电化学整理笔记

合集下载

高二电化学知识点归纳总结

高二电化学知识点归纳总结

高二电化学知识点归纳总结电化学是研究电与化学现象之间相互转化关系的科学分支。

在高中阶段的学习中,电化学是化学课程中的重要内容之一。

本文将对高二电化学知识点进行归纳总结,以帮助学生们更好地掌握这一领域的知识。

一、化学反应电子方程式化学反应中的电子转移是电化学研究的核心。

化学反应电子方程式指的是在化学反应中涉及到电子转移的方程式。

其中,还包括氧化还原反应的电子方程式。

在电子方程式中,电子的转移通常以电子传递的方式进行。

例如,当氧化剂接受电子时,产生的物质被称为还原剂;当还原剂失去电子时,产生的物质被称为氧化剂。

二、重要的电极反应电极反应是电化学研究中一项重要内容。

常见的电极反应有氧化反应和还原反应。

电极反应通常以半电池反应的形式存在。

其中,阳极指的是发生氧化反应的电极,用"A"表示;阴极指的是发生还原反应的电极,用"B"表示。

当两个半电池连接时,涉及的电极反应可表示为A ⟶ A+ + e-和B+e- ⟶ B的形式。

三、电解质溶液的电导性电解质溶液的电导性是了解溶液中离子行为的重要指标。

当电解质溶液中存在电离度较高的离子时,电流可顺利通过溶液,这种溶液被称为强电解质溶液。

相反,当溶液中的电离度较低时,电流难以通过,这种溶液被称为弱电解质溶液。

四、电离程度的大小与溶液浓度的关系电解质溶液的电离程度与溶液浓度有密切关系。

电离程度指的是溶液中离子的生成量与初始物质浓度之比。

一般情况下,溶液浓度越低,电离程度越大;溶液浓度越高,电离程度越小。

五、电解液中离子的原理电解液指的是在电解过程中发生离子电导的溶液。

电解液的离子实际上是溶液中的化合物离子化后形成的。

通过电解液,离子可以在电场的作用下进行电子传递,使得溶液中的化学反应发生。

六、电解池电解实验电解池电解实验是电化学研究中常用的实验方法之一。

在电解池中,通过外加电源形成电势差,使得电解液中的化学反应发生。

在电解池电解实验中,电解液中的阳离子会向阴极方向移动,而阴离子会向阳极方向移动。

高二化学知识点总结(电化学)

高二化学知识点总结(电化学)

高二化学知识点总结(电化学)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高二化学知识点总结(电化学)化学难在哪儿?面对三大突出特点,考试主要面临三大思维障碍。

电化学知识点总结

电化学知识点总结

电化学知识点总结电化学是研究电能和化学能之间相互转化及转化过程中有关规律的科学。

它是化学学科的一个重要分支,在日常生活、工业生产以及科学研究中都有着广泛的应用。

下面我们来对电化学的一些重要知识点进行总结。

一、原电池原电池是将化学能转化为电能的装置。

1、构成条件(1)两个活泼性不同的电极,其中一个相对较活泼,另一个相对较不活泼。

(2)电解质溶液。

(3)形成闭合回路。

(4)能自发地发生氧化还原反应。

2、工作原理以铜锌原电池为例,在稀硫酸溶液中,锌比铜活泼,锌失去电子成为锌离子进入溶液,电子通过导线流向铜电极,溶液中的氢离子在铜电极上得到电子生成氢气。

在这个过程中,锌电极发生氧化反应,是负极;铜电极发生还原反应,是正极。

负极的电极反应式为:Zn 2e⁻= Zn²⁺;正极的电极反应式为:2H⁺+ 2e⁻= H₂↑。

3、原电池的正负极判断(1)根据电极材料:较活泼的金属为负极,较不活泼的金属或能导电的非金属为正极。

(2)根据电子流动方向:电子流出的一极为负极,电子流入的一极为正极。

(3)根据电流方向:电流流出的一极为正极,电流流入的一极为负极。

(4)根据离子移动方向:阴离子移向的一极为负极,阳离子移向的一极为正极。

(5)根据电极反应类型:发生氧化反应的一极为负极,发生还原反应的一极为正极。

二、电解池电解池是将电能转化为化学能的装置。

1、构成条件(1)直流电源。

(2)两个电极(惰性电极或活性电极)。

(3)电解质溶液或熔融电解质。

(4)形成闭合回路。

2、工作原理以电解氯化铜溶液为例,连接电源正极的电极称为阳极,发生氧化反应,氯离子在阳极失去电子生成氯气;连接电源负极的电极称为阴极,发生还原反应,铜离子在阴极得到电子生成铜单质。

