高频小信号谐振放大器设计报告
高频课程设计报告(小信号谐振放大器)
摘要随着现代通信技术的不断发展,作为通信工程专业基础课程之一的《通信电路原理》在整个通信技术中占据着十分重要的地位。
本课程设计主要应用到了《通信电路原理》的各个章节的内容,作为一门通信方面的重要课程,它应用到的先修课程的内容主要包括电路原理、电子线路基础、逻辑设计与数字系统、信号与系统等。
本论文主要论述了通信系统的概述、调幅发射机和超外差接收机的工作原理及组装测试和高频小信号谐振放大器的设计仿真与硬件实现。
其中重点阐述了发射机和接收的工作原理和小信号放大器的设计及仿真。
关键词:通信系统、调幅发射机、超外差接收机、高频小信号、谐振放大器目录摘要 (1)第1章绪论 (3)1.1通信系统的一般模型 (3)1.2 通信系统中的发送与接收设备 (3)第2章调幅发射机及超外差接收机的工作原理及组装调试 (5)2.1 调幅发射机及超外差接收机的工作原理 (5)2.1.1 调幅发射机的组成和工作原理 (5)2.1.2超外差接收机的工作原理 (8)2.2 调幅发射机及超外差接收机的组装及调试 (11)2.21调幅发射机的组装及调试 (11)2.22超外差接收机的组装及调试 (11)第3章高频小信号谐振放大器的设计与仿真 (12)3.1放大器的设计分析 (12)3.2电路的设计与参数计算 (14)第4章高频小信号谐振放大器的硬件实现 (18)4.1焊接知识概述 (18)4.1.1操作前检查 (18)4.1.2焊接步骤 (18)4.2放大器的焊接及调试 (19)4.2.1放大器的焊接 (19)4.2.1放大器的调试 (20)第5章小结 (21)参考文献 (22)致谢 (23)附录 (24)附录A 绪论翻译 (24)附录B 高频小信号谐振放大器电路PSpice图 (26)附录C 高频集成芯片及电路收集 (27)1.集成芯片 (27)2.电路 (30)第1章绪论通信的一般含义是从发信者到收信者之间消息的传递,包括旗语、邮政等。
高频小信号谐振放大器设计报告
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 高频小信号谐振放大器设计课程设计目的:①巩固和运用在《高频电子线路》课程中所学的理论知识和实验技能;②基本掌握常用高频电子电路的一般设计方法;③提高设计能力和实验技能,通过动脑、动手解决实际问题;④为以后从事通信电路设计、研制电子产品打下基础。
课程设计内容和要求1.掌握高频小信号调谐放大器的工作原理;2. 熟悉谐振回路的调谐方法及放大器动态工作状态的测试方法;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
初始条件:①电路板及元件,参数;②高频,电路等基础知识;③EWB仿真软件。
时间安排:1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。
(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract .................................................... 错误!未定义书签。
1高频小信号调谐放大器的原理分析.. (1)1.1 小信号调谐放大器的主要特点 (1)1.2 小信号调谐放大器的主要质量指标 (1)1.2.1谐振频率 (1)1.2.2谐振增益(Av) (1)1.2.3通频带 (2)1.2.4增益带宽积 (3)1.2.5选择性 (3)1.2.6噪声系数 (4)1.3 晶体管高频小信号等效电路与分析方法 (4)1.3.1单级单调谐回路谐振放大器电路原理 (5)1.3.2多级单调谐回路谐振放大器 (6)1.4 自激 (7)1.5 多级放大器的设计原则 (8)1.6 集成宽带放大电路 (9)2高频小信号调谐放大器的设计与制作 (10)2.1主要技术指标 (10)2.2给定条件 (10)2.3设计过程 (10)2.3.1选定电路形式 (10)2.3.2设置静态工作点 (11)2.3.3谐振回路参数计算 (12)2.3.4确定耦合电容与高频滤波电容 (13)3高频小信号谐振放大器电路仿真实验 (14)3.1仿真电路图 (14)3.2测量并调整放大器的静态工作点 (14)3.3谐振频率的调测与技术指标的测量 (15)4 总结(心得体会) (17)参考文献 (18)摘要放大高频小信号(中心频率在几百KHZ到几百MHZ,频谱宽度在几KHZ到几十MHZ的范围内)的放大器,称为高频小信号放大器。
高频小信号放大器实验报告
实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
高频小信号放大器 实验报告
高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。
2、进一步理解高频小信号放大器与低频小信号放大器的不同。
3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。
4、掌握谐振放大器的调试方法。
5、掌握用示波器测试小信号谐振放大器的基本性能。
6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。
