低频磁场的屏蔽解读

低频磁场的屏蔽解读
低频磁场的屏蔽解读

低频磁场的屏蔽

对于许多人而言,低频磁场干扰是一种最难对付的干扰,这种干扰是由直流电流或交流电流产生的。例如,由于炼钢的感应炉中有数万安培的电流,会在周围产生很强的磁场,这个强磁场会使控制系统中的磁敏感器件失灵,最常见的磁敏感设备是彩色CRT显示器。在磁场的作用下,显示器屏幕上的图象会发生抖动、图象颜色会失真,导致显示质量严重降低,甚至无法使用。低频磁场往往随距离的衰减很快,因此在很多场合,将磁敏感器件远离磁场源是一个减小磁场干扰的十分有效的措施。但当空间的限制而无法采取这个措施时,屏蔽是一个十分有效的措施。但要注意的是,低频磁场屏蔽与与射频屏蔽是完全不同的,射频屏蔽可以用铍铜复合材料、银、锡或铝等材料,但这些材料对磁场没有任何屏蔽作用。只有高导磁率的铁磁合金能屏蔽磁场。

1.基本原理

根据电磁屏蔽的基本原理,低频磁场由于其频率低,趋肤效应很小,吸收损耗很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠吸收和反射很难获得需要的屏蔽效能。对这种低频磁场,要通过使用高导磁率材料提供磁旁路来实现屏蔽,如图1所示。由于屏蔽材料的导磁率很高,因此为磁场提供了一条磁阻很低的通路,因此空间的磁场会集中在屏蔽材料中,从而使敏感器件免受磁场干扰。

图1 高导磁率材料提供了磁旁路,起到屏蔽作用

从这个机理上看,显然屏蔽体分流的磁场分量越多,则屏蔽效能越高。根据这个原理,我们可以用电路的的计算方法来计算磁屏蔽效果。用两个并联的电阻

分别表示屏蔽材料的磁阻和空间的磁阻,用电路分析的方法来计算磁场的分流,由此可以计算屏蔽效果。

计算屏蔽效果

H i = H 0 Rs / ( Rs + R 0)

式中: H i = 屏蔽体内的磁场强度 H 0 = 屏蔽体外的磁场强度 Rs = 屏蔽体的磁阻 R 0 = 空气的磁阻

磁阻的计算公式

磁阻 = S / (μ A ) 式中:

S = 磁路长度

μ = m 0 m r

μ r = 屏蔽材料的相对磁导率

A = 磁通流过的面积

因此圆形管子的磁阻为 Rs = p b /( μ 0 μ r 2t L )

为了简单,设截面为正方形, 管子内空气的磁阻为:

屏蔽效能为: R 0 = 2 b /( μ 0 2b L ) SE = H 0 / H i

对于高导磁率屏蔽材料,Rs < < R 0 ,因此,屏蔽效能为:

SE = R 0 / Rs = 2 m r t / p b

从公式中可以看出,屏蔽材料的导磁率越高、越厚,则屏蔽效能越高。另外,b 越小,屏蔽效能越高,这意味着,屏蔽体距离所保护的空间越近,则效果越好。

2.基本概念

磁场强度 ( H ):

单位是奥斯特,与磁场源的强度和距离有关 磁通密度 ( B ): 单位是高斯,度量穿过每平方厘米的磁力线数量,与源的方向有关

磁导率 ( μ ):

表征材料为磁力线提供通路的能力, μ = B / H 饱和强度 : 在饱和强度下,材料不能再通过多余的磁力线

磁阻 ( R ): 表征材料对通过磁通的阻碍特性,定义为:R = L / μ A ,L 是磁通路径长度(cm ),A 截面面积(cm 2)

