物理高考专题训练题及答案解析(珍藏版):磁场(测)

合集下载

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。

高考物理电磁学知识点之磁场基础测试题及解析(6)

高考物理电磁学知识点之磁场基础测试题及解析(6)

高考物理电磁学知识点之磁场基础测试题及解析(6)一、选择题1.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为e m 的电子以速度v 0从A 点沿AB 边射出(电子重力不计),欲使电子能经过AC 边,磁感应强度B 的取值为A .B <03mv ae B .B <02mv aeC .B >03mv aeD .B >02mv ae2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N 1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N 2,则以下说法正确的是( )A .N 1>N 2,弹簧长度将变长B .N 1>N 2,弹簧长度将变短C .N 1<N 2,弹簧长度将变长D .N 1<N 2,弹簧长度将变短3.科学实验证明,足够长通电直导线周围某点的磁感应强度大小I B k l,式中常量k >0,I 为电流强度,l 为该点与导线的距离。

如图所示,两根足够长平行直导线分别通有电流3I 和I (方向已在图中标出),其中a 、b 为两根足够长直导线连线的三等分点,O 为两根足够长直导线连线的中点,下列说法正确的是( )A .a 点和b 点的磁感应强度方向相同B .a 点的磁感应强度比O 点的磁感应强度小C .b 点的磁感应强度比O 点的磁感应强度大D .a 点和b 点的磁感应强度大小之比为5:74.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。

如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。

分别加速氘核和氦核,下列说法正确的是( )A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能.其核心部分是分别与高频交流电源两极相连接的两5.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离6.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间7.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。

高三物理磁场基本性质常见磁场试题答案及解析

高三物理磁场基本性质常见磁场试题答案及解析

高三物理磁场基本性质常见磁场试题答案及解析1.如图,两根平行长直导线相距2l,通有大小相等、方向相同的恒定电流:a、b、c是导线所在平面内的三点,左侧导线与它们的距离分别为、l和3l。

关于这三点处的磁感应强度,下列判断正确的是A.a处的磁感应强度大小比c处的大B.b、c两处的磁感应强度大小相等C.a、c两处的磁感应强度方向相同D.b处的磁感应强度为零【答案】AD【解析】由右手定则可以判断,a、c两处的磁场是两电流在a、c处产生的磁场相加,但a距离两导线比c近,故a处的磁感应强度大小比c处的大,A对;b、c与右侧电流距离相同,故右侧电流对此两处的磁场要求等大反向,但因为左侧电流要求此两处由大小不同、方向相同的磁场,故b、c两处的磁感应强度大小不相等,B错;由右手定则可知,a处磁场垂直纸面向里,c处磁场垂直纸面向外,C错;b与两导线距离相等,故两磁场叠加为零,D对。

【考点】磁场叠加、右手定则2.彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是【答案】AB【解析】由安培定则可以判断,A中I1在线圈位置产生的磁场方向垂直纸面向里,I2在线圈位置产生的磁场方向向外,穿过线圈的磁通量可能为零,同理可以判断B中,I1在线圈位置产生的磁场方向垂直纸面向外,I2在线圈位置产生的磁场方向垂直纸面向里,穿过线圈的磁通量可能为零,A、B正确;C中I1、I2在线圈位置产生的磁场方向都垂直纸面向里,D中I1,I2在线圈位置产生的磁场方向都垂直纸面向外,C、D中穿过线圈的磁通量不可能为零.【考点】通电直导线周围磁场的方向。

3.如图所示,两根长直导线m、n竖直插在光滑绝缘水平桌面上的小孔P、Q中,O为P、Q连线的中点,连线上a、b两点关于O点对称,导线中通有大小、方向均相同的电流I.下列说法正确的是A.O点的磁感应强度为零B.a、b两点磁感应强度的大小Ba >BbC.a、b两点的磁感应强度相同D.n中电流所受安培力方向由P指向Q【答案】A【解析】根据安培右手定则,m在O点产生的磁场方向垂直ab连线向里,n在O点产生的磁场方向垂直ab连线向外,根据对称性,磁感应强度大小相等,磁场矢量和等于0,选项A对。

高考物理新电磁学知识点之磁场经典测试题含答案解析(1)

高考物理新电磁学知识点之磁场经典测试题含答案解析(1)

高考物理新电磁学知识点之磁场经典测试题含答案解析(1)一、选择题1.如图所示,在水平放置的光滑绝缘杆ab上,挂有两个相同的金属环M和N.当两环均通以图示的相同方向的电流时,分析下列说法中,哪种说法正确()A.两环静止不动 B.两环互相远离C.两环互相靠近 D.两环同时向左运动.其核心部分是分别与高频交流电源两极相连接的两2.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离3.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间4.如图所示的圆形区域里匀强磁场方向垂直于纸面向里,有一束速率各不相同的质子自A 点沿半径方向射入磁场,则质子射入磁场的运动速率越大,A.其轨迹对应的圆心角越大B.其在磁场区域运动的路程越大C.其射出磁场区域时速度的偏向角越大D.其在磁场中的运动时间越长5.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为υ.当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的()A.前表面的电势比后表面的低B.前、后表面间的电压U与υ无关C.前、后表面间的电压U与c成正比D.自由电子受到的洛伦兹力大小为eU a6.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。

高中物理磁场练习题(含解析)

高中物理磁场练习题(含解析)
C.法拉第提出了“电场”的概念,并制造出第一台电动机
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.

