超声波提取基础原理,特点与应用介绍

合集下载

超声波提取法原理

超声波提取法原理

超声波提取法原理超声波提取法是一种基于超声波技术的萃取方法。

其原理是利用超声波在固体和液体之间间接转移动能,使得固体物质与液体之间发生物理化学相互作用,进而从固体物质中将目标元素、化合物或化合物组分提取出来。

超声波提取法的原理与马克尔桥相似。

当超声波通过液体与固体交界面时,液体与固体之间的摩擦和折射可以引起超声波的干涉、反射和折射现象。

超声波与固体物质之间的相互作用会引起振动和剪切力,并增加固体物质与液体之间的接触面积和接触时间。

这样,固体中的化合物或化合物组分就可以通过超声波的作用,逐渐在液相中被提取出来。

超声波提取法有着广泛的应用范围。

它可以应用于各种固体样品的提取,如天然药材、植物原料、动物组织、土壤和环境样品等,还适用于化学分析、生物医学、食品加工、环境污染监测等领域。

超声波提取法的优点在于:1.速度快。

超声波提取法能够缩短提取时间,提高样品的处理效率;2. 环境友好。

超声波提取法是一种无需使用有毒有害物质和溶剂的绿色制备技术,可以避免对环境的污染;3. 适用范围广。

超声波提取法适用于不同生物和非生物样品的提取,且可以提取大分子、小分子、有机物和无机物等不同种类的化合物或化合物组分。

但超声波提取法也存在一些局限性,例如固体样品已经被处理过的化合物可能不容易被提取出来,而且超声波容易造成样品中化合物的降解和解离,造成样品的污染和变化。

此外,对于一些不同种类或不同特殊性质的样品,超声波提取法的适用性和效果有所不同。

总之,超声波提取法是一种新兴的提取技术,在各个领域中的应用正在不断扩展和深入研究。

随着超声波技术的发展和改进,超声波提取法将成为一种高效、环保、实用的样品处理技术。

超声波提取原理、特点、应用

超声波提取原理、特点、应用

超声波提取原理、特点与应用介绍超声波指频率高于20KHz,人的听觉阈以外的声波。

超声波提取在中药制剂质量检测中(药检系统)已广泛应用。

《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。

近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。

超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。

作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。

超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。

1、提取原理(1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。

超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。

从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。

(2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。

这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。

(3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。

由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。

超声提取法原理

超声提取法原理

超声提取法原理超声提取法(ultrasound-assisted extraction, UAE)是一种利用超声波作为辅助手段来加速化合物从固体样品中提取出来的方法。

它是一种新型的绿色、高效、环保的提取技术,逐渐受到人们的关注和重视。

本文将介绍超声提取法的原理及其在提取领域的应用。

一、超声作用原理超声波是机械波的一种,其频率高于人类能够听到的频率范围(20 kHz)。

在超声波作用下,介质中的分子会作周期性的压缩与膨胀运动,形成超声波的传播。

超声波产生了高能量的震动波,有着穿透性、直线传播和能量集中的特点。

超声波在提取中的作用主要包括以下几个方面:1. 液体的机械作用:超声波传导到液体中时,液体分子将随波动而振动,产生液流,从而充分混合反应体系中的各个组分。

当液体流速增大时,可带动溶质移动到高速的流液区域,从而有效的破碎细胞壁、弄碎颗粒,和强化传质,加速提取物质的溶出。

2. 温度效应:超声波在介质中传播时,由于介质的吸能、散热等缓冲等复杂作用,将导致介质内部局部高温和低温交替出现,形成“空化”的效应。

这种局部高温可导致细胞膜的破裂和溶状物质的流出,从而很好的完成了溶出过程,并获得了理想的提取效果。

3. 物理化学效应:超声波引起了反应体系内液流动的搅拌和剪切力的作用,如表面的剪切力,既可消除液相中由于表面张力引起的事结等阻碍传质,也可加速质量传递过程,从而提高提取效率。

4. 空蚀作用:由于超声波在液体中的传播,液体形成了高压和低压区域,当液体在高压区域时,由于压力差的作用形成了小气泡,当气泡在低压区域时,由于压力仍在还原气泡,由高压区域流向低压区域,气泡会瞬间坍塌释放大量的能量,这些能量的释放,对于植物细胞壁的溶解、破裂可以起到很大的作用。

二、超声提取法原理超声提取法是通过超声波作用,利用其产生的空化作用和液流动力来加速溶剂与样品的接触,增大质传质,加速溶质向溶剂扩散和溢出,从而实现快速、高效地提取出所需化合物。

超声波提取分离的原理

超声波提取分离的原理

超声波在天然成分提取分离的应用原理初探摘要超声因其具有多种物理和声化学效应,其在食品工业中有广泛的应用,包括超声提取、超声灭菌、超声干燥、超声乳化、超声过滤、超声清洗等。

本文主要就超声波提取分离的原理、优点作一综述,并对其以后在提取分离中的发展进行展望。

关键词超声波提取分离原理1 超声波概述1.1超声波的概念超声波指的是频率在2×104—2×109Hz的声波,是高于正常人类听觉范围的弹性机械振动。

超声波与电磁波相似,可以被聚焦,反射和折射,其不同之处在于前者传播时需要弹性介质,而光波和其他类型的电磁辐射则可以自由地通过真空。

众所周知,超声波在介质中主要产生二种形式的机械振荡,即横向振荡(横波)和纵向振荡(纵波),而超声波在液体介质中只能以纵波的方式进行传播。

由于超声波频率高,波长短,因而在传播过程中具有定向性好、能量大、穿透力强等许多特性[1]。

超声波与媒质的相互作用可分为热机制、机械(力学)机制和空化机制3种。

[2]超声波在媒质中传播时,其振动能量不断被媒吸收转变为热量而使媒质温度升高,此效应称之为超声的热机制;超声波的机械机制主要是辐射压强和强声压强引起的;在液体中,当声波的功率相当大,液体受到的负压力足够强时,媒质分子间的平均距离就会增大并超过极限距离,从而将液体拉断形成空穴,在空化泡或空化的空腔激烈收缩与崩溃的瞬间,泡内可以产生局部的高压,以及数千度的高温,从而形成超声空化现象。

