正方形的对边中点连线剪开,然后粘贴为一个长方形,其中叠合部分长为1,则此长方形的周长为_______,第二次操作,再沿所得长方形的对边(长方形的宽)中点连线剪开,然后粘贴为一个新的长方形,其中叠合部分长为l,……如此继续下去,第n次操作后得到的长方形的周长为________.17.观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++,若502a=,则用含a的代数式表示下列这组数50515299100222 (22)++++的和_________.评卷人得分三、解答题18.如果ac=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.19.计算:(1)﹣b 2×(﹣b )2×(﹣b 3)(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)520.(1)先化简,再求值:2(x 2﹣xy )﹣(3x 2﹣6xy ),其中x =12,y =﹣1.(2)已知am =2,an =3,求①am +n 的值;①a 3m ﹣2n 的值.21.把下列式子化成()na b -的形式:()()()()()3452 a b b a a b b a a b -⋅----+-22.如果c a b =,那么规定(),a b c =. 例如:如果328=,那么()2,83=()1根据规定,()5,1= ______, 14,16⎛⎫= ⎪⎝⎭()2记()3,6a =,() 3,7b =, () 3,x c =,若a b c +=,求x 值.23.根据同底数幂的乘法法则,我们发现:m n m n a a a +=⋅(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=⋅,请根据这种新运算解决以下问题:(1)若()11h =-,则()2h =______;()2019h =______;(2)若()7128h =,求()2h ,()8h 的值;(3)若()()442h h =,求()2h 的值; (4)若()()442h h =,直接写出()()()()()()()()2462123h h h h n h h h h n ++++的值.24.(1)已知:210,a a +-=则43222000a a a +++的值是_____(2)如果记162a =,那么1231512222+++++=_____(3)若232122192,x x ++-=则x=_____(4)若5543254321021),x a x a x a x a x a x a -=+++++(则24a a +=_____25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S ﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).参考答案:1.C【解析】【分析】根据科学记数法表示的数的计算方法,乘号前面的数相乘,乘号后面的数相乘,再根据同底数幂相乘,底数不变指数相加进行计算,最后再化成科学记数法即可得解.【详解】解:(7×106)(5×105)(2×10)=(7×5×2)×(106×105×10)=7×1013所以,a=7,n=13.故选:C.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则与科学记数法表示的数的计算方法是解题的关键.2.B【解析】【分析】根据同底数幂相乘,底数不变,指数相加解答,即am•an=am+n.【详解】解:(﹣a)2•a3=a2•a3=a2+3=a5,故选:B.【点睛】此题考查同底数幂的乘法计算,正确掌握同底数幂的乘法公式是解题的关键.3.C【解析】【分析】根据同底数幂的乘法进行运算即可.【详解】解:如果x m=2,x n=14,那么x m+n=x m×x n=2×14=12.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式.4.B【解析】【分析】根据同底数幂的乘法公式即可求出m、n、p的关系.【详解】解:①5m=3,①5n=15=5×3=5×5m=51+m,①n=1+m,①5p=75=52×3=52+m,①p=2+m,①p=n+1,①m+p=n﹣1+n+1=2n,故此结论正确;①m+n=p﹣2+p﹣1=2p﹣3,故此结论错误;①n2﹣mp=(1+m)2﹣m(2+m)=1+m2+2m﹣2m﹣m2=1,故此结论正确;故正确的是:①①.故选:B.【点睛】本题考查同底数幂的乘法,解题的关键是熟练运用同底数幂的乘法公式.5.D【解析】【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.6.A【解析】【分析】利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答.【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误;2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.7.C【解析】【分析】根据单项式乘单项式,可判断A ,根据同底数幂的乘法,可判断C ,根据积的乘方,可判【详解】A 、单项式与单项式相乘,把系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,故A 错误;B 、3得立方是27,故B 错误;C 、同底数幂的乘法底数不变指数相加,故C 正确;D 、积的乘方等于乘方的积,故D 错误;故选:C .【点睛】此题考查幂的运算,单项式与单项式的乘法,解题关键在于掌握幂的运算和单项式的运算.8.D【解析】【分析】根据积的乘方的运算法则,分别将各项的结果计算出来再进行判断即可.【详解】A . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项A 错误;B . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项B 错误; C . