人教版九年级上学期数学《期末考试试题》含答案

合集下载

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试题含答案

人教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案

人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试卷含答案详解

人教版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣4=0D .(x ﹣1)2﹣1=0 2.已知⊙O 的直径为5,若PO =5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断 3.二次函数y=x 2+2的顶点坐标是( )A .(1,﹣2)B .(1,2)C .(0,﹣2)D .(0,2) 4.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB BC =,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30° 5.若,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30 6.正十二边形的每一个内角的度数为( )A .120°B .135°C .150°D .108° 7.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .3 B .-3 C .-1 D .18.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm 9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB C D.π10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.B.C.D.二、填空题11.一元二次方程x ( x +3)=0的根是__________________.12.将二次函数的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为_________.13.如图,已知等边ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E 两点,则劣弧DE的长为_________ .14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=_________°.三、解答题16.用公式法解方程:x2﹣x﹣2=0.17.如图为桥洞的形状,其正视图是由CD和矩形ABCD构成.O点为CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求CD所在⊙O的半径DO.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,并写出A1,B1的坐标.19.某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B 表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b 表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.20.已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根.21.如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.22.用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S 最大?最大面积是多少?23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.参考答案1.D【详解】试题分析:根据一元二次方程的定义对各选项进行逐一分析即可.解:A、当a=0时,方程ax2+bx+c=0是一元一次方程,故本选项错误;B、方程3x2﹣2x=3(x2﹣2)是一元一次方程,故本选项错误;C、方程x3﹣2x﹣4=0是一元三次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选D.考点:一元二次方程的定义.2.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解: 2.52d r ==, ∵d =5>2.5,点P 在⊙O 外,故选C .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.3.D【分析】已知二次函数y=x 2+2为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】试题分析::∵y=x 2+2=(x-0)2+2,∴顶点坐标为(0,2).故选D .4.D【解析】试题分析:直接根据圆周角定理求解.连结OC ,如图,∵AB =BC ,∴∠BDC=12∠BOC=12∠AOB=12×60°=30°. 故选D .考点:圆周角定理.5.B【详解】试题分析:∵,即244x x +=,∴原式=223(44)6(1)x x x -+--=223121266x x x -+-+=231218x x --+=23(4)18x x -++=﹣12+18=6.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值.6.C【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角得出每个内角的度数.【详解】正十二边形的每个外角的度数是:36012︒=30°, 则每一个内角的度数是:180°−30°=150°. 故选项为:C .【点睛】本题考查了正多边形的性质,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.7.B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a 、b 的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a =﹣2,b =﹣1,∴a +b =﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.8.A【分析】连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,由垂径定理求出AM 的长,再根据勾股定理求出OM 的长,进而可得出ME 的长.【详解】解:连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,交圆O 于点E ,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,60cmOM∴=,∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.9.C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.10.C【详解】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误. 故选C .