空化现象包括气泡的形成、成长和崩溃过程。

可见,空化机制是超声化学的主动力,使粒子运动速度大大加快,破坏粒子的力的形成,从而使许多物理化学和化学过程急剧加速,对乳化、分散、萃取以及其它各种工艺过程有很大作用。

对于超声波的研究及其在各个行业中的应用,研究较多,可是对于其应用的机理研究的却很少,能过查阅华南农业大学图书馆,SCI数据库,我们发现,对于超声波的研究有4680篇,可是对于其机理的研究却只有206,所占比例不到5%。

超声波提取法

超声波提取法

超声波提取法超声波提取法超声波提取法是一种用超声波来加速挥发性溶剂中成分萃取的技术。

它是目前在化学分析中非常流行的一种提取方法,其操作简便、准确度高、萃取率高、可重复性好等特点使其被广泛应用于食品、药品、环境等领域。

下面将从超声波提取法的原理和应用上进行详细讲解。

原理超声波萃取是一种物理化学过程,其原理是将固体或液态物质与液态溶剂接触,通过超声波的作用,溶剂分子中的振动能与内部能变换,从而形成细小的气泡,这些气泡随着超声波的震荡而产生破裂,释放出大量的内能,使称量成分被活化,从而达到提取的目的。

超声波提取法的提取率具有极高的选择性,不需要非常高功率的超声波来保证提取的选择性和成分的完整性,所以这种方法在分析化学中受到了高度的重视。

应用1.食品领域在食品领域中,超声波提取法广泛用于植物提取、维生素、矿物质的提取等。

通过超声波的作用,能迅速溶解食物中的不易溶解的成分。

超声波能够使植物细胞壁破裂,从而让营养成分更加容易被提取出来。

超声波脂肪提取法是一种快速、高效的样品处理方法,可以用于食品中脂溶性物质的提取,例如果汁中的油脂、奶制品中的脂肪等。

2.药物制剂领域在药物制剂领域,超声波提取法被广泛用于药物生产工艺中的质量控制和分析。

通过利用超声波的作用,可以加速药物之间的反应,并且能够更加深入地引起溶质和溶剂之间的反应。

3.环境污染物领域在环境污染物领域,超声波提取法被广泛用于污染物检测、环境监测等方面。

通过超声波的作用,能够加速污染物的溶解和扩散,从而快速检测和分析污染物的情况。

特别是在大气污染领域中,超声波提取法可以快速提取、分离和检测污染物,从而实现现场实时监测。

总之,超声波提取法是一种高效、可靠、环保的提取方法,被广泛应用于食品、药品、环境等领域。

未来,超声波萃取技术还有许多新的应用场景可以被开发,我们有理由相信它必将成为现代科技发展中的一颗巨大的探索明珠。

超声提取技术的原理和应用

超声提取技术的原理和应用

超声提取技术的原理和应用1. 引言超声提取技术是一种基于超声波的物质提取方法,通过超声波在溶剂中的传播和振动作用,实现了对样品中有用成分的高效提取。

本文将介绍超声提取技术的原理和应用。

2. 超声提取的原理超声提取技术利用声波产生的机械振动效应和声波在溶液中的传播特性,促进物质的迅速混合和分散,从而提高物质的提取速率和提取效果。

2.1 声波产生机械振动效应超声波通过声能传递到溶剂中,使溶剂分子产生振动。

这种振动能促进溶剂分子与待提取物质之间的接触,增加物质的可溶性和扩散速率。

2.2 声波在溶液中的传播特性声波在溶液中的传播速度较快,可以使溶液中的物质快速混合和均匀分布,避免了静态条件下物质分布不均的问题,提高了提取效果。

3. 超声提取的应用超声提取技术在各个领域都有广泛的应用,下面将介绍几个常见的应用领域。

3.1 食品工业超声提取技术被广泛用于食品工业中的天然植物提取和香料提取。

利用超声波的作用,可以更高效地提取植物的有效成分,并保持产品的天然特性。

此外,超声提取还可以用于提取食品中的色素、香料和营养素等。

3.2 药物研究超声提取技术在药物研究中有着重要的应用,可以用于提取药物中的有效成分。

超声波的振动作用可以破坏细胞壁,释放出细胞内的有用成分,从而提高药物的提取效率。

此外,超声提取还可以用于药物纯化和制备。

3.3 环境监测超声提取技术可以用于环境样品中有机污染物和无机污染物的提取。

通过超声波的作用,可以高效地从复杂的环境样品中提取出污染物,并用于环境监测和分析。

3.4 生物医学超声提取技术在生物医学领域也有着广泛的应用。

例如,在生物样品中提取DNA、RNA和蛋白质等有用成分时,超声提取可以提高提取效率,并保持样品的完整性和纯度。

4. 结论超声提取技术基于超声波的传播和振动作用,实现了对样品中有用成分的高效提取。

在食品工业、药物研究、环境监测和生物医学等领域都有着重要的应用。

超声提取技术的应用将进一步促进科学研究的发展和实际应用的推广。

超声波辅助萃取技术在中草药提取中的应用

