高等数学上公式

合集下载

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

最完整高数公式大全,赶紧收藏了,以后用

最完整高数公式大全,赶紧收藏了,以后用

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sin α·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tan β·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

大学高数公式大全

大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高等数学第一章公式

高等数学第一章公式

高等数学公式与定理(第六版上册)第一章 函数与极限第一节:初等函数幂函数:a x y =(是常数)R a ∈ 指数函数:x a y =(a >0且)1≠a对数函数:y=x a log (a>0且a ≠1,特别当a=e 时,记为y=lnx) 三角函数: 如y=x sin 等 反三角函数:如y=arctan x 等第二节:数列的极限收敛数列的性质:定理1 (极限的唯一性)如果数列{x n }收敛,那么它的极限唯一。

定理2 (收敛数列的有界性)如果数列{x n }收敛,那么数列{x n }一定有界。

定理3 (收敛数列的保号性)如果,lima x n n =∞→且a>0(或a<0),那么存在正整数N>0,当n>N 时,都有.n x >0(.n x <0)定理 4 (收敛数列与其子数列的关系)如果数列{.n x }收敛于a,那么它的任一子数列也收敛,且极限也是a.第三节 函数的极限函数极限的性质定理1 (函数极限的唯一性) 如果)(limx f xx →存在,那么这极限唯一.定理2 (函数极限的局部有界性)如果)(limx f xx →=A 存在,那么存在常数M>0和δ>0,使得当0<{0x x - }<δ时,有)(x f M≤.定理 3 (函数极限的局部保号性)如果)(limx f xx →=A ,且A>0(或A<0),那么存在常数δ>0,使得δ<-<00x x 时,有0)(>x f (或0)(<x f )定理3′ 如果)0()(lim 0≠=→A A x f xx ,那么就存在着n x 的某一去心邻域),(00x U 当)(00x U x ∈时,就有2)(0A x f >.推论 如果在0x 的某去心邻域内)0)x 0)(0≤≥(或(f x f ,而且A x f x x =→)(lim 0,那么)或(00≤≥A A定理4 (函数极限与数列极限的关系) 如果极限)(limx f xx →存在,{n x }为函数)(x f 的定义域内任一收敛于0x 的数列,且满足:)(*0N n x x n ∈≠,那么相应的函数数列)(n x f 必收敛,且).(lim )(lim 0x f x f x x n →∞→=第四节 无穷小与无穷大定理 1 在自变量的同义一变化过程0x x →)x (∞→或中,函数)(x f 具有极限A 的充分必要条件是,)(a A x f +=其中a是无穷小。

高等数学公式定理(全)

高等数学公式定理(全)