高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m= 代入解得 0221221L qE n E v n md n B=-⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=代入解得02(1)21221L qE n E v n md n B+=-⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.120R m m x m =≤≤)【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y =12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180︒×100%=29%4.如图,平面直角坐标系中,在,y>0及y<-32L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-32L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L(不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610NF N-=⨯ (2)11.25B T= (3)127s360tπ=,001290143ββ==和【解析】【详解】解:(1)设P碰撞前后的速度分别为1v和1v',Q碰后的速度为2v从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒运动周期:222m TqB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒6.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.(1)求第I 象限内磁场的磁感应强度B 1;(2)计算说明速率为5v 、9v 的粒子能否到达接收器;(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mvB qL=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL=-2(17317)'mvB +=),垂直坐标平面向外【解析】 【详解】(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①由牛顿运动定律得21v qvB m R=②得1mv B qL=③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式222()R L y R -+=④得这两种粒子在y 轴上的交点到O 的距离分别为3L 17L ⑤故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有15172917L L R L L= 又221(9)9v q vB m R ⋅=⑨解得2217(517)mv B qL=-(或2(51717)mvB +=)⑩若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里同理:21732917L LR L L-=222(9)9'v q vB m R ⋅=解得2217'(173)m B qL=-2(17317)'4mvB qL +=)7.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B dq m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d8.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。

高考物理《磁场、磁感线、磁场的叠加》真题练习含答案

高考物理《磁场、磁感线、磁场的叠加》真题练习含答案

高考物理《磁场、磁感线、磁场的叠加》真题练习含答案1.[2024·浙江省湖州市月考]奥斯特通过实验证实了电流的周围存在着磁场.如图所示,闭合开关S后,位于螺线管右侧的小磁针和位于螺线管正上方的小磁针N极指向将分别是()A.向右,向左B.向左,向左C.向左,向右D.向右,向右答案:A解析:将通电螺线管等效成一条形磁铁,根据右手螺旋定则可知螺线管右侧为N极,左侧为S极,则位于螺线管右侧的小磁针N极指向右,位于螺线管正上方的小磁针N极指向左,A正确.2.安培曾经提出分子环形电流的假说来解释为什么磁体具有磁性,他认为在物质微粒的内部存在着一种环形的分子电流,分子电流会形成磁场,使分子相当于一个小磁体(如图甲所示).以下说法正确的是()A.这一假说能够说明磁可以生电B.这一假说能够说明磁现象产生的电本质C.用该假设解释地球的磁性,引起地磁场的环形电流方向如图乙所示D.用该假设解释地球的磁性,引起地磁场的环形电流方向如图丙所示答案:B解析:这一假说能够说明磁现象产生的电本质,即磁场都是由运动的电荷产生的,故B 正确,A错误;由右手螺旋定则可知,引起地磁场的环形电流方向应是与赤道平面平行的顺时针方向(俯视),C、D错误.3.[2024·江苏省无锡市、江阴市等四校联考]科考队进入某一磁矿区域后,发现指南针静止时,N 极指向为北偏东60°,如图虚线所示.设该位置地磁场磁感应强度的水平分量为B ,磁矿所产生的磁感应强度水平分量最小值为( )A .B 2 B .3B 2C .BD . 3 B 答案:B解析:磁矿所产生的磁场水平分量与地磁场水平分量垂直时,磁矿所产生的磁感应强度水平分量最小,为B′min =B cos 60°=32B ,B 正确.4.[2024·河北省邯郸市多校联考]如图所示为某磁场中部分磁感线的分布图,P 、Q 为磁场中的两点,下列说法正确的是( )A .P 点的磁感应强度小于Q 点的磁感应强度B .同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力C .同一线圈在P 点的磁通量一定大于在Q 点的磁通量D .同一线圈在P 点的磁通量一定小于在Q 点的磁通量 答案:B解析:磁感线的疏密程度表示磁感应强度的大小,由图可知,P 点的磁感应强度大于Q 点的磁感应强度,A 错误;电流元在磁场中的受力与放置方式有关,同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力,B 正确;磁通量大小不只与磁感应强度大小有关,还与线圈的放置方式有关,故同一线圈在P 、Q 两点的磁通量无法比较,C 、D 错误.5.[2024·陕西省西安市质检]在匀强磁场中,一根长为0.4 m 的通电导线中的电流为20 A ,这条导线与磁场方向垂直时,所受的磁场力为0.015 N ,则磁感应强度的大小为( )A .7.2×10-4 TB .3.75×10-3 TC .1.875×10-3 TD .1.5×10-3 T答案:C解析:根据安培力公式F =ILB ,代入数据求得B =F IL =0.0150.4×20 T =1.875×10-3 T ,C 正确.6.在磁感应强度为B 的匀强磁场中有一顺时针的环形电流,当环形电流所在平面平行于匀强磁场方向时,环心O 处的磁感应强度为B 1,如图甲所示;当环形电流所在平面垂直于匀强磁场方向时,环心O 处的磁感应强度为B 2,如图乙所示.已知B 1=22B 2,则环形电流在环心O 处产生的磁感应强度大小为( )A .12B B .BC .32 B D .2B答案:B解析:设环形电流中心轴线的磁感应强度大小为B′,根据安培定则可知其方向为垂直纸面向内,则有B 21 =B′2+B 2,B 2=B′+B ,解得环形电流在环心O 处产生的磁感应强度大小为B′=B ,B 项正确.7.如图所示,直角三角形abc 中,∠abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0.现再将一电流大小为4I 、方向垂直纸面向里的长直导线放置在顶点b 处.已知长直通电导线产生的磁场在其周围空间某点的磁感应强度大小B =k Ir ,其中I 表示电流大小,r 表示该点到导线的距离,k 为常量.则顶点c 处的磁感应强度( )A .大小为 3B 0,方向沿ac 向上 B .大小为B 0,方向垂直纸面向里C .大小为3B 0,方向沿∠abc 平分线向下D .大小为2B 0,方向垂直bc 向上 答案:A解析:令ac 间距为r ,根据几何知识可知bc 间距为2r ,由安培定则可知,a 点处电流产生的磁场在c 点处的磁感应强度方向垂直ac 向左,大小为B 0=k Ir .用安培定则判断通电直导线b 在c 点上所产生的磁场方向垂直于bc 斜向右上,大小为B b =k 4I 2r =2k Ir =2B 0.如图所示由几何知识可得θ=60°,根据矢量的合成法则,则有各通电导线在c 点的合磁感应强度,在水平方向上的分矢量B x =2B 0cos 60°-B 0=0在竖直方向上的分矢量B y =2B 0sin 60°= 3 B 0所以在c 点处的磁感应强度大小为 3 B 0,方向沿ac 向上.。

高考物理二轮总复习 专题过关检测 专题磁场(全含详细答案解析)

高考物理二轮总复习 专题过关检测 专题磁场(全含详细答案解析)

