电子技术基础第二章 基本放大电路
模拟电子技术基础第四版课后答案第二章

第2章基本放大电路自测题一.在括号内用“√”和“×”表明下列说法是否正确。
1.只有电路既放大电流又放大电压,才称其有放大作用。
(×)2.可以说任何放大电路都有功率放大作用。
(√)3.放大电路中输出的电流和电压都是有源元件提供的。
(×)4.电路中各电量的交流成分是交流信号源提供的。
(×)5.放大电路必须加上合适的直流电源才能正常工作。
(√)6.由于放大的对象是变化量,所以当输入直流信号时,任何放大电路的输出都毫无变化。
(×)7.只要是共射放大电路,输出电压的底部失真都是饱和失真。
(×)二.试分析图各电路是否能放大正弦交流信号,简述理由。
设图中所有电容对交流信号均可视为短路。
(a) (b) (c)(d) (e) (f)(g) (h) (i)图解:图(a)不能。
V BB 将输入信号短路。
图(b)可以。
图(c)不能。
输入信号与基极偏置是并联关系而非串联关系。
图(d)不能。
晶体管基极回路因无限流电阻而烧毁。
图(e)不能。
输入信号被电容C 2短路。
图(f)不能。
输出始终为零。
图(g)可能。
图(h)不合理。
因为G -S 间电压将大于零。
图(i)不能。
因为T 截止。
三.在图 所示电路中,已知12CC V V =, 晶体管β=100,'100b R k =Ω。
填空:要求先填文字表达式后填得数。
(1)当0iU V =&时,测得0.7BEQ U V =,若要基极电流20BQ I A μ=, 则'b R 和W R 之和 b R =( ()/CC BEQ BQ V U I - )k Ω≈( 565 )k Ω;而若测得6CEQ U V =,则c R =( ()/CC CEQ BQ V U I β- )≈( 3 )k Ω。
(2)若测得输入电压有效值5i U mV =时,输出电压有效值'0.6o U V =,则电压放大倍数u A =&( /o iU U - )≈( -120 )。
电工与电子技术-基本放大电路电子教案

电工与电子技术-基本放大电路电子教案一、教学目标1. 让学生了解放大电路的原理和作用,掌握放大电路的基本组成部分。
2. 使学生熟悉晶体管放大电路的工作原理,能够分析简单的放大电路。
3. 培养学生运用所学知识解决实际问题的能力。
二、教学内容1. 放大电路概述介绍放大电路的定义、作用和基本组成部分。
2. 晶体管放大电路讲解晶体管的基本工作原理,分析晶体管放大电路的组成和特点。
3. 放大电路的静态工作点讲解放大电路静态工作点的概念,分析静态工作点对放大电路性能的影响。
4. 放大电路的动态分析讲解放大电路动态分析的方法,分析输入、输出信号和负载关系。
5. 放大电路的应用实例介绍放大电路在实际应用中的例子,分析其工作原理。
三、教学方法1. 采用讲授法,讲解放大电路的基本概念、原理和分析方法。
2. 利用多媒体辅助教学,展示放大电路的工作原理和实际应用。
3. 进行课堂讨论,鼓励学生提问、发表见解,提高学生的参与度。
4. 安排课后实践,让学生动手搭建简单的放大电路,巩固所学知识。
四、教学资源1. 多媒体课件:包括放大电路的原理图、工作原理动画演示等。
2. 实验器材:晶体管、电阻、电容等基本元件,放大电路实验板。
3. 参考资料:相关教材、学术论文、网络资源。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。
2. 课后作业:检查学生完成的课后练习,评估其对放大电路知识的掌握。
3. 实验报告:评价学生在实验过程中的动手能力、问题分析和解决能力。
4. 期末考试:设置有关放大电路的题目,检验学生对本章节知识的总体掌握。
六、教学内容6. 反馈电路介绍反馈电路的概念、类型和作用。
分析反馈电路对放大电路性能的影响,讲解负反馈和正反馈的区别。
7. 放大电路的设计与调试讲解如何根据需求设计放大电路,包括选择晶体管、确定静态工作点、选择电阻等。
介绍放大电路的调试方法,分析如何调整元件参数以优化电路性能。
8. 频率响应讲解放大电路的频率响应概念,分析放大电路的带宽、增益和失真。
模拟电子技术第二章