3.屏蔽材料

如前所述,磁屏蔽需要高导磁率材料,满足这种要求的材料是铁镍合金,这种材料具有很高的磁导率。一种常用的合金的化学成分如表1所示。这种材料在

正确热处理的条件下,起始磁导率(直流,磁通密度为40高斯)可达到60,000,最高磁导率可达到400,000。

磁导率并不是固定不变的,它会随外加磁场、频率等变化。磁导率随频率的变化如图2所示。从图中可以看出,不同厚度的材料的频率特性也不一样,较厚

的材料磁导率随频率下降更快一些。

图2 磁导率与频率关系

磁导率还与外加磁场强度有关,当外加磁场强度较低时,磁导率随外加磁场的增加而升高,当外加磁场强度超过一定值时,磁导率急剧下降,这时称材料发

生了饱和,典型高导磁率材料的磁导率随外加磁场的变化如图3所示。材料一旦

发生饱和,就失去了磁屏蔽作用。材料的磁导率越高,越容易饱和。因此,在很

强的磁场中,磁导率很高的材料可能并没有良好的屏蔽效能。在选材料时,关键

一点是选择同时具有适当饱和特性和足够磁导率的材料。表2给出了一些常用合

金的的磁特性。

表2

图3 常用高磁导率的磁导率与外加磁场的关系

4.注意事项

高导磁率材料在机械冲击的条件下会极大地损失磁性,导致屏蔽效能下降。因此,屏蔽体在经过机械加工后,如敲击、焊接、折弯、钻孔等,必须经过热处理以恢复磁性。热处理要在特定条件下进行,一般要在干燥氢气炉中以一定的速率加热到1177 C,保持4个小时,然后以一定的速率降温到室温。由于热处理的条件极其严格,因此最好是委托材料厂家进行屏蔽体的加工,在工件完成后,进行热处理。如果,用户一定要自己加工,记住要按照材料厂家提出的条件对屏蔽体进行热处理,以获得最佳屏蔽效能,最理想的方法是将工件寄到厂家进行热处理。

在对拼接处进行焊接时,要使用屏蔽材料母料做焊接填充料,这样可以保证焊缝处的高导磁率。如果屏蔽效能要求较低,也可以采用点焊或铆接的方式固定,但要注意拼接处的屏蔽材料要有一定的重叠,以保证磁通路上较小磁阻。

当需要屏蔽的磁场很强时,仅用单层屏蔽材料,不是达不到屏蔽要求,就是会发生饱和。这时,一种方法是增加材料的厚度。但更有效的方法是使用组合屏蔽,将一个屏蔽体放在另一个屏蔽体内,它们之间留有气隙。气隙内可以填充任何非导磁率材料做支撑,如铝。组合屏蔽的屏蔽效能比单个屏蔽体高得多,因此组合屏蔽能够将磁场衰减到很低的程度。

5.实际应用

计算机的CRT显示器受到磁场干扰而发生图象扭曲、失真、滚动等现象是最常见的磁干扰现象。对这种干扰,最有效的方法是将显示器屏蔽起来。屏蔽有两种方法,一种是仅对显象管屏蔽,如图4所示,另一种是对整个显示器屏蔽,如图5所示。

图4 显象管屏蔽罩

图5 显示器屏蔽罩

根据前面所述的磁屏蔽理论,屏蔽体将要保护器件包的越紧,则屏蔽效果越好。因此,仅将显象管屏蔽起来方法屏蔽效果更好。但这需要将显示器拆开,重新安装屏蔽,不是一般条件下可以做的。并且,这种方法中使用的屏蔽罩往往需要按照显象管的实际尺寸订做,成本很高。在实际中,将显示器整体屏蔽起来是更加实用的方法。当显示器发生了磁场干扰时,用户只要采购一台标准的显示器屏蔽罩就可以解决问题了。

当磁场不是很强时,仅用一块高导磁率材料遮挡一下也能够解决问题。例如,在一个办公区域中,使用着大约20多台工作站,其中有几台的屏幕发生了抖动。调查表明,干扰源是在显示器正下方的电力电缆。电缆中的电流每相仅有30安培,结果是,在显示器处测量的磁场强度超过了70毫高斯。解决的方法是在地板,显示器与电缆之间,放置一块高导磁率屏蔽材料,然后在屏蔽材料上盖一块地毯,如图6所示。

图6 高导磁率材料能遮挡磁场

在办公室的另一位置,由于靠近配电盘,两台工作站的显示器必须进行屏蔽。

磁场的屏蔽问题.

磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题。根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆。静电屏蔽 在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础。 因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论。 (一)封闭导体壳内部电场不受壳外电荷或电场影响。 如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电(如图1)。静电平衡时壳内无电场。这不是说壳外电荷不在壳内产生电场,根 发电场。由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零。因而导体壳内部不会受到壳外电荷q或其他电场的影响。壳外壁的感应电荷起了自动调节作用。 如果把上述空腔导体外壳接地(图2),则外壳上感应正电荷将沿接地线流入地下。静电平衡后空腔导体与大地等势,空腔内场强仍然为零。 如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场。这时因空腔内壁有异号感应电荷,因此空腔内有电场(图3)。此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响。 由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响。 (二)接地封闭导体壳外部电场不受壳内电荷的影响。 如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在(图4),此电场可以说是由壳内电荷q间接产生。也可以说是由壳外感应电荷直接产生的 但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零(图5)。可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地。这与第一种情况不同。 这里还须注意:①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电。假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷(图6)。 ②实际应用中金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果,虽然这种屏蔽并不是完全、彻底的。 ③在静电平衡时,接地线中是无电荷流动的,但是如果被屏蔽的壳内的电荷随时间变化,或者是壳外附近带电体的电荷随时间而变化,就会使接地线中有电流。屏蔽罩也可能出现剩余电荷,这时屏蔽作用又将是不完全和不彻底的。 总之,封闭导体壳不论接地与否,内部电场不受壳外电荷与电场影响;接地封闭导体壳外电场不受壳内电荷的影响。这种现象,叫静电屏蔽。 静电屏蔽有两方面的意义,其一是实际意义:屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响。有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳。又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用。在高压带电作业中,