高等数学公式·平方关系:s i n^2(α)+c o s^2(α)=1 t a n^2(α)+1=s e c^2(α)c o t^2(α)+1=c s c^2(α)·积的关系:s i nα=t a nα*c o sαc o sα=c o tα*s i nαt a nα=s i nα*s e cαc o tα=c o sα*c s cαs e cα=t a nα*c s cαc s cα=s e cα*c o tα·倒数关系:t a nα·c o tα=1s i nα·c s cα=1c o sα·s e cα=1直角三角形A B C中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:c o s(α+β)=c o sα·c o sβ-s i nα·s i nβc o s(α-β)=c o sα·c o sβ+s i nα·s i nβs i n(α±β)=s i nα·c o sβ±c o sα·s i nβt a n(α+β)=(t a nα+t a n β)/(1-t a nα·t a nβ)t a n(α-β)=(t a nα-t a n β)/(1+t a nα·t a nβ)·三角和的三角函数:s i n(α+β+γ)=s i nα·c o s β·c o sγ+c o sα·s i nβ·c o s γ+c o sα·c o sβ·s i nγ-s i n α·s i nβ·s i nγc o s(α+β+γ)=c o sα·c o sβ·c o sγ-c o sα·s i nβ·s i nγ-s i nα·c o sβ·s i nγ-s i nα·s i nβ·c o sγt a n(α+β+γ)=(t a nα+t a nβ+t a nγ-t a nα·t a nβ·t a nγ)/(1-t a nα·t a nβ-t a nβ·t a nγ-t a nγ·t a nα)·辅助角公式:A s i nα+B c o sα=(A^2+B^2)^(1/2)s i n(α+t),其中s i n t=B/(A^2+B^2)^(1/2) c o s t=A/(A^2+B^2)^(1/2) t a n t=B/AA s i nα+B c o sα=(A^2+B^2)^(1/2)c o s(α-t),t a n t=A/B·倍角公式:s i n(2α)=2s i nα·c o sα=2/(t a nα+c o tα)c o s(2α)=c o s^2(α)-s i n^2(α)= 2c o s^2(α)-1=1-2s i n^2(α)t a n(2α)=2t a nα/[1-t a n^2(α)]·三倍角公式:s i n(3α)=3s i nα-4s i n^3(α)c o s(3α)=4c o s^3(α)-3c o sα·半角公式:s i n(α/2)=±√((1-c o sα)/2)c o s(α/2)=±√((1+c o sα)/2)t a n(α/2)=±√((1-c o sα)/(1+c o sα))=s i nα/(1+c o sα)=(1-c o sα)/s i nα·降幂公式s i n^2(α)=(1-c o s(2α))/2=v e r s i n(2α)/2c o s^2(α)=(1+c o s(2α))/2=c o v e r s(2α)/2t a n^2(α)=(1-c o s(2α))/(1+c o s(2α))·万能公式:s i nα=2t a n(α/2)/[1+t a n^2(α/2)]c o sα=[1-t a n^2(α/2)]/[1+t a n^2(α/2)] t a nα=2t a n(α/2)/[1-t a n^2(α/2)]·积化和差公式:s i nα·c o sβ=(1/2)[s i n(α+β)+s i n(α-β)]c o sα·s i nβ=(1/2)[s i n(α+β)-s i n(α-β)]c o sα·c o sβ=(1/2)[c o s(α+β)+c o s(α-β)]s i nα·s i nβ=-(1/2)[c o s(α+β)-c o s(α-β)]·和差化积公式:s i nα+s i nβ=2s i n[(α+β)/2]c o s[(α-β)/2]s i nα-s i nβ=2c o s[(α+β)/2]s i n[(α-β)/2]c o sα+c o sβ=2c o s[(α+β)/2]c o s[(α-β)/2]c o sα-c o sβ=-2s i n[(α+β)/2]s i n[(α-β)/2]·推导公式t a nα+c o tα=2/s i n2αt a nα-c o tα=-2c o t2α1+c o s2α=2c o s^2α1-c o s2α=2s i n^2α1+s i nα=(s i nα/2+c o sα/2)^2·其他:s i nα+s i n(α+2π/n)+s i n(α+2π*2/n)+s i n(α+2π*3/n)+……+s i n[α+2π*(n-1)/n]=0c o sα+c o s(α+2π/n)+c o s(α+2π*2/n)+c o s(α+2π*3/n)+……+c o s[α+2π*(n-1)/n]=0以及s i n^2(α)+s i n^2(α-2π/3)+s i n^2(α+2π/3)=3/2 t a n A t a n B t a n(A+B)+t a n A +t a n B-t a n(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=s i nαc o s(2kπ+α)=c o sαt a n(2kπ+α)=t a nαc o t(2kπ+α)=c o tα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-s i nαc o s(π+α)=-c o sαt a n(π+α)=t a nαc o t(π+α)=c o tα公式三:任意角α与 -α的三角函数值之间的关系:s i n(-α)=-s i nαc o s(-α)=c o sαt a n(-α)=-t a nαc o t(-α)=-c o tα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:s i n(π-α)=s i nαc o s(π-α)=-c o sαt a n(π-α)=-t a nαc o t(π-α)=-c o tα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:s i n(2π-α)=-s i nαc o s(2π-α)=c o sαt a n(2π-α)=-t a nαc o t(2π-α)=-c o tα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:s i n(π/2+α)=c o sαc o s(π/2+α)=-s i nαt a n(π/2+α)=-c o tαc o t(π/2+α)=-t a nαs i n(π/2-α)=c o sαc o s(π/2-α)=s i nαt a n(π/2-α)=c o tαc o t(π/2-α)=t a nαs i n(3π/2+α)=-c o sαc o s(3π/2+α)=s i nαt a n(3π/2+α)=-c o tαc o t(3π/2+α)=-t a nαs i n(3π/2-α)=-c o sαc o s(3π/2-α)=-s i nαt a n(3π/2-α)=c o tαc o t(3π/2-α)=t a nα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):s i n x=[e^(i x)-e^(-i x)]/(2i)c o s x=[e^(i x)+e^(-i x)]/2t a n x=[e^(i x)-e^(-i x)]/[i e^(i x)+i e^(-i x)]泰勒展开有无穷级数,e^z=e x p(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学常用公式总结

