《等差数列》单元测试题百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S

B .5S

C . 6S

D . 7S

2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7

B .12

C .14

D .21

3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .

825

两 B .

845

两 C .

865

两 D .

885

两 4.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -

B .n

C .21n -

D .2n

5.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了

3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 6.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2 7.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列

8.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( ) A .

13

15

B .

2335

C .

1117

D .

49

9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.设等差数列{}n a 的前n 项和为n S ,10a <且11101921

a a =,则当n S 取最小值时,n 的值为( ) A .21

B .20

C .19

D .19或20

11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人

所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .

54

钱 B .

43

钱 C .

23

钱 D .

53

钱 12.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且

713n n S n T n -=,则5

5

a b =( ) A .

34

15

B .

2310

C .

317

D .

62

27

13.已知等差数列{}n a 中,前n 项和2

15n S n n =-,则使n S 有最小值的n 是( )

A .7

B .8

C .7或8

D .9

14.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸

D .二丈二尺五寸

15.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237

n n S n T n =+,则6

3a b 的值为

( ) A .

5

11 B .38

C .1

D .2

16.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .

53

B .2

C .8

D .13

17.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12

B .20

C .40

D .100

18.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25

B .11

C .10

D .9

19.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6

B .7

C .8

D .10

20.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32

B .33

C .34

D .35

相关文档
最新文档