光电效应的实验规律

合集下载

物理 光电效应

物理  光电效应
2 n r1 11 n rn = = 5.29 ×10 Z Z . 2 E1 2 13 6 En = Z 2 = Z (eV ) 2 n n E = E∞ En
小 结
一、 光电效应的实验规律 1.单位时间内 从受光照射的电极上释放出来的光 单位时间内,从受光照射的电极上释放出来的光 单位时间内 电子数目N与入射光的强度 成正比。 与入射光的强度I成正比 电子数目 与入射光的强度 成正比。
1 2 2.光电子的最大初动能随入射 光电子的最大初动能随入射 mv = ekν eu0 光的频率ν呈线性地增加 呈线性地增加,与入射光 光的频率 呈线性地增加 与入射光 2 强度无关。 强度无关。 u0 3. 光电效应有一定的截止频率。 光电效应有一定的截止频率。 ν0 =
约化的普朗克常量: 约化的普朗克常量:
v e
r
h = 2π
Ze
波尔确实依据它的三点假设揭示了实验中 观测的光谱现象的物理规律
玻尔在1922年12月10日, 年 月 日 玻尔在 获得了诺贝尔物理奖。 获得了诺贝尔物理奖。
12
2、 氢原子轨道半径和能量 、 (1) 轨道半径 )
vn
+e
2
(m,e)
rn
1 1 me ν= 2 3 ( 2 2) 8ε0ch k n
4
RH实 = 1.096776 ×10 m
7
-1
分符合
相差Leabharlann 17 5 / 10000似氢离子: 似氢离子:核外只有一个电子
He
+
L
++
Be
+++
说明: 说明: 玻尔理论除可用来处理氢原子问题外, 玻尔理论除可用来处理氢原子问题外,还能用来处理 似氢离子。 似氢离子。在r n和E n的推算中对核电荷用 Z e 代替 代替e 电子的轨道半径

大学物理课件—光电效应

大学物理课件—光电效应

思考
若测出某种金属的 Ua 曲线的
斜率K和横轴上的截距 0 ,则可得h= Ke ,
逸出功A= Ke 0 .
h
1 2
mvm 2
A
1 2
mvm 2
eK (
0 )
h Ke
A Ke 0
0
A h
Ua
h
e
A e
15. 2 光电效应 爱因斯坦光子假说 Suling CHANG
例 某金属表面被蓝光照射时有光电子 逸出,若增加蓝光的强度,则
15. 2 光电效应 爱因斯坦光子假说
一 光电效应实验的规律
Suling CHANG
光照射至金属表面, 电子从金 属表面逸出, 称其为光电子.
实验规律
截止频率(红限) 0 仅当 0才发生光电效应,
截止频率与材料有关与光强无关 .
A V
几种纯 金属 铯 钠 锌 铱 Hz 4.545 5.50 8.065 11.53 19.29
15. 2 光电效应 爱因斯坦光子假说
三 光子 爱因斯坦方程
Suling CHANG
“光量子”假设: 光子的能量为 h
爱因斯坦方程
h 1 mv2 A
2
逸出功与材料有关
几种金属的逸出功
金属 钠 铝 锌 铜 银 铂
W / eV 2.28 4.08 4.31 4.70 4.73 6.35
15. 2 光电效应 爱因斯坦光子假说 Suling CHANG
I2 I1
I2 I1
U
15. 2 光电效应 爱因斯坦光子假说 Suling CHANG
二 经典理论遇到的困难
红限问题 无论何种频率的入射光,只要其强度足够大,就能 使电子具有足够的能量逸出金属 .与实验结果不符.

光电效应 : 光照射到金属上,使电子从金属表面逸出的现象...

光电效应 : 光照射到金属上,使电子从金属表面逸出的现象...
几种金属逸出功的近似值(eV) 钠 铝 锌 4.31 铜 4.70 银 铂
2.46 4.08
4.73 6.35
3. 爱因斯坦光子理论对光电效应的解释
爱因斯坦认为:光电效应是电子吸收光子能量产生的 1) 电子一旦吸收了一个光子的能量,就可以立刻从 金属表面逸出,所以无须时间累积。 2)光强大,光子数多,释放的光电子也多,所以 饱和光电流也大。 3) 从方程可以看出光电子初动能和照射光频率成 1 线性关系。 h W m 2
(3)存在遏止电压 U 0 →光电子具有初动能
i+
U 反向电压
i
s
i
I 2 I1 光强I1
光电子的最大初动能
-U0 o
频率一定
U
1 2 m m eU 0 2
U 0:截止电压的大小( U0 0 )
(3)存在遏止电压 U 0 光电子的最大初动能 1 2 m m eU 0 2
is