高等数学常用公式总结

(2) 在点 x0 的某去心邻域内,f'(x) 及 g'(x) 都存在且 g'(x) ≠ 0;
(3) lim f'(x) = A(A 可为实数,也可为 士o 或o), x→x0 g'(x)
则 lim f(x) = lim f'(x) = A. x→x0 g(x) x→x0 g'(x)
若将洛必达法则中 x →x0 换 →x0 → x0 →士 →o,只要相应地修正(2)
y = f(x) 的反函数 也可记为 dy
x
=
9(y )
的导数为
9'(y )
=
1
f'(x)
8. 常用高阶导数公 式:
, =1.
dx dx dy
更多升本资讯
升本资料
模拟真题
.5 .
(1)(ex )(n) = ex;
(2)(sinx)(n) = sin(x +2 n . r );
(3)(cosx )(n)cos(x +n . r );
x→x0
x→x0
x→x0
(2) lim[f(x) .g(x)] = lim f(x) .lim g(x ) = A .B;
x→x0
x→x0
x→x0
(3)
当 x→Bx≠ 0 0
时 ,有 lim
f(x )
lim f(x)
=
=
A;
x→x0 g(x)
(4) lim f(g(x )) = f(B ). x → x0
1
dx;
(14)d(arccotx) = 一 1
1 +x2
dx. 1 +x2
15. 微分在近似计算中的应用
△y = f(x0 + △x ) 一 f(x0 ) ≈ f'(x0 )△x ,