超声波辅助萃取技术在中草药提取中的应用

超声波辅助萃取技术在中草药提取中的应用随着人们对传统中药的认识逐渐深入,越来越多的人开始关注中草药的提取和应用。

中药提取技术就是将有效成分从中草药中分离出来,以达到最大的药效。

在中草药提取技术中,超声波辅助萃取技术是一个相对新的技术,它可以加速药材中有效成分的溶解和迁移,提高提取效率。

本文将对超声波辅助萃取技术在中草药提取中的应用进行探讨。

一、超声波辅助萃取技术的原理及特点超声波辅助萃取技术是一种基于超声波效应的提取技术。

它利用超声波在介质中产生的声波振动和微小空腔的破裂,形成剧烈的物理和化学反应,利用这种反应促进药材的加速溶解和迁移。

与传统的提取技术相比,超声波辅助萃取技术具有以下几个特点:1、提取效率高:超声波辅助萃取技术能够促进药材中有效成分的迁移和扩散,提高提取效率。

一些研究发现,采用超声波辅助萃取技术提取药材中有效成分的效率比传统方法高出许多。

2、提取速度快:超声波辅助萃取技术不仅提高了提取效率,还能够提高提取速度。

由于超声波的作用,药材中有效成分的提取速度可以大大加快。

3、操作简便:超声波辅助萃取技术的操作非常简便。

只需要将药材和提取溶剂放入超声波萃取器中,通过超声波的作用可以完成完整的提取过程。

二、超声波辅助萃取技术在中草药提取中的应用非常广泛。

以下是一些具体的实例:1、利用超声波辅助萃取技术提取金银花中的有效成分金银花是一种中草药,常用于治疗感冒和其他呼吸系统疾病。

一些研究表明,超声波辅助萃取技术可以显著提高金银花中有效成分的提取效率和提取速度。

例如,一项研究发现,在60分钟内,采用超声波辅助萃取技术可以提取出比传统方法多8%的有效成分。

2、超声波辅助萃取技术提取酸枣仁中的有效成分酸枣仁是一种常用的中药,用于治疗失眠和内分泌失调等问题。

一些研究表明,采用超声波辅助萃取技术可以显著提高酸枣仁中有效成分的提取效率和提取速度。

例如,一项研究表明,在30分钟内,采用超声波辅助萃取技术可以提取出比传统方法多11%的有效成分。

超声波逆流提取

超声波逆流提取

超声波逆流提取超声波逆流提取是一种新兴的技术,通过利用超声波的特性和原理来实现物质的逆流提取。

本文将从超声波逆流提取的原理、应用领域以及优势等方面进行探讨。

一、超声波逆流提取的原理超声波逆流提取是一种基于超声波的物质分离技术,其原理是利用超声波的机械振动作用和声波压力效应,将混合物中的物质分离出来。

超声波波长短、频率高低等参数的选择,可以使得特定物质受到超声波的作用而被逆流提取出来。

超声波逆流提取的原理基于超声波在物质中的传播与相互作用,通过调节超声波的参数以及物质的特性,实现对特定物质的有效提取。

超声波逆流提取技术在多个领域都具有广泛的应用前景。

首先,在生物医药领域,超声波逆流提取可以用于分离和提取生物样品中的细胞、蛋白质等重要成分,用于疾病的诊断和治疗。

其次,在食品加工领域,超声波逆流提取可以用于提取植物中的有效成分,如植物精油、提取物等,用于食品的添加和调味。

另外,在环境保护领域,超声波逆流提取可以用于处理废水和废气中的有害物质,实现资源的回收和环境的净化。

三、超声波逆流提取的优势相比传统的物质分离技术,超声波逆流提取具有多个优势。

首先,超声波逆流提取无需使用有机溶剂或高温等条件,能够实现对物质的温和处理,避免了对物质的破坏和损失。

其次,超声波逆流提取具有高效、快速的特点,能够在较短的时间内完成对物质的提取,提高了工作效率。

另外,超声波逆流提取还具有无污染、安全可靠等特点,对环境和人体健康没有副作用,适用于多种场合和需求。

超声波逆流提取是一种新兴的技术,具有广泛的应用前景。

通过利用超声波的特性和原理,超声波逆流提取可以实现对特定物质的有效提取,应用于生物医药、食品加工、环境保护等领域。

其优势在于温和处理、高效快速、无污染安全等特点,为物质分离技术的发展带来了新的可能性。

相信随着科技的不断进步和应用的推广,超声波逆流提取将在更多领域展现出其巨大的潜力和价值。

超声辅助提取法

超声辅助提取法

超声辅助提取法一、背景介绍超声辅助提取法是一种利用超声波的物理效应,加速溶剂渗透到样品中,使得目标化合物从样品中快速、高效地提取出来的方法。

该方法已经广泛应用于食品、药品、环境等领域中。

二、超声辅助提取法的原理超声波是一种机械波,其频率高于人耳所能听到的最高频率20kHz。

在超声波作用下,液体分子之间发生剧烈的振动和摩擦,形成大量小气泡,在气泡破裂时释放出极高温度和压力,产生微小爆炸,从而加速了溶剂渗透到样品中,并使目标化合物快速地从样品中溶解出来。

