八年级数学下册 16.2 二次根式的乘除课件2 (新版)新人教版PPT

合集下载

人教版八年级下册数学16.2二次根式的乘除(2) ——二次根式的除法课件 (共18张PPT)

人教版八年级下册数学16.2二次根式的乘除(2) ——二次根式的除法课件  (共18张PPT)

(5) 3 3 5
(6) 0.4 (7) 3 24
(8)
5x 12 y3
难点突破
例 5 化简 (aa1- ) a11=1a =__.____
分析:含字母的二次根式的化简,通常要知道字母的符号,而字 母的符号又常借被开方数的非负性而隐藏.因此,化简时要从 被开方数入手.
解:∵a -a1有意义,∴-1a≥0,∴-a>0.
a0,b0
二次根式相除,根号不变,把被开方数相除。
思考:
1、这里的字母a,b可以取任意实数吗? 2、为了方便记忆,你能用一句话叙述这一规律吗? 3、等式 m3 m3 成立的条件是__m__>_5___
m5 m5
实践应用
a b
a b
a 0 ,b 0
例1 计算 (1) 24 3
(2) 3 1 2 18
∴a -1a=a
(-1 a)=a
(-a) (-a) (-a)
=a
(--aa)2=a
-a
-a
=-aa -a=- -a.
巩固提升
1.计算 4 8 1 的结果是( A )
3
A. 3
B. 5
C. 6
D. 8
2.若使等式
42k k1
42k 成立,则实数k取值范围是_1_<__k__≤_2__
k1
3.下列二次根式 4 5, y, x2y2, a 2+ 9, 2 x中属于最
课外作业
1.计算:
(1) 30 3 22221 23 2
(2) 7314 3 21 152 2
(3) a3b (3 b)(32a) ( 4 )7 ( 5 6 1 )2( 4 )2
2a
(5) 2 5 50

16.2 二次根式的乘除(第2课时)

16.2 二次根式的乘除(第2课时)

随堂检测
• 学习竞赛开始,请在8分钟内完成书本第10 页的练习。
必做题:当堂训练;(2) 2 1 2 0.5(3) 3 x 2 x
1.计算
(1)
120 30
2、下面二次根式中,为最简二次根式有哪些;若不是请将 其化为最简二次根式
45,
选做题: 3.计算
y , x
x y ,
2 2
2x , 3
课题:16.2 二次根式的乘除 (第二课时)
学习目标
1、掌握 应用。
a a a a (a 0, b 0); (a 0, b 0) b b b b
及其
2、最简二次根式的概念并利用概念和其 性质化简和运算
自学指导
• 请同学们默读课本第8页至第10页练习以上 的内容,熟看例4至例7,掌握二次根式的 除法法则及其逆运算并将结果化为最简二 次根式,并回答以下问题(请在8分钟内完 成) 1、二次根式的除法法则及其逆运算法则分 别怎样用数学语言表示? 2、最简二次根式有何特点?
y 4
1 1 1 4 1 3 3 ( 1 ) 5 2 8 7 4 2

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

人教版八年级下册 16.2 二次根式的乘除(2)课件(共18张PPT)

人教版八年级下册 16.2 二次根式的乘除(2)课件(共18张PPT)

探究 计算下列各式,观察计算结果,你能发现什么规律?
知⑴ 识 点 一 (2)
二 次 根 (3) 式
2
4 3 = _
_,
9
4
16 25
=5
_,
6
36
7 = _

49
2
3 4

_;
9
4
5 16
=_
_;
25
6
36 7 = _ _ .
49
的 一般地,二次根式的除法法则是


aa


bb
(a≥0, b >0___).
问题5 化简: (1) 28 7 ;(2) 1 2 5 ;
5
7 (3) 1 2 1

36a (4) 2 5 b 2 (b>0).
四、强化训练
计算:
(1) 0.4 3.6
(2)
2 3
27 8
(3) 8 5
3 40
(4) 27 50Байду номын сангаас6
深入探究一
4 .11、 、等 等mmm m- - 式 - - 式 5353==mmm m- -- - 53m成 53成>立5立的的 _条 ___条 __件___件_是 。____是 。 ________
逆向思考
问题3
能否将二次根式
3 化简? 64
三、研读课文

a b=
a b 反过来就可以进行二次根式的化简.即,
知 识
aa

b
b (a≥0,b >0)
点 例5 化简:
二 (1) 3

100
(2) 75 27

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品教学课件课件

36
6
(2)
=(
7
49
),
4
16
(
);
5
25
6
36
(
);
49
7
a
a

b
b
活动探究
二次根式的除法法则:二次根式相除,把被开方数相除,根指数不变.
a
a

( a 0,b>0)
b
b
典例精讲
例1 计算:
(2) 3
(1) 24 ;
3
解: (1)
24
2
24
3
3
3
(2)

2
1

18
8 2 2
1 = 3 1 = 3 18
= 27 =3 3
2
18
2
18
活动探究
探究二:二次根式除法法则的逆运用

a
b

aห้องสมุดไป่ตู้
( a 0,b>0) 反过来,就得到
b
a
a

( a 0,b>0)
b
b
典例精讲
例2 化简:
(1)
3
100
解:(1)
75
27
(2)
3
=
100
75
(2) =
27
3
100
=
a
a