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项C 错误; D . ()()()4434323292=a a a a a a a a ++-⋅-⋅-=--=⋅⋅,故选项D 正确. 故选:D .【点睛】此题主要考查了积的乘方与同底数幂的乘法运算,熟练掌握运算法则是解题的关键. 9.A【解析】【分析】先提取公因式20092,再进行计算,即可求解.【详解】201120102009222--=220091(221)2--⨯=200912⨯=20092故选A .【点睛】本题主要考查同底数幂的乘法法则的逆运用,掌握分配律以及同底数幂的运算法则,是解题的关键.10.2-【解析】【分析】将92781m n ⨯=进行整理,得到232349273333m n m n m n +⨯=⨯==,即234m n +=,代入即可求解.【详解】解:①232349273333m n m n m n +⨯=⨯==,①234m n +=,①()64662236242m n m n --=-+=-⨯=-,故答案为:2-.【点睛】本题考查同底数幂相乘的应用,将92781m n ⨯=变形得到234m n +=是解题的关键. 11.5a -【解析】【分析】根据同底数幂的乘法运算法则进行计算即可.【详解】225533=()(())()a a a a a +-⋅--=--=故答案为:5a -.【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键. 12.3【解析】【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:①2x +3y ﹣1=0,①2x +3y =1.①9x •27y =32x ×33y =32x+3y =31=3.故答案为:3.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键. 13.﹣(x ﹣y )6##-(y-x )6【解析】【分析】将原式第二个因式提取-1变形后,利用同底数幂的乘法法则计算,即可得到结果.【详解】解:(x ﹣y )2(y ﹣x )3(x ﹣y )=﹣(x ﹣y )2(x ﹣y )3(x ﹣y )=﹣(x ﹣y )6.故答案为:﹣(x ﹣y )6.【点睛】此题考查了同底数幂的乘法运算,熟练掌握法则是解本题的关键.14.55m【解析】【分析】按照同底数幂相乘运算法则进行计算即可.【详解】23(23)5555m m m m +⋅== 故答案为:55m【点睛】本题考查了同底数幂相乘,掌握同底数幂相乘底数不变,指数相加是解题的关键 15.144【解析】【分析】先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解即可.【详解】解:53x =,54y =,25x y +∴2255x y =⨯22(5)(5)x y =⨯2234=⨯916=⨯144=.故答案为:144.【点睛】本题考查了同底数幂的乘法,解答本题的关键在于先将25x y +变形为22(5)(5)x y ⨯,然后结合同底数幂的乘法的概念和运算法则将53x =,54y =代入求解.16. 52a - 21112222nn n a +-+-+ 【解析】【分析】先求出长方形的长与宽,再根据长方形的周长公式即可得;然后利用同样的方法求出第二次、第三次操作后得到的长方形的周长,归纳类推出一般规律即可得.【详解】解:第一次操作后得到的长方形的宽为12a ,长为121a a a +-=-, 则第一次得到的长方形的周长为12(21)522a a a +-=-, 第二次操作后得到的长方形的宽为21142a a =,长为2(21)143a a --=-, 第三次操作后得到的长方形的宽为31182a a =,长为2(43)187a a --=-,归纳类推得:第n 次操作后得到的长方形的宽为12na , 观察发现,第一次操作后得到的长方形的长为212(1)1a a -=-+,第二次操作后得到的长方形的长为2434(1)12(1)1a a a -=-+=-+,第三次操作后得到的长方形的长为3878(1)12(1)1a a a -=-+=-+, 归纳类推得:第n 次操作后得到的长方形的长为2(1)1n a -+,则第n 次操作后得到的长方形的周长为21111222(1)12222n n n n n a a a +-+⎡⎤+-+=-+⎢⎥⎣⎦, 故答案为:52a -,21112222nn n a +-+-+. 【点睛】本题考查了图形规律探索、同底数幂的乘法,正确归纳类推出长与宽的一般规律是解题关键.17.22a a -【解析】【分析】观察发现规律,并利用规律完成问题.【详解】观察232222+=-、23422222++=-发现23n 1222222n +++++=- ①5051529910022222+++++ =()505024*********+++++ =50505122(22)+-=50505022(222)+⨯-(把502a =代入)=(22)a a a +-=22a a -.故答案为:22a a -.【点睛】此题考查乘方运算,其关键是要归纳出规律23n 1222222n +++++=-并运用之.18.(1)3,0,﹣2;(2)a +b =c ,理由见解析.【解析】【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)①33=27,①(3,27)=3,①40=1,①(4,1)=0,①2﹣2=14,①(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a+b=c.理由:①(3,5)=a,(3,6)=b,(3,30)=c,①3a=5,3b=6,3c=30,①3a×3b=5×6=3c=30,①3a×3b=3c,①a+b=c.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.19.(1)b7;(2)(x﹣y)3(y﹣2)7.