拾躲市安息阳光实验学校高考物理二轮总复习专题过关检测磁场(时间:90分钟满分:100分)第Ⅰ卷选择题一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.20世纪50年代,一些科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场.连续的磁暴作用可维持地磁场,则外地核中的电流方向为(地磁场N极与S极在地球表面的连线称为磁子午线)( )A.垂直磁子午线由西向东B.垂直磁子午线由东向西C.沿磁子午线由南向北D.沿磁子午线由北向南解析:地磁场由南向北,根据安培定则可判断,外地核中电流方向由东向西.答案:B2.如图11-1所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,a 受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力的大小变为F2,则此时b受到的磁场力的大小变为( )图11-1A.F2B.F1-F2C.F2-F1D.2F1-F2解析:对a导线,原来b导线对a导线作用力为F1,方向向左,假设加入的匀强磁场垂直向里,如图甲所示,则a导线受外加匀强磁场的作用力为F′,则F1、F′、F2之间有下列关系:F2=F1-F′(F′=F1-F2)同理对b导线分析受力,如图乙所示,故此时导线b受磁场作用力:F=F1-F′=F1-(F1-F2)=F2本题正确的答案为A.答案:A3.带电体表面突出的地方电荷容易密集.雷雨天当带电云层靠近高大建筑物时,由于静电感应,建筑物顶端会聚集异种电荷,避雷针通过一根竖直导线接通大地而避免雷击.你若想知道竖直导线中的电流方向,进而判断云层所带电荷,安全可行的方法是( )A.在导线中接入电流表B.在导线中接入电压表C.在导线中接入小灯泡D.在导线旁放一可自由转动的小磁针解析:根据小磁针静止时N极的指向判断出其所在处的磁场方向,然后根据安培定则判断出电流方向,既安全又可行.答案:D4.下列关于磁感线的说法正确的是( )A.磁感线可以形象地描述磁场中各点的磁场方向,它每一点的切线方向都与小磁针放在该点静止时S极所指的方向相同B.磁感线总是从磁体的N 极出发,到磁体的S 极终止C.磁场的磁感线是闭合曲线D.磁感线就是细铁屑在磁铁周围排列成的曲线,没有细铁屑的地方就没有磁感线解析:磁感线的切线方向就是该点的磁场方向,磁场的方向规定为小磁针N 极受力的方向,也就是小磁针静止时N 极的指向,所以A 项错误.在磁体的外部,磁感线从N 极出发指向S 极,在磁体的内部,磁感线从S 极指向N 极,并且内、外形成闭合曲线,所以B 项错误,C 项正确.虽然磁感线是为了研究问题的方便人为引入的,我们也可以用细铁屑形象地“显示”磁感线,但不能说没有细铁屑的地方就没有磁感线,所以D 项是错误的. 答案:C 图11-25.如图11-2所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则( ) A.若磁场方向指向纸里,质点运动的周期将大于T 0 B.若磁场方向指向纸里,质点运动的周期将小于T 0 C.若磁场方向指向纸外,质点运动的周期将大于T 0 D.若磁场方向指向纸外,质点运动的周期将小于T 0解析:因电荷在电场力作用下做匀速圆周运动,根据圆周运动知识有r T m F 2)2(π=电,若所加的磁场指向纸里,因电荷所受的洛伦兹力背离圆心,电荷所受的向心力减小,所以质点运动的周期将增大,大于T 0.若所加的磁场指向纸外,因电荷所受的洛伦兹力指向圆心,电荷所受的向心力增大,所以质点运动的周期将减小,小于T 0,正确选项为A 、D.答案:AD6.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图11-3所示.关于场的分布情况可能的是( ) 图11-3A.该处电场方向和磁场方向重合B.电场竖直向上,磁场垂直纸面向里C.电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D.电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A 选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为零就会做直线运动.B 选项中电场力、洛伦兹力都向上,若与重力合力为零,也会做直线运动.C 选项电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力合力为零,就会做直线运动.D 选项三个力合力不可能为零,因此本题选A 、B 、C. 答案:ABC7.如图11-4所示,水平正对放置的带电平行金属板间的匀强电场方向竖直向上,匀强磁场方向垂直纸面向里,一带电小球从光滑绝缘轨道上的a 点由静止释放,经过轨道端点P 进入板间后恰好沿水平方向做匀速直线运动.现在使小球从稍低些的b 点由静止释放,经过轨道端点P 进入两板之间的场区.关于小球和小球现在的运动情况,以下判断中正确的是( ) 图11-4A.小球可能带负电B.小球在电、磁场中运动的过程动能增大C.小球在电、磁场中运动的过程电势能增大D.小球在电、磁场中运动的过程机械能总量不变解析:如果小球带负电,则小球在金属板间受到向下的重力、向下的电场力、向下的洛伦兹力,则小球不能沿水平方向做匀速直线运动,所以小球只能带正电,此时洛伦兹力向上,电场力向上,且F 洛+F 电=mg ,当小球从稍低的b 点由静止释放时,小球进入金属板间的速度将减小,则F 洛减小,F 洛+F 电<mg ,小球将向下运动,电场力做负功,合外力做正功.所以小球在电磁场中运动的过程中动能增大,电势能增加,机械能减小,故B 、C 正确,A 、D 错.答案:BC8.如图11-5所示,两平行金属板的间距等于极板的长度,现有重力不计的正离子束以相同的初速度v 0平行于两板从两板正中间射入.第一次在两极板间加恒定电压,建立场强为E 的匀强电场,则正离子束刚好从上极板边缘飞出.第二次撤去电场,在两板间建立磁感应强度为B 、方向垂直于纸面的匀强磁场,正离子束刚好从下极板边缘飞出,则E 和B 的大小之比为( )图11-5A.045v B.021v C.041v D.v 0 解析:根据题意d =L ①两板间为匀强电场时,离子做类平抛运动.