三、超声辅助提取法的优点1. 提取效率高:由于超声波可以加速液体分子之间的运动和摩擦,因此可以在很短时间内将目标化合物从样品中提取出来。

2. 操作简单:相对于传统提取方法,超声辅助提取法操作简单方便。

3. 可重复性好:由于超声波对样品的处理方式是一致的,因此可以获得高度可重复的结果。

4. 对样品破坏小:相对于传统提取方法,超声辅助提取法对样品破坏小。

四、超声辅助提取法的应用1. 食品领域:超声辅助提取法已经被广泛应用于食品中目标化合物的提取,如多酚、黄酮类、生物碱等。

2. 药物领域:超声辅助提取法已经被应用于药物中活性成分的提取和纯化,如黄芪、丹参等。

3. 环境领域:超声辅助提取法已经被应用于环境中目标污染物的快速检测和分析。

五、实验步骤1. 样品制备:将待测样品粉碎或剪碎成细小颗粒,并称取适量放入容器中。

2. 溶剂选择:根据目标化合物溶解度选择合适的溶剂,并加入到容器中。

3. 超声处理:将容器放入超声波清洗机中,在设定好温度和时间后开启清洗机进行处理。

4. 分离:将处理后的样品离心分离,得到上清液。

5. 浓缩:将上清液浓缩至一定程度,得到目标化合物。

六、注意事项1. 超声波处理时间和温度应根据实际情况进行调整。

2. 溶剂选择应根据目标化合物的溶解度进行选择。

3. 超声波处理过程中应避免产生空气泡,以免影响提取效率。

4. 超声波处理时应注意安全,避免超声波对人体造成伤害。

超声波中药提取的原理和特点

超声波中药提取的原理和特点

超声提取是利用超声波(频率>20KHz)具有的机械效应、空化效应及热效应,通过增大介质分子的运动速度,增大介质的穿透力以提取物质(中药)有效成分的技术。

超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传质,即超声波的机械效应。

超声波提取优点:
1.提取效率高:超声波独具的物理特性能促使植物细胞组织破壁或变形,使中药有效成分提取更充分,提取率
比传统工艺显著提高达50—500%;
2.提取时间短:超声波强化中药提取通常在24—40分钟即可获得最佳提取率,提取时间较传统方法大大缩短
2/3以上,药材原材料处理量大;
3.提取温度低:超声提取中药材的最佳温度在0—60℃,对遇热不稳定、易水解或氧化的药材中有效成分具有保护作用,同时大大节能能耗;提取温度为40—60℃,保护有效成份;
4.适应性广:超声提取中药材不受成分极性、分子量大小的限制,适用于绝大多数种类中药材和各类成分的提取;
5.提取药液杂质少,有效成分易于分离、纯化;
6.提取工艺运行成本低,综合经济效益显著;
7.操作简单易行,设备维护、保养方便。

提取生物碱成分的对比
杭州成功超声设备有限公司创立于1995年,是国内从事超声应用研究、大功率超声波换能器开发与生产的专业厂商。

公司主要产品有换能器、超声驱动电源等。

这些产品作为功率超声应用行业的核心关键部件广泛应用于声化学、塑料焊接、金属焊接、橡胶切割、无纺布焊接等领域。

超声波萃取

超声波萃取

5.2 在天然植物和药物活性成分提取 中的应用
由于天然产物和活性成分常用的提取方法存在有 效成分损失大、周期长、提取率不高等缺点,而超声 波提取可缩短提取时间, 提高有效成分的提出率和药 材的利用率,并且可以避免高温对提取成分的影响。 印度、美国等已对植物胡椒叶、金鸡纳等药用植物 进行了超声波提取的研究,并取得了良好效果。近年 来, 国内在这方面的工作取得显著的进展。郭孝武和 王昌利等分别概述了超声波萃取技术在中草药有效成 分提取、 工艺选定、 含量控制方面的应用。
应用超声波从大黄中提取蒽醌类成分的研究表明, 用超声法提取10min 比煎煮法提取 3h的蒽醌成分高。 其原因是超声能产生空化效应使组织中细胞破裂,以 利于溶剂浸透到植物细胞内部,从而使大黄中的蒽醌 成分溶于溶剂之中,超声处理对产物结构无影响。 超 声波提取槐米中的芦丁及黄连中的黄连素,与传统的 热碱沸腾提取法比较,提取率由 12%~14%增至 16%~22%,且成分稳定,不被破坏。
伴随超声空化产生的微射流、冲击波等机 械效应加剧了体系的湍动程度,加快相相间的 传质速度。同时,冲击流对动植物细胞组织产 生一种物理剪切力,使之变形 、 破裂 、 并释 放出内含物,从而促进细胞内有效成分的溶出。
(2)超声波的热作用和机械作用也能促进超声波强化萃 取。
超声波在媒质质点传播过程中其能量不断被媒质 质点吸收变成热能,导致媒质质点温度升高, 加速有 效成分的溶解。超声波的机械作用主要是超声波在介 质中传播时,在其传播的波阵面上将引起介质质点的 交替压缩和伸长,使介质质点运动,从而获得巨大的 加速度和动能。巨大的加速度能促进溶剂进入提取物 细胞,加强传质过程,使有效成分迅速逸出。
二、超声波萃取原理
超声波是指频率为20KHz-50MHz的电磁波, 它 是一种机械波, 需要能量载体-介质来进行传播。其 穿过介质时,会产生膨胀和压缩两个过程。超声波能 产生并传递强大的能量,给予介质极大的加速度。这 种能量作用于液体时,膨胀过程会形成负压。如果超 声波能量足够强, 膨胀过程就会在液体中生成气泡或 将液体撕裂成很小的空穴。这些空穴瞬间即闭合, 闭 合时产生高达 3000MPa的瞬间压力,称为是手工操作,较少用于 连续系统。将超声波技术与微波电磁辐射结合, 不仅可以增强消解的动力学因素,而且能产生 某种新的效应,但是目前的应用还比较少。也 是今后研究与发展的方向。 同时,超声波萃取虽然在实验室的小规模 上有广泛应用,但是离大规模的工业化应用还 有一定的距离。因此解决超声波萃取工程放 大问题应是今后研究的方向之一。

超声波提取技术

超声波提取技术

03
超声波提取技术的应用场景
植物有效成分提取
01
02
03
植物细胞壁破碎
超声波的机械效应可以破 碎植物细胞壁,释放出细 胞内的有效成分,提高提 取效率。
提取物纯度与产量
通过超声波的空化效应和 机械振动,可以促进目标 成分的溶解和扩散,提高 提取物的纯度和产量。
植物活性成分保护
超声波提取过程中,由于 温度较低、时间较短,可 以较好地保护植物活性成 分不被破坏。
溶剂浓度
溶剂浓度越高,目标成分的溶解度越 大,提取效率越高。但浓度过高可能 导致其他杂质的溶出。
物料粒度和密度
物料粒度
物料粒度越小,表面积越大,提取效率越高。但粒度过小可能导致过滤和分离困难。
物料密度
密度越大的物料,其内部的传质阻力越大,提取效率相对较低。因此,需要根据物料的密度特性选择合适的提取 方法。
方法,进一步提高提取效果。
未来超声波提取技术的研究将更加注重环保和可持续 发展,推动绿色制造和循环经济。
超声波提取技术将不断优化和完善,提高提取 效率和降低成本,使其更具有竞争力。
超声波提取技术将拓展其在中药、食品、生物等 领域的应用范围,为产业发展提供技术支持。
THANKS
感谢观看
,具有广泛的应用前景。
超声波提取技术能够显著提高 提取效率,缩短提取时间,降
低能耗和溶剂消耗。
超声波提取技术适用于多种植 物活性成分的提取,如黄酮类 、皂苷类、多酚类等,具有较 高的实用价值。
超声波提取技术在实际应用中 仍需解决一些问题,如设备成 本、提取工艺优化等。
技术发展趋势与展望
超声波提取技术将与其他辅助技术相结合,如 微波、超临界流体等,形成多技术联合的提取