【解析】【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【详解】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(x ﹣y )3×(y ﹣2)2×(y ﹣2)5=(x ﹣y )3(y ﹣2)7.【点睛】本题考查幂的相关计算,有时候需要有整体思想,把底数可以为多项式的.20.(1)﹣x 2+4xy ,﹣94;(2)①6;①89. 【解析】【分析】(1)先利用整式的加减运算法则进行化简,再将x 、y 的值代入求解即可;(2)根据同底数幂的逆运算计算即可.【详解】(1)22()(23)6x xy x xy ---223262x xy x xy --+=24x xy =-+当1,12x y ==-时,原式2211194)4(1)222(44x xy =-=-⨯++⨯-=--=-; (2)2,3m n a a ==①236m n m n a a a +=⋅=⨯=;①323232328()()239m n m n m n a a a a a -=÷=÷=÷=. 【点睛】本题考查了整式的加减、同底数幂的运算,熟记整式的运算法则是解题关键.21.()53a b -【解析】【分析】将原式中的每项变成同度数幂,运用同底数幂的乘法法则进行计算即可得解.【详解】()()()()()3452 a b b a a b b a a b -⋅----+-, =()()()()()3245+a b a b a b a b a b -⋅---+-=()()()555 +a b a b a b --+-=()53a b -【点睛】此题主要考查了同底数幂的乘法,掌握并熟练运用同底数幂的忒覅覅买基金解题的关键. 22.(1)0,-2;(2)42【解析】【分析】(1)根据已知幂的定义得出即可;(2)根据已知得出3a =6,3b =7,3c =x ,同底数幂的乘法法则即可得出答案.【详解】(1)根据规定,(5,1)=0,(4,116)=-2, 故答案为:0;-2;(2)①(3,6)=a ,(3,7)=b ,(3,x )=c ,①3a =6,3b =7,3c =x ,又①a+b=c ,①3a ×3b =3c ,即x=6×7=42.【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.23.(1)1;-1;(2)4;256;(3)4;(4)122n +-【解析】【分析】(1)将()2h 变形为()11h +,根据新定义计算即可;(2)将()7h 变形为()71h ⎡⎤⎣⎦,得出()1h ,即可得出()2h ,()8h 的值; (3)将等式变形()()()()42222h h h h +=,即可得解; (4)根据变形发现规律,即求()()()()123h h h h n ++++的值,求解即可.【详解】(1)()()()()()()21111111h h h h =+=⋅=--=;()()()()()()()()100920191201812018122016121h h h h h h =+=⋅=-+=-=-(2)()()771128h h ==①()12h =①()()()2114h h h =⋅=,()()()()817172128256h h h h =+=⋅=⨯= (3)()()()()()()()()4222224222h h h h h h h h +==== (4)由(3)得出()24h =,①()12h =①()()()()()()()()2462123h h h h n h h h h n ++++=()()()()123h h h h n ++++=124816222n n ++++++=-【点睛】 此题主要考查同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题关键. 24.(1)2001(2)1a -(3)52(4)﹣120【解析】【分析】(1)根据题意,得到21a a +=;再将原式进行变形即可得出答案(2)先设原式等于m ,利用2m -m 求出原式的值,最后将a 代入即可(3)根据幂的乘方运算公式对原式进行变形,然后进而的出答案(4)采用赋值法进行计算【详解】(1)由题意得:21a a +=;①43222000a a a +++=43322000a a a a ++++=()22322000a a a a a ++++=3222000a a a +++=()222000a a a a +++=12000+=2001 (2)设1231512222m =++++⋯+,则23416222222m =++++⋯+;①16221m m -=-,即1621m =-①原式=1a -(3)232122x x ++-=212x +∙22122x +-=2132x +⋅=192①21264x +=①216x +=①52x = (4)当x=1时,1=012345a a a a a a +++++ ……①当x=﹣1时,53-=012345a a a a a a -+--+ ……①当x=0时,-1=0a①+①=()0242a a a ++=513-即024a a a ++=5132- ①24a a +=5132-+1=﹣120 【点睛】本题主要考查了代数式的变形求值,掌握各类代数式求值的特点是解题关键25.(1)211﹣1(2)1+3+32+33+34+ (3)=1312n +-. 【解析】【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值.(2)同理即可得到所求式子的值.【详解】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n,两边乘以3得:3S=3+32+33+34+…+3n+3n+1,下式减去上式得:3S﹣S=3n+1﹣1,即S=1312n+-,则1+3+32+33+34+…+3n=1312n+-.。

七下数学同底数幂的运算教案+练习

七下数学同底数幂的运算教案+练习

6.用ห้องสมุดไป่ตู้0的整数指数幂表示下列各数:100000,0.1,1, 0.00001,-0.001.