二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。
该放大电路能够对输入的高频小信号进行反相放大。
LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。
二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和功率增益。
电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。
它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。
高频小信号谐振放大器的设计
⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器的设计⾼频⼩信号谐振放⼤器课程设计任务书1、设计课题:⾼频⼩信号谐振放⼤器2、设计⽬的:设计⼀个⼯作电压为9V ,中⼼频率为20MHz 的⾼频⼩信号谐振放⼤器,可⽤作接收机的前置放⼤器和中频放⼤器。
3、主要技术指标及要求 (1)已知条件及主要技术指标已知条件:负载电阻Ω=k R L 1,电源电压V V cc 9+=。
技术指标:1中⼼频率MHz f o 20=; 2电压增益dB A uo 1≥∑(10倍); 3通频带MHz f 427.0=?; 4电路结构采⽤分⽴元件。
(2)设计的主要⼯作 1收集资料、消化资料;2选择原理电路,计算电路参数并仿真分析; 3制作印制电路板⼀张;4绘制电路原理图⼀张(A4图纸); 5绘制元件明细表⼀张(A4图纸); 6绘制印制电路板底图⼀张(A4图纸);7撰写设计报告⼀份,要求字数在3000字以上。
(3)时间安排1总时间四天,最后半天(4学时)为答辩时间;2星期⼀完成系统⽅案、电路原理图设计并计算电路参数; 3星期⼆上午完成电路参数的计算; 4星期⼆下午完成电路仿真; 5星期三撰写设计报告、绘图;6星期四完善资料,准备答辩,答辩过程分两步完成,前2节课时间分⼩组答辩,并初步推举出优秀设计2~4个;后2节课时间为优秀设计集中答辩时间。
(4)注意事项1作图必须规范,图幅整洁;2设计报告内容详细,叙述清楚,计算准确,有根有据,书写⼯整; 3独⽴完成任务。
第⼀章系统⽅案设计⼀、电路结构的选择根据设计任务书的要求,因放⼤器的增益⼤于20dB ,且MHz f o 20=,MHz f 427.0=?,采⽤单级放⼤器即可实现,拟定⾼频⼩信号谐振放⼤器的电路原理图如图1-1所⽰。
⼆、电路的⼯作过程(⼀)静态⼯作过程当输⼊信号ui=0V 时,放⼤器处于直流⼯作状态(静态)。
理想情况下,变压器T1的次级、变压器T2的初级视为短路,电容器Cb 、Ce 、Cf 视为开路,放⼤器的直流通路如图1-2(a)所⽰。
实验报告范本_3
实验课程名称:_高频电子线路实验项目名称高频小信号谐振放大器实验成绩实验者专业班级组别同组者XXX 实验日期xx年x月x日一.实验目的1.掌握高频小信号谐振放大器的电路组成与基本工作原理。
2.掌握高频小信号谐振放大器谐振回路的调谐方法及回路参数对谐振曲线的影响。
3.掌握高频小信号谐振放大器的主要技术指标的意义及测试方法。
(电压增益、通频带、矩型系数等)实验基本原理实验用高频小信号谐振放大器的电路如图1所示:图中,R1、R2、RE用以保证晶体管工作于放大区域,从而使放大器工作于甲类。
C5是RE的旁路电容,C1是输入耦合电容,L2、C2、Ct是谐振回路,Ct用来调谐,SW1用以改变集电极回路的阻尼电阻R,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
SW2用以改变射极偏置电阻Re,以观察放大器静态工作点变化对谐振回路(包括电压增益)的影响。
为了减轻负载对回路Q值的影响,输出端采用变压器耦合输出方式。
三、主要仪器设备高频实验箱GP-4 一台双踪示波器TDS-1002 一台高频信号发生器WY-1052 一台万用表一块四、实验内容,实验数据等记录1、放大器静态测量与工作状态判断基本条件:R=10K Vcc=12V按表要求分别改变RE时,测试数据记录于表中:实际测量值(V) 计算值根据VCE 判断BG1是否工作在放大区REVb Ve Vc Vce Ic(mA) 是否原因2、谐振频率fo与谐振增益Avo的测定与计算基本条件:当阻尼电阻R=10K条件1数据(Re=2K)条件2数据(Re=500Ω)fo=? Avo= ? fo=? Avo= ?输入/输出信号波形输入/输出信号波形说明1:放大器的AVo表征的是:说明2:放大器射极电阻Re变化对AVO的影响。
3.谐振放大器通频带Bw的测定基本条件:Re=1K条件1数据(R=10K)条件2数据(R=470Ω) Bw 0.7=fH-FL= ? Bw 0.7=fH-FL= ?通带特性曲线通带特性曲线说明1:什么是通频带?说明2:放大器阻尼电阻R变化对AVO与Bw的影响。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告姓名:学号:班级:日期:高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法;二、实验仪器与设备高频电子线路综合实验箱;扫频仪;高频信号发生器;双踪示波器三、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S=12MHz。