低频磁场屏蔽的原理及屏蔽物的结构要点

5.3.4 低频磁场屏蔽的原理及屏蔽物的结构要点 1.低频磁场屏蔽原理 减小低频磁场干扰的方法,除了合理地布置元器件、走线的相对位置和方位外,对于低频(如50 H2)交变磁场的干扰,可采用低频磁场屏蔽的方法来减小其影响,见图5—32 图5—32(a)中,T为电子元器件或电路,当不加屏蔽地放在磁场中时,将会受到低频磁场于扰,如电子束受力发生偏转,改变磁性材料的磁化性能等。图5—32(b)为用高磁导串材料做的一个屏蔽盒。斯麦迪电子磁力线通过时阻力很小,而空气的磁导率很低,磁力线通过时受到很大阻力。因此磁力线将绝大部分从屏蔽体上流过,只有很少量经过屏蔽体内的空气到达元器件了上。即磁力线主要经1—2—3—4线路流走,很少量经1—2’一3’一4流走,从而对T起到了保护作用。综上所述,低频磁场的屏蔽原理就是磁分路原理,即用高磁导率的材料做成屏蔽体,使磁力线分路而起到屏蔽效果。屏蔽体导磁率越南,屏蔽体的壁厚越厚,磁分路作用就越好,屏蔽效果也就越好。几种常用材料的相对导磁串见表5—9。相对导磁率是材料的导磁率与空气导磁串之比,空气的相对导磁串为l。从表5—9中可知:作为低频敬屏蔽物的材料应选钢铁、不锈钢或坡莫合金,而不应选铜或铝等电的良导体。 2.低频疆场屏蔽物的结构要点(1)减小蹬屏蔽盒在接口处的接继磁力线通过屏蔽罩的接口缝隙处时,将会受到很大的磁阻,使磁力线产生泄漏,因此在设计时缝隙处应有较大的重矗[见图5—33(a)中的A3,且应使配合紧密,尽量减小缝隙。还应注意统欧与磁力线的相对位置,不应使接缝切断磁力线而增加磁阻。图5—33(a)的安装是正确的,图5—33(b)的安装则不正确。

(整理)13怎样计算磁感应强度.

§13 怎样计算磁感应强度 在稳恒磁场中的磁感应强度,可用毕奥-沙伐尔定律和安培环路定律来求解。 毕奥-沙伐尔定律在成块中的地位,好像静电场中的库仑定律一样,是很重要的。它是计算磁感应强度最普遍、最基本的方法。安培环路定律,是毕奥-沙伐尔定律的基础上加上载流导线无限长等条件而推导出来的。困此,用安培环路定律遇到较大的限制。但是,有一些场合,应用安培环路定律往往给我们带来不少方便。 一、用毕奥-沙伐尔定律计算 真空中有一电流元Idl ,在与它相距r 处的地方所产生的磁感应强度dB ,由毕奥-沙伐尔定律决定。 03 (1)4Idl r dB r μπ?= 式中,r 是由电流元Idl 指向求B 点的距离矢量。式(1)是矢量的矢积,故dB 垂直于dl 与r 组成的平面,而且服从右手螺旋法则。真空的磁导率7 0410/H m μπ-=?。 B 是一个可叠加的物理量,因此,对于一段(弯曲的或直的)载流导线L 所产生的B 磁感 应强度为: 03 (2)4L Idl r B r μπ?= ? 1、 基本题例 在磁场的计算中,许多习题是载流直导线和圆弧导线不同组合而成的。因此,必须熟练掌握一段载流的长直导线和一段载流的圆弧导线的磁场的计算公式。 图2-13-1所示为一段长直载流导线,它的磁感应强度的计算公式为: ()0 12cos cos 4B a μθθπ= - 或: ()0 21cos cos 4B a μββπ= - 当载流直导线“无限长”时,02I B a μπ= ;

半无限长时,04I B a μπ= 运用时,应注意a 是求B 点到载流导线的垂直距离;辨认θ与β的正负,请辨认图2-13-2中的θ,β的正负。 一段载流圆弧,半径为R ,在圆心O 点的磁感应强度为: 004I B R μθ π= 方向由右手螺旋法则决定。 当2 π θ= 时, 002I B R μ= 当θπ=时, 004I B R μ= 2、 组合题例 [例1]已知如图2-13-3所示,求P 点的磁感应强度。 [解法一]由图可见,此载流导线由两根半无限长载流导线和一个半圆弧组成。 两根半无限长的载流导线在P 点产生的磁感应强度为: 011222P I B R μπ=? 载流半圆弧在P 点产生的磁感应强度为发: 0222P I B R μ=? 故总的磁感应强度: ()01224P P P I B B B R μππ=+= + [解法二]图示载流导线也可以看成两根无限长 载流导线和一个载流圆环组成(如图2-13-3)。将所得结果除以2,即为题设答案。 两根无限长载流导线和一个载流圆环在P 点所