设粒子在板间的飞行时间为t ,则 水平方向:L =v 0t ② 竖直方向:222212t mqE at d ==③ 两板间为匀强磁场时,设偏转半径为r 由几何关系有222)2(L d r r +-=④又rvm B qv 20=⑤①②③④⑤联立得.450v B E = 答案:A9.如图11-6所示,空间有一垂直纸面向外的磁感应强度为0.5 T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘塑料板静止在光滑水平面上.在塑料板左端无初速度放置一质量为0.1 kg 、带电荷量为+0.2 C 的滑块,滑块与绝缘塑料板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对塑料板施加方向水平向左、大小为0.6 N 的恒力,g 取10 m/s 2,则( )图11-6A.塑料板和滑块一直做加速度为2 m/s 2的匀加速运动B.滑块开始做匀加速运动,然后做加速度减小的加速运动,最后做匀速直线运动C.最终塑料板做加速度为2 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动D.最终塑料板做加速度为3 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动解析:滑块随塑料板向左运动时,受到竖直向上的洛伦兹力,和塑料板之间的正压力逐渐减小.开始时,塑料板和滑块加速度相同,由F =(M +m )a 得,a =2 m/s 2,对滑块有μ(mg -qvB )=ma ,当v =6 m/s 时,滑块恰好相对于塑料板有相对滑动,开始做加速度减小的加速运动,当mg =qvB ,即v =10 m/s 时滑块对塑料板的压力为零F N =0,塑料板所受的合力为0.6 N,则2/3's m MFa ==,B 、D 正确.答案:BD10.环形对撞机是研究高能粒子的重要装置,其核心部件是一个高度真空的圆环状的空腔.若带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B.带电粒子将被限制在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是 ( )A.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越大B.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越小C.对于给定的带电粒子和磁感应强度B ,加速电压U 越大,粒子运动的周期越小D.对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变解析:带电粒子经过加速电场后速度为,2mUqv =带电粒子以该速度进入对撞机的环状空腔内,且在圆环内做半径确定的圆周运动,因此qB UmBq mv R 22==,对于给定的加速电压,即U 一定,则带电粒子的比荷q /m 越大,磁感应强度B 应越小,A 错误,B正确;带电粒子运动周期为BqmT π2=,与带电粒子的速度无关,当然就与加速电压U 无关,因此,对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变.答案:BD第Ⅱ卷 非选择题二、填空计算题(共6题,每题10分,共60分)11.在原子反应堆中抽动液态金属时,由于不允许转动机械部分和液态金属接触,常使用一种电磁泵.如图11-7所示是这种电磁泵的结构示意图,图中A 是导管的一段,垂直于匀强磁场放置,导管内充满液态金属.当电流I 垂直于导管和磁场方向穿过液态金属时,液态金属即被驱动,并保持匀速运动.若导管内截面宽为a 、高为b ,磁场区域中的液体通过的电流为I ,磁感应强度为B ,求:图11-7(1)电流I 的方向;(2)驱动力对液体造成的压强差.解析:(1)驱动力即安培力方向与流动方向一致,由左手定则可判断出电流I 的方向由下向上.(2)把液体看成由许多横切液片组成,因通电而受到安培力作用,液体匀速流动,所以有安培力F =Δp ·S,,a BI ab BIb S F p ===∆即驱动力对液体造成的压强差为.aBI 答案:(1)电流方向由下向上 (2)aBI 12.一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为q =1.6×10-19 C ,霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.图11-8在一次实验中,一块霍尔材料制成的薄片宽ab =1.0×10-2 m 、长bc =4.0×10-2m 、厚h =1.0×10-3m,水平放置在竖直向上的磁感应强度B =2.0 T 的匀强磁场中,bc 方向通有I =3.0 A 的电流,如图11-8所示,由于磁场的作用,稳定后,在沿宽度方向上产生1.0×10-5V 的横向电压.(1)假定载流子是电子,ad 、bc 两端中哪端电势较高? (2)薄板中形成电流I 的载流子定向运动的速率为多大?(3)这块霍尔材料中单位体积内的载流子个数为多少?解析:(1)由左手定则可判断,电子受洛伦兹力作用偏向bc 边,故ad 端电势高. (2)稳定时载流子在沿宽度方向上受到的磁场力和电场力平衡abUq qvB =, (3)由电流的微观解释可得:I =nqvS .故n =I /qvS =3.75×1027个/m 3. 答案:(1)ad 端 (2)5×10-4m/s (3)3.75×1027个/m 313.将氢原子中电子的运动看做是绕氢核做匀速圆周运动,这时在研究电子运动的磁效应时,可将电子的运动等效为一个环形电流,环的半径等于电子的轨道半径r .现对一氢原子加上一个外磁场,磁场的磁感应强度大小为B ,方向垂直电子的轨道平面.这时电子运动的等效电流用I 1表示.现将外磁场反向,但磁场的磁感应强度大小不变,仍为B ,这时电子运动的等效电流用I 2表示.假设在加上外磁场以及外磁场反向时,氢核的位置、电子运动的轨道平面以及轨道半径都不变,求外磁场反向前后电子运动的等效电流的差,即|I 1-I 2|等于多少?