电压放大电路可以用有输入口和输出口的四端网络表 示,如图:
ui
Au
uo
放大电路放大的本质是能量的控制和转换。
放大的前提是不失真,即只有在不失真的情况下 放大才有意义。
2021/4/11
3
2.1.2.放大电路的性能指标
放大电路示意图
图2.1.2放大电路示意图
2021/4/11
4
一、放大倍数
表示放大器的放大能力
VCC
U BEQ Rb
(12 0.7 )mA 40 μA 280
做直流负载线,确定 Q 点
根据 UCEQ = VCC – ICQ Rc iC = 0,uCE = 12 V ; uCE = 0,iC = 4 mA .
2021/4/11
T
22
iC /mA
4 3 2 1 0
80 µA
60 µA
静态工作点 40 µA
U i →△uBE →△iB
→△iC(b△iB)
VBB
→△uCE(-△iC×Rc)
UI
→
•
Uo
+VCC ( +12V)
RC
IC +△IC
IB
B Rb 1
+△I B
3C ET2
U CE
U BE +△UBE
+△U CE
+
UO
-
电压放大倍数:
•
•
Au
Uo
•
Ui
2021/4/11
13
+VCC (+12V)
iC / mA
4
交流负载线 80
60
IC
Q
iC 2
《电子技术基础》教案共发射极基本放大器

高级技工学校文化理论课教案编号:QD-0707-03 流水号:授课教师:备课日期:年月日审批:日期:年月日一、教学回顾及导入课题放大电路电路结构示意图放大电路主要功能:将输入信号不失真地放大。
即把微弱的输入信号,转换成一定强度的、随输入信号变化的输出信号。
放大电路放大的本质是能量的控制和转换;是在输入信号作用下,通过放大电路将直流电源的能量转换成负载所获得的能量,使负载从电源获得的能量大于信号源所提供的能量。
因此,电子电路放大的基本特征是功率放大,即负载上总是获得比输入信号大得多的电压或电流,有时兼而有之。
这样,在放大电路中必须存在能够控制能量的元件,即有源元件,如晶体管和场效应管等。
二、新课讲授§2--2共发射极基本放大器一、电路组成图2—1共发射极基本放大器a)阻容耦合式 b)直接耦合式二、各元件的作用1.三极管V:放大电路核心元件,正常工作时主要起电流放大作用。
2.电源Vcc:放大器的能源与恰当阻值的配合,使发射结正偏、集电结反偏,以满足三极管放大的外部条件。
3. 基极偏流电阻RB:和Vcc一起,给基极提供一个合适的基极偏流IB。
三极管只有建立了合适的基极偏流IB,输出信号才不会失真4.集电极负载电阻Rc:将放大后的IC电流变化转变成RC上电压变化,从而引起VCE 的变化,这个变化电压就是输出电压vO。
5. 耦合电容C1和C2:电容C1用于连接信号源与放大电路,电容C2用于连接放大电路与负载,这种在电路中起连接作用的电容称为耦合电容。
“耦合电容的作用是“隔离直流,通过交流”。
利用电容交流阻抗小,直流阻抗大的特点实现耦合交流信号,隔断直流信号,从而避免信号源与放大电路之间、放大电路与负载之间直流电流的相互影响。
三、工作原理如图2-1所示为基本共射极放大电路。
当放大器未加信号,即当ui =0时,称放大电路处于静态。
在输入回路中,基极电源VBB使晶体管b-e间电压UBE 大于开启电压Uon,并与基极电阻Rb共同决定基极电流IB;在输出回路中,集电极电源VCC应足够高,使晶体管的集电结反偏,以保证晶体管工作在放大状态,因此,集电极电流IC =βIB;集电极电阻Rc上的电流等于IC,因而Rc上的电压为ICRc,从而确定了c-e间电压UCE =VCC-ICRc。
电子技术基础(电工Ⅱ)李春茂主编_机械工业出版社_课后习题答案