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结以下仅是个人总结仅供参考(不包含微分方程模块)常用三角函数公式积化和差公式\begin{aligned} \sin \alpha \cos\beta&=\frac{1}{2}[\sin (\alpha+\beta)+\sin(\alpha-\beta)] \\ \cos \alpha \sin \beta&=\frac{1}{2}[\sin (\alpha+\beta)-\sin(\alpha-\beta)] \\ \cos \alpha \cos \beta&=\frac{1}{2}[\cos (\alpha+\beta)+\cos(\alpha-\beta)] \\ \sin \alpha \sin \beta&=-\frac{1}{2}[\cos (\alpha+\beta)-\cos(\alpha-\beta)]\end{aligned}和差化积公式\begin{aligned}\sin\alpha+\sin\beta&=2\sin\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \sin\alpha-\sin\beta&=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha -\beta}{2} \\\cos\alpha+\cos\beta&=2\cos\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \cos\alpha-\cos\beta&=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \tan\alpha+\tan\beta&=\frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos \beta}\end{aligned}归一化公式\begin{aligned} \label{gyhgs} \sin^2 x+\cos^2x&=1\\\sec^2 x-\tan^2x&=1\\\cosh^2x-\sinh^2x&=1\end{aligned}倍(半)角公式降(升)幂公式\begin{aligned} \sin^2x&=\frac{1}{2}(1-\cos 2x)\\\cos^2x&=\frac{1}{2}(1+\cos 2x) \\ \tan^2x&=\frac{1-\cos 2x}{1+\cos 2x} \\ \sinx&=2\sin\frac{x}{2}\cos\frac{x}{2} \\ \cosx&=2\cos^2\frac{x}{2}-1=1-2\sin^2\frac{x}{2}=\cos^2\frac{x}{2}-\sin^2\frac{x}{2} \\ \tan x&=\frac{2\tan(x/2)}{1-\tan^2(x/2)}\end{aligned}万能公式令 u=\tan\dfrac{x}{2} 则\begin{aligned} \sin x=\frac{2u}{1+u^2}\\ \cosx=\frac{1-u^2}{1+u^2}\end{aligned}常用的佩亚诺型余项泰勒公式有泰勒公式 \begin{aligned}f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o[(x-x_0)^n]\notag\\f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\small{ (\xi \mbox{在}x_0 \mbox{与}x\mbox{之间})} \notag\end{aligned}\begin{aligned}\mathrm{e}^{x}&=1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+ \cdots+\frac{1}{n!}x^{n}+o(x^{n})\\ \ln(x+1)&=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots+(-1)^{n-1}\frac{1}{n}x^{n}+o(x^{n})\end{aligned}令 n=2m 有,\begin{aligned} \sin x&=x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}+\cdots+(-1)^{m-1}\frac{1}{(2m-1)!}x^{2m-1}+o(x^{2m}) \\ \cos x&=1-\frac{1}{2}x^2+\frac{1}{24}x^4-\cdots+(-1)^m\frac{1}{(2m)!}x^{2m}+o(x^{2m+1}) \\ \tanx&=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+ \cdots+o(x^{2m-1})\end{aligned} \begin{aligned}\arcsinx&=x+\frac{1}{6}x^3+\frac{3}{40}x^{5}+\cdots+o(x^{2m}) \end{aligned}常用于近似计算的泰勒公式\begin{aligned} \frac{1}{1-x}&=1+x+x^2+x^3+\cdots+x^n+o(x^n) \\(1+x)^{\alpha}&=\sum_{i=0}^{n}\frac{\prod_{j=0}^{i-1}{(\alpha-j})}{i!}x^n+o(x^n)\notag \\ &=1+\alphax+\frac{\alpha(\alpha-1)}{2}x^2+\cdots+o(x^n) \\\alpha^x&=\sum_{i=0}^{n}\frac{\ln^n\alpha}{n!}x^n+o(x^n)\notag \\ &=1+x\ln\alpha+\frac{\ln^2 \alpha}{2}x^2+\cdots+\frac{\ln^n \alpha}{n!}x^n+o(x^n)\end{aligned}基本求导公式\begin{equation} \left( C\right)'=0 \\\left( x^{\mu}\right)'=\mu x^{\mu-1} \\ \left( \sinx\right)'=\cos x \\ \left( \cos x\right)'=-\sin x \\ \left( \tan x\right)'=\sec^2 x\\ \left( \cotx\right)'=-\csc^2 x \\ \left( \sec x\right)'=\secx\cdot\tan x \\ \left( \csc x\right)'=-\csc x\cdot\cot x \\ \left( a^x\right)'=a^x\ln a\ (a>0,a\neq1)\\\left( \log_{a}x\right)'=\frac{1}{x\cdot\ln a}\(a>0,a\neq1) \\ \left( \arcsinx\right)'=\frac{1}{\sqrt{1-x^2}} \\ \left( \arccosx\right)'=-\frac{1}{\sqrt{1-x^2}} \\ \left( \arctanx\right)'=\frac{1}{1+x^2} \\ \left( \mathrm{arccot}\, x\right)'=-\frac{1}{1+x^2} \\ \end{equation}函数图形描述中涉及到的重要公式常用曲率计算公式曲率的定义式K=\displaystyle\left|\frac{\mathrm{d}\alpha}{\mathrm{d}s}\right|由定义式我们可以推得1.直角坐标系中的曲线 y=y(x) 有曲率表达式K=\frac{\left|y''\right|}{\left( 1+y^{'2}\right)^{3/2}}\mbox{;}2.参数方程表示的曲线 x=\varphi(t),y=\psi(t) 有曲率表达式 K=\frac{\left|\varphi'(t)\psi''(t)-\varphi''(t)\psi'(t)\right|}{\left[ \varphi^{'2}(t) +\psi^{'2}(t) \right]^{3/2}}\mbox{;}3.极坐标表示的的曲线 y=y(x) 有曲率表达式K=\frac{\left|r^2+2r^{'2}-r\cdotr''\right|}{\left(r^2+r^{'2}\right)^{3/2}}\mbox{;}曲线在对应点 M(x,y) 的曲率中心 D(\alpha,\beta) 的坐标为\begin{cases} \alpha=x-\displaystyle\frac{y'(1+y^{'2})}{y^{''2}} \\\beta=y+\displaystyle\frac{1+y^{'2}}{y''} \end{cases} 曲线的渐近线1.若 \lim\limits_{ x\rightarrow \infty }f(x)=b ,则称 y=b 为曲线 f(x) 的水平渐近线;2.若 \lim\limits_{ x\rightarrow x_0 }f(x)=\infty ,则称 x=x_0 为曲线 f(x) 的垂直渐近线;3.若 \lim\limits_{ x\rightarrow \infty }[f(x)-(ax+b)]=0 ,其中 \begin{cases} a=\displaystyle\lim\limits_{x\to \infty}\frac{f(x)}{x} \\b=\displaystyle \lim\limits_{x\to \infty}[f(x)-ax] \end{cases} 则称 y=ax+b 为曲线 f(x) 的斜渐近线.