(用m 和e 表示电子的质量和电荷量)解析:用r 表示电子的轨道半径,v 表示电子速度,则等效电流revI π2=①当加上一垂直于轨道平面的外磁场后,设顺着外磁场方向看,电子做逆时针转动,此时电子受到氢核对它的库仑力指向圆心,而受到洛伦兹力背向圆心.设此时速度为v 1,根据题意得rmv B ev r ke 21122=-②当外磁场反向后,轨道半径r 不变,此时运动速度变为v 2,此时电子受到氢核对它的库仑力不变,而洛伦兹力大小变为e Bv 2,方向变为指向圆心,根据牛顿运动定律可得rmv B ev r ke 22222=+③由②③式解得meBrv v =-12④ 由①④两式可得.2||221πm Be I I =-答案:πm Be 2214.在电子显像管内部,由炽热的灯丝上发射出的电子在经过一定的电压加速后,进入偏转磁场区域,最后打到荧光屏上,当所加的偏转磁场的磁感应强度为0时,电子应沿直线运动打在荧光屏的正中心位置.但由于地磁场对带电粒子运动的影响,会出现在未加偏转磁场时电子束偏离直线运动的现象,所以在精密测量仪器的显像管中常需要在显像管的外部采取磁屏蔽措施以消除地磁场对电子运动的影响.已知电子质量为m 、电荷量为e ,从炽热灯丝发射出的电子(可视为初速度为0)经过电压为U 的电场加速后,沿水平方向由南向北运动.若不采取磁屏蔽措施,且已知地磁场磁感应强度的竖直向下分量的大小为B ,地磁场对电子在加速过程中的影响可忽略不计.在未加偏转磁场的情况下,(1)试判断电子束将偏向什么方向;(2)求电子在地磁场中运动的加速度的大小;(3)若加速电场边缘到荧光屏的距离为l ,求在地磁场的作用下使到达荧光屏的电子在荧光屏上偏移的距离.解析:(1)根据左手定则,可以判断出电子束将偏向东方.(2)设从加速电场射出的电子速度为v 0,则根据动能定理有:eU mv =2021从加速电场射出的电子在地磁场中受到洛伦兹力的作用而做匀速圆周运动,设电子的加速度为a ,根据牛顿第二定律,ev 0B =ma 由以上各式解得(3)设电子在地磁场中运动的半径为R ,根据牛顿第二定律Rvm B ev 20=得eBmvR 0=设电子在荧光屏上偏移的距离为x ,根据图中的几何关系,有:22t R R x --=结合以上关系,得 答案:(1)东方 (2)meUm eB 2(3)22221l eBmU e mU B -- 15.回旋加速器的示意图如图11-9甲,置于真空中的金属D 形盒,其半径为R ,两盒间距为d ,在左侧D 形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B ,方向如图所示.此加速器所接的高频交流电源如图11-9乙所示,电压有效值为U .粒子源射出的带电粒子质量为m 、电荷量为q .设粒子从粒子源S 进入加速电场时的初速度不计,且此时高频电源电压恰好达到最大值,忽略粒子在加速电场中的运动时间,加速粒子的电压按交流电的最大值且可近似认为保持不变.粒子在电场中的加速次数等于在磁场中回旋半周的次数.求: (1)粒子在加速器中运动的总时间t .(2)试推证当R >>d 时,粒子在电场中加速的总时间相对于在D 形盒中回旋的总时间可忽略不计(粒子在电场中运动时,不考虑磁场的影响).(3)粒子第1次和第n 次分别在右半盒中运动的轨道半径的比值R 1∶R n . 图11-9解析:由于加速粒子的电压按交流电的最大值且近似认为保持不变,故粒子在电场中做匀加速直线运动.(1)设粒子加速后的最大速度为v ,此时轨道半径最大为R ,由牛顿第二定律得:Rv m qvB 2=粒子的回旋周期为:vRT π2=粒子加速后的最大动能为:221mv E k =设粒子在电场中加速的次数为n ,则:E k =nqU m 高频电源电压的最大值U U 2m =又忽略粒子在加速电场中的运动时间,则运动的总时间2T nt = 联立解得:.422UBR t π=(2)粒子在电场中间断的加速运动,可等效成不间断的匀加速直线运动.粒子在电场中加速的总时间为:v ndv nd t 221==粒子在D 形盒中回旋的总时间:vR nt π=2故R dt t π221=,又R >>d ,所以121<<t t ,因此t 1可忽略不计.(3)设粒子第1、2、3……n 次在右半盒中运动的速度分别为v 1、v 2、v 3……v n ,则由动能定理得:qU m =mv 12/2 ……又Rv m qvB 2=联立解得12:1:1-=n R R n (n 取1,2,3,…). 答案:(1)UBR 422π (2)略(3)12:1-n16.(2010湖北部分重点中学高三二联,25)在xOy 平面内,x >0的区域存在垂直纸面向里的匀强磁场,磁感应强度为B =0.4 T ;x <0的区域存在沿x 轴正方向的匀强电场.现有一质量为m =4.0×10-9kg,带电荷量为q =2.0×10-7C 的正粒子从x 轴正方向上的M 点以速度v 0=20 m/s 进入磁场,如图11-10所示,v 0与x 轴正方向的夹角θ=45°,M 点与O 点相距为l =2 m.已知粒子能以沿着y 轴负方向的速度垂直穿过x 轴负半轴上的N 点,不计粒子重力.求:图11-10(1)粒子穿过y 轴正半轴的位置以及穿过y 轴正半轴时速度与y 轴的夹角; (2)x <0区域电场的场强;(3)试问粒子能否经过坐标原点O ?若不能,请说明原因;若能,请求出粒子从M 点运动到N 点所经历的时间.解析:(1)粒子在磁场中做匀速圆周运动时,由洛伦兹力提供向心力Bqv 0=mv 02/R得:R =1 m过M 点做初速度v 0的垂线交y 轴正方向于P 点,则PM =l /cos45° 得:PM =2 m=2R由几何关系得PM 为轨迹圆的直径,P 点即为粒子穿过y 轴正半轴的位置由圆的对称性得粒子经过此处时的速度与y 轴夹角为θ=45°. (2)设粒子由P 点到N 点历时t 1,则:x 轴方向:v 0sin45°-Eqt 1/m =0 y 轴方向:v 0t 1cos45°=OP联立求解,代入数据得:t 1=0.1 s,(3)粒子能到达O 点粒子在磁场中的运动周期为:T =2πm /Bq从M 点运动到O 点经过的轨迹如图经历的时间为:t =T /2+3T /4+2t 1代入数据得:t =(π/8+0.2) s≈0.59 s.答案:(1)45° (2)2.82 V/m (3)0.59 s。