1-9 有 A、B、C 3 只晶体管,测得各管的有关参数与电流如题表 1-2 所示,试填写表中空白的栏目。
表 1-2 题 1-9 表
电流参数
管号
iE / mA iC / mA iB / μA ICBO / μA ICEO / μA
A
1
0.982
18
2
111
0.982
B
0.4
0.397
3
1
132.3 0.99
目录
第一章 双极型半导体器件∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二章 基本放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 第三章 场效应晶体管放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 第四章 多级放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 第五章 集成运放电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33 第七章 直流稳压电源∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46 第九章 数字电路基础知识∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 第十章 组合逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙61 第十一章 时序逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙73 第十二章 脉冲波形的产生和整形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 第十三章 数/模与模/数转换电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙96
电工电子技术_基本放大电路

8.1
7
共发射极放大电路
图8.3
放大电路动态工作电流、电压的变化情况
8.2
8
共发射极放大电路的静态分析
直流通路及静态工作点
8.2.1
放大电路不加输入信号(ui=0)时的 状态称为静态。静态时放大电路中只有 直流电源作用,由此产生的所有电流、 电压都为直流量,所以静态又称为直流 状态。静态时三极管各极电流和极间电 压分别用IB、UBE、IC、UCE表示。这些量 在三极管的输入、输出特性曲线上各确 定了一点,该点称为静态工作点,简称 Q点。 静态时直流电流通过的路径称为直 流通路。由于C1、C2的隔直流作用,放 大电路的直流通路如图8.4所示。
这里直流分量是正常放大的基础,交流分量是放大的对象,交流量搭 载在直流上进行传输和放大。如果三极管工作总是处于放大状态,它们的 变化规律是一样的。放大电路的动态分析关注的就是交流信号的传输和放 大情况,动态分析的电路指标主要包括电压放大倍数、输入电阻、输出电 阻等。
8.3
12
共发射极放大电路的动态分析
图8.1
共发射极放大电路
8.1
5
共发射极放大电路
2.各元器件的作用 (1)晶体管VT (2)集电极电源EC (3)集电极电阻RC (4)基极电源EB和基极偏置电阻RB (5)电容C1和C2 由于该电路使用两组电源,很不经 济。若只使用电源EC,将RB连到EC上, 只要适当调整RB阻值,保证发射结正偏 ,产生合适的基极偏流IB,就可省掉电 源EB。另外,为了使作图简洁,常不画 出电源回路,只标出EC正极对地的电位 值UCC和极性(“+”或“-”),如图8.2 所示。
图8.8
共发射极放大电路的微变等效电路
8.3
第二章 三极管及放大电路基础

第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。
2.在实践中能正确使用三极管。
3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。
4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。
5.能搭建分压式放大电路,并调整静态工作点。
教学难点1.三极管的工作原理。
2.放大、动态和静态以及等效电路等概念的建立。
3.电路能否放大的判断。
学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。
按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。
PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。
基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。
2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。
2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。
模拟电子技术基础基本放大电路

后动态”的原则;
求解静态工作点(UBEQ、IBQ、ICQ、UCEQ)时
应利用直流通路; 求解动态参数(
A u
、 Ri
、 Ro )时应
利用交流通路,两种通路切不可混淆。
2.3.2、图解法 (已知放大管的实测特性曲线)
1. 静态分析:(△ui=0)图解二元方程
uBE VBB iBRb
uCE VCC iC Rc
1. 直流通路:① 交流信号Us=0;②电容开路;
③电感相当于短路。
2. 交流通路:①大容量电容相当于短路;②直流
电源相当于短路。
基本共射放大电路的直流通路和交流通路
举例1:图2.3.1
电容 电感 电压源 电流源 直流通路 开路 短路 保留 保留 交流通路 短路 保留 短路 开路
直流通路
交流通路
举例2:图2.3.2
• 半利导用体线器性件元的件非建线立性模特型性,使来放描大述电非路线的性分器IBQ析件=复的VB杂特B-R化性Ub 。。BEQ
1. 直流模型:适于Q点的分析
ICQ IBQ
输出回路等效为电流控制的电流源
U CEQ VCC ICQ Rc
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。 使用条件:发射结正偏,集电结反偏。
将两个电源 合二为一
有交流损失 有直流分量
静态工作点
IBQ=VCC-R bU2 BEQ
UBEQ R b1
ICQ IBQ
UCEQ VCC ICQRc
(2)阻容耦合放大电路
-+
UBEQ
+-
UCEQ
C1、C2为耦合电容!
耦合电容的容量应足够 大,即对于交流信号近似 为短路。其作用是“隔离 直流、通过交流”。
模拟电子技术基础-总复习最终版