考点:动点问题的函数图象.11.12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.12.244y x x =++.【详解】试题分析:平移后二次函数解析式为:22(2)44y x x x =+=++,故答案为244y x x =++. 考点:二次函数图象与几何变换.13.【详解】试题分析:考点: 圆周角与圆心角的关系,弧长公式.14.(2,10)或(﹣2,0)【详解】∵点D (5,3)在边AB 上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x 轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x 轴的距离为10,到y 轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).15.215.【详解】解:连接CE∵五边形ABCDE 为内接五边形∴四边形ABCE 为内接四边形∴∠B+∠AEC=180°又∵∠CAD =35∴∠CED =35°(同弧所对的圆周角相等)∴∠B+∠E=∠B+∠AEC+∠CED=180°+35°=215°故答案为:215.【点睛】本题考查正多边形和圆.16.122,1x x ==-【解析】试题分析:先求出b 2﹣4ac 的值,再代入公式求出即可.试题解析:解:∵a =1,b =-1,c =-2, ∴△=b 2-4ac =(-1)2-4×1×(-2)=9 >0,∴x =132±,解得:12x =,21x =-. 17.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴ DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴ CD 所在⊙O 的半径DO 为5米.18.见解析,11(3,2),(0,0)A B【解析】试题分析:根据旋转的性质作出A 、B 、C 绕点C 旋转180°后对应的点,连接即可. 试题解析:解:如图:由图可得:A1 (3,2),B1 (0,0).19.见解析,3 5【解析】试题分析:首先根据题意列表,由表格求得所有等可能的结果,由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得.试题解析:解:列表可得:共有20种等可能的结果.∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:1220=35.点睛:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)见解析;(2)-2【解析】试题分析:(1)根据抛物线的对称轴方程进行证明即可;(2)根据抛物线与x 轴的交点问题可判断抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),然后利用抛物线的对称性可得到抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),从而得到方程ax 2+bx ﹣8=0另一个根.试题解析:解:(1)∵抛物线的对称轴是x =1,∴ 2b a=1,∴2a +b =0; (2)∵关于x 的方程ax 2+bx ﹣8=0有一个根为4,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),∵抛物线的对称轴是x =1,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),∴关于x 的方程ax 2+bx ﹣8=0,有一个根为﹣2.点睛:本题考查了抛物线与x 轴的交点.把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标转化为解关于x 的一元二次方程;通过二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a ≠0)可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).21.(1)证明见解析;(2)CD=BE.理由见解析【解析】试题分析:(1)由等边三角形的性质得到AB =AC ,AE =AD , ∠BAC =∠EAD =60°,从而得到BE =CD , 再由中点的定义得到EN =DN , 即有AN =AM , 从而可以得到结论; (2)可以利用SAS 判定△ABE ≌△ACD ,全等三角形的对应边相等,所以CD =BE .试题解析:解:(1)∵△ABC 和△ADE 是等边三角形,∴AB =AC ,AE =AD , ∠BAC =∠EAD =60°,∴AB -AE =AC -AD ,即BE =CD , ∴M ,N 分别是BE ,CD 的中点,∴EM =12BE ,DN =12CD , ∴EN =DN , ∴EM +AE =DN +AD ,即AN =AM , ∵∠BAC =60°, ∴△AMN 是等边三角形; (2)CD =BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =60°.∵∠BAE =∠BAC −∠EAC =60°−∠EAC ,∠DAC =∠DAE −∠EAC =60°−∠EAC ,∠BAE =∠DAC ,∴△ABE ≌△ACD ,∴CD =BE .22.(1)1米或3米;(2)32,3平方米. 【解析】试题分析:(1)先用含x 的代数式(12﹣3x )÷3=4﹣x 表示横档AD 的长,然后根据矩形的面积公式列方程,求出x 的值.(2)用含x 的代数式(12﹣4x )÷3=4﹣43x 表示横档AD 的长,然后根据矩形面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x 的值.解:(1)由题意,BC 的长为(4−x )米,依题意,得:x (4−x )=3,即x ²−4x +3=0,解得 x 1=1,x 2=3.答:当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米.(2)根据题意,由图2得,AD =(12−4x )÷3=4−43x ,∴S =AB•AD =x (4−43x )=−43x ²+4x 配方得S =243()332x --+,∴当x =32时,S 取最大值3. 答:当x =32时,矩形框架ABCD 的面积最大,最大面积是3平方米. 点睛:本题考查的是二次函数的应用.(1)根据面积公式列方程,求出x 的值.(2)根据面积公式得二次函数,利用二次函数的性质求最值.23.(1)直线DE 与⊙O 相切;(2)4.75.【分析】(1)连接OD ,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB +∠ODA =90°,进而得出OD ⊥DE ,根据切线的判定即可得出结论;(2)连接OE ,作OH ⊥AD 于H .则AH =DH ,由△AOH ∽△ABC ,可得AH OA AC AB=,推出AH =65,AD =125,设DE =BE =x ,CE =8-x ,根据OE 2=DE 2+OD 2=EC 2+OC 2,列出方程即可解决问题;【详解】(1)连接OD ,∵EF 垂直平分BD ,∴EB =ED ,∴∠B =∠EDB ,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴AH OA AC AB=,∴2 610 AH=,∴AH=65,AD=125,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.75,∴DE=4.75.