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案(解析版)

高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。

已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。

高中物理磁场习题200题(带答案解析)

高中物理磁场习题200题(带答案解析)

WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高考物理电磁学知识点之磁场专项训练及解析答案

高考物理电磁学知识点之磁场专项训练及解析答案

高考物理电磁学知识点之磁场专项训练及解析答案一、选择题1.如图所示,空间中存在在相互垂直的匀强电场和匀强磁场,有一带电液滴在竖直面内做半径为R的匀速圆周运动,已知电场强度为E,磁感应强度为B,重力加速度为g,则液滴环绕速度大小及方向分别为()A.EB,顺时针B.EB,逆时针C.BgRE,顺时针D.BgRE,逆时针2.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间3.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( )A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pa,至屏幕的时间将大于tD.轨迹为pb,至屏幕的时间将等于t4.如图所示,一束粒子射入质谱仪,经狭缝S后分成甲、乙两束,分别打到胶片的A、C两点。

其中23SA SC,已知甲、乙粒子的电荷量相等,下列说法正确的是A.甲带正电B.甲的比荷小C.甲的速率小D.甲、乙粒子的质量比为2:35.如图所示,用一细线悬挂一根通电的直导线ab(忽略外围电路对导线的影响),放在螺线管正上方处于静止状态,与螺线管轴线平行,可以在空中自由转动,导线中的电流方向由a指向b。

现给螺线管两端接通电源后(螺线管左端接正极),关于导线的受力和运动情况,下列说法正确的是()A.在图示位置导线a、b两端受到的安培力方向相反导线ab始终处于静止B.从上向下看,导线ab从图示位置开始沿逆时针转动C.在图示位置,导线a、b两端受到安培力方向相同导线ab摆动D.导线ab转动后,第一次与螺线管垂直瞬间,所受安培力方向向上6.如图所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由转动和平动,当导线通入图示方向的电流I时,从上往下看,导线的运动情况是()A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升7.三根平行的长直导体棒分别过正三角形ABC的三个顶点,并与该三角形所在平面垂直,各导体棒中均通有大小相等的电流,方向如图所示.则三角形的中心O处的合磁场方向为()A.平行于AB,由A指向B B.平行于BC,由B指向CC.平行于CA,由C指向A D.由O指向C8.在绝缘水平面上方均匀分布着方向与水平向右成60︒斜向上的匀强磁场,一通有如图所示的恒定电流I的金属方棒,在安培力作用下水平向右做匀速直线运动。

高考物理新电磁学知识点之磁场真题汇编含答案

高考物理新电磁学知识点之磁场真题汇编含答案

高考物理新电磁学知识点之磁场真题汇编含答案一、选择题1.航母上飞机弹射起飞是利用电磁驱动来实现的。

电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间()A.两个金属环都向左运动B.两个金属环都向右运动C.从左侧向右看,铝环中感应电流沿顺时针方向D.铜环受到的安培力小于铝环受到的安培力2.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。

一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60 角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则()A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1C.t1∶t2=1∶1D.t1∶t2=2∶13.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。

质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。

若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是()A.该束粒子带负电B.速度选择器的P1极板带负电C.在B2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q m 越小 4.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为e m 的电子以速度v 0从A 点沿AB 边射出(电子重力不计),欲使电子能经过AC 边,磁感应强度B 的取值为A .B <03mv ae B .B <02mv aeC .B >03mv aeD .B >02mv ae5.如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M 点水平射入场区,经一段时间运动到M 点的右下方N 点,关于小球由M 到N 的运动,下列说法正确的是( )A .小球可能做匀变速运动B .小球一定做变加速运动C .小球动量可能不变D .小球机械能守恒6.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射人水平放置,电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关7.某小组重做奥斯特实验,在一根南北方向放置的直导线的正下方放置一小磁针,如图所示,给导线通入恒定电流,小磁针再次静止时偏转了30°,已知该处地磁场水平分量55.010B T -=⨯,通电直导线在该处产生的磁感应强度大小为( )A .52.910T -⨯B .57.110T -⨯C .58.710T -⨯D .41.010T -⨯ 8.一回旋加速器当外加磁场一定时,可把质子加速到v ,它能把氚核加速到的速度为 ( )A .vB .2vC .3vD .23v 9.关于垂直于磁场方向的通电直导线所受磁场作用力的方向,正确的说法是( ) A .跟磁场方向垂直,跟电流方向平行B .跟电流方向垂直,跟磁场方向平行C .既跟磁场方向垂直,又跟电流方向垂直D .既不跟磁场方向垂直,也不跟电流方向垂直10.如图所示,矩形线圈abcd 在匀强磁场中可以分别绕垂直于磁场方向的轴P 1和P 2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时( )A .线圈绕P 1转动时的电流等于绕P 2转动时的电流B .线圈绕P 1转动时的电动势小于绕P 2转动时的电动势C .线圈绕P 1和P 2转动时电流的方向相同,都是a →b →c →dD .线圈绕P 1转动时dc 边受到的安培力大于绕P 2转动时dc 边受到的安培力11.电荷在磁场中运动时受到洛仑兹力的方向如图所示,其中正确的是( ) A . B . C . D . 12.如图所示,有abcd 四个离子,它们带等量的同种电荷,质量不等.有m a =m b <m c =m d ,以不等的速度v a <v b =v c <v d 进入速度选择器后有两种离子从速度选择器中射出,进入B 2磁场,由此可判定( )A .射向P 1的是a 离子B .射向P 2的是b 离子C .射到A 1的是c 离子D .射到A 2的是d 离子13.无线充电技术已经被应用于多个领域,其充电线圈内磁场与轴线平行,如图甲所示;磁感应强度随时间按正弦规律变化,如图乙所示。

大学物理磁场考试练习题含解析

大学物理磁场考试练习题含解析

大学物理磁场考试练习题一、选择题1.空间某点的磁感应强度的方向,一般可以用下列几种办法来判断,其中哪个是错误的?() (A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向;(C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。

2.下列关于磁感应线的描述,哪个是正确的?() (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。

3.磁场的高斯定理说明了下面的哪些叙述是正确的?()a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;B⎰⎰=⋅0S d Bb 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ;(B )ac ;(C )cd ;(D )ab 。

4.如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量和面上各点的磁感应强度B 将如何变化?() (A )增大,B 也增大; (B )不变,B 也不变; (C )增大,B 不变; (D )不变,B 增大。

5.两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少?() (A )0;(B ); (C );(D )。

ΦΦΦΦΦR I 2/0μR I 2/20μR I /0μISIIo二、填空题1.如图所示,均匀磁场的磁感应强度为B =0.2T ,方向沿x 轴正方向,则通过abod 面的磁通量为_________,通过befo 面的磁通量为__________,通过aefd 面的磁通量为_______。

2.真空中一载有电流I 的长直螺线管,单位长度的线圈匝数为n ,管内中段部分的磁感应强度为________,端点部分的磁感应强度为__________。

2020届高考物理专题训练:磁场(两套 附详细答案解析)