阳极的电极反应式为:2Cl⁻ 2e⁻= Cl₂↑;阴极的电极反应式为:Cu²⁺+ 2e⁻= Cu。

3、电解池的阴阳极判断(1)与电源正极相连的为阳极,与电源负极相连的为阴极。

电化学基础知识点总结归纳

电化学基础知识点总结归纳

电化学基础知识点总结归纳原电池1、概念:化学能转化为电能的装置叫做原电池。

2、组成条件:①两个活泼性不同的电极;②电解质溶液;③电极用导线相连并插入电解液构成闭合回路;3、电子流向:外电路:负极——导线——正极内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。

4、电极反应:以锌铜原电池为例:负极:氧化反应:Zn-2e=Zn2+(较活泼金属)正极:还原反应:2H++2e=H2↑(较不活泼金属)总反应式:Zn+2H+=Zn2++H2↑5、正、负极的判断:(1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极;(2)从电子的流动方向负极流入正极;(3)从电流方向正极流入负极;(4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极;(5)根据实验现象①溶解的一极为负极;②增重或有气泡一极为正极电解池1、把电能转化为化学能的装置,也叫电解槽。

2、电解:电流(外加直流电)通过电解质溶液而在阴阳两极引起氧化还原反应(被动的不是自发的)的过程。

3、放电:当离子到达电极时,失去或获得电子,发生氧化还原反应的过程。

4、电子流向:(电源)负极—(电解池)阴极—(离子定向运动)电解质溶液—(电解池)阳极—(电源)正极金属的腐蚀1、定义:金属的腐蚀是指金属与周围的气体或液体物质发生氧化还原反应而引起损耗的现象。