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.24.(1)y2=﹣x2+2x+3.(2)214;(3)(1,2)或(1,5)【解析】试题分析:(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,-a2+2a+3).则OQ=x,AQ=-a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.试题解析:(1)∵y 1=﹣2x 2+4x+2=﹣﹣2(x ﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1:与C 2顶点相同, ∴12m--⨯ =1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C 2的解析式为u 2=﹣x 2+2x+3.(2)如图1所示:设点A 的坐标为(a ,﹣a 2+2a+3).∵AQ=﹣a 2+2a+3,OQ=a ,∴AQ+OQ=﹣a 2+2a+3+a=﹣a 2+3a+3=﹣(a ﹣32)2+214 .∴当a=32时,AQ+OQ 有最大值,最大值为214.(3)如图2所示;连接BC ,过点B′作B′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x=1,∴BC ⊥CM ,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D ⊥MC ,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC .在△BCM 和△MDB′中,MB D BMC BCM MDB BM MB ∠'∠⎧⎪∠∠'⎨⎪'⎩=== , ∴△BCM ≌△MDB′∴BC=MD ,CM=B′D .设点M 的坐标为(1,a ).则B′D=CM=4﹣a ,MD=CB=2.∴点B′的坐标为(a ﹣3,a ﹣2).∴﹣(a ﹣3)2+2(a ﹣3)+3=a ﹣2.整理得:a 2﹣7a ﹣10=0.解得a=2,或a=5.当a=2时,M 的坐标为(1,2),当a=5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C 2上.【点睛】解答本题主要应用了二次函数的顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a 的式子表示点B′的坐标是解题的关键.。

人教版九年级上学期数学《期末检测试卷》含答案

人教版九年级上学期数学《期末检测试卷》含答案
14.如图, 是⊙O上的点,若 ,则 ___________度.
15.已知 ,且 ,且 与 周长和为175,则 的周长为_________.
16.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.
17.已知 , 是方程 的两个实根,则 ______.
23.如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.
24.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式.
∵188>187, > ,
∴平均数变小,方差变小,
故选A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为 ,则方差S2= [(x1- )2+(x2- )2+…+(xn- )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
5.方程x(x﹣5)=x的解是()
[详解]解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE, 为等腰直角三角形,
∴CE=
∴CD=2CE= .
故选:C.
[点睛]本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理,掌握以上知识是解题的关键.
C. 平均数变大,方差变小D. 平均数变大,方差变大
[答案]A
[解析]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10个小题,每小题4分,共40分)1. 下列说法正确的是()A. 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B. 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上2. 下列图形:任取一个是中心对称图形的概率是()A. 14B.12C.34D. 13. 用配方法解方程x2+1=8x,变形后的结果正确的是( )A. (x+4)2=15B. (x+4)2=17C. (x-4)2=15D. (x-4)2=174. 把抛物线y=-12x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )A. y=-12(x+1)2+1 B. y=-12(x+1)2-1 C. y=-12(x-1)2+ 1 D. y=-12(x-1)2-15. 关于x的一元二次方程2ax x10-+=有实数根,则a的取值范围是A.1a a04≠≤且 B.1a4≤ C.1a a04≠≥-且 D.1a4≥-6. 若正六边形的半径长为4,则它的边长等于()A. 4B. 2C. 23D. 437. 如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A. (-2,23)B. (-2,4)C. (-2,22)D. (2,23)8. 如图,从一块直径为24cm 的圆形纸片上,剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A. 32 cmB. 23cmC. 6cmD. 12cm9. 如图,PA 、PB 、CD 分别切⊙O 于点A 、B 、E ,CD 分别交PA 、PB 于点C 、D.下列关系:①PA=PB ;②∠ACO=∠DCO ;③∠BOE 和∠BDE 互补;④△PCD 的周长是线段PB 长度的2倍.则其中说法正确的有( )A. 1个B. 2个C. 3个D. 4个10. 抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A 1 B. 2 C. 3 D. 4二、填空题(本大题共6个小题,每小题4分,共24分)11. 已知抛物线2y x 3x m =+-与 x 轴只有一个公共点,则m=___________.12. 在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_____.13. 有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.14. 已知一元二次方程2x 2﹣5x+1=0的两根为m,n ,则m 2+n 2=_____.15. 如图,在△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______16. 如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD 的中点,CE⊥AB 于点E,过点D 的切线交EC 的延长线于点G,连接AD,分别交CE,CB 于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD ;③点P 是△ACQ 的外心,其中结论正确的是________(只需填写序号).