基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。
放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LCf π210式中,L 为调谐回路电感线圈的电感量;∑C为调谐回路的总电容,∑C的表达式为ie oe C P C P C C2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。
谐振频率f 0的测量方法是:用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。
2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,g Σ为谐振回路谐振时的总电导。
高频小信号调谐放大器实验报告
⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。
Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。
RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。
三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。
静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告一、实验目的。
本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。
二、实验仪器与设备。
1. 信号发生器。
2. 示波器。
3. 电压表。
4. 电流表。
5. 电阻箱。
6. 电容箱。
7. 电感箱。
8. 双踪示波器。
三、实验原理。
高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。
其主要由电容、电感和晶体管等器件组成。
在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。
四、实验步骤。
1. 按照实验电路图连接电路,注意接线的正确性。
2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。
4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。
5. 根据实验数据,计算电路的增益、带宽等特性参数。
五、实验数据与分析。
在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。
通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。
六、实验结果与讨论。
根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。
通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。
七、实验总结。
通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。
实验结果与理论计算基本吻合,证明了实验的有效性和准确性。
八、参考文献。
1. 《电子电路分析与设计》,张三,XX出版社,2010年。
2. 《电子电路实验指导》,李四,XX出版社,2015年。
以上为高频小信号调谐放大器实验报告内容,谢谢阅读。
小信号调谐放大器实验报告
一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。
二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。
其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。
实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。
晶体管的静态工作点由电阻RB1、RB2及RE决定。
放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。
图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。
2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。
3. 万用表:用于测量电路中电阻、电容等元件的参数。
4. 扫频仪(可选):用于测试放大器的幅频特性曲线。
四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。
2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。
3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。
4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。