2020届高考物理专题训练:磁场(两套 附详细答案解析)

高考物理专题训练:磁场(基础卷)一、 (本题共13小题,每小题4分,共52分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于安培力,下列说法正确的是( )A.通电直导线在某处所受安培力的方向跟该处的磁场方向相同B.通电直导线在某处不受安培力的作用,则该处没有磁场C.通电直导线所受安培力的方向可以跟导线垂直,也可以不垂直D.通电直导线跟磁场垂直时受到的安培力一定最大【答案】D【解析】安培力的方向一定与磁场垂直,也一定与导线垂直,选项A、C错误;当通电直导线与磁场平行放置时,不受安培力作用,选项B错误。

2.在重复奥斯特电流磁效应的实验时,需要考虑减少地磁场对实验的影响,则以下关于奥斯特实验的说法中正确的是( )A.通电直导线竖直放置时,实验效果最好B.通电直导线沿东西方向水平放置时,实验效果最好C.通电直导线沿南北方向水平放置时,实验效果最好D.只要电流足够大,不管通电直导线怎样放置实验效果都很好【答案】C【解析】由于在地球表面小磁针静止时北极指北、南极指南,所以通电直导线沿南北方向水平放置时,电流在小磁针所在位置的磁场方向为东西方向,此时的效果最好。

3.科学研究发现,在地球的南极或北极所看到的美丽极光,是由来自太阳的高能带电粒子受到地磁场的作用后,与大气分子剧烈碰撞或摩擦所产生的结果,如图所示。

则下列关于地磁场的说法中,正确的是( )A.若不考虑磁偏角的因素,则地理南极处的磁场方向竖直向下B.若不考虑磁偏角的因素,则地理北极处的磁场方向竖直向上C.在地球赤道表面,小磁针静止时南极指向北的方向D.在地球赤道表面,小磁针静止时南极指向南的方向【答案】D【解析】在不考虑磁偏角的情况下,地球的南极相当于磁体的北极,故该处的磁场方向竖直向上,选项A、B错误;赤道处的地磁场方向向北,所以小磁针的南极指向南的方向,D正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题测试【满分:100分时间:90分钟】一、选择题(本题共包括10小题,每小题5分,共50分)1.(2020·江西临川一中高三调研)如图所示,三根通电长直导线P、Q、R均垂直纸面放置,ab为直导线P、Q连线的中垂线,P、Q中电流强度的大小相等、方向均垂直纸面向里,R中电流的方向垂直纸面向外,则R受到的磁场力可能是()A.F1B.F2C.F3D.F42.(2020·福建泉州二中模拟)如图,光滑斜面上放置一根通有恒定电流的导体棒,空间有垂直斜面向上的匀强磁场B,导体棒处于静止状态。

现将匀强磁场的方向沿图示方向缓慢旋转到水平方向,为了使导体棒始终保持静止状态,匀强磁场的磁感应强度应同步()A.增大B.减小C.先增大,后减小D.先减小,后增大3.(2020·辽宁大连质检)如图所示,AC是四分之一圆弧,O为圆心,D为圆弧中点,A、D、C处各有一垂直纸面的通电直导线,电流大小相等,方向垂直纸面向里,整个空间还存在一个磁感应强度大小为B 的匀强磁场,O处的磁感应强度恰好为零。

如果将D处电流反向,其他条件都不变,则O处的磁感应强度大小为()A.2(2-1)B B.2(2+1)BC.2B D.04.(2020·河南郑州模拟)如图所示,边界OM与ON之间分布有垂直纸面向里的匀强磁场,边界ON上有一粒子源S。

某一时刻,从粒子源S沿平行于纸面,向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相等,经过一段时间后有大量粒子从边界OM 射出磁场。

已知∠MON =30°,从边界OM 射出的粒子在磁场中运动的最长时间等于T 2(T 为粒子在磁场中运动的周期),则从边界OM 射出的粒子在磁场中运动的最短时间为( )A.T 3B.T 4C.T 6D.T 85.(2020·重庆巴蜀中学一诊)如图所示,两根平行固定放置的长直导线a 和b 载有大小、方向均相同的电流,a 受到的磁场力大小为F ,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为2F ,则此时b 受到的磁场力大小可能为( )A .4FB .3FC .2FD .06.(2020·江西南昌调研)如图所示,三条长直导线a 、b 、c 都通以垂直纸面的电流,其中a 、b 两条导线中的电流方向垂直纸面向外。

O 点与a 、b 、c 三条导线距离相等,且Oc ⊥ab 。

现在O 点垂直纸面放置一小段通电导线,电流方向垂直纸面向里,导线受力方向如图所示。

则可以判断( )A .O 点处的磁感应强度的方向与F 相同B .长导线c 中的电流方向垂直纸面向外C .长导线a 中电流I 1小于b 中电流I 2D .长导线c 中电流I 3小于b 中电流I 27.(2020·贵州毕节模拟)如图所示,空间存在方向垂直于纸面向里的分界磁场,其中在MN 左侧区域的磁感应强度大小为B ,在MN 右侧区域的磁感应强度大小为3B 。

一质量为m 、电荷量为q 、重力不计的带电粒子以平行纸面的速度v 从MN 上的O 点垂直MN 射入磁场,此时开始计时,当粒子的速度方向再次与入射方向相同时,下列说法正确的是( )A .粒子运动的时间是4πm 3qBB .粒子运动的时间是2πm 3qBC .粒子与O 点间的距离为4mv 3qBD .粒子与O 点间的距离为mv 3qB 8.(2020·安徽合肥高三一诊)如图所示,一根固定的绝缘竖直长杆位于范围足够大且相互正交的匀强电场和匀强磁场中,电场强度大小为E =2mg q,磁感应强度大小为B 。

一质量为m 、电荷量为q 的带正电小圆环套在杆上,环与杆间的动摩擦因数为μ。

现使圆环以初速度v 0向下运动,经时间t 0,圆环回到出发点。

若圆环回到出发点之前已经开始做匀速直线运动,不计空气阻力,重力加速度为g 。

则下列说法中正确的是( )A .环经过t 02时间刚好到达最低点 B .环的最大加速度大小为a m =g +μqv 0B mC .环在t 0时间内损失的机械能为12m ⎝⎛⎭⎫v 20-m 2g 2μ2q 2B 2 D .环下降过程和上升过程系统因摩擦产生的内能相等9.(2020·云南曲靖一中高三调研)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频交流电的频率为f ,加速电压为U ,若中心粒子源处产生的质子质量为m 、电荷量为+e ,在加速器中被加速。