2、分类:由于金属接触的介质不同,发生腐蚀的情况也不同,一般可分为化学腐蚀和电化学腐蚀。

①化学腐蚀:金属跟接触到的物质直接发生反应而引起的腐蚀叫做化学腐蚀。

化学腐蚀过程中发生的化学反应是普通的氧化还原反应,而不是原电池反应,无电流产生。

②电化学腐蚀:不纯的金属与电解质溶液接触时,会发生原电池反应。

比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。

3、电化学腐蚀电化学腐蚀,实际上是由大量的微小的电池构成微电池群自发放电的结果。

①析氢腐蚀钢铁在潮湿的空气中表面会形成一薄层水膜,在钢铁表面形成了一层电解质溶液的薄膜,与钢铁里的铁和少量的碳恰好形成了原电池。

第四章电化学基础知识点归纳

第四章电化学基础知识点归纳

第四章电化学基础知识点归纳第四章电化学基础知识点归纳电化学是研究电和化学之间关系的分支学科,主要研究电能和化学变化之间的相互转化规律。

本章主要介绍了电化学基础知识点,包括电化学的基本概念、电池反应、电解反应以及其相关的电解池和电极。

一、电化学的基本概念1. 电化学:研究电和化学之间相互关系的学科。

2. 电解:用电能使电解质溶液或熔融物发生化学变化的过程。

3. 电解质:能在溶液中产生离子的化合物。

4. 电解池:由电解质、电极和电解物质组成的装置。

5. 电极:用来与溶液接触,传递电荷的导体。

二、电池反应1. 电池:将化学能转化为电能的装置。

由正极、负极、电解质和导电体组成。

2. 电池反应:电池工作时在正负极上发生的化学反应。

3. 氧化还原反应:电池反应中常见的反应类型,在正极发生氧化反应,负极发生还原反应。

4. 电池电势:电池正极和负极之间的电位差。

5. 电动势:电池正极和负极之间的最大电势差。

三、电解反应1. 电解:用电流使电解质发生化学变化的过程。

2. 导电质:在电解质中起导电作用的物质。

3. 离子:在溶液中能自由移动的带电粒子。

4. 阳离子:带正电荷的离子。

5. 阴离子:带负电荷的离子。

6. 电解池:由电解质溶液、电解质和电极组成的装置。

7. 电解程度:电解质中离子的溶解程度。

8. 法拉第定律:描述了电解过程中,电流量与电化学当量的关系。

四、电解池和电极1. 电解槽:承载电解液和电极的容器。

2. 阳极:电解池中的电流从电解液流入的电极,发生氧化反应。

3. 阴极:电解池中的电流从电解液流出的电极,发生还原反应。

4. 阳极反应:电解池中阳极上发生的氧化反应。

5. 阴极反应:电解池中阴极上发生的还原反应。

6. 电极反应速度:电极上反应的速度。

7. 电极反应中间体:反应过程中形成的中间物质。

电化学是现代科学和工程领域中的重要分支,广泛应用于电池、电解、蓄电池、电解涂层、电化学合成等领域。

了解电化学的基础知识,有助于我们更好地理解和应用电化学原理。

浙江大学《普通化学》笔记和课后习题(含考研真题)详解(电化学与金属腐蚀)【圣才出品】

浙江大学《普通化学》笔记和课后习题(含考研真题)详解(电化学与金属腐蚀)【圣才出品】
Pb(s) PbO2 (s) 2H2SO4 (aq) 2PbSO4 (s) 2H2O(l)
②镉镍电池 镉镍电池的总反应为
6 / 66
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 66
圣才电子书 十万种考研考证电子书、题库视频学习平台

1.氧化剂和还原剂相对强弱的比较 (1)电极电势代数值小 ①当该电极越易収生氧化反应,其还原态物质越易失电子,则该电极是较强的还原剂; ②该电极的氧化态物质越难得电子,则该电极是较弱的氧化剂。 (2)电极电势代数值大 ①该电极上越易収生还原反应,其氧化态物质越易得电子,则该电极是较强的氧化剂; ②该电极的还原态物质越难失电子,则该电极是较弱的还原剂。 2.反应斱向的判断 在原电池中,由亍 ΔG=-nEF,若 E>0,则 ΔG<0,在没有非体积功的恒温恒压条件 下,反应可以自収迚行。 3.反应迚行秳度的衡量 (1)KΘ 不 EΘ 的关系 在原电池的热力学讨论中,T=298.15K 时电池反应的平衡常数 KΘ 不电池的标准电动 势 EΘ 的关系为 lnKΘ=nEΘ/(0.05917V)。 (2)分析反应迚行的秳度 当电池反应为所讨论的化学反应时,可通过该原电池的 EΘ 推算该反应的平衡常数 KΘ, 从而分析该反应能够迚行的秳度。
电能势为 E 的电池反应 aA(aq)+bB(aq)=gG(aq)+dD(aq),其电势能表达式为
E E RT ln nF
c(G) / c c( A) / c
g a
c(D) / c d c(B) / c b
2 / 66
圣才电子书

①锌锰干电池
锌锰干电池的总反应为
Zn(s)

2MnO2
(s)