5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。
五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。
这说明放大器对输入信号有较好的放大作用。
2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。
3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。
4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。
高频小信号谐振放大器实验报告
高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
实验一高频小信号调谐放大器实验报告
实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。
二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。
它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。
输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。
三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。
2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。
3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。
4.测量电路的电压增益,并与理论计算值进行对比。
5.测量电路的频率响应,绘制电压增益与频率的波形图。
6.分析实验现象和结果,总结实验中的经验教训。
五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。
测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。
实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。
六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。
实验结果和数据分析验证了电路设计和搭建的正确性。
此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。
七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。
同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。
希望以后能继续进行相关实验,提升自己的电路设计和测量能力。
高频小信号谐振放大器实验报告
高频小信号谐振放大器设计目录第一章设计总体思路及其计算 (1)1.1 电路的功能 (1)1.2 电路的基本原理 (2)1.3 设计思路及测量方法 (4)(1)谐振频率 (4)(2) 电压增益 (4)(3)通频带 (5)(4)矩形系数 (5)第二章仿真结果及其说明 (5)2.1 设置静态工作点 (5)2.2计算谐振回路参数 (6)2.3 利用Multisim 对电路的仿真图 (6)2.4 设计结果与分析 (7)第一章设计总体思路及其计算1.1 电路的功能高频小信号放大器的作用是无失真的放大某一频率范围内的信号。
按其频带宽度可以分为窄带和宽带放大器。
高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
1.2 电路的基本原理图1晶体管高频小信号单极单调谐回路谐振放大器图1所示电路为共发射极接法的晶体管高频小信号单极单调谐回路谐振放大器。
它不仅放可以大高频信号,而且还有一定的选频作用,因此,晶体管的集电极负载为LC 并联谐振回路,在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器射出信号的频率或相位。
放大器在谐振时的等效电路如图2所示,晶体管的4个y 参数分别为: 输入导纳:bb e b e b b b e bc b m b b c b ce oe r C j g r C j g g r C j g y ''''''''+++++≈ωωω)1( 输出导纳:bb e b e b b b e b e b ie r C j g r C j g y ''''''+++≈ωω)1( 正向传输导纳:bb e b e b b b m fe r C j g r g y ''''++≈ω)1( 反向传输导纳:b b e b e b b bc b c b re r C j g r C j g y ''''''+++-≈ωω)1( 式中m g 为晶体管的跨导,与发射极电流的关系为:{}6*S m i g A e m =图2谐振放大器的高频等效电路晶体管在高频情况下的分布参数除了与静态工作电流e i 、电流放大系数有关外,还与工作角频率有关。
高频实验:小信号调谐放大器实验报告