光子 爱因斯坦方程
1 “光量子”假设 ——光具有粒子性 (1) 光可看成是由光子组成的粒子流,
(2) (3)
光子能量:
ε h
光强(光的能流密度S) I N h
N:单位时间通过单位面积的光子个数 (光子流密度)
h 6.631034 J s
普朗克常数
ν :光子频率
2 爱因斯坦光电效应方程
饱 和 is 电 遏 止 流 电 压 -U0 O
U
V A
U饱和
单位时间内,受光照射的电极上释放 出的电子数和入射光的强度成正比。
0 (2)截止频率(红限)
只有入射光的 频率大于某一频率 0时,电子才会从 金属表面逸出.
0 称为截止频率或红限频率

第10讲 光电效应 爱因斯坦光量子理论

第10讲 光电效应 爱因斯坦光量子理论

第10讲光电效应爱因斯坦光量子理论3. 只有当入射光频率 n 大于截止频率或红限频率 n 0 时,才会产生光电效应;4. 光电效应是瞬时发生的,只要入射光频率 n > n 0,无论光多微弱,驰豫时间不超过 10-9 s 。

2. 截止电压 U c 与入射光频率 n 呈线性关系:一、光电效应的实验规律1. 在频率一定的入射光照射下,饱和光电流强度 i m 与入射光强 I 成正比;U c = K n - U 0KU 00=n二、光电效应实验曲线 i 0 Ui m1 i m2 I1I 2 > I 1 -U c I 2U c —— 截止电压 c 212m eU mv = 4.0 6.0 8.0 10.0 n (1014 Hz ) 0.0 1.0 2.0 U c (V ) Cs Na Ca θ12.0 直线与横坐标的交点就是截止频率或红限频率 n 0。

光是由一束以光速运动的光量子(光子)组成。

mcc h h p ===n λnh =E 光子能量: 光子动量: 光子质量: 三、爱因斯坦光子理论)(0 022===m c h c m n E四、爱因斯坦光电效应方程红限频率(截止频率): 由金属材料的逸出功 A 决定 h A =0n 五、光的波粒二象性光有时表现出波动性的一面,又有时表现出粒子性的一面。

A h νv m -=2m e 21Q3.10.1有人说:“光的强度越大,光子的能量就越大。

”对吗?答:错。

光子的能量由频率决定,与光的强度没有直接关系。

在光电效应实验中,若只是入射光强度增加一倍;对实验结果有什么影响?Q3.10.2(a )答:光强 I = N h n N 为单位时间通过垂直光传播方向单位面积的光子数。

n 不变 , I 增加一倍,N 增加一倍, 饱和光电流强度增加一倍。

以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射光的强度,测出其光电流曲线如图中虚线所示。

高考物理光电效应

高考物理光电效应

010.07-08学年清华大学附中高考模拟试题 7
7.a、b两种色光以相同的入射角从某种介质射向真 空,光路如图所示,则以下描述错误的是( A ) A.a光的频率大于b光的频率 B.a光在真空中的波长大于b光在真空中的波长 C.a光在介质中的传播速度大于 b光在介质中的传 播速度 a D.如果a光能使某种金属 b 真空 发生光电效应,b光也一定能 介质
使该金属发生光电效应
065.08年南京一中第三次模拟13(2) 13. (2) (3-5模块 )( 3分)如图所示是使用光电管的 原理图。当频率为 的可见光照射到阴极K上时,电 流表中有电流通过。如果将变阻器的滑动端 P由A向 B滑动,通过电流表的电流强度将会 _______( 减小 填“增 加”、“减小”或“不变”)。当电流表电流刚减小 到零时,电压表的读数为 U ,则光电子的最大初动 eU 能为 ________(已知电子电量为e)。 如果不改变入射光的频率,而 增加入射光的强度,则光电子 K G V 的最大初动能将_________( 填 不变 P “增加”、“减小”或“不变”) 。 B A S
光 电 效 应
1.光电效应现象 光照使物体发射电子的现象叫光电效应现象;所发射的 电子叫光电子;光电子定向移动所形成的电流叫光电流. 2. 光电效应现象的实验规律
( 1)对于任何一种金属,入射光的频率必须大于某一 极限频率才能产生光电效应,低于这个极限频率,无论强 度如何,无论照射时间多长,也不能产生光电效应; (2)在单位时间里从金属极板中发射出的光电子数 跟入射光的强度成正比; (3)发射出的光电子的最大初动能与入射光强度无 关,只随入射光频率的增大而增大; (4)只要入射光的频率高于金属极板的极限频率, 无论其强度如何,光电子的产生都几乎是瞬时的,不超 过10-9s.