7.计算:(1)10-4×(-2)0; (2)(-0.5)0÷(-)-3.
8.当x______时,(3x+2)0=1有意义,若代数式(2x+1)-4无意义,则 x=________. 提高训练 9.计算:()-1-4×(-2)-2+(-)0-()-2.
同底数幂的除法(二)同步练习
【索引档案】 1.理解零指数幂的意义和负整数指数幂的意义. 2.会进行零指数幂和负整数指数幂的运算. 3.能准确地用科学记数法表示一个数,且能将负整数指数幂化为分 数或整数. 【学法指导】 1.零的零次幂没有意义,底数不能为零. 2.负整数指数幂中的底数都不等于零. 范例积累
答案: 1. 2.(1)-1 (2)1 (3)4 (4)6 3.(1)× (2)× (3)× (4)× 4.(1)≠0 (2)≠-5 (3)≠-5 5.(1)0.0000002 (2)0.0000314 (3)0.00708 (4)0.217 6.105 10-1 100 10-5 -10-3
7.(1)10-4 (2)8.≠- =- 9.-7 10. 11.(1)x=-5 (2)x=-2 (3)x=-2 12.成立,根据(am)n=amn 13.=10-n
点拨:(1)运用零指数公式即可,(2)中注意乘法与加法的区 别,第一个的指数是+2,(3)中底数是分数的负指数幂要仔细运用公 式,易错之处. 解:(1)(-1)0-(-π)0=1-1=0 (2)()2+()0+(-)0=+1+1=2 (3)(-)-2===4(易错!仔细运算)
同底数幂的除法(一)同步练习

3.1同底数幂的乘法

3.1同底数幂的乘法

=(3.84×3.6) × (103×108×103)
=13.824× 1014 =1.3824×1015 ≈1.38×1015(次)
答:它一小时约能运算1.38×1015次。
变式训练:
填空:
(1) x4· x5 = x9 (2) (-y)4 · (-y)7 =(-y)11 (3) a2m · am =a3m (4) (x-y)2 · (x-y)3 =(x-y)5
最后结果一定要用科 学计数法表示
我国自行研制的“神威”计算机的峰值运算 速度达到每秒3840亿次。如果按这个速度 工作1小时,那么它能运算多少次(结果保留 3个有效数字)?
解:3840亿次 =3840×108次 =3.84×103×108次
1时 = 3600 秒
=3.6×103秒
(3.84×103×108)× (3.6×103) 乘法的交换律和结合律
如 具am有·这an一·a性p质=呢am?+n怎+样p (用m公、式n表、示p?都是正整数)
试一试
抢答
(1) 76×74
( 710 )
(2) a7 ·a8 ( a15 )
(3) x5 ·x3 ( x8 )
(4) b5 ·b ( b6 )
辨一辨
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 (× )
(-1)2 =__1___=___1_2__ (-1)4 =__1___=___1_4__ (-1)6 =__1___=___1_6__ (-1)8 =__1___=___1_8__
负数的偶数次幂 为正数 当n为偶数时 (-a)n = an (a-b)n =(b-a)n

(苏科版)七年级数学下册期末复习提升训练 幂的运算 【含答案】

(苏科版)七年级数学下册期末复习提升训练 幂的运算 【含答案】

(苏科版)七年级数学下册期末复习提升训练 幂的运算一、选择题1、下列运算中属于同底数幂相乘的是( )A .(﹣a )2•a 2B .﹣a 2•(﹣a )3C .﹣x 2•x 5D .(a ﹣b )2•(b ﹣a )32、计算的结果是( ).33(2)a -A . B . C . D .66a -96a -68a -98a -3、若,则的值为( )320a b +-=248a b ⨯A .B .C .D .524232224、若a n +1•a m +n =a 6,且m ﹣2n =1,求m n 的值为( ).B.-D.-A.1 B.-1C.3D.-35、计算:( )()202020190.254⨯-=A .B .C .1D .44-1-6、如果3x =m ,3y =n ,那么3x ﹣y 等于( )A .m +nB .m ﹣nC .mnD .nm7、若,其中为整数,则与的数量关系为( )122n n x +=+2322n n y ++=+n x y A .B .C .D .4x y =4y x =12x y =12y x=8、设a =255,b =333,c =422,则a 、b 、c 的大小关系是( )A .c <a <bB .a <b <cC .b <c <aD .c <b <a9、若(1﹣x )1﹣3x =1,则x 的取值有( )个.A .0B .1C .2D .310、若a ≠0,化简下列各式,正确的个数有( )(1)a 0•a •a 5=a 5;(2)(a 2)3=a 6;(3)(﹣2a 4)3=﹣6a 12;(4)a ÷a ﹣2=a 3;(5)a 6+a 6=2a 12;(6)2﹣2÷25×28=32;(7)a 2•(﹣a )7•a 11=﹣a 20A .1个B .2个C .3个D .4个二、填空题11、无意义,则x 的取值为 ________.