其中 RP R1 // R2 // R3 // R4
另外,uN
R R Rf
uo,uN
uP
ui1 R1 ui2i1 R2 ui3i2R3
P+ + u
o
R4 i4
uo
RP 1
Rf R
ui1 R1
ui 2 R2
ui3 R3
i3
4、 电路如图所示,各引入那种组态的负反馈?设集成运放 输出电压的最大幅值为±14V,填表。
11
14
5、求解图示电路的运算关系式。
同相求和电路 电压串联负反馈
6、求解图示电路的运算关系式。
R2
R1 ui R3
_
R4
+A1+ uo1
R5
_ +A2+
uo
7、求解图示电路的运算关系式。
电压并联负反馈。 电压放大倍数为:-R2/R1。
(3)交流负反馈是指 。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中存在的负反馈
解:(1)D (2)B (3)C
4、选择合适答案填入空内。
A.电压 B.电流 C.串联 D.并联
(1)为了稳定放大电路的输出电压,应引入 负反馈;
(2)为了稳定放大电路的输出电流,应引入 负反馈;
解:将电容开路、变压器线圈短路即为直流通路,图略。 各电路的交流通路如解图P2.2所示。
5.在图示电路中,已知晶体管β,rbe,RB,RC=RL,VCC。
(1)估算电路的静态工作点、电压放大倍数、输入电阻和输出电阻。
(2)当考虑信号源内阻为RS时,Aus的数值。
6. 电路如图所示,晶体管的=100,=100Ω。
《电子技术基础》第2章

2.1.2 放大电路的主要性能指标
1.放大倍数 倍数
放大倍数是直接衡量放大电路放大能力的重要指标, 放大倍数是直接衡量放大电路放大能力的重要指标,其值 . . . . Io 为输出量 U o 或 ( )与输入量 U i 或 ( )之比。它实际 I i 之比。 反映了电路在输入信号控制下, 反映了电路在输入信号控制下,将直流电源能量转换为交流输 出信号能量的能力。 出信号能量的能力。 之比, 电压放大倍数是输出电压 U o 与输入电压 U i 之比,即
(3)为什么要设置Q点 )为什么要设置 点
没有设置合适Q点的共发射极基本放大电路 图2-7 没有设置合适 点的共发射极基本放大电路
应当指出, 点合适, 应当指出,当Q点合适,其输入正弦信号 i幅值较小时,则uo 点合适 其输入正弦信号u 幅值较小时, 反相且波形不产生失真; 与ui反相且波形不产生失真; 负半周靠近峰值的某段时间u 当Q点过低时,在ui负半周靠近峰值的某段时间 BE小于开启电 点过低时 晶体管截止 从而使u 波形产生顶部的截止失真 截止, 截止失真; 压Uon,晶体管截止,从而使 o波形产生顶部的截止失真;
(2)确示直流通路图中电流 根据图2–5(b)所示直流通路图中电流,电压关系可得
I BQ
V =
CC
I CQ = βI BQ
U R
b
−
BEQ
U CEQ = VCC − I CQ RC
在近似估算中常常认为U 为已知量,对于硅管, 在近似估算中常常认为 BEQ为已知量,对于硅管,取 UBEQ=0.6 ~ 0.8V,通常取0.7V;对于锗管,取UBEQ=0.1 0.8V,通常取0.7V 对于锗管, 0.7V; ~ 0.3V,通常取0.2V 。 ,通常取0.2V
2章-电子技术基础(第3版)-霍亮生-清华大学出版社