磁法标本磁参数计算公式修改意见

关于地面高精度磁测规范磁性标本参数计算公式修 改意见 刘国栋1,王富群2 1河南省地矿局第二地质勘查院,许昌(461000) 2河南省地矿局第二地质勘查院许昌(461000) E-mail :liuuodong1985@https://www.360docs.net/doc/3814026812.html, 摘 要:本文主要阐述磁性标本的磁参数计算公式的理论推导及其单位换算,指出中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中给出的磁参数计算公式的不合理性,提出关于该公式修改意见。 关键词:磁参数计算公式 高斯 第一位置 第二位置 1.引言 我院在按照中华人民共和国地质矿产行业标准《地面高精度磁测技术规程》DZ/T 0071—93中规定的第一高斯位置法进行内蒙古标本磁参数测量并计算时碰到磁化率单位问题。 引用中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中附录C 的磁化率和剩磁计算公式[1]: 高斯第一位置磁化率: 3-6345612000051---1043222n n n n n n r n n n SI T V χπ?++?+??????=?++??? ? ? ???????????(κ) (1) 式中:r ——标本中心到探头中心的距离; V ——标本体积; 0T ——当地总磁场值; 高斯第一位置剩磁: 3-351 10/2r r I A m V =? (2) 用以上两个公式进行计算:按照该规范附录C 中叙述, r 选取单位cm ,V 选取单位cm 3,0T 与i n 选取单位nT ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实相符。 重新选取单位:r 选取单位m ,V 选取单位m3,0T 与i n 选取单位T ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实也不符,比实际小了约109倍。 由(1)式单位换算可以看出,r 3与V 的单位相消,0T 与i n 的单位相消,也就是说这四个参数的单位选择不会影响计算结果。 同理:(2)式中,3 r 与V 的单位相消,i n 的单位单独存在,影响到计算结果。 综上所述,个人认为是(1)式在推到中出现了错误,(2)式正确,i n 的单位应为nT 。 2.公式推导 约束条件: 高斯第一位置: 212n n +,432n n +,65 2n n + 0n ≥ 高斯第二位置:212n n +,432n n +,65 2 n n + 0n ≤ 2.1 高斯第一位置 根据磁偶极子模型,可得到标本在高斯第一位置产生磁场感应强度B 的大小[2]:

低频磁场

低频磁场 低频磁场很难屏蔽。磁力线可以穿透我们生活中常见的材料或物体(如木材、砖瓦、石块、水泥等材料或人体、墙壁、树木等物体),并基本上不因上述物体或材料的存在而产生畸变或消弱。 为了描述带电导线中的电流在周围空间中产生磁场的大小,物理上引入了磁场强度的概念,它是一个矢量,一般用符号H表示,其单位是安培/米(A/m)。而单位磁场强度在周围空间感应出磁通密度的大小(通常用磁感应强度B表示)是不同的,它取决于磁场闭合环路中各种介质的导磁能力。磁感应强度与磁场强度的关系为 B=μH=μrμ0H(3-1) 式中:μ被称为物质的磁导率;μ0被称为真空磁导率,其值为4π×10-7H/m;μr称为物质的相对磁导率。不同材料具有不同的磁导率。 根据磁导率的大小,一般可以把材料分为弱磁性材料和强磁性材料两大类。弱磁性材料包括顺磁性材料和抗磁性材料;强磁性材料常见的为铁磁材料、亚铁磁材料。 抗磁性材料在无外加磁场时对外不显磁性,在外加磁场的作用下会产生一个同外加磁场方向相反的磁场。抗磁性材料的μr略小于1,这类材料如汞、铜、硫、金、银、锌、铅等。顺磁性材料在无外加磁场时几乎不显磁性,在外加磁场的作用下材料内的原子运动会产生一个同外加磁场方向相同的磁场。顺磁性材料的μr略大于1,这类材料如锰、铬、铂、氮等。铁磁材料在外加磁场时,材料内的原子在被称为“交换耦合”的量子效应下,对外显现出非常强烈的磁性,铁磁材料主要是含铁、镍、钴和稀有金属钆、铽等的材料。亚铁磁性材料在外磁场作用下的磁性弱于铁磁性材料,但其导电性能较铁磁性材料强,亚铁磁性材料有铁氧体等。表3-9列出了一些材料的磁化特性。 表3-9 典型材料的磁性能