()0x 7+12、若,则=__________.21,2n n a b ==()232-na b 13、若3m =2,3n =4,则3m +n =__________;14、已知,则的值为_________.340m n +-=28m n ⋅15、若,则____.2211392781n n ++⨯÷=n =16、若,则=_____.293,2x x y a a -==y a 17、若a x =3,a y =2,则a 3x ﹣2y 的值为 .18、已知2a =5,2b =10.2c =50,那么a 、b 、c 之间满足的等量关系是________.19、若,则x 的值为()3211x x +-=20、今年上半年,新冠病毒席卷全世界.已知某种病毒的直径为21.7微米(1毫米=1000微米),用科学记数法表示这种病毒的直径为 米.三、解答题21、计算:(1) (2)()()24576332x x x x x ⋅+⋅-+2324251(3)()()2a b a b -⋅-⋅-22、计算:(1)(y 2)3÷y 6•y (2)y 4+(y 2)4÷y 4﹣(﹣y 2)223、(1)计算:.()()1020*******π-⎛⎫--+-+- ⎪⎝⎭(2)计算:()2014×1.52012×(﹣1)20143224、(1)已知3×9m ÷27m =316,求m 的值.(2)若2x +5y ﹣3=0,求4x •32y 的值.(3)若n 为正整数,且x 2n =4,求(3x 3n )2﹣4(x 2)2n 的值.25、(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值26、一般地,若(且),则n 叫做以a 为底b 的对数,记为,即na b =0a >1,0a b ≠>log a b .log a b n =譬如:,则4叫做以3为底81的对数,记为(即=4).4381=3log 813log 81(1)计算以下各对数的值: , , .2log 4=2log 16=2log 64=(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的2log 42log 162log 64等量关系式;(3)由(2)猜想一般性的结论: .(且),并根log log a a M N +=0a >1,0a M ≠>,0N >据幂的运算法则:以及对数的含义证明你的猜想.M N M N a a a +⋅=(苏科版)七年级数学下册期末复习提升训练 幂的运算一、选择题1、下列运算中属于同底数幂相乘的是( )A .(﹣a )2•a 2B .﹣a 2•(﹣a )3C .﹣x 2•x 5D .(a ﹣b )2•(b ﹣a )3C【分析】根据同底数幂的意义,只需底数相同就可以用,以此判断即可A 、底数-a 和a 不是同底数,故此选项错误;B 、底数a 和-a 不是同底数,故此选项错误;C 、底数都是x ,故此选项正确;D 、底数a-b 和b-a 不是同底数,故此选项错误,故选:C .2、计算的结果是( ).33(2)a -A . B . C .D .66a -96a -68a -98a -D 积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.3、若,则的值为( )320a b +-=248a b ⨯A .B .C .D .52423222B【分析】直接利用同底数幂的乘法运算法则和幂的乘方将原式变形得出答案.解:,,.故选:.320a b +-= 32a b ∴+=2262(3)4482222a b a b a b +∴⨯=⨯==B4、若a n +1•a m +n =a 6,且m ﹣2n =1,求m n 的值为( ).B.-D.-A.1 B.-1C.3D.-3C【分析】根据a n +1•a m +n =a 6,可得m +2n =5,然后与m ﹣2n =1联立,解方程组即可.解:由题意得,a n +1•a m +n =a m +2n +1=a 6,则m +2n =5,∵,∴,故m n =3.2521m n m n +=⎧⎨-=⎩31m n =⎧⎨=⎩5、计算:( )()202020190.254⨯-=A .B .C .1D .44-1-D 【分析】由同底数幂相乘的逆运算,积的乘方的运算法则进行计算,即可得到答案.【详解】解:;故选:D .()20202019201920202019110.254()4(4)4444⨯-=⨯=⨯⨯=6、如果3x =m ,3y =n ,那么3x ﹣y 等于( )A .m +nB .m ﹣nC .mnD .nm【分析】根据同底数幂相除,底数不变,指数相减,整理后再根据指数相等列出方程求解即可.