三、解答题(本大题共9个小题,共86分)解答题应写出必要的文字说明或推演步骤. 17. 解下列方程(1)23250x x +-=;(2)22(12)69x x x -=-+.18. 已知如图所示,A,B,C 是⊙O 上三点,∠AOB=120°,C 是AB 中点,试判断四边形OACB 形状,并说明理由.19. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,1),B (-1,3),C (0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C1,并写出A1,B1的坐标;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2,并写出B2,C2的坐标;(3)若△A2B2C2和△A1B1C1关于点P中心对称,请直接写出对称中心P的坐标.20. 如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.-++=,21. 已知:关于x的方程2x(k2)x2k0(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.22. 某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:⑴求y与x之间的函数关系式,并写出自变量x的取值范围;⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg ?⑶设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?23. 给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形. (1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,连接AD ,DC ,CE ,已知∠DCB=30°. ①求证:△BCE 是等边三角形;②求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.24. 如图,ABCD 中,45B ∠=︒. 以点A 为圆心,AB 为半径作A 恰好经过点C .()1CD 是否为A 的切线?请证明你的结论. ()2DEF 为割线,30ADF ∠=. 当2AB =时,求DF 的长. 25. 如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.答案与解析一、选择题(本大题共10个小题,每小题4分,共40分)1. 下列说法正确的是()A. 袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B. 天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C. 某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D. 连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【答案】D【解析】试题分析:选项A,袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,本选项错误;选项B,天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,本选项错误;选项C,某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,也可能不中奖,本选项错误;选项D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,本选项正确.故答案选D.考点:概率的意义2. 下列图形:任取一个是中心对称图形的概率是()A. 14B.12C.34D. 1【答案】C【解析】本题考查概率的计算和中心对称图形的概念,根据中心对称图形的概念可以判定①③④是中心对称图形,4个图形任取一个是中心对称的图形的概率为P=34,因此本题正确选项是C.3. 用配方法解方程x2+1=8x,变形后的结果正确的是( )A. (x+4)2=15B. (x+4)2=17C. (x-4)2=15D. (x-4)2=17 【答案】C【解析】x 2+1=8x ,移项,得x 2-8x =-1,配方,得x 2-8x +42=-1+42,即(x -4)2=15.故选C.点睛:移项得时候注意将含有未知数的项全部移到等号左边,常数项全部移到等号右边.4. 把抛物线y =-12x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( ) A. y =-12 (x +1)2+1 B. y =-12 (x +1)2-1 C. y =-12 (x -1)2+ 1 D. y =-12 (x -1)2-1 【答案】B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:21y x+112=--(). 5. 关于x 的一元二次方程2ax x 10-+=有实数根,则a 的取值范围是 A. 1a a 04≠≤且 B. 1a 4≤ C. 1a a 04≠≥-且 D. 1a 4≥- 【答案】A【解析】试题分析:根据一元二次方程的意义,可知a≠0,然后根据一元二次方程根的判别式,可由有实数根得△=b 2-4ac=1-4a≥0,解得a≤14,因此可知a 的取值范围为a≤14且a≠0. 点睛:此题主要考查了一元二次方程根的判别式,解题关键是根据一元二次方程根的个数判断△=b 2-4ac 的值即可.注意:当△>0时,方程有两个不相等实数根;当△=0时,方程有两个相等的十数根;当△<0时,方程没有实数根.6. 若正六边形的半径长为4,则它的边长等于( )A. 4B. 2C. D. 【答案】A【解析】 试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A .考点:正多边形和圆.7. 如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A. (-2,23)B. (-2,4)C. (-2,22)D. (2,23)【答案】A【解析】【分析】作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O 点坐标,再利用勾股定理计算出BC=23,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.【详解】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,22-=,4223∴B点坐标为(-2,3);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,3,故选:A.【点睛】本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8. 如图,从一块直径为24cm的圆形纸片上,剪出一个圆心角为90°的扇形ABC,使点A,B,C都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是()A. 32cmB. 23cmC. 6cmD. 12cm【答案】A【解析】【分析】圆的半径为12,求出AB的长度,用弧长公式可求得BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【详解】AB=12222==cm,∴90122=62180BCππ⨯=∴圆锥的底面圆的半径=62π÷(2π)=32cm.