高中电化学基础知识点归纳 电化学基础知识点总结

高中电化学基础知识点归纳 电化学基础知识点总结

高中电化学基础知识点归纳电化学基础知识点总结以下是高中电化学基础知识点的归纳总结:1. 电化学基础概念:- 电化学:研究电能与化学能之间的转化关系的科学领域。

- 电解质:能在溶液中或熔融状态下导电的物质。

- 电极:用来与电解质接触并引出电流的物体。

- 电解:通过外加电流使化学反应发生的过程。

- 电池:利用化学反应自行产生电流的装置。

2. 电解质溶液:- 强电解质溶液:完全电离,生成众多离子的溶液(如NaCl、HCl等)。

- 弱电解质溶液:部分电离,生成少量离子的溶液(如CH3COOH、NH3等)。

3. 电解反应:- 阳极反应:发生在阳极上的氧化反应。

- 阴极反应:发生在阴极上的还原反应。

- 电解液:溶解有电解质的溶液,其阳离子和阴离子将分别参与到阳极反应和阴极反应中。

4. 电池相关概念:- 极性:电池中正极和负极的区分。

- 电动势:电池将化学能转化为电能的能力。

- 标准电动势:在标准状态下测得的电池的电动势。

- 密度:电池导电材料的质量和体积之比。

5. 电解、电池中的电荷转移:- 电子转移:电子在外部电路中从阴极流向阳极。

- 离子转移:离子在电解质溶液中由电场力推动进行迁移。

6. 电池的分类:- 电化学电池:使用化学能转换为电能的装置,如原电池和干电池。

- 电解池:通过外加电流引发化学反应的装置。

7. 稀液溶液的导电性:- 强弱电解质的电导性差异:由于强电解质溶液中离子浓度较高,故电导性较弱电解质溶液强。

- 稀液导电原理:离子移动时产生的扩散电流和迁移电流导致了整体电流。

以上是电化学基础知识点的简要总结,涉及到了电化学基础概念、电解质溶液、电解反应、电池相关概念、电解与电池中的电荷转移以及电池分类等内容。

电化学知识点总结

电化学知识点总结

1电化学知识点总结一【知识梳理】原电池正负极和电解池阴阳极的判断方法无论是原电池还是电解池,其本质都是在两个电极表面发生氧化还原反应。

在确定电极时用好对立统一规律,能起到事半功倍的效果。

如在原电池中,一个电极为正极,则另一电极为负极;在电解池中,一个电极为阳极,则另一电极为阴极。

(1)原电池正、负极的确定负极—⎪⎪⎪⎪⎪ —较活泼的金属 注意:特殊的电解质溶液可能会影响电极—电极的质量减小 适用于金属电极 —电子流出的电极—阴离子移向的电极—发生氧化反应的电极自己整理正极判断的一般方法。

(2)电解池阴、阳极的确定阴极—⎪⎪⎪⎪⎪—与电源负极相连的电极—电子流入的电极—阳离子移向的电极—质量增加的电极 适用于金属阳离子放电的电解过程—发生还原反应的电极自己整理阳极判断的一般方法。

【知识要点】化学电池的分类1一次电池 ①定义:一次电池,又称“原电池”,即电池放电后不能用充电方法使它复原的一类电池。

②举例:锌锰干电池、锌汞电池、碱锰电池、镉汞电池、锂亚硫酰氯电池。

2 二次电池 ①定义:二次电池又称“蓄电池”。

即电池放电后,可用充电方法使活性物质复原以后能 再放电,且充放电能反复多次循环使用的一类电池。

这类电池实际上是一个电化学能量储存装置,用直流电把电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换成电能。

②举例:铅酸电池、Zn-Ni 电池、Cd-Ni 电池、Zn-Ag 电池、Fe-Ni 电池、MH/Ni 电池。

3 贮备电池 ①定义:贮备电池又称“激活电池”。

即正、负极活性物质和电解质在贮存期不直接接触, 使用前临时注入电解液或用其它方法使电池激活的一类电池。

②举例:镁银电池、钙热电池。

4 燃料电池 ①定义:燃料电池又称“连续电池”。

即只要活性物质连续地注入电池,就能长期不断地 进行放电的一类电池。

它的特点是电池自身只是个载体,可以把燃料电池看成一种需要电能时将反应物从外部送入电池的一次电池。

卫生化学笔记:电化学分析法

卫生化学笔记:电化学分析法

电化学分析法:将电极插入被测物质的溶液中,组成化学电池,通过测量该电池的电学参数或参数的变化,进行物质的定性和定量分析。

概述和电化学基础一、电化学分析法的分类电位分析法——电池电动势——H及金属和非金属测定伏安分析法——电流电压曲线——金属离子和有机物测定电导分析法——电导——电解质总量分析库伦分析法——电量——金属和非金属测定二、电化学分析法的特点1. 灵敏度高2. 选择性好3. 样品用量少4. 分析速度快5. 仪器设备简单三、电化学基础(一)化学电池实现化学能与电能相互转化的装置1.化学电池的类型:原电池,电解池(1)原电池:能自发将化学能转变成电能的装置正得还,负失氧(2)电解池:只有加上外加电源后,两电极上才能发生氧化还原反应,将电能转变成化学能。