∵3x =m ,3y =n ,∴3x ﹣y =3x ÷3y=,nm 故选:D .7、若,其中为整数,则与的数量关系为( )122n n x +=+2322n n y ++=+n x y A .B .C .D .4x y =4y x=12x y =12y x =【分析】先将y 变形为,进而可得答案.()21222n n +⨯+【详解】解:因为,()2122231222222222n n n n n n y ++++=⋅+=++⋅⨯=122n n x +=+所以.故选:B .224y x x =⋅=8、设a =255,b =333,c =422,则a 、b 、c 的大小关系是( )A .c <a <bB .a <b <cC .b <c <aD .c <b <aD【分析】直接利用指数幂的性质结合幂的乘方运算法则将原式变形进而得出答案.∵a =255=(25)11=3211,b =333=(33)11=2711,c =422=(42)11=1611,∴c <b <a .故选:D .9、若(1﹣x )1﹣3x =1,则x 的取值有( )个.A .0B .1C .2D .3【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.解:∵(1﹣x )1﹣3x =1,∴当1﹣3x =0时,原式=()0=1,32当x =0时,原式=11=1,故x 的取值有2个.故选:C .10、若a ≠0,化简下列各式,正确的个数有( )(1)a 0•a •a 5=a 5;(2)(a 2)3=a 6;(3)(﹣2a 4)3=﹣6a 12;(4)a ÷a ﹣2=a 3;(5)a 6+a 6=2a 12;(6)2﹣2÷25×28=32;(7)a 2•(﹣a )7•a 11=﹣a 20A .1个B .2个C .3个D .4个【分析】分别根据零整数指数幂的定义,同底数幂的乘除法法则,幂的乘方与积的乘方运算法则,合并同类项法则以及负整数指数幂的定义逐一判断即可.解:a 0•a •a 5=a 6,故(1)错误;(a 2)3=a 6,故(2)正确;(﹣2a 4)3=﹣8a 12,故(3)错误;a ÷a ﹣2=a 3,故(4)正确;a 6+a 6=2a 6,故(5)错误;2﹣2÷25×28=2,故(6)错误;a 2•(﹣a )7•a 11=﹣a 20,故(7)正确,所以正确的个数为3个.故选:C .二、填空题11、无意义,则x 的取值为 ________.()0x 7+7x =-【分析】根据底数不为0的数的0次幂是1,可得底数不为0,可得答案.【详解】解:由题意得,解得,故.70x +=7x =-7x =-12、若,则=__________.21,2n n a b==()232-n a b 4【分析】先将写成含有和的代数式表示,然后再代入求值即可.()232-na b n a nb 解:.故答案为4.()()()664232222-124n n n n n a b a b a b ===⨯=13、若3m =2,3n =4,则3m +n =__________;8【分析】利用同底数幂的乘法法则运算即可.解:∵3m =2,3n =4,∴3m +n =3m ×3n =2×4=8,故8.14、已知,则的值为_________.340m n +-=28m n⋅【分析】用n 表示出m ,得,将m 代入到即可求解.43m n =-28m n ⋅【详解】解:∵,∴,.340m n +-=43m n =-34334222216282m n n n m n -===∴⋅= 故1615、若,则____.2211392781n n ++⨯÷=n =3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解: , ,2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=2423343333n n ++⨯÷=,,,.故3242(33)433n n ++-+=1433n +=14n +=3n =16、若,则=_____.293,2x x y a a -==y a 2【分析】直接利用同底数除法的逆用、幂的乘方运算法则将原式变形进而得出答案.【详解】∵,,∴,3x a =292x y a -=22()x y x y a a a -=÷29(3)2y a =÷=∴.故2.2y a =17、若a x =3,a y =2,则a 3x ﹣2y 的值为 .【分析】先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,再代入求出即可.