高频实验:小信号调谐放大器实验报告实验目的:1. 掌握小信号调谐放大器的原理、特点和设计方法。
2. 熟悉集成运算放大器的使用方法。
实验器材:1. 功率供应器。
2. 调谐放大器电路板。
3. 频谱分析仪。
4. 示波器。
5. 信号发生器。
6. 电压表和电流表。
7. 切割器。
8. DMM数字万用表。
实验原理:调谐放大器是指在特定频率下具有较大的放大倍数的放大器,是一种具有选择性放大作用的放大器。
当输入信号频率和特定放大器谐振频率相等时,输出信号强度达到最大值,这种现象称为谐振。
实验步骤:1. 按照电路图连接电路,检查电路连接是否正确。
2. 将调谐电容器的电容值调至最小,即使谐振频率接近1kHz。
3. 将信号发生器设置为100Hz正弦波,300mVpp的幅值,连接到调谐放大器的输入端。
4. 连接万用表测量调谐放大器的输出电压。
5. 使用信号发生器逐步调整频率,记录最大输出幅值的频率。
6. 依次将信号发生器设置为200Hz、500Hz、1kHz、2kHz和5kHz的正弦波。
7. 针对每个频率,记录输出电压,并绘制输出电压随频率变化的曲线图。
实验结果:1. 频率为1kHz时的输出幅值最大,达到4.5V。
2. 随着频率的增加或减小,输出电压下降。
3. 输出电压随着频率变化的曲线呈现出谐振现象。
本实验采用调谐放大器电路进行测试,结果表明,在1kHz的频率下,该电路有最佳的选择性放大功能。
根据测试结果,该电路可以广泛应用于频率选择放大器等领域。
实验一高频小信号调谐放大器实验报告
高频小信号调谐放大器一、实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。
4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用二、实验仿真利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真仿真电路图如下:六、数据处理()f MHz7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 u mV15 15 15 15 15 15 15 15 15 15()i()u mV19 28 55 120 128 138 143 150 140 130 oA u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67(/)u o i()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 ()o u mV1201009080643928242018(/)u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.2078910111213141516255075100125150f(MHz)二、实验仿真利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:使得晶体满足:1.发射极正偏:b e V V >,且0.6be V V >2.集电极反偏:b c V V <3.1ce V V >(若ce V 过小,将导致晶体管饱和导通,此时小信号放大器没有放大倍数)通过测量,可得到通频带约为10.819MHz-10.655MHz =0.164MHz。
关于高频小信号调谐放大器的实验报告
实验一高频小信号调谐放大器一、实验目的;1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验仪器;3 实验内容及步骤(电路图、设计过程、步骤);四、实验内容和步骤实验中电路部分元器件值,R2=10KΩ, R3=1KΩ, R10=2KΩ, R12=51Ω, R13=10KΩ,R24=2KΩ, R27=5.1KΩ, R28=18KΩ, R30=1.5KΩ, R31=1KΩ, R32=5.1KΩ, R33=18KΩ, R35=1.5KΩ, W3=47KΩ, W4=47KΩ,C20=1nF, C21=10nF, C23=10nF。
(一)、单级单调谐放大器1、计算选频回路的谐振频率范围如图1-8 所示,它是一个单级单调谐放大电路,输入信号由高频信号源或者振荡电路提供。
调节电位器W3 可改变放大电路的静态工作点,调节可调电容CC2 和中周T2 可改变谐振回路的幅频特性。
谐振回路的电感量L=1.8uH~2.4uH,回路总电容C=105 pF~125pF,根据公式图1-8 单级单调谐放大器实验原理图2、检查连线正确无误后,测量电源电压正常,电路中引入电压。
实验板中,注意TP9接地,TP8 接TP10;3、用万用表测三极管Q2 发射极对地的直流电压,调节可变电阻使此电压为5V。
4、用高频信号源产生频率为10.7MHz,峰峰值约400mV 的正弦信号,用示波器观察,调节电感电容的大小,适当调节静态工作点,使输出信号V o 的峰峰值V op-p 最大不失真。
记录各数据,得到谐振时的放大倍数。
5、测量该放大器的通频带、矩形系数对放大器通频带的测量有两种方式:(1) 用扫频仪直接测量;(2) 用点频法来测量,最终在坐标纸上绘出幅频特性曲线。
此处选用以扫频仪测量在放大器的频率特性曲线上读取相对放大倍数下降为0.1 处的带宽BW0.1或0.01处的带宽BW0.01。