光电效应

光电效应

困难2
困难3
二、光子
1、光子说:在空间传播的光不是连续的,而 是一份一份的,每一份叫做一个光量子,简 称光子,光子的能量E跟光的频率ν成正比。 E=h ν 或E=nh ν (n为量子数) 其中h是一个常量,叫普朗克常量。 h=6.63×10-34J.s
⑴光子的能量取决于频率 ⑵在微观世界里,能量的取值是不连续的,只能取分 立的值 ⑶同样颜色的光,弱强的不同反映了单位时间内射到 单位面积的光子数的多少。

2.7
镁3.7ຫໍສະໝຸດ 铍3.9钛
4.1
1.9
2、发生光电效应时,光电流强度与入射光强度成 435正比。
三、光电效应方程
3、爱因斯坦的光电效应方程: Ek=hν-W
光电子的最大初动能Ek与入射光的强度无关, 只随入射光的频率的增大而增大。
二、光子
2、光子说对光电效应的解释: (1)对金属存在极限频率的解释:
光子照到金属上时,它的能量可以被金 属中的某个电子吸收(一个电子只能吸收一个 光子)。电子吸收光子后,能量增加。如果能 量足够大,电子就能克服金属内正电荷对它的 引力,离开金属表面,逃逸出来,成为光电子。 不同金属内正电荷对电子的束缚程度不同,因 此电子逃逸出来所做的功也不一样。如果光子 的能量E小于使电子逃逸出来所需功的最小值 W,那么无论光多么强,照射时间多么长,也 就是说这种能量比较小的光子无论数目多么多, 也不能使电子从金属中逃逸出来。
光电效应
一、光电效应
1、实验装置 2、实验现象:验电器的箔片张开,且锌板带正电 3、光电效应:在光(包括不可见光)照射下物体中发 射电子的现象。 4、光电子:光电效应中发射出来的电子
光电流:光电效应中产生的电流
5、光电效应的实质:光现象转化为电现象,实现光电 转换。

2.2 光电效应 爱因斯坦光量子理论

2.2 光电效应 爱因斯坦光量子理论
I nh
入射光较强时,含有的光子数较多,所以获得 能量而逸出的电子数也多,饱和电流也就大。
(3)当 h A 时, 电子无法获得足够能量脱 离金属表面,因此存在红限 0 。
0 A h
11
近代物理
第2章 量子物理基础
(4)遏止电压与照射光的频率成线性关系:
h
1 2
mvm2
A
eU c
1 2
mvm2
该金属表面逸出,
这个频率叫截止频 如果入射光的频率小于截止
率(红限)。
频率则无论入射光强度多大, 都没有光电子逸出。
7
近代物理
第2章 量子物理基础
二、经典物理解释的困难 红限问题
按经典理论,无论何种频率的入射光,只要 其强度足够大,就能使电子具有足够的能量逸 出金属→与实验结果不符。
瞬时性问题 按经典理论,电子逸出金属所需的能量, 需要有一定的时间来积累,一直积累到足以使 电子逸出金属表面为止→与实验结果不符。
和强度的单色光照射K时, 金属将
释放出光电子, 若在两极上加一
定电压, 则回路中就出现光电流。 爱因斯坦(Einstein)
2
近代物理
第2章 量子物理基础
3
近代物理
第2章 量子物理基础
2.实验规律
阴极 K 在单位时间
i
内发射的光电子数与入
射光的强度 I 成正比。
is
(1)瞬时性
( 2 ) 饱 和 电 流 Is : 光 电 流 I随UAK 增大而 增 大 , 趋于饱和值 is,光电流与 单位时间从阴极发射的 光电子数成正比。
第2章 量子物理基础
2.爱因斯坦光电效应方程
h
A
1 2
mvm2

光电效应实验的实验报告(3篇)

光电效应实验的实验报告(3篇)