∵a x =3,a y =2,∴a 3x ﹣2y =a 3x ÷a 2y=(a x )3÷(a y )2=33÷22=,427故.42718、已知2a =5,2b =10.2c =50,那么a 、b 、c 之间满足的等量关系是________.a+b=c【分析】根据同底数幂乘法法则:同底数幂相乘,底数不变,指数相加,即可得到a 、b 、c 之间的关系;解:∵2a =5,2b =10,∴,22251050a b a b +⨯==⨯=又∵=50=,∴a+b=c .故a+b=c .2c 22a b ⨯19、若,则x 的值为()3211x x +-=-2; 1【详解】情况1: 解得:x =-2; 情况2:解得:x =1;21030x x -≠⎧⎨+=⎩211x -=情况3:解得:x =0;x +3=3(奇数),故不符合条件211x -=-故-2; 120、今年上半年,新冠病毒席卷全世界.已知某种病毒的直径为21.7微米(1毫米=1000微米),用科学记数法表示这种病毒的直径为 米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.解:21.7微米÷=2.17×10﹣5米;故2.17×10﹣5.三、解答题21、计算:(1) (2)()()24576332x x x x x ⋅+⋅-+2324251(3)()()2a b a b -⋅-⋅-(1)4;(2)12x 14132716a b 【分析】(1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;解:(1) ===4()()24576332x x x x x ⋅+⋅-+1266122x x x x +⋅+1212122x x x ++12x (2)==2324251(3)()()2a b a b -⋅-⋅-63810127()16a b a b -⋅⋅-14132716a b 22、计算:(1)(y 2)3÷y 6•y (2)y 4+(y 2)4÷y 4﹣(﹣y 2)2【分析】(1)先根据幂的乘方法则化简,再根据同底数幂的乘除法法则计算即可;(2)先根据幂的乘方与积的乘方法则化简,再根据同底数幂的除法化简,然后合并同类项即可.解:(1)(y 2)3÷y 6•y =y 6÷y 6•y =y ;(2)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4.23、(1)计算:.()()1020*******π-⎛⎫--+-+- ⎪⎝⎭7【分析】原式利用负整数指数幂法则、零指数幂法则、绝对值的代数意义及乘方的意义计算即可得到结果.【详解】解:.()()10202013314π-⎛⎫--+-+- ⎪⎝⎭4131=-++7=(2)计算:()2014×1.52012×(﹣1)201432【分析】根据幂的乘方和积的乘方计算即可.解:()2014×1.52012×(﹣1)20143224、(1)已知3×9m ÷27m =316,求m 的值.(2)若2x +5y ﹣3=0,求4x •32y 的值.(3)若n 为正整数,且x 2n =4,求(3x 3n )2﹣4(x 2)2n 的值.【分析】(1)根据同底数幂乘、除法的运算法则进行计算即可;(2)根据同底数幂乘法的运算法则进行计算即可;(3)根据同底数幂乘法、积的乘方、幂的乘方的运算法则进行计算即可.【详解】解:(1)∵3×9m ÷27m =316,∴31+2m ﹣3m =316,∴1﹣m =16,∴m =﹣15;(2)∵2x +5y ﹣3=0,∴2x +5y =3,∴4x •32y =22x +5y =23=8;(3)∵x 2n =4,∴x n =2,∴(3x 3n )2﹣4(x 2)2n =9x 6n ﹣4x 4n =9×26﹣4×24=24×25=29.25、(1)若4a +3b =3,求92a •27b .(2)已知3×9m ×27m =321,求m 的值【分析】(1)根据幂的乘方以及同底数幂的乘法法则解答即可;(2)根据幂的乘方以及同底数幂的乘法法则解答即可.解:(1)∵4a +3b =3,∴92a •27b =34a •33b =33=27;(2)∵3×9m ×27m =3×32m ×33m =31+2m +3m =321,∴1+2m +3m =21,解得m =4.26、一般地,若(且),则n 叫做以a 为底b 的对数,记为,即na b =0a >1,0a b ≠>log a b .log a b n =譬如:,则4叫做以3为底81的对数,记为(即=4).4381=3log 813log 81(1)计算以下各对数的值: , , .2log 4=2log 16=2log 64=(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的2log 42log 162log 64等量关系式;(3)由(2)猜想一般性的结论: .(且),并根log log a a M N +=0a >1,0a M ≠>,0N >据幂的运算法则:以及对数的含义证明你的猜想.M N M N a a a +⋅=(1)2,4,6;(2)+=;(3)猜想:,证明见2log 42log 162log 64log log a a M N +=log ()a MN 解析.