超声波萃取

超声波萃取

>30 有 1~5 恒定 低 低

虽然超声波浴槽(如图1所示)应用较广, 但存在两个缺点,即超声波能量分布不均匀 (只有紧靠超声波源附近的一小部分液体有空 穴作用发生)以及随时间变化超声波能量要衰 减。这实质上降低了实验的重现性和再现性。
而超声波探针可将能量集中在样品某一范 围,因而在液体中能提供有效的空穴作用。
伴随超声空化产生的微射流、冲击波等机 械效应加剧了体系的湍动程度,加快相相间的 传质速度。同时,冲击流对动植物细胞组织产 生一种物理剪切力,使之变形 、 破裂 、 并释 放出内含物,从而促进细胞内有效成分的溶出。
(2)超声波的热作用和机械作用也能促进超声波强化萃 取。
超声波在媒质质点传播过程中其能量不断被媒质 质点吸收变成热能,导致媒质质点温度升高, 加速有 效成分的溶解。超声波的机械作用主要是超声波在介 质中传播时,在其传播的波阵面上将引起介质质点的 交替压缩和伸长,使介质质点运动,从而获得巨大的 加速度和动能。巨大的加速度能促进溶剂进入提取物 细胞,加强传质过程,使有效成分迅速逸出。
(3)多糖提取
张桂等人研究了利用超声波萃取枸杞多糖的提取 工艺,实验证明,超声波萃取枸杞多糖是可行的。 最 佳萃取条件为 5 0℃, 1:60的料水比,超声波前浸 泡 2.5h,超声波萃取 5min 。影响萃取率首要的因素 是料水比,其次是浸泡时问和浸泡温度,最高提取率 为 50.36% ,比传统法的结果要高30%左右。 靳胜英 等利用超声波热水浸提银耳多糖, 提取率比酶法高出 5 % ,且浸提时间大大缩短。超声可能会导致可溶性 多糖发生降解,并溶解在乙醇溶液中,但超声并不影 响水溶性多糖的生物性能 。
5.2 在天然植物和药物活性成分提取 中的应用
由于天然产物和活性成分常用的提取方法存在有 效成分损失大、周期长、提取率不高等缺点,而超声 波提取可缩短提取时间, 提高有效成分的提出率和药 材的利用率,并且可以避免高温对提取成分的影响。

超声提取法的基本原理

超声提取法的基本原理

超声提取法的基本原理
超声提取法是一种利用超声波的物理效应来提取物质的方法。

它是一种非常有效的提取方法,可以用于提取各种天然产物、药物、化学物质等。

超声提取法的基本原理是利用超声波的机械振动作用,使被提取物质的细胞壁破裂,从而释放出所需的物质。

超声波是一种机械波,它的频率高于人类听觉范围的声波。

超声波在物质中传播时,会产生机械振动,这种振动会对物质产生一定的影响。

在超声提取法中,超声波的机械振动作用可以使被提取物质的细胞壁破裂,从而释放出所需的物质。

超声波的机械振动作用可以产生多种效应,其中最重要的是声波空化效应。

声波空化效应是指在超声波传播过程中,由于声波的机械振动作用,液体中的气体会形成微小的气泡,这些气泡在声波的作用下会不断扩大和收缩,最终破裂。

这种气泡的形成和破裂过程会产生极高的温度和压力,从而对被提取物质的细胞壁产生破坏作用,使其释放出所需的物质。

除了声波空化效应外,超声波的机械振动作用还可以产生声流效应、声化学效应等。

声流效应是指超声波的机械振动作用可以产生液体中的微小涡流,从而加速物质的混合和传输。

声化学效应是指超声波的机械振动作用可以改变物质的化学反应速率和反应平衡常数,从而影响物质的提取效果。

超声提取法是一种利用超声波的机械振动作用来提取物质的方法。

它的基本原理是利用超声波的声波空化效应、声流效应、声化学效应等作用,使被提取物质的细胞壁破裂,从而释放出所需的物质。

超声提取法具有提取效率高、操作简便、无需使用有毒有害溶剂等优点,因此在食品、医药、化工等领域得到了广泛应用。

超声波提取原理

超声波提取原理

超声波提取原理
超声波提取是一种常用的分离和提取技术,广泛应用于食品、药物、化工等领域。

超声波提取原理是利用超声波的机械振动和声化学效应,使样品中的目标成分从基质中分离出来。

本文将介绍超声波提取的原理及其应用。

超声波是指频率超过20kHz的声波,常用的超声波频率为
20kHz-100kHz。

超声波在传播过程中会产生机械振动,这种机械振动可以产生剧烈的涡流和局部高温,从而破坏细胞壁和细胞膜,促进溶剂渗透,加速溶质的溶解和扩散,提高提取效率。

超声波提取的原理主要包括机械作用、热效应和声化学效应。

首先是机械作用,超声波的振动能够产生剧烈的机械剪切力和离散力,使样品颗粒破碎、细胞破裂,有利于目标成分的释放。

其次是热效应,超声波振动会导致局部高温,加速溶剂的挥发和目标成分的溶解。

最后是声化学效应,超声波振动产生的微小气泡在破裂时会产生局部高温和高压,形成局部的“微爆炸”,有利于样品的溶解和提取。

超声波提取具有操作简便、提取效率高、时间短、无需添加化
学试剂等优点,因此在食品、药物、化工等领域得到了广泛的应用。

在食品工业中,超声波提取被广泛应用于植物提取物、天然色素、
香精香料等的提取;在药物领域,超声波提取被用于药材提取、中
药制剂的制备等;在化工领域,超声波提取被应用于环境监测、废
水处理、催化剂的制备等方面。