磁场公式

计算两圆柱形磁铁间力的公式 F x =πμ04 M 2R 4 1x +1 x+2t +2 x+t (1) 永久磁铁磁场 B r =μ 4πr [3 μ?r r ?μ](2) 磁偶极子磁场强度计算公式 B m ,r = μ04π||r ||3 [3 m ?r r ?m ](3) r 是单位向量:( x ||r || i + y ||r || j + z ||r || k ) r 是从磁铁位置至场位置的位移矢量 m 是磁铁的磁转矩(0.0,m) 由于只需要关心z 方向的磁场强度 所以由(3)式推导如下 B z =μ04π||r ||[3 m ?z ||r ||k z ||r ||k ?m ](注:任何单位向量的平方均为1,不同单位向量相乘为0) 由于单位向量k =z ||r ||(注:单位向量等于对应轴的坐标值除以所求的点到原点的距离) (注:向量点积计算公式 (axi+ayj+azk).(bxi+byj+bzk)=(axbx+ayby+azb)=|a||b|cos(zita) 其中zita 为向量a 与向量b 的夹角) 所以B z = μ04π||r || 3[3 m z r z r ?m ](4) =μ03m 3 z 2?1 3| r |2 r 2 将(4)式写成圆柱坐标系形式(r,z ) B z (m,γ,z)= μ0 4π(z 2+γ2)32 γ22 γ22 ?m (5) = μ0m 4π(z 2+γ2)3 2 ( 3z 2γ+z ?1)(6) (6)式即为一个磁偶极子的磁感应强度公式

将(4)式写成空间中任意点(x 0,y 0,z 0)处的磁偶极子在空间中(x,y,z)点处B z 的平面直角坐标系形式 B z m ,x ,y ,z ,x 0y 0,z 0 = μ0m 4π 3 z?z 0 2?[(x?x 0)2+(y?y 0)2+(z?z 0)2][(x?x 0)2+(y?y 0)2+(z?z 0)2]5 2 (7) 根据(7)式,计算圆柱形磁铁在空间任意点处磁场强度公式 将圆柱形磁铁看成是无数个磁偶极子的集合,其磁化强度为M ,由公式m=MV 得:dm=MdV B z m ,x ,y ,z ,x 0y 0,z 0 =μ0m 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0 )2+(z ?z 0 )2]5 V 圆柱 = 3 z?z 0 2?[ x?x 0 2+(y?y 0)2+(z?z 0)2][ x?x 0 2+(y?y 0)2+(z?z 0)2]5 2 R 2?y 222dx dy dz R ?R 0?H (8) 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] 5 2 R 2?y 2 ? R 2?y 2 dx =

永磁同步伺服电动机的磁场分析与参数计算

ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)JT singhua U niv (Sci &Tech ),2004年第44卷第10期 2004,V o l .44,N o .106 36 131721320   永磁同步伺服电动机的磁场分析与参数计算 陶 果, 邱阿瑞, 柴建云, 肖 曦 (清华大学电机工程与应用电子技术系,北京100084) 收稿日期:2003208218 作者简介:陶果(19792),男(汉),安徽,博士研究生。 通讯联系人:邱阿瑞,教授,E 2m ail :qiuar @m ail .tsinghua .edu .cn 摘 要:为了更有效地对永磁同步伺服电动机进行设计和分析,需准确进行电机的磁场分析和参数计算。该文以一台定子为集中绕组、槽 极比为9 6、转子磁极为径向充磁圆筒形磁极等结构特点的永磁三相同步伺服电动机为例,分析了其磁场的分布情况,给出了电机的磁场分布图;对用电磁场数值计算来求解电机的空载反电动势进行了研究和分析;同时对如何求解电机的定子绕组电感进行了研究。计算结果与实验所测的结果吻合较好。该文提出的磁场分析和参数计算方法,对这类结构的永磁伺服电动机的设计和分析具有很好的参考价值。 关键词:永磁同步伺服电动机;磁场分析;电感计算中图分类号:TM 351 文献标识码:A 文章编号:100020054(2004)1021317204 Ana lysis of magnetic f ields i n permanen t magnet synchronous servo m otors TAO Guo ,Q I U A rui ,CHA I J ia nyun ,XI A O Xi (D epart men t of Electr ical Engi neer i ng and Applied Electron ic Technology ,Tsi nghua Un iversity , Be ij i ng 100084,Ch i na ) Abstract :A ccurateanalysis of the m agnetic field param eters is i m po rtant to the design of per m anent m agnet three 2phase synch ronous servo mo to rs .T h is paper describes the analysis of the m agnetic fields in a perm anent m agnet synchronous servo mo to r .T he stato r w indings are concentrated co ils wound around a single too th w ith a slo ts po les rati o of 9 6, w ith cylindrical surface 2mounted po les .T he m agnetic field distributi ons are given w ith a num erical m ethod to calculate the back E M F fo r no load conditi ons .T he stato r inductance w as also analyzed .T he calculated values agree w ell w ith m easured values . Key words :per m anentm agnetsynch ronous servo mo to r;analysis of m agnetic fields;inductance calculati on 近年来,永磁交流伺服系统具有逐步取代传统直流伺服系统的趋势,已成为现代伺服技术重要的 发展方向。正弦波驱动的稀土永磁同步伺服电动机,由于其体积小、效率高、转矩脉动小等优点,在伺服 系统中得到越来越广泛的应用。 在研制设计永磁同步伺服电动机时,在满足电机基本性能的条件下,如何使电机生产制造方便,并尽可能地减少制造成本,是研究与设计人员应当考虑的重要问题。本文以一台额定功率为400W 、额定转速为5000r m in 的小型永磁交流伺服电动机为研究对象,该电机采用了一些特殊的结构形式,如定子绕组采用集中绕组,线圈直接套在定子齿上;槽 极比(即定子槽与极数之比)为9 6;转子磁极采用径向充磁的圆筒形磁极,并直接套装在转轴上。针对这种特殊结构形式的永磁同步伺服电动机进行设计和分析,目前国内还没有成熟的方法。经文献检索国外也少见有此类研究论文发表[1]。 本文将采用电磁场有限元方法来进行电机的磁场分析与参数计算。 1 数学模型的建立 分析永磁同步伺服电动机的电磁场问题,用矢 量磁位A 来表征其磁场比较方便。由于电机磁场结构沿轴向是均匀对称的,因此可采用二维的电磁场分析方法。又因为转子极数与定子槽(齿)数不是整数倍关系,因此,在求解时宜采用整个电机为求解对象。电机的二维电磁场计算模型如图1所示。求解电机磁场的有限元模型及边界条件为[2]: 99x 1Λ9A 9x +99y 1Λ9A 9y =-?, (1)1Λ19A 9n L - 1Λ29A 9n L =J c =H c L ,(2)A A B CD =0. (3) 其中:?为外加电流密度,Λ为材料的导磁率;Λ1、 Λ2分别为永磁体外和内的导磁率,L 为永磁体表面;n 为永磁体表面的外法线,J c =H c 为等效永磁