第1篇一、实验目的1. 了解光电效应的基本规律。

2. 验证爱因斯坦光电效应方程。

3. 掌握用光电效应法测定普朗克常量的方法。

4. 学会用作图法处理实验数据。

二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。

这一现象揭示了光的粒子性,即光子具有能量和动量。

爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。

光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。

三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。

2. 调整光电管与灯的距离为约40cm,并保持不变。

3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。

4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。

5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。

6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。

7. 调节电压调节的范围为-2~30V,步长自定。

8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。

9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。

10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。

11. 利用爱因斯坦光电效应方程,计算普朗克常量。

五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。

15-2 光电效应

15-2 光电效应

λ= ν
A=
c
h A Ua = ν − e e hc A Ua = − eλ e
hc
λ
− eUa
A ν0 = h
§15-2 光电效应
一、光电效应的实验规律
§15-2 光电效应
一、光电效应的实验规律
G
A
K
I IH 2 1 3
U
实验原理
Ua
0
U
光电效应有如下规律: 光电效应有如下规律: 1、对于一定强度的单色光: 、对于一定强度的单色光:
I IH 2 1 Ua 0 U 3
I H = Ne
对于同一单色光,改变其 对于同一单色光, 光强:' 光强:' ′ ′
规律四: 规律四:
只要入射光的频率大于该金属的红限, 只要入射光的频率大于该金属的红限,当光照射到这 种金属的表面时,几乎立即产生光电子, 种金属的表面时,几乎立即产生光电子,而无论光强 多大。 多大。
二、经典理论遇到的困难 • 光的波动理论:光波的能量决定于光波的强度,而强 光的波动理论:光波的能量决定于光波的强度, 度与振幅的平方成正比。所以,入射光的强度越高, 度与振幅的平方成正比。所以,入射光的强度越高,金 属内自由电子获得的能量就越大, 属内自由电子获得的能量就越大,光电子的初动能也应 该越大。与实验规律二矛盾! 该越大。与实验规律二矛盾! •光的波动理论:如果入射光的频率较低,总可以用增 光的波动理论:如果入射光的频率较低, 光的波动理论 大振幅的方法使入射光达到足够的能量, 大振幅的方法使入射光达到足够的能量,以便使自由 电子获得足以逸出金属表面的能量。不应该存在入射 电子获得足以逸出金属表面的能量。 光的频率限制。与实验规律三矛盾! 光的频率限制。与实验规律三矛盾! •光的波动理论:因为自由电子从入射光那里获得能量 光的波动理论: 光的波动理论 需要一个积累的过程,特别是当入射光的强度较弱时, 需要一个积累的过程,特别是当入射光的强度较弱时, 积累能量需要的时间较长。与实验规律四矛盾! 积累能量需要的时间较长。与实验规律四矛盾!

光电效应

光电效应
子理论
爱因斯坦光电效应方程
1 2 h mv m A 2
爱因斯坦对光电效应的解释:
爱因斯坦
光强大,光子数多,释放的光电子也多, 所以光电流也大。 电子只要吸收一个光子就可以从金属表面 逸出,所以无须时间的累积。
爱因斯坦的光子理论
从方程可以看出光电子初动能和照射光的 频率成线性关系。 从光电效应方程中,当初动能为零时,可 得到红限频率.
IH
光强较弱
光电效应的伏安特性曲线
Ua
O
U
光电效应
(2)遏止电势差 如果使负的电势差足够大,从 而使由金属板表面释放出的具有最大速度的电子 也不能到达阳极时,光电流便降为零,此外加电 势差的绝对值U a叫遏止电势差。
1 2 mvm eU a 2
实验表明:遏止电势差与光强度无关。 结论2:光电子从金属表面逸出时具有一定的 动能,最大初动能与入射光的强度无关。
光电效应
例18-3 波长l =4.0×10-7m的单色光照射到金属铯 上,求铯所释放的光电子最大初速度。
解:铯原子红限频率 0 =4.8×1014 Hz,据爱 因斯坦光电效应方程,光电子最大初动能:
1 2 mvm h A 2
利用关系 代入已知数据
c A h 0
vm 6.50 10 m/s
2.光的波动说的缺陷
按照光的波动说,光电子的初动能应决定于入 射光的光强,即决定于光的振幅而不决定于 光的频率。
无法解释红限的存在。
无法解释光电效应的产生几乎无须时间的积累。
3.爱因斯坦的光子理论
爱因斯坦从普朗克的能量子假设中得到启发,他 假定光在空间传播时,也具有粒子性,想象一束光是一 c 束以 运动的粒子流,这些粒子称为光量子,现在称为 h 光子,每一光子的 能量为 ,光的能流密度决定 于单位时间内通过该单位面积的光子数。 根据光子理论,光电效应可解释如下:当金属 中一个自由电子从入射光中吸收一个光子后,就获 得能量 h ,如果 h 大于电子从金属表面逸出 时所需的逸出功 A ,这个电子就从金属中逸出。

高中物理:光电效应知识点总结

高中物理:光电效应知识点总结

高中物理:光电效应知识点总结一、光电效应1、光电效应如图17-2-1所示,用弧光灯照射锌板,与锌板相连的验电器就带正电,即锌板也带正电这说明锌板在光的照射下发射出了电子。

(1)定义:在光的照射下物体发射出电子的现象,叫做光电效应,发射出来的电子叫做光电子。

(2)研究光电效应的实验装置(如图17-2-2所示)阴极K和阳极A是密封在真空玻璃管中的两个电极,K 在受到光照时能够发射光电子,电源加在K与A之间的电压大小可以调整,正负极也可以对调。

2、光电效应的规律(1)光电效应的实验结果首先在入射光的强度与频率不变的情况下,I-U的实验曲线如图17-2-3所示,曲线表明,当加速电压U增加到一定值时,光电流达到饱和值I m。