不考虑相对论效应,则下列说法正确的是( )A .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速α粒子B .加速的粒子获得的最大动能随加速电压U 的增大而增大C .质子被加速后的最大速度不能超过2πRfD .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶110.(2020·河北衡水中学高三调研)如图所示为长为2L 、板间距离为L 的水平极板P 、Q ,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处,以速度v 0平行极板射入,欲使粒子不打在极板上,可采用的办法有( )A .在极板间加垂直纸面向内的匀强磁场,磁感应强度B <4mv 017qLB .在极板间加垂直纸面向内的匀强磁场,磁感应强度B >4mv 0qLC .在极板间加垂直极板指向P 极板的匀强电场,电场强度E <mv 204qLD .在极板间加垂直极板指向Q 极板的匀强电场,电场强度E >17mv 204qL二、非选择题(本题共 50分)11.(2020·山东枣庄高三模拟)如图所示,从离子源产生的某种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点射入匀强磁场,磁场方向垂直于纸面向里,磁场的磁感应强度大小为B ,磁场左边界与水平方向的夹角为θ(0°<θ<90°)。

已知该离子在磁场边界的N点射出,MN长为l。

不计重力影响。

则该离子的比荷为________,进入磁场时的速度大小为________。

12.(2020·山东日照质检)一导体材料的样品的体积为a×b×c,A′、C、A、C′为其四个侧面,如图所示。

已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n,电阻率为ρ,电子的电荷量为e,沿x 方向通有电流I。

(1)导体样品A′、A两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________。

(2)将该导体样品放在匀强磁场中,磁场方向沿z轴正方向,则导体侧面C的电势________(填“高于”“低于”或“等于”)侧面C′的电势。

(3)在(2)中,达到稳定状态时,沿x方向的电流仍为I,若测得C、C′两侧面的电势差为U,则匀强磁场的磁感应强度B的大小为________。

13. (2020·天津南开区模拟)喷墨打印机的部分结构可简化为如图所示的装置。

两块水平放置、相距为d 的长金属板接在电压可调的电源上,两板之间的右侧、长度为3d的区域还存在方向垂直纸面向里的匀强磁场,磁感应强度为B。

喷墨打印机的喷口可在两板左侧上下自由移动,并且从喷口连续不断喷出质量均为m、速度水平且大小相等、带等量电荷的墨滴。

调节电源电压至U,使墨滴在两板之间左侧的电场区域恰能沿水平方向向右做匀速直线运动。

重力加速度为g。

(1)判断墨滴所带电荷的种类,并求其电荷量;(2)要使墨滴不从两板间射出,求墨滴的入射速率应满足的条件。

14.(2020·湖南怀化模拟)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场。

一粒子源固定在x轴上坐标为(-L,0)的A点,粒子源沿y轴正方向释放出速度大小为v0的电子,电子通过y轴上的C点时速度方向与y轴正方向成α=45°角,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成β=15°角的射线OM。

已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用。

求:(1)匀强电场的电场强度E 的大小;(2)电子在电场和磁场中运动的总时间t ;(3)矩形磁场区域的最小面积S min 。

15.(2020·浙江宁波高三联考)如图甲所示,在y ≥0的区域内有垂直纸面向里的匀强磁场,其磁感应强度B 随时间t 变化的规律如图乙所示;与x 轴平行的虚线MN 下方有沿+y 方向的匀强电场,电场强度E =8π×103 N/C 。

在y 轴上放置一足够大的挡板。

t =0时刻,一个带正电粒子从P 点以v =2×104 m/s 的速度沿+x方向射入磁场。

已知电场边界MN 到x 轴的距离为π-210m ,P 点到坐标原点O 的距离为1.1 m ,粒子的比荷q m=106 C/kg ,不计粒子的重力。

求粒子:(1)在磁场中运动时距x 轴的最大距离;(2)连续两次通过电场边界MN所需的时间;(3)最终打在挡板上的位置到坐标原点O的距离。

专题测试【满分:100分时间:90分钟】一、选择题(本题共包括10小题,每小题5分,共50分)1.(2020·江西临川一中高三调研)如图所示,三根通电长直导线P、Q、R均垂直纸面放置,ab为直导线P、Q连线的中垂线,P、Q中电流强度的大小相等、方向均垂直纸面向里,R中电流的方向垂直纸面向外,则R受到的磁场力可能是()A.F1B.F2C.F3D.F4【答案】C【解析】由于三根直导线平行,根据安培定则和左手定则可知R受到P、Q的磁场力方向分别沿PR、QR连线,表现为斥力。

P、Q中电流强度的大小相等,R离P距离较近,P在R处产生的磁感应强度较大,P对R的磁场力较大,结合平行四边形定则可知,R受到P、Q的磁场力的合力可能是F3,C正确,A、B、D错误。

2.(2020·福建泉州二中模拟)如图,光滑斜面上放置一根通有恒定电流的导体棒,空间有垂直斜面向上的匀强磁场B,导体棒处于静止状态。

现将匀强磁场的方向沿图示方向缓慢旋转到水平方向,为了使导体棒始终保持静止状态,匀强磁场的磁感应强度应同步()A.增大B.减小C.先增大,后减小D.先减小,后增大【答案】A【解析】对导体棒进行受力分析如图,当磁场方向缓慢旋转到水平方向,安培力方向缓慢从沿斜面向上旋转到竖直向上,因光滑斜面对通电导体棒的支持力方向始终不变,导体棒的重力大小和方向也始终不变,初始时刻安培力沿斜面向上,与支持力方向垂直,此时安培力最小,所以随着磁场方向的改变,若使导体棒始终保持静止状态,安培力逐渐增大,直到等于导体棒的重力,而安培力F安=BIL,所以磁感应强度一直增大,B、C、D错误,A正确。

相关文档
最新文档