总的来说,超声波提取利用超声波的机械振动和声化学效应,
对样品中的目标成分进行分离和提取。

其原理包括机械作用、热效
应和声化学效应。

超声波提取具有操作简便、提取效率高、时间短
的优点,因此在食品、药物、化工等领域得到了广泛的应用。

超声波萃取原理

超声波萃取原理

超声波萃取原理
超声波萃取原理是一种应用超声波在溶液中传播并产生空化现象的过程。

当超声波传播到液体中时,会形成压力波和密度变化,并在某些地方形成高压区域和低压区域。

在高压区域,液体分子之间的距离减小,压力增加;在低压区域,液体分子间的距离增大,压力减小。

随着超声波的传播,这些区域会不断地交替出现。

当液体中有固体时,超声波的传播会对固体产生冲击波,使其发生物理和化学变化。

在超声波的作用下,固体颗粒之间的相互作用力减弱,颗粒与溶剂之间的相互作用力增强,导致颗粒从固体中解离出来,并进入溶液中。

超声波萃取原理的应用有很多,例如在药学中,可以利用超声波来提取植物中的有效成分,从而制备药物。

在环境科学中,可以利用超声波来去除废水中的有机污染物。

超声波萃取还可以用于食品工业中的浸提过程,提取食材中的营养成分。

总的来说,超声波萃取原理利用超声波在液体中产生的压力和密度变化,促使固体颗粒从固体中解离出来,并进入溶液中。

这种技术在多个领域具有广泛的应用前景。

《超声波提取技术》课件

《超声波提取技术》课件
超声波提取技术可以应用于各种食品的加工过程中,如水果 、蔬菜、谷物等,为食品工业提供了一种高效、环保的加工 方法。
环境污染物的提取与处理
环境污染物的处理是环境保护领域的重要问题,超声波提 取技术在此领域也有着广泛的应用。通过超声波的振动和 空化作用,能够快速、有效地从废水中提取重金属离子、 有机污染物等有害物质。
详细描述
溶剂的种类和浓度对超声波提取效果具有显著影响。不同溶剂的溶解能力和选择性不同 ,因此需要根据植物有效成分的性质选择适宜的溶剂。同时,溶剂的浓度也会影响有效 成分的溶解度和扩散速度,从而影响提取效果。因此,需要合理控制溶剂的种类和浓度

04
超声波提取技术在实践中的应用
中草药有效成分的提取
中草药种类繁多,有效成分复杂,传统的提取方法效率低下且易 损失。超声波提取技术利用超声波的振动和空化作用,能够快速 、高效地提取中草药中的有效成分,提高提取效率和产率。
提取时间越长,提取效果越好
详细描述
在一定范围内,延长提取时间可以增加有效 成分的溶出量,从而提高提取效果。但过长 的提取时间可能导致植物细胞壁过度破碎, 释放出较多的杂质和有害物质,影响提取物 的纯度和质量。因此,需要根据实际情况选
择合适的提取时间。
溶剂种类和浓度对提取效果的影响
总结词
选择合适的溶剂种类和浓度能提高提取效果
03
超声波提取技术的影响因素
超声波频率对提取效果的影响
总结词
超声波频率越高,提取效果越好
详细描述
随着超声波频率的增加,物质分子间的振动和摩擦加剧,有利于植物细胞壁的破碎和有效成分的释放 。但同时,高频率的超声波可能导致热效应和空化效应增强,对提取物造成热破坏和化学变化。因此 ,需要根据实际情况选择合适的超声波频率。

超声波萃取的原理超声波提取技术

超声波萃取的原理超声波提取技术

超声波萃取的原理超声波提取技术超声波是指频率为20千赫~50兆赫左右的电磁波,它是一种机械波,需要能量载体—介质—来进行传播。

超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。

也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。

在工业应用方面,利用超声波进行清洗、干燥、杀菌、雾化及无损检测等,是一种非常成熟且有广泛应用的技术。

超声波萃取的原理超声波萃取中药材的优越性,是基于超声波的特殊物理性质。

主要是主要通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。

(1)加速介质质点运动。

高于20 KHz声波频率的超声波的连续介质(例如水)中传播时,根据惠更斯波动原理,在其传播的波阵面上将引起介质质点(包括药材重要效成分的质点)的运动,使介质质点运动获行巨大的加速度和动能。

质点的加速度经计算一般可达重力加速度的二千倍以上。

由于介质质点将超声波能量作用于药材中药效成分质点上而使之获得巨大的加速度和动能,迅速逸出药材基体而游离于水中。

(2)空化作用。

超声波在液体介质中传播产生特殊的“空化效应”,“空化效应”不断产生无数内部压力达到上千个大气压的微气穴并不断“爆破”产生微观上的强大冲击波作用在中药材上,使其中药材成分物质被“轰击”逸出,并使得药材基体被不断剥蚀,其中不属于植物结构的药效成分不断被分离出来。

加速植物有效成份的浸出提取。

(3)超声波的振动匀化(Sonication)使样品介质内各点受到的作用一致,使整个样品萃取更均匀。

综上所述,中药材中的药效物质在超声波场作用下不但作为介质质点获得自身的巨大加速度和动能,而且通过“空化效应”获得强大的外力冲击,所以能高效率并充分分离出来。

超声波 萃取

超声波 萃取

超声波萃取
超声波萃取是一种利用超声波振荡的原理进行物质提取的方法。

其基本原理是通过超声波的高频振荡作用,使得溶剂中的分子在压力变化和气泡爆破等效应下产生剧烈的湍流和涡流,从而提高溶剂与待提取物质之间的质量传递速率,加速提取过程。