这是因为单位时间内从阴极K射出的光电子全部到达阳极A,若单位时间内从阴极K上逸出的光电子数目为n,则饱和电流I m=ne式中e为电子电荷量,另一方面,当电压U减小到零,并开始反向时,光电流并没降为零,这就表明从阴极K逸出的光电子具有初动能,所以尽管有电场阻碍它运动,仍有部分光电子到达阳极A,但是当反向电压等于-U c时,就能阻止所有的光电子飞向阳极A,使光电流降为零,这个电压叫遏止电压,它使具有最大初速度的电子也不能到达阳极A,如果不考虑在测量遏止电压时回路中的接触电势差,那么我们就能根据遏止电压-U c来确定电子的最大速度v m和最大动能,即在用相同频率不同强度的光去照射阴极K时,得到的I -U曲线如图17-2-4所示,它显示出对于不同强度的光,U c是相同的,这说明同频率、不同强度的光所产生的光电子的最大初动能是相同的。

此外,用不同频率的光去照射阴极K时,实验结果是:频率愈高,U c愈大,如图17-2-5,并且与U c成线性关系,如图17-2-6。

频率低于ν0的光,不论强度多大,都不能产生光电子,因此,ν0称为截止频率,对于不同的材料,截止频率不同。

(2)光电效应的实验规律①饱和电流I m的大小与入射光的强度成正比,也就是单位时间内逸出的光电子数目与入射光的强度成正比(见图17-2-4)。

(完整版)高中物理光电效应知识点

(完整版)高中物理光电效应知识点

一、光电效应和氢原子光谱知识点一:光电效应现象1.光电效应的实验规律(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应.(2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大.(3)大于极限频率的光照射金属时,光电流强度(反映单位时间内发射出的光电子数的多少)与入射光强度成正比.(4)金属受到光照,光电子的发射一般不超过10-9_s. 2.光子说爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:ε=hν,其中h =6.63×10-34 J·s.3.光电效应方程(1)表达式:hν=E k +W 0或E k =hν-W 0.(2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W 0,剩下的表现为逸出后电子的最大初动能E k =12m v 2.知识点二: α粒子散射实验与核式结构模型1.卢瑟福的α粒子散射实验装置(如图13-2-1所示)2.实验现象绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子甚至被撞了回来.如图13-2-2所示.α粒子散射实验的分析图3.原子的核式结构模型在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.知识点三:氢原子光谱和玻尔理论 1.光谱(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱. 有的光谱是连在一起的光带,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律.巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R (122-1n2)(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数.2.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n .(h 是普朗克常量,h =6.63×10-34 J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.点拨:易错提醒(1)一群氢原子跃迁发出可能的光谱线数为N =C 2n =n (n -1)2,一个氢原子跃迁发出可能的光谱线数最多为(n -1).(2)由能级图可知,由于电子的轨道半径不同,氢原子的能级不连续,这种现象叫能量量子化.考点一:对光电效应的理解 1.光电效应的实质 光子照射到金属表面,某个电子吸收光子的能量使其动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.2.极限频率的实质光子的能量和频率有关,而金属中电子克服原子核引力需要的能量是一定的,光子的能量必须大于金属的逸出功才能发生光电效应.这个能量的最小值等于这种金属对应的逸出功,所以每种金属都有一定的极限频率.3.对光电效应瞬时性的理解 光照射到金属上时,电子吸收光子的能量不需要积累,吸收的能量立即转化为电子的能量,因此电子对光子的吸收十分迅速.4.图13-2-4光电效应方程电子吸收光子能量后从金属表面逸出,其中只有直接从金属表面飞出的光电子才具有最大初动能,根据能量守恒定律,E k =hν-W 0.如图13-2-4所示.5.用光电管研究光电效应(1)常见电路(如图13-2-5所示)图13-2-5(2)两条线索①通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.②通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大. (3)常见概念辨析⎩⎪⎨⎪⎧照射光⎩⎪⎨⎪⎧ 强度——决定着每秒钟光源发射的光子数频率——决定着每个光子的能量ε=hν光电子⎩⎪⎨⎪⎧每秒钟逸出的光电子数——决定着光电流的强度光电子逸出后的最大初动能(12m v 2m)规律总结:(1)光电子也是电子,光子的本质是光,注意两者的区别.(2)在发生光电效应的过程中,并非所有光电子都具有最大初动能,只有从金属表面直接发出的光电子初动能才最大.考点二:氢原子能级和能级跃迁1.氢原子的能级图能级图如图13-2-6所示.图13-2-6相关量 意义 能级图中的横线 表示氢原子可能的能量状态——定态 横线左端的数字“1,2,3…” 表示量子数横线右端的数字 “-13.6,-3.4…” 表示氢原子的能量相邻横线间的距离表示相邻的能量差,量子数越大相邻的能量差越小,距离越小带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hν=E m -E n(1)一群氢原子跃迁发出可能的光谱线条数为N =C 2n =n (n -1)2. (2)一个氢原子跃迁发出可能的光谱线条数最多为(n -1).二、核反应和核能知识点一:天然放射现象和衰变1.天然放射现象(1)天然放射现象.元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)放射性和放射性元素.物质发射某种看不见的射线的性质叫放射性.具有放射性的元素叫放射性元素.(3)三种射线:放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线.(4)放射性同位素的应用与防护.①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.②应用:消除静电、工业探伤、作示踪原子等.③防护:防止放射性对人体组织的伤害.2.原子核的衰变(1)原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.(2)分类α衰变:A Z X→A-4Y+42HeZ-2β衰变:A Z X→A Z+1Y+0-1e(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间.半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关.点拨:易错提醒(1)半衰期是大量原子核衰变时的统计规律,对个别或少数原子核,无半衰期可言.(2)原子核衰变时质量数守恒,核反应过程前、后质量发生变化(质量亏损)而释放出核能.知识点二:核反应和核能1.核反应在核物理学中,原子核在其他粒子的轰击下产生新原子核的过程.在核反应中,质量数守恒,电荷数守恒.2.核力核子间的作用力.核力是短程力,作用范围在1.5×10-15 m之内,只在相邻的核子间发生作用.3.核能核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能.4.质能方程、质量亏损爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Δm,这就是质量亏损.由质量亏损可求出释放的核能ΔE=Δmc2.【考点解析:重点突破】考点一:衰变和半衰期2.对半衰期的理解(1)根据半衰期的概念,可总结出公式N 余=N 原(12)t /τ,m 余=m 原(12)t /τ式中N 原、m 原表示衰变前的放射性元素的原子核数和质量,N 余、m 余表示衰变后尚未发生衰变的放射性元素的原子核数和质量,t 表示衰变时间,τ表示半衰期.(2)影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关. 考点二:核反应方程的书写规律总结(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接.(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.(3)核反应遵循质量数守恒而不是质量守恒;遵循电荷数守恒.考点三:核能的产生和计算1.获得核能的途径(1)重核裂变:重核俘获一个中子后分裂成为两个中等质量的核的反应过程.重核裂变的同时放出几个中子,并释放出大量核能.为了使铀235裂变时发生链式反应,铀块的体积应大于它的临界体积.(2)轻核聚变:某些轻核结合成质量较大的核的反应过程,同时释放出大量的核能,要想使氘核和氚核合成氦核,必须达到几百万度以上的高温,因此聚变反应又叫热核反应.2.核能的计算方法(1)应用ΔE=Δmc2:先计算质量亏损Δm,注意Δm的单位1 u=1.66×10-27 kg,1 u相当于931.5 MeV的能量,u是原子质量单位.(2)核反应遵守动量守恒和能量守恒定律,因此我们可以结合动量守恒和能量守恒定律来计算核能.规律总结根据ΔE=Δmc2计算核能时,若Δm以千克为单位,“c”代入3×108_m/s,ΔE的单位为“J”;若Δm以“u”为单位,则由1u c2=931.5_MeV得ΔE=Δm×931.5_MeV.。