( a 0,b>0)
解:原式=
− × −
= ×
解:原式= − × −
= ×××
=
× ×
=
4、计算: ∙ −
原式= ∙

16.2 二次根式的乘除

16.2 二次根式的乘除

知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
知识点四商的算术平方根
������ ������
=
������������(a≥0,b>0).
名师解读 (1)商的算术平方根,等于被除数的算术平方根与除数
的算术平方根的商.
(2)在应用商的算术平方根时,一定要注意根号下的字母,不管是
数还是代数式,都必须满足a≥0,b>0.
如 (-4)(-16)化成 -4 × -16就是错误的,而 (-4)(-16)化成 4 ×
16才是正确的. (3)如果给出的二次根式,被开方数的因式中有一些幂的指数不
小于 2,即含有完全平方的因式(或因数),通常可根据积的算术平方 根的性质,并利用 ������2=a(a≥0),将这个因式(或因数)“开方”出来.
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
23
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四
拓展点一根据二次根式的隐含条件化简二次根式
例 1 把二次根式(x-1) 11-������中根号外的因式移到根号内,结果是 ()
A. 1-������ B.- 1-������ C.- ������-1 D. ������-1
10
教材新知精讲
综合知识拓展
知识点一 知识点二 知识点三 知识点四 知识点五 知识点六
例3
计算:(1) 72 ÷
6;(2)
1
1 2
÷
16;
(3)4 1 13÷6 3 15;
(4)-23
������3������
(a>0,b>0).
2
������ ������

人教版八年级数学下册第十六章 二次根式16.2二次根式的乘除课件(2课时66张)

人教版八年级数学下册第十六章 二次根式16.2二次根式的乘除课件(2课时66张)

22
35
3 4
32 3 4 4
2
3
2
巩固练习
连接中考
(2019•株洲) 2 8 =( B )
A.4 2
B.4
C.10
D.2 2
课堂检测
基础巩固题
1.下面计算结果正确的是 ( D )
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
人教版 数学 八年级 下册
16.2二次根式的乘除
第一课时 第二课时
第一课时
二次根式的乘法
返回
导入新知
如何计算 5 3?
苹果ios手持操作系统的图标为圆角矩形,长为 5 cm, 宽为 3cm,则它的面积是多少呢?
素养目标
2. 会运用二次根式的乘法法则和积的算术平 方根的性质进行简单运算. 1. 掌握二次根式乘法法则.
不成立!
- 4、- 9 没有意义!
因此被开方数a,b需要满足什么条件?
a,b是非负数,即a≥0,b≥0
探究新知
二次根式的乘法法则是:
在本章中, 如果没有特 别说明,所 有的字母都 表示正数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘.
语言表述: 算术平方根的积等于各个被开方数积的算术平方根.
探究新知
方法点拨
比较两个二次根式大小的方法: (1)被开方数比较法,即先将根号外的非负因数移到根号内, 当两个二次根式都是正数时,被开方数大的二次根式大.
(2)平方法,即把两个二次根式分别平方,当两个二次根式 都是正数时,平方大的二次根式大. (3)计算器求近似值法,即先利用计算器求出两个二次根式的 近似值,再进行比较.

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)
求证: a b a b a 0,b 0.
证明:根据积的乘方法则,有 ( a b)2 ( a)2 ( b)2 ab.
∴ a b 就是ab算术平方根.
又∵ ab 表示ab算术平方根, ∴ a b ab (a 0,b 0.)
知识归纳
二次根式乘法法则:
例8 设长方形的面积为S,相邻两边长分别为a,b.
反之: ab = a b (a≥0,b≥0 ). (a≥0,b≥0 ).
我们可以运用它来进行二次根式的解题和化简.
解:(2)∵

(1)
___×___=____;
(a≥0,b≥0 ).
当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得
2 7= ?
精典例题
例1 计算:
(1) 16 81 ;(2) 12 ;(3) 4a2b3 . 解:(1) 16 81=36;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
目标导学三:二次根式的除法
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24 = _____ ; 3 1 = _____ .
3
2 18
合作探究
问题 计算下列各式,观察计算结果,你能发现 什么规律?
(1) 4 = 9
特殊化,从能开得尽方的 二次根式乘法运算开始思考!
2 7= ?
目标导学一:二次根式的乘法 计算下列各式:
(1) 4 9= __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36=__5_×_6__=__3_0_; 25 36 =__9_0_0___3_0_.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16= 4
25 ____5 ___; 25 ___5____;
(3)
36= 6
36= 6
49 ____7 ___; 49 ___7____.
性质的探究
问题1 计算下列各式,观察计算结果,你能发现 什么规律?
a= b
a b
(a≥0,b>0)
性质的运用
问题2 计算:
(1)
24 3

(2)
3 2
1. 18
16.2 二次根式的乘除(2)
课件说明
• 本课是在学习了二次根式的概念和性质的基础上, 结合算术平方根的概念,通过观察,归纳出二次根 式的除法法则,并应用这个法则进行二次根式的计 算和化简.
课件说明
• 学习目标: 1.探索二次根式除法法则; 2.能根据二次根式除法法则进行二次根式的除法运 算.
• 学习重点: 二次根式除法法则的探究和应用.
新课引入
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24=_____; 3 1=_____.
3
2 18
性质的探究
问题1 计算下列各式,观察计算结果,你能发现 什么规律?
(1)
4 = 2 9____3 ___;
4= 2 9 ___3____;
(2)
16= 4
课后作业
作业:教科书第10页练习第1题; 习题16.2第2,4题.
逆向思考
问题3
能否将二次根式
3 化简? 64
解: 3 = 3 = 3 . 64 64 8
巩固新知
问题4 化简:
(1) 3 100
;(2)
ห้องสมุดไป่ตู้
75 27

巩固新知
问题5 化简: (1) 28 7 ;(2)
125 ; 5
7 (3) 1 2 1

36a (4) 2 5 b 2 (b>0).
课堂小结
(1)如何进行二次根式除法运算? (2)如何逆用二次根式除法法则化简二次根式? (3)能推导出二次根式除法法则吗?
相关文档
最新文档