【分析】(1)根据材料中给出的运算,数值就是乘方运算的指数;(2)由(1)可以得出;(3)根据(2)可以写出,根据材料中的定义证明即可.(1),(2)2log 42=2log 164=,2log 646=222log 4log 16log 64+=(3)猜想: 证明:设,,则,log log log ()a a a M N MN +=1log a M b =2log a N b =1ba M =,2b a N =故可得,,即.1212•b b b b MN a a a +==12log ()a b b MN +=log log log ()a a a M N MN +=。

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂乘除法练习题 姓名 班级
同底数幂乘法练习
一. 计算
1. 102 103
2. 2423
3.(-2)3(-2)2
4.(1
2)5(1
2)4
5. 52 5
6. 0.15
7.(-13)4(-13)7
8.(-5)3(-5)5
9. 15x).(1
5x)3.( 15x)4
11.(a-b)3 (a-b)5
12. y m ·y m+1
13.(-a )2·(-a )3·(-a )
14.(-y )·(-y )2·(-y )3·(-y )4
15. x 5 + x 5 + x 5
二、 判断正误
·x 5=x 15 ( )
·x 3=x 3 ( )
+x 5=x 8 ( )
·x 2=2x 4 ( )
+y 7=y 14 ( )
·a 2 - a 2·a 3 = 0 ( ) ·b 5=(ab)8 ( )
8.(-x)2(-x)3=(-x)5= -x 5 ( )
三、填空
·( )= x 8
·( )= a 6
3.(2
3)2·(2
3)2( )= (23)8
·x 3 ·( )= x 7
·( )=x 3m
• a 2 •( )= a 11
四、计算:
·a 6
·(-a )3;
3.(-a )2·(-a )3·(-a );
·(-x )2
5. -x 2·(-x )2
6.(-x )·x 2·(-x )4;
(-a )3·(-a )
8.(x+y )m+1·(x+y )m+n 9.(x-y )3·(y-x )2 10.(s-t )2·(t-s )·(s-t )4 11.(m-n )2002·(n-m )2007 五、1.已知a x =2,a y =3,求a x+y 2.已知(x+y)a .(y+x)b =(x+y)5, (x+y)a+5.(y+x)5-b =(x+y)9, 当x=2,y=3时,求x a y b 的值. 3.若x+2y-3=0,求5x ·52y 的值 4.已知2x+y =8,3x-1=27, 求x 2+y 2的值 同底数幂除法练习 一、判断正误.: (1)a 3·a 2=a 32=a 6;( ) (2)a 5·a 3=a 5+3=a 8; (3)a 9÷a 3=a 9÷3=a 3;( ) (4)a 6÷ a 3 = a 2;( ) (5)a 5÷ a = a 5;( ) (6)- a 6 ÷ a 5 = -1 ( ) (7) (-a )6÷(-a )3=a 3 ( ) (8) (- c)4÷(- c)2 = -c 2 ( ) (9) (-2)10÷(-2)5=(-2)5= -10 ( ) 二、计算:(1) a 8÷a 3 (2)(-a )10÷(-a )3 (3)(2a )7÷(2a )4 (4)(12)18÷(12)15 (5) (xy)3÷(xy ) (6)(a-b )5÷(a-b )3 (7)(– 13)m+2 ÷(– 13)2 (8)t 2m +3 ÷ t 2 (m 是正整数); (9)(a -b )2m ÷(a-b )m (10)x 11÷(-x )5 (11)a 8÷ (-a ) 5÷(1-x)2 三、混合运算 (1) x 5÷x 4÷x ; (2)y 8÷y 6÷y 2; (3)a 8·a 4÷a 10 (4)a 5÷a 4•a 2 ; (5)y 8÷(y 6÷y 2); (6)x n -1÷x •x 3-n ; (7)(a-b)10÷ [(a-b)2 · (b -a)5] (8)-(y 5•y 2)÷(y 3•y 4) (9)(-x )8÷(-x )2 – x 4•x 2 四、1. 已知 a x =2 , a y =3 , 则a = ;a 2x-y = ; 2.若3230x y --=,求103x ÷102y 的值。

3. 一个体重40千克的人体内约有血液千克,其中约有红细胞250亿个。

每克血液中约有多少个红细胞? 4.假如你是一艘宇航船的船长,受命以5年的时间前往半人马星座,半人马星座与地球的距离约为41310⨯千米,而你的宇航船以光速航行,你能如期到达半人马星座吗?(光的速度约为8103⨯米/秒)。

相关文档
最新文档