基本积分公式\begin{aligned} &\int k \,\mathrm{d}x=kx+C \ \mbox{(其中}k\mbox{为常数)} \\ &\intx^\mu\,\mathrm{d}x=\frac{x^{\mu+1}}{\mu+1}+C\(\mu\neq-1) \\ &\int \frac{1}{x}\,\mathrm{d}x=\ln|x|+C \\ &\int\frac{\mathrm{d}x}{1+x^2}=\arctan x+C \\&\int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C_1=-\arccos x+C_2 \\ &\int \sin x\,\mathrm{d}x=-\cos x+C\\ &\int\cos x \,\mathrm{d}x=\sin x +C \\ &\int\tanx\,\mathrm{d}x=-\ln |\cos x|+C \\ &\int\cotx\,\mathrm{d}x=\ln |\sin x|+C \\ &\int\cscx\,\mathrm{d}x=\int\frac{1}{\sin{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1-\cos{x}}{1+\cos{x}}\right|}+C=\ln{\left|\tan{\frac{x}{ 2}}\right|}+C=\ln{\left|\csc{x}-\cot{x}\right|}+C \\ &\int\secx\,\mathrm{d}x=\int\frac{1}{\cos{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1+\sin{x}}{1-\sin{x}}\right|}+C=\ln{\left|\sec{x}+\tan{x}\right|}+C \\ &\int\sec^2 x\,\mathrm{d}x=\tan x +C \\ &\int\csc^2 x\,\mathrm{d}x=-\cot x +C \\ &\int \secx\cdot\tan x \,\mathrm{d}x=\sec x+C \\ &\int\csc x\cdot\cot x \,\mathrm{d}x=-\csc x+C \\ &\int\mathrm{e}^x \,\mathrm{d}x=\mathrm{e}^x+C \\ &\inta^x\,\mathrm{d}x=\frac{a^x}{\ln a}+C \\ &\int \sinhx\,\mathrm{d}x=\cosh x+C \\ &\int \coshx\,\mathrm{d}x=\sinh x+C \\ &\int\frac{1}{a^2+x^2}\,\mathrm{d}x=\frac{1}{a}\arctan\frac {x}{a}+C \\ &\int \frac{1}{a^2-x^2}\,\mathrm{d}x=\frac{1}{2a}\ln \left|\frac{a+x}{a-x}\right|+C \\ &\int \frac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arcsin\frac{x}{a}+C \\ &\int\frac{1}{\sqrt{x^2\pm a^2}}\,\mathrm{d}x=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C \end{aligned}基本积分方法第一类换元法1.一般地,对于 \sin^{2k+1}x\cos^n x 或 \sin^n x\cos^{2k+1}x (其中 k\in\mathbb{N} )型函数的积分,总可依次作变换 u=\cos x 或 u=\sin x ,从而求得结果;2.一般地,对于 \sin^{2k}x\cos^{2l}x 或 (其中 k,l\in\mathbb{N} )型函数的积分,总是利用降幂公式\sin^2=\dfrac{1}{2}(1-\cos 2x),\cos^2=\dfrac{1}{2}(1+\cos 2x) 化成 \cos 2x 的多项式,从而求得结果;3.一般地,对于 \tan^{n}x\sec^{2k} x 或 \tan^{2k-1} x\sec^{n}x (其中 n,k\in\mathbb{N}_{+} )型函数的积分,总可依次作变换 u=\tan x 或 u=\sec x ,从而求得结果;\begin{aligned} &\int {f( ax + b){\rm{d}}x= }\frac{1}{a}\int {f(ax+b){\mathrm{d}}(ax + b)\;(a\neq 0)} \\ &\int {f(a{x^{m + 1}} + b){x^m}{\rm{d}}x} = \frac{1}{{a(m + 1)}}\int {f(a{x^{m + 1}} +b){\rm{d}}(a{x^{m + 1}} + b)} \\ &\int{f\left( \frac{1}{x}\right)\frac{{{\rm{d}}x}}{{{x^2}}}\;} = - \int{f\left( \frac{1}{x}\right){\rm{d}}\left( \frac{{\rm{1}}}{x}\right) \;} \\ &\int {f(\ln x)\frac{1}{x}} {\rm{d}}x = \int {f(\lnx){\rm{d(}}\ln x)} \\ &\int {f({\mathrm{e}^x})}{\mathrm{e}^x}{\rm{d}}x = \int{f({\mathrm{e}^x}} ){\rm{d(}}{\mathrm{e}^x}) \\ &\int {f(\sqrt x } )\frac{{{\rm{d}}x}}{{\sqrt x }} = 2\int {f(\sqrt x } ){\rm{d}}(\sqrt x ) \\ &\int {f(\sinx)\cos x{\rm{d}}x = } \int {f(\sin x){\rm{d}}\sin x} \\ &\int {f(\cos x)\sin x{\rm{d}}x = } - \int {f(\cos x){\rm{d}}\cos x} \\ &\int {f(\tan x){{\sec }^2}}x{\rm{d}}x = \int {f(\tan x){\rm{d}}\tan x} \\ &\int{f(\cot x){{\csc }^2}} x{\rm{d}}x = - \int {f(\cotx){\rm{d}}\cot x} \\ &\int {f(\arcsinx)\frac{1}{{\sqrt {1 - {x^2}} }}} {\rm{d}}x = \int{f(\arcsin x){\rm{d}}\arcsin x} \\ &\int {f(\arctanx)\frac{1}{{1 + {x^2}}}} {\rm{d}}x = \int {f(\arctan x){\rm{d}}\arctan x} \\ &\int {\frac{{f'(x)}}{{f(x)}}} {\rm{d}}x = \int {\frac{{{\rm{d}}f(x)}}{{f(x)}}} = \ln \left| f(x)\right| + C\end{aligned}部分分式\begin{aligned} \frac{{P(x)}}{{Q(x)}} =&\frac{{{A_1}}}{{{{(x - a)}^\alpha }}} +\frac{{{A_2}}}{{{{(x - a)}^{\alpha - 1}}}} + \cdots + \frac{{{A_\alpha }}}{{x - a}} + \notag\\\&\frac{{{B_1}}}{{{{(x - b)}^\beta }}} +\frac{{{B_2}}}{{{{(x - b)}^{\beta - 1}}}} + \cdots +\frac{{{B_\beta }}}{{x - b}} + \notag\\\&\frac{{{M_1}x + {N_1}}}{{{{({x^2} + px +q)}^\lambda }}} + \frac{{{M_2}x + {N_2}}}{{{{({x^2} + px + q)}^{\lambda - 1}}}} + \cdots +\frac{{{M_\lambda }x + {N_\lambda }}}{{{x^2} + px + q}} + \notag\ \\&\cdots \end{aligned}三角函数的特殊定积分\begin{aligned}I_n&=\int_0^{\frac{\pi}{2}}\sin^nx\,\mathrm{d}x=\int_0 ^{\frac{\pi}{2}}\cos^nx\,\mathrm{d}x\notag \I_n&\\&=\frac{n-1}{n}I_{n-2}\notag\ \\&=\begin{cases} \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}}\cdots \dfrac{4}{5} \cdot \dfrac{2}{3}\quad (n\mbox{为大于}1\mbox{的正奇数}),I_1=1\\ \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}} \cdots \dfrac{3}{4}\cdot \dfrac{1}{2} \cdot \dfrac{\pi }{2}\quad(n\mbox{为正偶数}),I_0=\dfrac{\pi}{2}\end{cases}\end{aligned}。