高频小信号放大器实验报告
高频小信号放大器实验报告小组成员:一、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
4、测量线路的主要数据进行分析。
5、加深对线路的理解。
二、实验器材装有Multisim的计算机一台。
三、实验原理小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。
所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路。
这种放大器对谐振频率0f及附近频率的信号具有较强的放大作用,而对其它远离0f的频率信号,放大作用很差。
高频小信号调谐放大器是我主要质量指标:1、中心频率是指放大器的工作频率。
2、增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力。
3、通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带。
四、实验内容与结果1、连接出高频小信号放大器的电路图。
2、电压增益系数根据示波器的波形得出电压增益Avo=1353、由上图可得出通频带Bo=1.28MHz 4、直流工作点分析由上可得出直流工作点的仿真值。
再通过万用表测出测量值。
5、交流分析图像为:可以看出的是谐振频率在4MHz左右,与计算值相符。
六、实验总结通过本次实验,我们充分掌握了高频小信号谐振电路电压放大器的组成以及特性,对电路实验有了更充分的认识与了解。
特别是对于测量和调节方式方面经过了更加深入的探讨与研究已经有了长足的进展。
我相信在今后的实验中,我们可以更加熟练的运用本软件做更多的研究与发展。
同时这次实验也发现了很多不足的地方,也有很多值得思考的地方,只有经过不断的努力、研究与实践,我们才能够更加完美的使用Multisim。
高频小信号谐振放大器报告
实验一高频小信号谐振放大器
一、实验目的
1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、实验内容
1.参照电路原理图1-1连线。
2.图1-1为一单调谐回路中频放大器,已知工作频率f
,计算回
路电容和回路电感。
图
1-1 小信号谐振放大器
1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:
V 1参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V
2
参数DC=12V。
在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Start Fred为10k、End Fred为500MEG。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V
1
、Lntervat为10。
三、实验报告
1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成
表1-1
2.画出输入信号和输出信号的波形;(根据图形输出)。
高频实验报告实验二 单调谐高频小信号谐振放大器
单调谐高频小信号谐振放大器目录一、实验原理 (2)二、仿真分析 (8)2.1 实验一 (8)2.2 实验二 (14)三、单调谐放大电路设计实例 (22)3.1电路选择与参数计算 (23)3.1.1选定电路形式 (23)3.1.2设置静态工作点 (24)3.1.3谐振回路参数计算 (24)3.1.4确定耦合电容与高频滤波电容: (24)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L 、C 组成的并联谐振回路,由于L 、C 并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。
因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。
正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。
调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。
这里先讨论单调谐放大器。
(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。
图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。
输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。
为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。
L LV s ’图1.1高频小信号谐振放大器电路在低频电子电路中,我们经常采用混合π模型来描述晶体管。
把晶体管内部的物理过程用集中元器件RLC 表示。
用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。
混合π 参数是晶体管物理参数,与频率无关,物理概念清楚。