超声波萃取的步骤通常包括以下几个方面:
1.样品制备:将待提取物质样品加入适量的溶剂中,制备成溶液。

2.超声波萃取:将样品溶液置于超声波萃取仪中,开启超声波发生器产生超声波波动,使得样品中的目标成分被高效提取。

3.萃取时间控制:根据待提取物质的性质和实验要求,控制超声波萃取的时间,通常在几分钟到几十分钟不等。

4.样品分离:超声波作用下,目标成分被有效提取到溶剂中,接着可以通过离心、过滤等方法将样品中的固体残渣与溶剂分离。

5.溶剂回收:对提取溶剂进行回收利用,可以通过蒸发、减压蒸馏等方法将溶剂回收,减少资源浪费。

超声波萃取在生物、环境、药学、食品等领域有着广泛的应用,常用于提取植物中的活性成分、环境中的污染物、药物中的有效成分、食品中的营养成分等。

相比传统的提取方法,超声波萃取具有操作简便、提取效率高、时间短、溶剂用量少等优点,因此受到了广泛关注和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波提取原理、特点与应用介绍超声波指频率高于20KHz,人的听觉阈以外的声波。

超声波提取在中药制剂质量检测中(药检系统)已广泛应用。

《中华人民共和国药典》中,应用超声波处理的有232个品种,且呈日渐增多的趋势。

近年来,超声波技术在中药制剂提取工艺中的应用越来越受到关注。

超声波技术用于天然产物有效成分的提取是一种非常有效的方法和手段。

作为中药制剂取工艺的一种新技术,超声波提取具有广阔的前景。

超声波提取是利用超声波具有的机械效应,空化效应和热效应,通过增大介质分子的运动速度、增大介质的穿透力以提取生物有效成分。

1、提取原理(1)机械效应超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。

超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。

从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。

(2)空化效应通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。

这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。

(3)热效应和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。

由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。

此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并于介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。

2、超声波提取的特点(1)超声波提取时不需加热,避免了中药常规煎煮法、回流法长时间加热对有效成分的不良影响,适用于对热敏物质的提取;同时,由于其不需加热,因而也节省了能源。

(2)超声波提取提高了药物有效成分的提取率,节省了原料药材,有利于中药资源的充分利用,提高了经济效益。

(3)溶剂用量少,节约了溶剂。

(4)超声波提取是一个物理过程,在整个浸提过程中无化学反应发生,不影响大多数药物有效成分的生理活性。

(5)提取物有效成分含量高,有利于进一步精制。

3、超声波技术在天然产物提取方面的应用与水煎煮法对比,采用超声波法对黄芩的提取结果表明,超声波法提取与常规煎煮法相比,提取时间明显缩短,黄芩苷的提取率升高;超声波提取10、20、40、60min均比煎煮法提取3h的提取率高。

应用超声波法对槐米中主要有效成分芦丁的提取结果表明,超声波处理槐米30min所得芦丁的提取率比热碱法提取率高47.56%,与浸泡法相比,超声波提取40min,芦丁得率为22.53%,而浸泡48h得率只有12.23%。

超声波提取植物中的苷类成分是一种有效的方法,可节省原料的30—40%。

从萝芙木属植物的根中提取生物碱,常规浸渍法需43h,而超声波法只需15min,且可将生物碱全部提出。

常规法从金鸡纳树皮中提取生物碱需5h,超声波法至多30min就可完成。

常规法提取曼陀罗叶中的曼陀罗碱需3h,超声波法只需30min。

煎煮法提取大黄中的蒽醌类成分需3h,超声波法只需10min,且得率高。

总之,超声波提取具有节时、节能、节料、得率高的特点。

超声波提取技术超声波是指频率为20千赫~50兆赫左右的机械波,需要能量载体—介质—来进行传播。

超声波在传递过程中存在着的正负压强交变周期,在正相位时,对介质分子产生挤压,增加介质原来的密度;负相位时,介质分子稀疏、离散,介质密度减小。

也就是说,超声波并不能使样品内的分子产生极化,而是在溶剂和样品之间产生声波空化作用,导致溶液内气泡的形成、增长和爆破压缩,从而使固体样品分散,增大样品与萃取溶剂之间的接触面积,提高目标物从固相转移到液相的传质速率。

在工业应用方面,利用超声波进行清洗、干燥、杀菌、雾化及无损检测等,是一种非常成熟且有广泛应用的技术。

超声波萃取的原理超声波萃取中药材的优越性,是基于超声波的特殊物理性质。

主要是主要通过压电换能器产生的快速机械振动波来减少目标萃取物与样品基体之间的作用力从而实现固--液萃取分离。

(1)加速介质质点运动。

高于20 KHz声波频率的超声波的连续介质(例如水)中传播时,根据惠更斯波动原理,在其传播的波阵面上将引起介质质点(包括药材重要效成分的质点)的运动,使介质质点运动获行巨大的加速度和动能。

质点的加速度经计算一般可达重力加速度的二千倍以上。

由于介质质点将超声波能量作用于药材中药效成分质点上而使之获得巨大的加速度和动能,迅速逸出药材基体而游离于水中。

(2)空化作用。

超声波在液体介质中传播产生特殊的“空化效应”,“空化效应”不断产生无数内部压力达到上千个大气压的微气穴并不断“爆破”产生微观上的强大冲击波作用在中药材上,使其中药材成分物质被“轰击”逸出,并使得药材基体被不断剥蚀,其中不属于植物结构的药效成分不断被分离出来。