Ii
输入电阻:
US ~
Ui Au
ri
Ui Ii
(2-5)
(3)输出电阻ro
以将放它大等电效路为对戴其维负宁载等而效不言电讲,路相(当“于一信个含号独源立,电我源们、可线
性电阻和受控源的一端口,对外电路而言,可以用一个电压
源和电阻的串联组合等效置换”),这个戴维宁等效电 路的电阻就是输出电阻。
US ~
ro
Au
Us ~
(2-6)
如何确定电路的输出电阻?
在电路的计算中求ro的方不法讲:
1、所有的电源置零。
2、加压求流法。
I
将独立源置零, 保留受控源。
U
U
ro I
(2-7)
输出电阻的测量方法:
ro
Us ~
不讲
Uo 测量开路电压
ro
Us ~
Ro
(Uo Uo
1)R L
RL
Uo
测量接入负载后 的输出电压
②电感视为短路。 ③信号源视为短路,但应保留其内阻。 交流通道是输入信号作用下交流信号流经的通 路,用于研究动态参数。 交流通路:①耦合电容视为短路。 ②无内阻的直流电源视为短路。
(2-19)
例:
Rb
RC
C1
断路
+VCC C2
断路 RL
(2-20)
直流通道
Rb
RC
+VCC
(2-21)
对交流信号(输入信号ui)
+VCC RC
集电极电源, 为电路提供能 量。并保证集 电结反偏。
T ui
Rb VBB
(2-16)
共射放大电路
+VCC RC
集电极电阻,将 变化的电流转变 为变化的电压。
《模拟电子技术基础》教案第二章基本放大电路(高教版)(中职教育).doc

第二章基本放大电路本章内容简介本章首先讨论半导体三极管(BJT )的结构、工作原理、特性曲线和主要参数。
随后着重讨论BJT放大电路的三种组态,即共发射极、共集电极和共基极三种放大电路。
内容安排上是从共发射极电路入手,再推及其他两种电路,并将图解法和小信号模型法,作为分析放大电路的基本方法。
(一)主要内容:◊半导体三极管的结构及工作原理,放大电路的三种基本组态◊静态工作点Q的不同选择对非线性失真的影响◊用H参数模型计算共射极放大电路的主要性能指标◊共集电极电路和共基极电路的工作原理◊三极管放大电路的频率响应(二)教学要点:从半导体三极管的结构及工作原理入手,重点介绍三种基本组态放大电路的静态工作点、动态参数(电压增益、源电压增益、输入电阻、输出电阻)的计算方法,H参数等效电路及其应用。
(三)基木要求:◊了解半导体三极管的工作原理、特性曲线及主要参数◊了解半导体三极管放大电路的分类◊掌握用图解法和小信号分析法分析放大电路的静态及动态工作情况◊理解放大电路的工作点稳定问题◊掌握放大电路的频率响应及各元件参数对其性能的影响2.1半导体三极管(BJT)2.1.1BJT的结构简介:半导体三极管有两种类型:NPN型和PNP型。
结构特点:发射区的掺杂浓度最高;集电区掺杂浓度低于发射区,且面积大;基区很薄,一般在几个微米至几十个微米,且掺杂浓度最低。
2.1.2BJT的电流分配与放大原理三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
i B =(l_Q )x* a1-a 2.三极管的三种组态共发射极接法,发射极作为公共电极,用CE 表示。
共基极接法,基极作为 公共电极,用CB 表示。
共集电极接法,集电极作为公共电极,用CC 表示。
q =必耳=«厶=厶/⑴《)BJT 的三种组态4. 放大作用综上所述,三极管的放大作用,主要是依靠它的发射极电流能够通过基区传 输,然后到达集电极而实现的。
电子技术-共发射极基本放大电路课件

无交流输入信号电压时,三极管各电极都是恒定的电压和 流:IB、UBE和 IC、UCE ,称为静态值。这些静态值分别 在输入、输出特性曲线上对应着一点,称为静态工作点,
用Q表示。这时的静态量可表示为IBQ、ICQ、UCEQ。
三、共发射极放大电路的直流、交流通路
(1)共发射极放大电路的直流通路:
+ ui
–
习惯画法ห้องสมุดไป่ตู้
一、共发射极放大电路的组成
(1)晶体管 V:
放大电路中的核心器件。具有电流放大作用, 可将微小的基极电流转换成较大的集电极电流。 (2) 集电极电源EC: 不仅为输出信号提供能 量,还为发射结加正向偏 置电压、集电结加反向偏 + 置电压,使晶体管起到放 ui – 大作用。
RB C1 + +EC C2 + + iB iC + T uCE + uBE – uo – iE – RC
重点应掌握共发射极放大电路静态工作点的分析。
作业
1、画出共发射极放大电路图,并说明各组 成元器件的作用。 2、画出共发射极放大电路的直流通路图。
+UCC Rb C1
+
ICQ =( U - U )/R CC CEQ C =(12-6)/2 ICQ≈β IBQ IBQ ≈ ICQ/ β =3/50=0.06mA =3mA
Rc
+
C2
V
ui
uo
IBQ≈UCC/ Rb Rb ≈ UCC/ IBQ =12/ 0.06=200K
小
结
本堂课我们主要学习了共发射极放大电路和直流 通路、交流通路的画法以及静态工作点的估算。
1、静态时的情况
电子技术基础