高考物理光电效应

高考物理光电效应

gk005.2008年高考江苏卷12C. (1) 12.C⑴(选修模块3—5)下列实验中,深入地揭示 了光的粒子性一面的有 . 解见下页 A B
验电器 锌板 紫外线灯
A . X 射线被石墨散 射后部分波长增大
可移动 α 粒子流 探测器 α 粒子源 金箔 真空 无偏转 小角度
B .锌 板 被紫外线 照射时 有电子逸出,但被可见光 照射时没有电子逸出
电 压 狭 棱 充气玻 光屏 缝 镜 璃管
大角度
C.轰击金箔的α粒子中有少 数运动方向发生较大偏转
D .氢原子发射的光经三 棱镜分光后呈现线状光谱
解析: A为康普顿散射,B为光电效应,康普顿散射和光 电效应都深入揭示了光的粒子性; C为 粒子散射,不是光子,揭示了原子的核式 结构模型。 D为光的折射,揭示了氢原子能级的不连续;
(3)发射出的光电子的最大初动能与入射光强度无 关,只随入射光频率的增大而增大;
(4)只要入射光的频率高于金属极板的极限频率, 无论其强度如何,光电子的产生都几乎是瞬时的,不超 过10-9s.
3.光子说 光子说的主要内容为:沿空间传播的光是不连续的,而 是一份一份的,每一份叫做一个光量子,简称光子;光 子的能量E与光的频率 成正比,比例系数即为普朗克 E h 常量 h=6.63×10 – 34 J.s——普朗克恒量 1 2 4. 爱因斯坦光电效应方程 mvm h W 2 Ek 爱因斯坦光电效应方程的图象 爱因斯坦光电效应方程是能量守恒 定律在光电效应现象中的表现形式 逸出功和极限频率的关系 W h 0 极限波长和极限频率的关系 c 由 v f 得 0 0
发生光电效应,b光也一定能
使该金属发生光电效应
介质
065.08年南京一中第三次模拟13(2) 13. (2) (3-5模块 )( 3分)如图所示是使用光电管的 原理图。当频率为 的可见光照射到阴极K上时,电 流表中有电流通过。如果将变阻器的滑动端 P由A向 B滑动,通过电流表的电流强度将会 _______( 减小 填“增 加”、“减小”或“不变”)。当电流表电流刚减小 到零时,电压表的读数为 U ,则光电子的最大初动 eU 能为 ________(已知电子电量为e)。 如果不改变入射光的频率,而 增加入射光的强度,则光电子 K G V 的最大初动能将_________( 填 不变 P “增加”、“减小”或“不变”) 。 B A S