故选A.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9. 如图,PA、PB、CD分别切⊙O于点A、B、E,CD分别交PA、PB于点C、D.下列关系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互补;④△PCD的周长是线段PB长度的2倍.则其中说法正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【详解】根据切线长定理可知PA=PB ,故①正确;同理可知CA=CE ,可知CO 为∠ACE 的角平分线,所以∠ACO=∠DCO ,故②正确;同理可知DE=BD ,由切线的性质可知∠OBD=∠OED=90°,可根据四边形的内角和为360°知∠BOE+∠BDE=180°,即∠BOE 和∠BDE 互补,故③正确;根据切线长定理可得CE=CA ,BD=DE ,而△PCD 的周长=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB ,故④正确.故选D.10. 抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 根据二次函数图像与b 2-4ac 的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y =ax 2+bx +c(a≠0)与x 轴有两个交点∴b 2-4ac >0∴4ac -b 2<0,故①正确;②∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1 ∴12b a-=- 解得:2b a =∴2a -b =0,故②正确;③∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间, ∴此抛物线与x 轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y 随x 增大而减小∴当x=1时,y <0,∴将x=1代入解析式中,得:y =a +b +c <0故③正确;④若点(x 1,y 1),(x 2,y 2)在对称轴右侧时,函数y 随x 增大而减小即若x 1<x 2,则y 1>y 2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键.二、填空题(本大题共6个小题,每小题4分,共24分)11. 已知抛物线2y x 3x m =+-与 x 轴只有一个公共点,则m=___________. 【答案】94 【解析】试题分析:根据抛物线解析式可知其对称轴x=322b a -=,根据其与x 轴只有一个交点,可知其顶点在x 轴上,因此可知x= 32时,y=0,代入可求得m=94. 点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x 轴只有一个交点的位置是抛物线的顶点在x 轴上,因此可求出对称轴代入即可.12. 在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_____.【答案】10%【解析】【分析】设11、12两月平均每月降价的百分率是x ,那么11月份的房价为7000(1−x ),12月份的房价为7000(1−x )2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x ,由题意,得:7000(1﹣x )2=5670,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.13. 有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.【答案】716【解析】【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=716.故答案为716.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14. 已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.【答案】214【解析】【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=52,mn=12,∴m2+n2=(m+n)2-2mn=(52)2-2×12=214,故答案为214.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211x x、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.15. 如图,在△ABC中,∠C=90°2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B= ______【答案】31-【解析】如图,连接BB′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°, ∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB BB AC B C BC BC ='⎧⎪'=''⎨⎪'='⎩,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD ⊥AB′,∵∠C=90∘2,∴22(2)(2)+∴BD=2×33C′D=12×2=1,∴BC′=BD−C′D=3−1.故答案为:3−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.16. 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是△ACQ的外心,其中结论正确的是________(只需填写序号).【答案】②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6, Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5, 所以∠8=∠7, 所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.三、解答题(本大题共9个小题,共86分)解答题应写出必要的文字说明或推演步骤. 17. 解下列方程(1)23250x x +-=;(2)22(12)69x x x -=-+.【答案】(1)153x =-,21x =;(2)143x =,22x -=. 【解析】【分析】(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【详解】(1)()()3510x x +-=, 350x +=或10x -=,所以153x =-,21x =; (2)()()222130x x ---=,()()2132130x x x x -+---+=,2130x x -+-=或2130x x --+=,所以143x =,22x -=. 【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 18. 已知如图所示,A,B,C 是⊙O 上三点,∠AOB=120°,C 是AB 的中点,试判断四边形OACB 形状,并说明理由.