加速植物有效成份的浸出提取。

((3)超声波的振动匀化(Sonication)使样品介质内各点受到的作用一致,使整个样品萃取更均匀。

综上所述,中药材中的药效物质在超声波场作用下不但作为介质质点获得自身的巨大加速度和动能,而且通过“空化效应”获得强大的外力冲击,所以能高效率并充分分离出来。

超声波萃取的特点适用于中药材有效成份的萃取,是中药制药彻底改变传统的水煮醇沉萃取方法的新方法、新工艺。

与水煮、醇沉工艺相比,超声波萃取具有如下突出特点:(1)无需高温。

在40℃-50℃水温F超声波强化萃取,无水煮高温,不破坏中药材中某些具有热不稳定,易水解或氧化特性的药效成份。

超声波能促使植物细胞地破壁,提高中药的疗效。

(2)常压萃取,安全性好,操作简单易行,维护保养方便。

(3)萃取效率高。

超声波强化萃取20~40分钟即可获最佳提取率,萃取时间仅为水煮、醇沉法的三分之一或更少。

萃取充分,萃取量是传统方法的二倍以上。

据统计,超声波在65~70ºC工作效率非常高。

而温度在65ºC度内中草药植物的有效成份基本没有受到破坏。

加入超声波后(在65度条件下),植物有效成份提取时间约40分钟。

而蒸煮法的蒸煮时间往往需要两到三小时,是超声波提取时间的3倍以上时间。

(4)具有广谱性。

适用性广,绝大多数的中药材各类成份均可超声萃取。

(5)超声波萃取对溶剂和目标萃取物的性质(如极性)关系不大。

因此,可供选择的萃取溶剂种类多、目标萃取物范围广泛。

(6)减少能耗。

由于超声萃取无需加热或加热温度低,萃取时间短,因此大大降低能耗。

(7)药材原料处理量大,成倍或数倍提高,且杂质少,有效成分易于分离、净化。

(8)萃取工艺成本低,综合经济效益显著。

超声波提取技术在植物提取物方面的研究进展2009-06-21 16:32:05 作者:中冠健业摘要:超声波提取是一种新型的植物提取物物理提取方法,它具有提取时间短,提取率高等优点。

本文主要综述了超声波提取、超声波辅助提取以及超声波协同微波提取等技术在色素、黄酮、多糖、生物碱等物质提取方面的最新研究成果。

关键词:超声波提取天然产物许多天然产物在保健及治疗疾病方面有其独特的优越性,因此越来越受到人们的关注,它们的应用范围也越来越广。

由于传统提取方法的许多弊端不能满足实际需要,因此在提取方面需要更快速高效的提取方法。

超声波提取是一种新型的物理提取方法,以其快速高效及对营养价值影响较小,正受到人们的关注。

超声波是在弹性介质中传播的一种震动频率高于声波(20kHz)的机械波,能产生并传递强大的能量,给予媒质(如固体小颗粒或团聚体)极大的加速度。

当颗粒内部接受的能量足以克服结构的束缚能时,固体颗粒(或团聚体)被破碎(或解聚),从而促使细胞内有效成分的溶出:这种能量作用于液体,振动处于稀疏状态时,液体会撕裂成很小的空穴,这些空穴一瞬间即闭合,闭合时产生高达几十个大气压的瞬间压力,即称为空化现象。

这种孔穴现象可细化各种物质以及制造乳溶液,加速细胞内有效成分的溶出。

另外,超声波的次级效应,如机械震动、乳化、扩散、击碎、化学效应等也能加速细胞内有效成分的扩散释放并使其充分与溶剂混合,便于提取。

现在就超声波近几年的研究成果作以下概述。

1 黄酮郭青枝等[1]用正交试验对苦瓜黄酮的超声波提取工艺进行了优化,并与传统提取法进行了比较。

选取了超声波功率、提取时间、料液比为考察因素,每个因素设计了3 个水平,由方差分析得出超声波功率的改变对提取影响最大,其次是提取时间和料液比。

综合考虑各因素得出苦瓜黄酮超声波提取工艺条件为以90%的乙醇提取,超声波功率为80W,提取20min,料液比为1:30(g:ml,下同),与传统提取方法对比提取量为传统方法的1.36 倍,提取时间为传统提取方法的1/9。

兰昌云等[2]做了超声波法提取槐花中黄酮的最佳工艺研究,考察了乙醇浓度、料液比、超声波辅助提取时间、提取温度等主要因素对黄酮提取率的影响,得出超声法的最佳提取条件为:使用60%乙醇,在温度75℃,料液比1:15 条件下提取30min,连续提取2 次,黄酮的总提取率可达99.84%,最后用正交法确定了最优的提取工艺,并与常规热回流提取法作了比较研究。

结果表明:超声波法优于常规热回流提取法。

黄锁义等[3]利用超声波提取九里香中的总黄酮。

用95%乙醇为提取剂,用紫外分光光度法测定含量,结果测得样品中总黄酮的含量为1.0128mg/ml,回收率为102.5%。

利用超声波提取、纯化方法而得到的黄酮类物质,其纯度较高。

牛立新等[4]研究了超声波提法提取卷丹鳞茎中总黄酮的工艺。

以提取率为指标,通过单因素实验和正交实验确定了最佳提取条件,在80%乙醇,80℃, 1:30 料液比下,超声提取4 0min,单次总黄酮相对提取率达到92.32%,连续两次达到99.25%,而且相对于传统方法节省了大量时间,是一种研究及利用百合科植物可参考的方法。

时新刚等[5]利用超声波强化提取毛白杨雄花序中的总黄酮,分别对超声波功率、浸提时间、料液比、浸提液浓度的选择做了试验,得到了浸提时间、料液比对黄酮得率的影响为:随着时间的延长或料液比比例的加大,得率呈现逐渐提高的趋势;随着乙醇浓度的提高黄酮的得率,逐渐下降;在一定的超声波功率范围内,得率随功率增加而提高,但当达到一定功率后,得率则不再增加。

相关文档
最新文档