光电效应

光电效应

1 2 mvm eU a 2
1 2 mvm ek eU 0 2
按光的波动说,金属在光的照射下,金属 中的电子受到入射光振动的作用而作受迫 振动,这样将从入射光中吸收能量,从而 逸出表面,逸出时初动能应决定于光振动 振幅,即取决于光强,光强越大,光电子 初动能就越大,所以光电子初动能应与光 强成正比。但是,实验结果表明,光电子 初动能只与光的频率有关,而与光强无关。
而线性增大。
2.0
1.0 0.0 4.0 6.0
Cs
Na
Ca
U a k U 0
8.0 10.0 (1014Hz)
从图示可看出:不同材料的图线的斜率相同,相 互间仅为平移。k与金属材料种类无关,U0与金 属材料种类有关
i
Ua3 Ua2 Ua1
3 2 1
U
U a k U 0
金属中的电子吸收一个光子的能量→光电子的初 动能+逸出功
1 2 mvm h W 2
与前面的实验规律比较
爱因斯坦光 电效应方程
1 2 mvm ek eU 0 2 1 2 mvm ek ek 0 2
h ek
W eU 0
U0 h 0 h W k
红限频率
W W 0 h ek
答:反冲电子动能为0.10Mev
3、光子的能量、动量、质量(粒子性特征) 能量:
h h

c
h h h 质量: m 2 2 Tcc c c c h h 动量: p mc c c
四、对光的波粒二象性的理解 1、同时具有,都是光的本性;

mc
2
2、 不同时显现;

光电效应在近代技术中的应用

光电效应实验教案

光电效应实验教案

光电效应实验实验目的:1.了解光电效应的基本规律; 2.测量光电管的伏安特性曲线;2.验证爱因斯坦方程,并测定普朗克常数。

实验原理:1.光电效应的实验规律金属在光的照射下释放出电子的现象叫做光电效应。

根据爱因斯坦的“光量子概念”,每一个电子具有能量E h ν=,当光照射到金属上时,其能量被电子吸收,一部分消耗于电子的逸出功W ,另一部分转换为电子逸出金属表面后的动能。

由能量守恒定律可得:212mv h W νν=- (1) (称为爱因斯坦光电方程) 光电方程圆满解释了光电效应基本实验事实:(1)仅当光频高于某一阈值时,才能从金属表面打出光电子; (2)单个光电子的动能随光频提高而增大,与入射光强无关; (3)单位时间内产生光电子的数目仅与入射光强有关,与光频无关; (4)光电效应是瞬时完成的,电子吸收光能几乎不需要积累时间。

在理想光电管中,令光电子在反向电场中前进,当剩余的动能刚好被耗尽时,电子所经历的电势差U v 叫做遏止电势差,显然eU v =221νmv ,代入(1)式可得 h WU e eνν=- (2)(2)式表明,遏止电势差U v 是入射光频ν的一次函数,h/e 就是一次曲线的斜率。

爱因斯坦方程预见了实验测算普朗克常数的可行方案。

除了求出h 的量值以外,还可通过(2)式了解光电管的特性。

令ν=0,可得理想阴极的逸出电势等于曲线的纵轴截距,U 0=-W /e ;令U v =0,可得理想阴极的截止频率等于曲线的横轴截距,ν0=W /h 。

实际光电管的情况比较复杂,只能把两个截距U 0、ν0看作整体光电管的宏观参量。

2.验证爱因斯坦方程,求普朗克常数图1是研究光电效应的简化电路。

一束单色光照射真空光电管的阴极K ,设光频ν>ν0,有光电子产生且有剩余动能。

只要外电路闭合,即使电源分压U =0,光电子也能到达阳极A图1实验原理图形成光电流I A,I A的量值由μA表读出。

仪器简介:本实验使用PC—Ⅱ型普朗克常数测定仪,它包括下列4部分:(1)光源:GGQ—50W高压汞灯,在320.3~872.0nm范围内有若干种单色光供选用。

(完整版)近代物理知识点

(完整版)近代物理知识点

光电效应、量子理论,原子及原子核物理一、光的粒子性1、光电效应(1)光电效应:在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

(2)光电效应的实验规律:装置:①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。

③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④金属受到光照,光电子的发射一般不超过10-9秒.2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。

所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比.即:E=hv ,其中h为普郎克恒量h=6。

63×10-34J·s(3)光电效应方程 E k=hv-W4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。