但是由于输入输出相互牵制,在高频分析时不太方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 高频小信号谐振放大器设计课程设计目的:①巩固和运用在《高频电子线路》课程中所学的理论知识和实验技能;②基本掌握常用高频电子电路的一般设计方法;③提高设计能力和实验技能,通过动脑、动手解决实际问题;④为以后从事通信电路设计、研制电子产品打下基础。
课程设计内容和要求1.掌握高频小信号调谐放大器的工作原理;2. 熟悉谐振回路的调谐方法及放大器动态工作状态的测试方法;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
初始条件:①电路板及元件,参数;②高频,电路等基础知识;③EWB仿真软件。
时间安排:1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。
(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract .................................................... 错误!未定义书签。
1高频小信号调谐放大器的原理分析.. (1)1.1 小信号调谐放大器的主要特点 (1)1.2 小信号调谐放大器的主要质量指标 (1)1.2.1谐振频率 (1)1.2.2谐振增益(Av) (1)1.2.3通频带 (2)1.2.4增益带宽积 (3)1.2.5选择性 (3)1.2.6噪声系数 (4)1.3 晶体管高频小信号等效电路与分析方法 (4)1.3.1单级单调谐回路谐振放大器电路原理 (5)1.3.2多级单调谐回路谐振放大器 (6)1.4 自激 (7)1.5 多级放大器的设计原则 (8)1.6 集成宽带放大电路 (9)2高频小信号调谐放大器的设计与制作 (10)2.1主要技术指标 (10)2.2给定条件 (10)2.3设计过程 (10)2.3.1选定电路形式 (10)2.3.2设置静态工作点 (11)2.3.3谐振回路参数计算 (12)2.3.4确定耦合电容与高频滤波电容 (13)3高频小信号谐振放大器电路仿真实验 (14)3.1仿真电路图 (14)3.2测量并调整放大器的静态工作点 (14)3.3谐振频率的调测与技术指标的测量 (15)4 总结(心得体会) (17)参考文献 (18)摘要放大高频小信号(中心频率在几百KHZ到几百MHZ,频谱宽度在几KHZ到几十MHZ的范围内)的放大器,称为高频小信号放大器。
这类放大器,按照所用器件可分为晶体管,场效应管和集成电路放大器;按照通过频谱的宽窄可分为窄带和宽带放大器;按照电路形式可分为单级和级联放大器;按照所用负载性质可分为谐振放大器和非谐振放大器。
所谓谐振放大器,就是采用谐振回路作负载的放大器。
根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。
所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。
高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。
高频信号放大器理论非常简单,但实际制作却非常困难。
其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。
本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路高频小信号谐振放大器设计1高频小信号调谐放大器的原理分析1.1 小信号调谐放大器的主要特点晶体管集电极负载通常是一个由 LC组成的并联谐振电路。
由于 LC 并联谐振回路的阻抗是随着频率变化而变化,理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值。
即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。
1.2 小信号调谐放大器的主要质量指标衡量小信号调谐放大器的主要质量主要包括以下几个方面:1.2.1谐振频率放大器调谐回路谐振时所对应的频率称为放大器的谐振频率,理论上,对于 LC 组成的并联谐振电路,谐振频率的表达式为:式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容。
谐振频率的测试方法:放大器的调谐回路谐振时所对应的频率称为放大器的谐振频率,可以用扫频仪测出电路的幅频特性曲线,另外,也可以通过点频法改变输入信号频率,得到输出增益随频率变化的幅频特性曲线,电压谐振曲线的峰值即对应谐振频率点。
1.2.2谐振增益(Av)放大器的谐振电压增益放大倍数指:放大器处在在谐振频率f0下,输出电压与输入电压之比。
Av的测量方法:当谐振回路处于谐振状态时,用高频毫伏表测量输入信号Vi和输出信号Vo大小,利用下式计算:另外,也可以利用功率增益系数进行估算:1.2.3通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av=Vo/Vi下降到谐振电压放大倍数Avo的 0.707 倍时所对应的频率偏移称为放大器的通频带带宽BW,通常用2Δf0.1表示,有时也称2Δf0.1为 3dB 带宽。
通频带带宽:式中,Q为谐振回路的有载品质因数。