高等数学公式必背大全

高等数学公式必背大全

高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。

导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学公式大全

高等数学公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u ux uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec)(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxCtgx xdx x dxxx)ln(ln csc csc sec sec csc sinseccos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxC ctgx x xdx C tgx x xdx C x ctgxdx Cx tgxdx+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cossin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -t gα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

大学高等数学公式(珍藏版)

大学高等数学公式(珍藏版)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

十个复杂的高等数学公式

十个复杂的高等数学公式

十个复杂的高等数学公式1. 泰勒公式泰勒公式就像是一个超级魔法。

它说呢,一个函数f(x)在点x = a附近可以写成f(x)=∑_{n = 0}^∞frac{f^(n)(a)}{n!}(x a)^n。

啥意思呢?就是把一个复杂的函数用多项式来近似表示。

比如说f(x)是个弯弯曲曲很难算的函数,我们就可以用这个公式把它变成好多项相加的形式,就像把一个怪东西拆成一堆小零件,f^(n)(a)是f(x)在a点的n阶导数哦。

2. 牛顿莱布尼茨公式这个公式可牛啦,它就像一座桥梁。

如果有个函数f(x)在区间[a,b]上连续,而且它的原函数是F(x),那么∫_{a}^bf(x)dx=F(b)-F(a)。

你可以想象成,你要计算函数f(x)在区间[a,b]下面围起来的面积(就是定积分啦),只要找到它的原函数F(x),然后把区间端点的值一减就成。

就好比你要知道从A点到B点走了多远,只要知道起始和结束的状态就行。

3. 格林公式格林公式有点像在平面上玩的一种游戏规则。

对于平面闭区域D,它的边界是分段光滑的曲线L,如果有向量场→F(x,y)=<=ft(P(x,y),Q(x,y)),那么∬_{D}((∂ Q)/(∂x)-(∂ P)/(∂ y))dxdy=∮_{L}Pdx + Qdy。

简单说呢,就是把平面区域上的一种双重积分和这个区域边界上的曲线积分联系起来了。

就好像区域里面的情况和边界的情况是有某种神秘联系的。

4. 高斯公式高斯公式可不得了,它是在三维空间里的一个大发现。

对于空间闭区域varOmega,它的边界曲面是∑,向量场→F(x,y,z)=<=ft(P(x,y,z),Q(x,y,z),R(x,y,z)),那么∭_{varOmega}((∂ P)/(∂ x)+(∂ Q)/(∂ y)+(∂ R)/(∂ z))dxdydz=∬_{∑}Pdydz+Qdzdx+Rdxdy。