第三部分是用拼音字母表示管子的类型。
三极管型号的读识
3
A
G 54
三极管 NP锗材料 高频小功率 序号
X——低频小功率管,G ——高频小功率管 ,
D——低频大功率管,A ——高频大功率管。
A
规格号
第四部分用数字表示器件的序号。 第五部分用拼音字母表示规格号。
14
第二章 晶体三极管及基本放大电路
Powerpoint Designed by Chen Zhenyuan
中等职业教育国家规划教材
HEP
3.三种基本放大电路的比较
《电子技术基础》教学演示文稿
陈振源主编
共集电极放大电路
共基极放大电路
(1)共发射极放大电路的电压、电流、功率放大倍数都较大,所以应用在多
间的最大允许电压。若管子的VCE超过V(BR)CEO,会引起电击穿导致管子损坏。
第二章 晶体三极管及基本放大电路
12
Powerpoint Designed by Chen Zhenyuan
中等职业教育国家规划教材 HEP
《电子技术基础》教学演示文稿
陈振源主编
五、三极管引脚与管型的判别
(1)先确定b极 (2)判断e极、c极
集—基反向饱和电流ICBO 它是指三极管发射极开路时,流过集电结的反
向漏电电流。ICBO大的三极管工作的稳定性较差。
ICBO测量电路
ICEO测量电路
集—射反向饱和电流ICEO 它是指三极管的基极开路,集电极与发射极之
间加上一定电压时的集电极电流。ICEO是ICBO的(1+β)倍,所以它受温度影响不可 忽视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2.3.4 基本共 (2)输出电路方程:uCE=VCC-iCRc
图2.3.5 用图解法求解静态工作点和电压放大倍数
二、电压放大倍数的分析 当加入输入信号△uI时,输入回路方程为 uBE=VBB+ △uI-iBRb
Q点高,同样的△uI产生的△iB越大,因而Au大。 Rc变化时,影响负载线的斜率,从而影响Au的大小。
图2.1.1 扩音机示意图
2.1.2
放大电路的性能指标
图2.1.2 放大电路 的示意图
一、放大倍数
二、输入电阻
三、输出电阻
根据图2.1.2有
输入电阻和输出电阻是影响多级放大电路 连接的重要参数。
图2.1.3
两个放大电路的连接
四、 通频带
通频带用于衡量放大电路对不同频率 信号的放大能力。
图2.1.4 fbw=fH-fL
2、输入电阻Ri 3、输出电阻Ro 分析输出电阻,也可令其信号源电压 ,但 保留其内阻Rs。然后在输出端加一正弦波测试信 号Uo,必然产生动态电流Io, 为恒压源,其内 阻为0,且 =0时, =0, =0,所以
2.4
放大电路工作点的稳定
2.4.1 静态工作点稳定的必要性
图2.4.1
2.4.2 典型的静态工作点稳定电路 一、电路组成和Q点稳定原理
图2.4.2 静态工作点稳定电路 (a) 直接耦合 (b) 阻容耦合 (c) 直流通路
B点的电流方程为 I2=I1+IBQ 一般选择 I1» IBQ 所以, I2I1 B点电位为
五、非线性失真系数
六、最大不失真输出电压
当输入电压再增大就会使输出波形 产生非线性失真时的输出电压。此时的 非线性失真系数要被定义,如10%。
七、最大输出功率与效率
2.2
2.2.1
基本共射放大电路的工作原理
基本共射放大电路的组成和各元件的作用
各元件的作用: T:有源元件,放大 VBB:提供静态工作点 VCC:为输出提供能量 Rb:决定静态电流IB Rc:将集电极电流变 化转换成电压变 化
图2.2.1
输入回路和输出回路以发射极为公共点, 所以称之为共射放大电路,并称公共端为“地”。
2.2.2 设置静态工作点的必要性 一、静态工作点
二、为什么要设置静态工作点 图2.2.2是没有设置静态工作点的放大电路。
图2.2.2
2.2.3
基本共射放大电路的工作原理 及波形分析