浅谈电磁场屏蔽

浅谈电磁场屏蔽 【摘要】阐述了三种电磁场屏蔽的屏蔽原理,在屏蔽材料的选取、屏蔽效果、应用范围等方面对三者进行了比较。 【关键词】电磁场屏蔽;屏蔽原理;屏蔽材料;屏蔽效果 0引言 随着电子技术的发展,越来越多的电子电气设备进入人们的生活,电磁污染日益严重。另一方面,由于电子电气设备小型化的要求,极易受外界电磁干扰而使其产生误动作,从而带来严重后果。因此人们越来越重视电子产品的电磁兼容性(EMC),电磁场的屏蔽就是电磁兼容技术的主要措施之一。 根据条件的不同,电磁场的屏蔽一般可以分为三类:静电屏蔽、静磁屏蔽和高频电磁场的屏蔽。三种屏蔽的共同点是防止外界的电磁场进入到某个需要保护的区域中去。但是由于所要屏蔽的场的特性不同,因而对屏蔽材料的要求也就不一样。 1静电屏蔽 静电屏蔽的目的是防止外界的静电场进入到某个区域。实际上对于变化很慢的交流电而言,它周围的电场几乎和静电场一样,只是电荷的分布周期性地变化而已。因此防止低频交流电的电场,也可以归结为静电屏蔽一类。静电屏蔽对导体壳的厚度和电导率无特别要求,但对于低频交流电场,屏蔽壳要选电导率高一点的材料。 图1空腔导体屏蔽外电场 静电屏蔽分为外屏蔽和全屏蔽。空腔导体内无电荷,在外电场中处于静电平衡时,其内部的场强总等于零(图1),因此外电场不可能对其内部空间发生任何影响。若空腔导体内有带电体,在静电平衡时,它的内表面将产生等量异号的感应电荷,外表面会产生等量同号的感应电荷(图2),此时感应电荷的电场将对外界产生影响。这时空腔导体只能屏蔽外电场,却不能屏蔽内部带电体对外界的影响,所以叫外屏蔽。如果外壳接地,即使内部有带电体存在,内表面感应的电荷与带电体所带的电荷的代数和为零,而外表面产生的感应电荷通过接地线流入大地(图3)。此时外界无法影响壳内空间,内部带电体对外界的影响也随之消除,所以这种屏蔽叫做全屏蔽。 实际使用中一般均采用接地的屏蔽方法,且金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果。例如高压电力设备安装接地金属网,电子仪器的整体及某些部分使用接地金属外壳等。 2静磁屏蔽 图4 静磁屏蔽的目的是屏蔽外界静磁场和低频电流的磁场,这时必须用磁性介质作外壳。如图4,用磁导率为的铁磁材料制成屏蔽壳,壳与空腔则可看作两个并联的磁阻。由于,空腔磁阻远大于屏蔽壳磁阻,所以外界的磁感线绝大部分穿过屏蔽壳而不进入空腔。要想获得更好的屏蔽效果,可使用较厚的屏蔽壳或采用多重屏蔽壳。因此效果良好的铁磁屏蔽壳一般都比较笨重。在重量和体积受到限制的情况下,常常采用磁导率高达数万的坡莫合金来做屏蔽壳,壳的各个部分要尽量结合紧密,使磁路畅通。磁屏蔽不同于电屏蔽,壳体是否接地不会影响屏蔽效果,但是要求金属材料磁导率要高。