当晶体管选定后,回路总电容为定值时,谐振电压放大倍数fo与通频带BW的乘积为一常数。
频带BW 的测量方法:根据概念,可以通过测量放大器的谐振曲线来求通频带。
测量方法主要采用扫频法,也可以是逐点法。
扫频法:即用扫频仪直接测试。
测试时,扫频仪的输出接放大器的输入,放大器的输出接扫频仪检波头的输入,检波头的输出接扫频仪的输入。
在扫频仪上观察并记录放大器的频率特性曲线,从曲线上读取并记录放大器的通频带。
逐点法:又叫逐点测量法,就是测试电路在不同频率点下对应的信号大小,利用得到的数据,做出信号大小随频率变化的曲线,根据绘出的谐振曲线,利用定义得到通频带。
具体测量方法如下:a、用外置专用信号源做扫频源,正弦输入信号的幅度选择适当的大小,并保持不变;b、示波器同时监测输入、输出波形,确保电路工作正常(电路无干扰、无自激、输出波形无失真);c、改变输入信号的频率,使用毫伏表测量不同频率时输出电压的有效值;d、描绘出放大器的频率特性曲线,在频率特性曲线上读取并记录放大器的通频带。
测试时,可以先调谐放大器的谐振回路使其谐振,记下此时的谐振频率fo及电压放大倍数Avo,然后改变高频信号发生器的频率(保持其输出电压不变),并测出对应的电压放大倍数。
由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图 1-1 所示。
图1-1 放大器的通频带和谐振曲线1.2.4增益带宽积增益带宽积BW•G也是通信电子电路的一个重要指标,通常,增益带宽积可以认为是一个常数。
放大器的总通频带宽度随着放大级数的增加而变窄,BW越大,增益越小。
二者是一对矛盾。
不同电路中,放大器的通频带差异可能比较大。
如:在设计电视机和收音机的中频放大器时,对带宽的考虑是不同的,普通的调幅无线电广播所占带宽是9kHz,而电视信号的带宽需要6.5MHz,显然,要获得同样的增益,中频放大器的带宽设计是完全不同的。
1.2.5选择性放大器从含有各种不同频率的信号总和中选出有用信号,排除干扰信号的能力,称为放大器的选择性。
选择性的基本指标是矩形系数。
其中,定义矩形系数k v1.0是电压放大倍数下降到谐振时放大倍数A v0的10%所对应的频率偏移和电压放大倍数下降为0.707A v0时所对应的频率偏移2Δf0.1之比,即:同样还可以定义矩形系数k r01.0,即:显然,矩形系数越接近1,曲线就越接近矩形,滤除邻近波道干扰信号的能力愈强。
1.2.6噪声系数NF越接近 1 越好。
1.3 晶体管高频小信号等效电路与分析方法高频小信号放大器由于输入信号幅值小,可以认为晶体管工作在线性区,经常采用有源线性四端网络进行分析。
如图1-2,1-3 所示,Y 参数等效电路和混合π等效电路是描述晶体管高频小信号下工作状况的重要模型。
图1-2混合π等效电路图图 1-3 y参数等效电路Y参数等效电路与混合π等效电路参数的转换,用混合π参数表示的 Y 参数:其中。
1.3.1单级单调谐回路谐振放大器电路原理图 1-4 单级单调谐回路谐振放大器图 1-4 是一个单级单调谐回路谐振放大器的原理图,理论上分析,谐振时电压增益:放大器的增益可用带宽表示为:其中单调谐放大器的选择性用矩形系数来表示为:所以单调谐放大器的矩形系数比 1大得多,选择性比较差。
1.3.2多级单调谐回路谐振放大器实际的实验和应用中,需要把微弱的信号进行多级放大,这要求电路有较大增益,因此,高频放大器大多是多级级联而成,多级放大器的电压增益指当放大器有 m 级时,各级的电压增益分别为Av1、Av2 …Avm,则总增益Av是各级增益的乘积,即如果多级放大器是由完全相同的单级放大器组成,则对 m级放大器而言,通频带为:式中,2Δf7.0为单级放大器的通频带,称为带宽缩减因子,其物理意义是:随着级数增加,总通频带变窄。
m级单调谐回路放大器的矩形系数为:1.4 自激在做高频实验时,经常在测试电路中会出现自激的现象,特别是在多级放大的情况中。
我们将这种没有外部输入信号,由于电路内部正反馈作用而自动维持输出交流信号的现象称为自激。
它经常和进行高频电路设计相违背,我们把这种具有自激现象的放大器称为自激振荡器,它实际上就是一个有足够反馈量的正反馈放大器。
产生自激振荡的条件和振荡电路的原理一致。
即满足:(1)相位平衡条件放大器的反馈信号与输入信号必须同相位,即相位差是 180°(或π)的偶数倍。
(2)振幅平衡条件指放大器的反馈信号必须有一定的幅度。
在振荡建立的初期,必须使反馈信号大于原输入端的信号。
交流负反馈能够改善放大电路的许多性能,改善的程度由负反馈的深度决定。
但是,如果电路组成不合理,反馈过深,且电路附加相移(高频区或低频区)改变了反馈信号的极性时,电路中的负反馈就会变成正反馈。
反而会使放大电路产生自激振荡。
这种自激振荡是一定要消除的。
克服自激的方法在这里介绍以下几种:(1)中和法:在晶体管的输出和输入端之间插入一个外加的反馈电路,使它的作用恰好和晶体管的内反馈互相抵消。
具体线路如图 1-5,C N为外接电容,图 1-5 外加的反馈电路克服自激(2)失配法:失配法一般采用共发一共基级联放大器实现,失配法是用牺牲增益换来提高放大器的稳定性。
如图 1-6 所示。
图1-6 共发共基级联放大器电路1.5 多级放大器的设计原则多级放大器时,必须处理好各项指标之间的矛盾,包括合理地选择电路形式,半导体器件类型和谐振回路的参数。