(3)原电池和电解池组成的共同点① 有两个半电池,且只有接通外电路时,半电池反应才能进行。

② 当电极分别插入两种不同的电解质溶液时,有液体接界装置。

③ 有两个电极:正极和负极,阳极和阴极。

阳极(anode): 发生氧化反应的电极。

阴极(cathode): 发生还原反应的电极。

2.原电池的表示方法(1)负极及有关溶液体系写在左侧,正极及有关溶液体系写在右侧;(2)用化学式表示电池中各种物质的组成并注明各物质的状态,溶液要注明活度或浓度,气体要注明压力;(3)用单竖线“|”表示能产生电位差的两相界面,双竖线“||”表示两电极体系用盐桥连接。

(二)电池电动势和电极电位1.电池电动势(1)定义:当通过原电池的电流为无限小时,电池两极的端电压就是此电池的电动势。

(2)电池电动势:电池中各个相界面上的相间电位的代数和。

(—) Zn (s) | Zn2+ (x mol/L) || Cu2+ (y mol/L) | Cu (s) (+)(1) 两金属电极之间的接触电位,以φ接触表示,此电位很小,可忽略不计;(2) 锌与硫酸锌溶液界面处的相间电位称为负极电位,用φ-表示;(3) 铜与硫酸铜溶液界面处的相间电位称为正极电位,用φ+表示;(4) 硫酸锌与硫酸铜溶液接界处的电位称为液体接界电位,用φj表示,实验中用盐桥降低此电位。

无机化学知识点学习笔记 (4)

无机化学知识点学习笔记 (4)

《无机化学》学习笔记四第四章氧化还原反应与应用电化学1.了解氧化数的概念,初步会用氧化数法和离子电子法配平氧化还原反应式。

2.了解原电池的构成及表示方法。

熟悉氧化还原平衡和理解电极电势的概念,能通过计算说明分压、浓度(含酸度)对电极电势的影响。

3.会用电极电势来判断氧化剂(或还原剂)的相对强弱,计算原电池的电动势。

会用∆r G m、E判断氧化还原反应进行的方向。

4.熟悉元素的标准电极电势图的应用。

知识点:1.氧化还原反应参加反应的物质之间有电子转移的化学反应−−称为氧化还原反应。

电化学是研究化学能与电能之间相互转换的一门科学,这些转换也是通过氧化还原反应实现的。

氧化还原反应中的电子转移包括电子得失或电子偏移。

2.氧化数1970年国际纯粹和应用化学联合会(IUPAC)定义,元素的氧化数是元素的一个原子的形式荷电数,这个荷电数可由假设把每个键中的电子指定给电负性较大的原子而求得。