这就像是把空间区域里面的一种三重积分和这个区域表面的曲面积分给关联起来了,就好像空间里面的东西和它表面的东西在互相交流信息呢。

高等数学所有公式

高等数学所有公式

高等数学所有公式高等数学涵盖了多个方向和领域,包括微积分、线性代数、常微分方程等。

下面列出一些高等数学中常见的公式:微积分方面:1. 导数定义:$f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$2. 基本导数公式:$(C)'=0$、$(x^n)'=nx^{n-1}$、$(\sin x)'=\cos x$、$(\cos x)'=-\sin x$、$(e^x)'=e^x$、$\left(\lnx\right)'=\frac{1}{x}$等3. 链式法则:$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$积分与不定积分方面:1. 不定积分定义:$\int f(x)dx=F(x)+C$2. 基本积分公式:$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$、$\int \sin x dx=-\cos x +C$、$\int \cos x dx=\sin x+C$、$\int e^x dx=e^x +C$3. 牛顿-莱布尼茨公式:$\int_a^b f(x)dx=F(b)-F(a)$级数与数列方面:1. 数列极限的定义:$\lim\limits_{n\to\infty}a_n=A$2. 数列收敛的判定:夹逼准则、单调有界准则等3. 级数收敛的判定:比较判别法、比值判别法、根值判别法等4. 幂级数的收敛半径:$\frac{1}{R}=\lim\limits_{n\to\infty}\left(\frac{a_{n+1}}{a_n}\ri ght)$线性代数方面:1. 矩阵的逆:若$AB=BA=I$,则称$A$是可逆矩阵,且$B$为$A$的逆矩阵,记作$A^{-1}$2. 矩阵行列式:设$A=(a_{ij})_{n\times n}$为$n$阶矩阵,则$|A|=\sum\limits_{j=1}^n(-1)^{i+j}a_{ij}\cdot M_{ij}$,其中$M_{ij}$为元素$a_{ij}$的代数余子式3. 特征值与特征向量:设$A$为$n$阶矩阵,若存在数$\lambda$和非零向量$X$,使得$AX=\lambda X$,则称$\lambda$为$A$的特征值,$X$为对应于$\lambda$的特征向量常微分方程方面:1. 一阶线性常微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$为已知函数2. 二阶常系数齐次线性方程:$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0$,其中$a,b,c$均为常数3. 欧拉公式:$e^{ix}=\cos x + i\sin x$,其中$i$为虚数单位需要注意的是,以上只列举了部分高等数学中的公式,且实际应用中还涉及到更多的公式和概念。

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sin βtan(α+β)=(tanα+tanβ)/(1-tan α·tanβ)tan(α-β)=(tanα-tanβ)/(1+tan α·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cot α)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)= 0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学基本公式(全)

高等数学基本公式(全)

高等数学公式等价无穷小替换公式:x-arcsinx~(x^3)/6tanx-sinx~(x^3)/2e^x-1~xtanx-x~(x^3)/3导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学姐偷懒直接从网上下了一份公式总结,然后按照咱们的考试要求改了一下,特别诡异的那些公式我都删掉了,剩下的都是可能会出现的,哪些必须记哪些可以记也都写在后面了,有的出题形式我也加在知识点后面了,可以做个参考。

这上面的知识点不很全,但应付考试差不多了,上面没有的学霸们可以自己再看看书哈。

重点关注黑体字!!!电子版已发各部长,可以找部长要。

祝大家都能考个好成绩~——魏亚杰高等数学(一)上 公式总结第一章 一元函数的极限与连续1、一些初等函数公式:(孩子们。

没办法,背吧)sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=±和差角公式:sin sin 2sincos22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot αααααααααααααα==-=-=-=--=倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin cos 221cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:, (一般用倍角公式就可以了,这个不好记) 3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+➢:常用等价无穷小(一定要记!!一定记得是x趋于0或者1/x趋于无穷才能用)2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++极限运算法则(求极限必出,你得记住常用的,再用运算法则求要求的)极限存在准则:夹逼准则、单调有界数列必有极限(大题里求极限可能用到夹逼准则,还是记一下吧)3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或间断点:(填空选择考的概率很大!!) 第一类间断点(左右极限存在)第二类间断点(不是第一类的都是第二类)(有界性与最大值最小值定理、零点定理、介值定理,求零点的,有时间就看没时间就算了)第二章导数与微分1、基本导数公式:00000()()()()()lim lim lim tanx x x xf x x f x f x f xyf xx x x xα∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x-+''⇔=导数存在(记清楚导数概念,可能会有上面这个样子的题)(又是一波要记的,必须记!!,记清楚导数的,就等于记清楚常用微分,后面的那个常用积分就是把它反过来)12222 0; (); (sin)cos; (cos)sin; (tan)sec; (cot)csc; (sec)sec tan; (csc)csc; ()ln;();11(log); (ln); (arcsin) (arccos)ln11a ax x x xaC x ax x x x x x x x xx x x x x ctgx a a a e ex x x xx a x x x-''''''======-''''=⋅=-⋅==''''====--2211(arctan); (cot);11x arc xx x''==-++2、高阶导数:(有能力者自选~一般不会让求n阶,要是考了就认命吧)()()()()!()()!; ()ln()()!n k n k n n x n x n x n xnx x x n a a a e en k-=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n nn n nn n nn n nx x x a x a a x a x+++--===++--()()(sin)sin(); (cos)cos();22n n n nkx k kx n kx k kx nππ=⋅+⋅=⋅+⋅牛顿-莱布尼兹公式:()()()()(1)(2)()()()()(1)(1)(1)2!!nn k n k knkn n n n k k nuv C u vn n n n n ku v nu v u v u v uvk-=---=---+'''=++++++∑3、微分:()()();=()();y f x x f x dy o x dy f x x f x dx''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导(求导法则我就不啰嗦了,见书上94页)隐函数求导、参数方程求导重点看一下,参数方程求导基本每年考第三章微分中值定理与导数的应用(一道十分左右的证明题)1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。