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:?????===?θθ?θd r dl rd dl dr dl r sin ,面积元:??? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元: ?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ? ? ? ??==+=?????===z z x y y x r z z r y r x arctan ,sin cos 2 2??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22 2 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2 '2 2''arccos ,cos sin z r z z r r r z r r 3、梯度

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

低频磁场的屏蔽解读

低频磁场的屏蔽 对于许多人而言,低频磁场干扰是一种最难对付的干扰,这种干扰是由直流电流或交流电流产生的。例如,由于炼钢的感应炉中有数万安培的电流,会在周围产生很强的磁场,这个强磁场会使控制系统中的磁敏感器件失灵,最常见的磁敏感设备是彩色CRT显示器。在磁场的作用下,显示器屏幕上的图象会发生抖动、图象颜色会失真,导致显示质量严重降低,甚至无法使用。低频磁场往往随距离的衰减很快,因此在很多场合,将磁敏感器件远离磁场源是一个减小磁场干扰的十分有效的措施。但当空间的限制而无法采取这个措施时,屏蔽是一个十分有效的措施。但要注意的是,低频磁场屏蔽与与射频屏蔽是完全不同的,射频屏蔽可以用铍铜复合材料、银、锡或铝等材料,但这些材料对磁场没有任何屏蔽作用。只有高导磁率的铁磁合金能屏蔽磁场。 1.基本原理 根据电磁屏蔽的基本原理,低频磁场由于其频率低,趋肤效应很小,吸收损耗很小,并且由于其波阻抗很低,反射损耗也很小,因此单纯靠吸收和反射很难获得需要的屏蔽效能。对这种低频磁场,要通过使用高导磁率材料提供磁旁路来实现屏蔽,如图1所示。由于屏蔽材料的导磁率很高,因此为磁场提供了一条磁阻很低的通路,因此空间的磁场会集中在屏蔽材料中,从而使敏感器件免受磁场干扰。 图1 高导磁率材料提供了磁旁路,起到屏蔽作用 从这个机理上看,显然屏蔽体分流的磁场分量越多,则屏蔽效能越高。根据这个原理,我们可以用电路的的计算方法来计算磁屏蔽效果。用两个并联的电阻

分别表示屏蔽材料的磁阻和空间的磁阻,用电路分析的方法来计算磁场的分流,由此可以计算屏蔽效果。 计算屏蔽效果 H i = H 0 Rs / ( Rs + R 0) 式中: H i = 屏蔽体内的磁场强度 H 0 = 屏蔽体外的磁场强度 Rs = 屏蔽体的磁阻 R 0 = 空气的磁阻 磁阻的计算公式 磁阻 = S / (μ A ) 式中: S = 磁路长度 μ = m 0 m r μ r = 屏蔽材料的相对磁导率 A = 磁通流过的面积 因此圆形管子的磁阻为 Rs = p b /( μ 0 μ r 2t L ) 为了简单,设截面为正方形, 管子内空气的磁阻为: 屏蔽效能为: R 0 = 2 b /( μ 0 2b L ) SE = H 0 / H i 对于高导磁率屏蔽材料,Rs < < R 0 ,因此,屏蔽效能为: SE = R 0 / Rs = 2 m r t / p b 从公式中可以看出,屏蔽材料的导磁率越高、越厚,则屏蔽效能越高。另外,b 越小,屏蔽效能越高,这意味着,屏蔽体距离所保护的空间越近,则效果越好。 2.基本概念 磁场强度 ( H ): 单位是奥斯特,与磁场源的强度和距离有关 磁通密度 ( B ): 单位是高斯,度量穿过每平方厘米的磁力线数量,与源的方向有关 磁导率 ( μ ): 表征材料为磁力线提供通路的能力, μ = B / H 饱和强度 : 在饱和强度下,材料不能再通过多余的磁力线 磁阻 ( R ): 表征材料对通过磁通的阻碍特性,定义为:R = L / μ A ,L 是磁通路径长度(cm ),A 截面面积(cm 2) 3.屏蔽材料

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

低频电磁波的屏蔽

低频电磁波的屏蔽 一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻

增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的原理是由金属屏蔽体通过对电磁波的反射和吸收来屏蔽辐射干扰源的远区场,即同时屏蔽场源所产生的电场和磁场分量。由于随着频率的增高,波长变得与屏蔽体上孔缝的尺寸相当,从而导致屏蔽体的孔缝泄漏成为电磁屏蔽最关键的控制要素;用钢制机柜进行屏蔽时,由于能为所有连接面提供一条由一个面至另一个面的高导电路径,所以电流仍保持在机箱外侧。这种导电路径是用特殊的衬垫和在连接表面进行导电涂敷而建立的,导电路径的任何中断都将使屏蔽效能降低,它取决于缝隙或孔洞尺寸与信号波长之间的关系。对于较低频率或较长波长来说,如果只有一个小孔则不会明显降低屏蔽效能;对于高频或较短波长来说,屏蔽效能的下降将是很剧烈的。 例如,屏蔽体上如果有一个直径为15mm的孔洞,对于10MHz信号(波长为30m)来说,将仍然能提供60dB屏蔽效能,但对于1GHz信号(波长为30mm)来说,若要保持同样的屏蔽效能,则孔径不能超过0.15mm。直径为15mm的孔对于1GHz信号只能提供20dB衰减。

