2019-2020学年北京四中七年级(上)期中数学试卷 解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年北京四中七年级(上)期中数学试卷
一、选择题(每小题3分,共30分)
1.(3分)﹣2的倒数是()
A.﹣2B.﹣C.D.2
2.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104
3.(3分)下列运算正确的是()
A.5a2﹣3a2=2B.2x2+3x2=5x4
C.3a+2b=5ab D.7ab﹣6ba=ab
4.(3分)有理数a,b在数轴上的对应位置如图,则下列结论正确的是()
A.ab>0B.<0C.a+b<0D.a﹣b<0
5.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2 6.(3分)下列说法正确的是()
A.平方等于本身的数是0和1
B.﹣a一定是负数
C.一个有理数不是正数就是负数
D.一个数的绝对值一定是正数
7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()
A.系数为2,次数为2B.系数为2,次数为3
C.系数为﹣2,次数为2D.系数为﹣2,次数为3
8.(3分)方程x﹣4=3x+5移项后正确的是()
A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4 9.(3分)下列各式中去括号正确的是()
A.﹣(﹣a﹣b)=a﹣b
B.a2+2(a﹣2b)=a2+2a﹣2b
C.5x﹣(x﹣1)=5x﹣x+1
D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y2
10.(3分)如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为()
A.1B.2C.4D.5
二、填空题(每小题2分,共16分)
11.(2分)0.03095精确到千分位的近似值是.
12.(2分)如图是我市12月份某一天的天气预报,该天的温差是.
13.(2分)比较大小:.
14.(2分)已知x=﹣3是关于x的方程kx﹣2k=5的解,那么k的值为.15.(2分)已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a ﹣b|﹣|c﹣2a|=.
16.(2分)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=.
17.(2分)请阅读一小段约翰•斯特劳斯的作品,根据乐谱中的信息确定最后一个音符的时间长应为.
18.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为元.
菜品单价(含包装费)数量
水煮牛肉(小)30元1
醋溜土豆丝(小)12元1
豉汁排骨(小)30元1
手撕包菜(小)12元1
米饭3元2
三、解答题
19.(16分)计算:
(1)(﹣11)+8+(﹣14);
(2)8÷(﹣2)﹣(﹣4)×3;
(3)(﹣+﹣)×16;
(4)﹣12﹣(1﹣)÷3×(﹣)2
20.(8分)计算:
(1)3x2﹣6x﹣x2﹣3+4x﹣2x2﹣1;
(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)
21.(8分)解方程:
(1)3(2x﹣1)=4x+3;
(2)﹣=1
22.(5分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.
23.(4分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm,但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录:(“+”表示超出标准,“﹣”表示不足标准.)
个数1211132
偏差/mm﹣0.4﹣0.2﹣0.10+0.3+0.5(1)其中偏差最大的乒乓球直径是;
(2)这20个乒乓球平均每个球的直径是多少mm?
(3)若误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是,良好率是.
24.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).
(1)若(1,b)是“相伴数对”,求b的值;
(2)若(m,n)是“相伴数对”,其中m≠0,求;
(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.25.(7分)在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若=2,则称点C是[A,B]的亮点;若=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点
(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.