图2.2.1
图2.2.3
图2.3.12
可以写成关系式:
式中uBE、iC等均为各电量的瞬时总量。为研究 低频小信号作用下各变化量之间的关系,对上边两 式求全微分,得出:
duBE代表uBE的变化部分,可以用
取代。所以:
2、h参数的物理意义
(a)h11e
图2.3.13 (b)h12e (c)h21e (d)h22e
3、简化的h参数等效模型
一、晶体管的直流模型及静态工作点的估算
图2.3.11
在上图中,VCC=12V,Rb=510KΩ.Rc=3kΩ, 晶体管的β=100,UBEQ0.7V. 则可得IBQ22μA, ICQ 2.2mA, UCEQ5.35V
二、晶体管共射h参 数等效模型
1、h参数等效模型 的由来 在低频小信号作 用下,将共射放大 电路中的晶体管看 成一个双口网络 b-e作为输入端口, c-e作为输出端口。 如图2.3.12所示。
图2.3.1 基本共射 放大电路
图2.3.2 直接耦合共 射放大电路
图2.3.3 阻容耦合共 射放大电路
2.3.2
图解法 利用放大管的输入、输出特性曲线和外电路 特性用作图的方法对放大电路进行分析。 一、静态工作点的分析
1、输入回路 (1)输入特性曲线 (2)输入电路方程
uBE=VBB-iBRb
三、波形非线性失真的分析
图2.3.6
基本共射放大电路的波形分析
图2.3.7
基本共射放大电路的截止失真
图2.3.8
基本共射放大电路的饱和失真
四、直流负载线和交流负载线
过Q点作一条斜 率为-1/(Rc∥RL) 的直线即为交流 负载线。 放大电路带负 载后,电压放大 倍数减小,最大 不失真输出电压 也将减小。 图2.3.9
第二章 基本放大电路
2.1 放大的概念和放大电路的主要 性能指标
2.1.1 放大的概念 放大镜、杠杆、变压器、扩音机。 放大的对象均为变化量; 放大电路是能量的控制和转换; 电子电路放大的基本特征是功率放大; 电子放大电路中要有能控制能量的元件, 即有源元件; 放大的前提是不失真,只有在不失真的 情况下才有意义。
2.2.4 放大电路的组成原则 一、 组成原则 1、直流工作电源的选择要根据晶体管的类型、 需要的输出电压大小。原则是要保证放大管 的发射结正向偏置,集电结反向偏置。 2、电阻取值适当,使放大管有合适的静态工作 点。 3、输入信号必须能作用于放大电路的输入回路。 4、当负载接入时,必须保证动态电流能作用于 负载,即负载能得到比输入信号大得多的信 号输出。
rbe—h11e β —h21e
图2.3.14
4、rbe的近似表达式
图2.3.15
因为
所以
由于u大于开启电压(0.5V),而常温下UT26mV。
所以 ,代入上式可得
当用以点为切点的切线代替点附近的曲线时 即
根据rbe的定义
所以
或
三、共射放大电路动态参数的分析 图2.3.16 基本共射 放大电路 (a)交流等 效电路 (b)输出电 阻分析 1、电压放大倍数
二、常见的两种共射放大电路
1、直接耦合共射放大电路
图2.2.4
2、阻容耦合共射放大电路
图2.2.5
2.3
放大电路的分析方法
解决问题:求解静态工作点和各项动态参数。 2.3.1 直流通路和交流通路
直流通路: 直流电源作用下直流电流流经的通路。 电容开路,电感短路,信号源短路但 保留其内阻。 交流通路:输入信号作用下交流信号流经的通路。 容量大的电容视为短路,无内阻的直流 电源视为短路。
五、图解法的适用范围
多适用于分析输出幅值比较大而工作频率 不太高时的情况。常用来分析Q点的位置、最 大不失真输出电压和失真情况。
2.3.3
等效电路法 在一定的条件下将晶体管的非线性特性 线性化,就可应用线性电路的分析方法来分析晶 体管电路。晶体管有不同的等效模型,用直流 模型来分析静态工作点,用低频小信号h参数等 效模型来分析放大电路的动态参数。