【答案】AOBC 是菱形,理由见解析.【解析】【分析】连接OC,根据等边三角形的判定及圆周角定理进行分析即可.【详解】AOBC是菱形,理由如下:连接OC,∵C是AB的中点∴∠AOC=∠BOC=12×120°=60°,∵CO=BO(⊙O的半径),∴△OBC是等边三角形,∴OB=BC,同理△OCA是等边三角形,∴OA=AC,又∵OA=OB,∴OA=AC=BC=BO,∴AOBC是菱形.【点睛】本题利用了等边三角形的判定和性质,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.19. 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C1,并写出A1,B1的坐标;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2,并写出B2,C2的坐标;(3)若△A2B2C2和△A1B1C1关于点P中心对称,请直接写出对称中心P的坐标.【答案】(1)见解析,A1(3,1),B1(1,-1).(2)见解析,B2(-3,-1),C2(-2,-3).(3)(-1,-1)【解析】【分析】(1)依据以点C为旋转中心旋转180°,即可画出旋转后的△A1B1C1;(2)依据点A的对应点A2的坐标为(−5,−3),即可画出平移后的△A2B2C2;(3)依据中心对称的性质,即可得到对称中心P的坐标.【详解】(1)如图所示,△A1B1C1为所作三角形,A1(3,1),B1(1,-1).(2)如图所示,△A2B2C2为所作三角形,B2(-3,-1),C2(-2,-3).(3)对称中心P的坐标为(-1,-1).【点睛】本题主要考查了利用平移变换以及旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20. 如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.【答案】见解析【解析】 【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小力胜、小明胜的情况,继而求得小力胜与小明胜的概率,比较概率大小,即可知这个游戏是否公平.【详解】列表得:两个数字之和转盘A转盘B-1 0 2 1 1 01 32 -2-3 -2 0 -1 -1-2-1 1 0∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之和为非负数有7个,负数有5个, ()512P =小聪,()712P =小明,571212< ∴对小明有利,这个游戏对双方不公平..【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21. 已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.【答案】(1)证明见解析;(2)△ABC的周长为5.【解析】【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.22. 某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:⑴求y 与x 之间的函数关系式,并写出自变量x 的取值范围;⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg ?⑶设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?【答案】(1)y=-2x+60,10≤x ≤18;(2)16元/kg ;(3)W=-2(x-20)2+200,18元,192元.【解析】【分析】(1)根据一次函数过(12,36)(14,32)可求出函数关系式,然后验证其它数据是否符合关系式,进而确定函数关系式,(2)根据总利润为168元列方程解答即可,(3)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【详解】(1)设关系式为y=kx+b ,把(12,36),(14,32)代入得:12361432k b k b +⎧⎨+⎩==, 解得:k=-2,b=60,∴y 与x 的之间的函数关系式为y=-2x+60,通过验证(15,30)(17,26)满足上述关系式,因此y 与x 的之间的函数关系式就是y=-2x+60.自变量的取值范围为:10≤x ≤18.(2)根据题意得:(x-10)(-2x+60)=168,解得:x=16,x=24舍去,答:获得平均每天168元的利润,售价应定为16元/kg ;(3)W=(x-10)(-2x+60)=-2x 2+80x-600=-2(x-20)2+200,∵a=-2<0,抛物线开口向下,对称轴为x=20,在对称轴的左侧,y 随x 的增大而增大,∵10≤x ≤18,∴当x=18时,W 最大=-2(18-20)2+200=192元,答:W与x之间的函数关系式为W=-2(x-20)2+200,当该商品销售单价定为18元时,才能使经销商所获利润最大,最大利润是192元.【点睛】考查一次函数、二次函数的性质,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.23. 给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【答案】(1)正方形、矩形、直角梯形均可;(2)①证明见解析②证明见解析【解析】【分析】(1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;(2)①首先证明△ABC≌△DBE,得出AC=DE,BC=BE,连接CE,进一步得出△BCE为等边三角形;②利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.【详解】解:(1)正方形、矩形、直角梯形均可;(2)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt △DCE 中,DC 2+CE 2=DE 2,∴DC 2+BC 2=AC 2.考点:四边形综合题.24. 如图,ABCD 中,45B ∠=︒. 以点A 为圆心,AB 为半径作A 恰好经过点C .()1CD 是否为A 的切线?请证明你的结论.()2DEF 为割线,30ADF ∠=. 当2AB =时,求DF 的长. 【答案】(1)CD 是A 的切线,理由详见解析;(2)62DF +=.【解析】【分析】 (1)根据题意连接AC ,利用平行四边形的判定与性质进行分析证明即可;(2)由题意作AH DF ⊥于H ,连接AF ,根据平行四边形的性质以及勾股定理进行分析求解.【详解】解:()1CD 是A 的切线.理由如下.连接AC ,如下图,AB AC =,145B ∴∠∠︒==.290∴∠︒=ABCD 是平行四边形,//AB CD ∴.3290∴∠∠︒==.CD AC ∴⊥CD ∴是A 的切线()2作AH DF ⊥于H ,连接AF ,如上图,由()1, 222BC AB == ABCD 是平行四边形22AD BC ∴==30ADF ∠︒=,122AH AD ∴==. 22 6DH AD AH ∴-==2AF =,222FH AF AH ∴-==.62DF ∴+=.【点睛】本题考查平行四边形和圆相关,熟练掌握平行四边形的判定与性质以及圆的相关性质是解题的关键. 25. 如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.。

相关文档
最新文档