磁场强度与磁感应强度

B=F/IL=F/qv=E/Lv =Φ/S F:洛伦兹力或者安培力 q:电荷量 v:速度 E:感应电动势 Φ(=ΔBS或BΔS,B为磁感应强度,S为面积):磁通量 S:面积 描述磁场强弱和方向的基本物理量。是矢量,常用符号B表示。 在物理学中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。这个物理量之所以叫做磁感应强度。 点电荷q以速度v在磁场中运动时受到力F的作用。在磁场给定的条件下,F的大小与电荷运动的方向有关。当v 沿某个特殊方向或与之反向时,受力为零;当v与此特殊方向垂直时受力最大,为fm。fm与|q|及v成正比,比值与运动电荷无关,反映磁场本身的性质,定义为磁感应强度的大小,即。B的方向定义为:由正电荷所受最大力fm的方向转向电荷运动方向v 时,右手螺旋前进的方向。定义了B之后,运动电荷在磁场B 中所受的力可表为f =qv×B,此即洛伦兹力公式。 除利用洛伦兹力定义B外,也可以根据电流元Idl在磁场中所受安培力dF=Idl×B来定义B,也就是我们常用的公式:F=ILB 在国际单位制(SI)中,磁感应强度的单位是特斯拉,简称特(T)。 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N 为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 磁场强度是作用于磁路单位长度上的磁通势,用H表示,单位是安/米,磁场强度是矢量,它的大小只与电流的大小和导体的几何形状以及位置有关,而与导体周围物质的磁导率无关。 磁感应强度是描述磁场在某一点的磁场强弱和方向的物理量,用B表示,单位是特斯拉,磁感应强度是矢量,他的大小不仅决定于电流的大小及导体的几何形状,而且还与导体周围的物质的磁导率有关。 磁场中某点的磁感应强度的大小就等于该点的磁场强度和物质的磁导率的乘积,即B=μH。 师:电场中,比值F/q由谁确定?它反映了什么? 生:由电场确定,反映了电场的强弱。

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

低频磁场屏蔽基础解读

低频磁场屏蔽基础 基本原理 当磁场的频率很低(工频或100KHz以下)时,传统的屏蔽方法几乎没有作用。低频磁场一般由马达、发电机、变压器等设备产生。这些磁场会对利用磁场工作的设备产生影响,如阴极射线管中的电子束是在磁场的控制下进行扫描的,当有外界磁场干扰时,电子束的偏转会发生变化,使图像失真。 低频磁场的屏蔽是使用铁磁性材料将敏感器件包起来。屏蔽的作用是为磁场提供一条低磁阻的通路,使敏感器件周围的磁力线集中在屏蔽材料中,从而起到屏蔽的作用。 设计中的一个关键是选择一种材料既能提供足够的屏蔽效能,又不至于发生饱和。当要屏蔽的磁场很强时,一层屏蔽可能满足不了要求,这时可以采用多层屏蔽。多层屏蔽的原理是先用导磁率较低,不易饱和的材料将磁场衰减到一定的程度,然后再用磁导率很高(通常容易发生饱和)的材料进行进一步衰减。因此低导磁率的材料应靠近干扰源。 完全的封闭体能够提供最理想的磁屏蔽效果。但在实践中,不封闭的结构,如五面体或更少面的结构,甚至平板也能提供满足要求的屏蔽效能。当使用平板时,应使平板体的长度和宽度大于干扰源到敏感源之间的距离。由于材料的磁阻与屏蔽结构的尺寸有关,因此除了选用合适的材料以外,尽量缩短磁路的长度、增加截面积也能增加磁屏蔽效能。 磁屏蔽材料特性 CO—NETIC和NETIC材料是两种特殊的磁屏蔽材料。CO-NETIC材料具有极高的导磁率,可以有效衰减低频磁场干扰,达到极高磁场屏蔽,NETIC材料有极好的抗磁饱和能力,能在强磁场产生一定衰减。

●Stress Annealed(压力退火处理)的材料在加工完毕后,为了获得最佳的屏蔽效能,要再进行退火处理。 ●Perfection Annealed(完全退火处理)的材料只要在加工过程中没有激烈的成型和拉伸,加工完毕后不需要再退火。 ●尺寸:压力退火处理的材料:1524mm,762mm,381mm。 完全退火处理的材料:737mm,356mm。 产品规格 板材 CO-NETIC AA 合金 CO-NETIC AA 合金 完全退火处理(Perfection Annealed Sheet)* CO-NETIC B 合金 压力退火处理板(Stress Annealed Sheet)*

相关文档
最新文档