洛必达法则,特别好用,求极限题不会求的时候看看能不能用洛必达法则 泰勒中值定理就算了,可以记几个比较常用的泰勒公式求极值虽然不是每年都考,但考的也比较多,跟高中的差不太多,要看第四章 不定积分1、常用不定积分公式: (个别常用求导公式里没有的记一下,当然,想记牢的最好办法就是…刷题…)()(); (())(); ()()f x dx F x C f x dx f x F x dx F x C ''=+==+⎰⎰⎰11(1); ln ;1; ;ln x xx xx x dx C dx x C xa a dx C e dx e C a μμμμ+=+≠-=++=+=+⎰⎰⎰⎰2222sin cos ; cos sin ;tan ln cos ; cot ln sin ;sec ln sec tan ;csc ln csc cot ln tanln csc cot ;2sec tan ; csc cot ;cos sin sec t xdx x C xdx x C xdx x C xdx x C xdx x x C xxdx x x C C x x C dx dx xdx x C xdx x C x x x =-+=+=-+=+=++=-+=+=-++==+==-+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰an sec ; csc cot csc ;xdx x C x xdx x C =+⋅=-+⎰⎰2222222arcsin arccos;arcsin;1arctan arccot;arctan;111ln;ln;22ln(;xx C x C Cadx dx xx C x C Cx a x a adx x a dx a xC Cx a a x a a x a a xx C=+=-+=+=+=-+=+++-+=+=+-+--=++⎰⎰⎰⎰22ln(;2arcsin2ax Ca xCa=+++=+2、常用凑微分公式:2212();(ln);11(1)()(ln tan);cos sindx dxd d xx x xd dx d xx xdxd xx x==-==-=+=(分部积分法,必须掌握!!)第五章定积分1、基本概念00111()lim()lim()()()() , (()()) n nb bi i aa ni iif x dx f x f F b F a F x F x f xn nλξ→→=='=∆==-==∑∑⎰⇒⇒⇒⇒连续可积;有界+有限个间断点可积;可积有界; 连续原函数存在()()()()xax f t dt x f x'Φ=⇒Φ=⎰()()()[()]()[()]()xxdf t dt f x x f x xdxϕψϕϕψψ''=-⎰()(())()abf x dx f t t dtαβϕϕ'=⎰⎰,()()()()()()a ab bu x dv x u x v x v x du x=-⎰⎰2、常用定积分公式:;(),()2()a aaf x f x dx f x dx-=⎰⎰为偶函数;(),()0aaf x f x dx-=⎰为奇函数;TT T2T2 ()()()aaf x dx f x dx f x dx+-==⎰⎰⎰;T T0()()a naf x dx n f x dx+=⎰⎰Wallis公式:(这个。

自愿吧。

考的概率不大)222001331,12242sin cos2431,352n nn nn nnn n nI xdx xdx In nnnn nπππ---⎧⋅⋅⋅⋅⎪-⎪-====⎨--⎪⋅⋅⋅⎪-⎩⎰⎰为正偶数为正奇数无穷限积分:+b+b-b b+-()lim()(+)();()lim()(-)();()lim()lim()(+)()a abbaaa ab af x dx f x dx F F af x dx f x dx F F af x dx f x dx f x dx F F∞→∞-∞→∞+∞-∞→∞→∞==∞-==∞-=+=∞--∞⎰⎰⎰⎰⎰⎰⎰第六章定积分应用(只看在几何学上的应用就行,大题可能会有一道以这种形式考微积分,可能是面积,也可能是体积,比如下面这两道)1、平面图形的面积:直角坐标情形:()baA f x dx=⎰;()()baA f x g x dx=-⎰;()()dcA y y dyϕψ=-⎰参数方程情形:()()()();(();())A t d t t t dt a bββααψϕψϕϕαϕβ'====⎰⎰极坐标情形:21()2A dβαρθθ=⎰2、空间立体的体积:由截面面积:()baV A x dx=⎰旋转体:绕x轴旋转:222();[()()()2();2()()()b ba ad dc cV f x dx V f x g x dx xV y y dy V y y y dy yπππϕπϕψ==-==-⎰⎰⎰⎰为积分变量为积分变量绕y 轴旋转:222()2()();()[()()]()bbaadcV x f x dx x f x g x dx x V y y dy y πππϕψ==-=-⎰⎰⎰为积分变量为积分变量3、平面曲线的弧长:22222()()1()()()bas t t dt f x dx d ββααϕψρθρθθ''''=+=+=+⎰⎰⎰第七章 空间解析几何与向量代数(一道大题,一般考的是平面和直线的方程),比如总结(这是人家总结好的,挺全的,我就批注一下哪个用记哪个不用记,领会一下精神吧。

相关文档
最新文档