二、波粒二象性1、光的干涉和衍射现象,说明光具有波动性,光电效应,说明光具有粒子性,所以光具有波粒二象性。

2、个别粒子显示出粒子性,大量光子显示出波动性,频率越低波动性越显著,频率越高粒子性越显著3、光的波动性和粒子性与经典波和经典粒子的概念不同(1)光波是几率波,明条纹是光子到达几率较大,暗条纹是光子达几率较小,这与经典波的振动叠加原理有所不同(2)光的粒了性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定空间,这与经典粒子概念有所不同原子和原子核一、原子结构:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

§2-2 光电效应 爱因斯坦光子理论

§2-2 光电效应 爱因斯坦光子理论

光控继电器示意图
放大器
接控制机构
将一束微弱的入射光转 变成放大了的光电流
在科研、工程和军事上 有广泛的应用。
光电倍增管
[例题2—2] 波长为450nm的单色光照射到钠的表面 上(钠的逸出功A=2.28eV)。求(1)这种光的光子 能量和动量;(2)光电子逸出钠表面时的动能; (3)若光子的能量为2.40eV,其波长为多少?
爱因斯坦因为光电效应获得1921年诺贝尔物理学奖;十余 年后,密立根用实验验证了h的精确值,和黑体辐射中的h很好 的符合,密立根因他在测量电子电荷和光电效应方面的研究获 得1923年诺贝尔物理学奖。
到这种金属的表面时,几乎立即产生光电子,而无 论光强多大。
电子逸出的时间间隔不超过109 s。
对于上述四条规律经典物理是无法解释的。
二、经典理论遇到的困难
(1) 初动能问题 根据光的经典电磁理论,金属在光的照射
下,金属中的电子将从入射光中吸收能量,从 而逸出金属表面。电子逸出时的初动能应决定 于光振动的振幅,即决定于光的强度。所以, 入射光的强度越高,金属内自由电子获得的能 量就越大,光电子的初动能也应该越大。
(3) 瞬时性问题
按照光的经典电磁理论,产生光电子应该 有一定的时间间隔,而不应该是瞬时的。因为 自由电子从入射光那里获得能量需要一个积累 过程,特别是当入射光的强度较弱时,积累能 量需要的时间较长。
但实验结果并非如此,当物体受到光的照 射时,一般地说,不论光怎样弱,只要频率大 于截止频率,光电子几乎是立刻发射出来的。
量由光的频率所决定。
h为普朗
克常量
频率为的光子的能量为 = h
光的能量就是光子能量的总和,对于一定频率的
光,光子数越多,光的强度越大。

光电效应的四条实验规律

光电效应的四条实验规律

光电效应的四条实验规律
光电效应是指当光线照射到金属表面时,金属表面上的电子能够吸收光的能量并跳跃
到金属表面外部,形成电流的现象。

光电效应是近代物理学的基本实验之一,它可以通过
实验进行研究和探究。

第一条规律:光电效应发生的条件是光子的能量必须高于金属表面上电子所需的最小
能量。

光子的能量与其频率成正比,而与波长成反比。

当光子能量高于金属表面上电子所需
的最小能量(也称为逸出功)时,电子才能从金属表面上跳跃到外部形成电流。

如果光子
的能量低于逸出功,金属表面上的电子就不可能跳跃出去。

第二条规律:光电效应中直接电流的强度与光强度成正比,与光子的能量无关。

当光照射到金属表面上时,电子跳跃出去,产生电流。

这个电流的强度与光强度(即
光子的数量)成正比,而与光子的能量无关。

这意味着即使光的频率高,每个光子的能量
也很小,但是如果光子的数量足够多,电流的强度仍然很大。

第三条规律:光电效应中测出的动能与光子能量的差是电子的逸出功。

当光子的能量高于金属表面上电子的逸出功时,电子会具有一定的动能。

根据能量守
恒原理,电子的动能等于光子的能量与电子从金属表面上释放出来时携带的静电势能之差。

因此,如果已知光子的能量和测量出的电子动能,就可以算出电子的逸出功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应的实验规律
光电效应的研究思路
(1)两条线索:
(2)两条对应关系:
光强大→光子数目多→发射光电子多→光电流大
光子频率高→光子能量大→光电子的最大初动能大
例1(多选)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()
A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大
B.入射光的频率变高,饱和光电流变大
C.入射光的频率变高,光电子的最大初动能变大
D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生
答案AC
解析在发生光电效应时,饱和光电流大小由光照强度来决定,与频率无关,光照强度越大饱和光电流越大,因此A正确,B错误;根据E km=hν-W0可知,对于同一光电管,逸出功W0不变,当频率变高,光电子的最大初动能E km变大,因此C正确;由光电效应规律可知,当频率低于截止频率时无论光照强度多大,都不会有光电流产生,因此D 错误.
第1页共1页。

相关文档
最新文档