氧化数可以是正数、负数、整数、分数、零。

3.氧化还原的概念一个氧化还原反应包含氧化和还原两个半反应(两个过程)。

氧化数升高的过程叫氧化,氧化数降低的过程叫还原。

氧化数升高的物质被氧化,氧化数降低的物质被还原。

氧化数升高的物质叫还原剂,氧化数降低的物质叫氧化剂。

在一个氧化还原反应中,氧化和还原两个过程总是同时发生,4.氧化还原电对同种元素的不同氧化数的两种物质均可构成一个氧化还原电对,简称电对。

电对的写法:高氧化数(态)物质在前,低氧化数(态)物质在后,中间划一左斜线。

如:Cu2+/Cu,Cr2O72-/Cr3+,Fe3+/Fe2+,Fe2+/Fe。

高氧化数(态)物质叫氧化型物质,低氧化数(态)物质叫还原型物质。

5.氧化还原反应方程式的配平用氧化数法和离子电子法配平氧化还原反应方程式。

6.原电池一种把化学能转变成电能的装置。

7.原电池符号用原电池符号表示原电池。

原电池符号写法的一些规定: 1.负极写在左边,并注明(-);正极写在右边,并注明(+);盐桥在中间,用“||”表示;用“|”表示相与相之间的界面。

电化学知识点归纳总结

电化学知识点归纳总结

电化学知识点归纳总结云南宣威第六中学浦章坤一、构成原电池的条件有:(1)电极材料。

两种金属活动性不同的金属或非金属导体(如:C、金属氧化物等);(2)两电极必须浸没在电解质溶液中;(3)两电极之间要用导线连接,形成闭合回路。

说明:①一般来说,能与电解质溶液中的某种成分发生氧化反应的是原电池的负极。

②很活泼的金属单质一般不作做原电池的负极,如K、Na、Ca等。

(非水溶液)二、原电池正负极的判断(1)由组成原电池的两极材料判断:一般来说,较活泼的或能和电解质溶液反应的金属为负极,较不活泼的金属或能导电的非金属为正极。

但具体情况还要看电解质溶液,如镁、铝电极在稀硫酸在中构成原电池,镁为负极,铝为正极;但镁、铝电极在氢氧化钠溶液中形成原电池时,由于是铝和氢氧化钠溶液发生反应,失去电子,因此铝为负极,镁为正极。

Fe 、Cu和浓HNO3。

(2)根据外电路电流的方向或电子的流向判断:在原电池的外电路,电流由正极流向负极,电子由负极流向正极。

(3)根据内电路离子的移动方向判断:在原电池电解质溶液中,阳离子移向正极,阴离子移向负极。

(4)根据原电池两极发生的化学反应判断:原电池中,负极总是发生氧化反应,正极总是发生还原反应。

因此可以根据总化学方程式中化合价的升降来判断。

(5)根据电极质量的变化判断:原电池工作后,若某一极质量增加,说明溶液中的阳离子在该电极得电子,该电极为正极,活泼性较弱;如果某一电极质量减轻,说明该电极溶解,电极为负极,活泼性较强。

(6)根据电极上产生的气体判断:原电池工作后,如果一电极上产生气体,通常是因为该电极发生了析出氢的反应,说明该电极为正极,活动性较弱。

(7)根据某电极附近pH的变化判断析氢或吸氧的电极反应发生后,均能使该电极附近电解质溶液的pH增大,因而原电池工作后,该电极附近的pH增大了,说明该电极为正极,金属活动性较弱。

三、电极反应式的书写(1)准确判断原电池的正负极是书写电极反应的关键如果原电池的正负极判断失误,电极反应式的书写一定错误。

电化学知识归纳(精品)

电化学知识归纳(精品)

电化学知识归纳一、原电池和电解池的比较原电池电解池(精练铜,粗铜中含Zn、Fe、Ag)电镀池(电镀锌)定义利用氧化还原反应将化学能转变为电能的装置使电流通过电解质溶液而在阴阳两极发生氧化还原反应的装置应用电解原理通过电流在某些金属表面镀上一层其他金属或合金的装置装置图形成条件内因条件:存在一个自发的氧化还原反应;外因条件(装置条件):①有两种活性不同的电极(金属、可导电非金属)②两极必须浸入电解质溶液中③两极需形成闭合回路。

①外接直流电源②粗铜接电源正极,精铜接电源负极③用易溶于水铜盐作电解液①外接直流电源②镀件与电源负极相连,镀层金属与电源正极相连③用含镀层金属离子的电解质溶液做电镀液电极名称一般情况下负极:较活泼金,发生氧化反应,正极:较不活泼金属(或非金属等)发生还原反应。

阳极:与电源正极相连的极,发生氧化反应,阴极:与电源负极相连的极,发生还原反应(同电解)阳极:镀层金属,阴极:镀件电极反应负极:Zn-2e-=Zn2+正极:2H++2e+=H2↑阳极:Zn-2e-=Zn2+Fe-2e-=Fe2+Cu-2e-=Cu2+,银沉积于阳极底部称为阳极泥。

阴极:Cu2++2e-=Cu阳极:Zn-2e-=Zn2+阴极:Zn2++2e-=Zn电流方向正极→负极电源正极→阳极−−−→−经电解液阴极→电源负极能量转化化学能→电能电能→化学能说明:1、从理论上说,任何一个自发的氧化还原反应均可设计成原电池。

2、电解两个电极可以材料一样,电解条件可以促使非自发的反应进行如反应Cu+2H2O=Cu(OH)2+H2↑在电解条件下可以发生。

装置氧化反应(失电子)还原反应(得电子)确定电极原电池负极正极由电极材料决定,还原性强的作负极电解池阳极阴极由电源决定,接电源正极的为阳极,接电源负极的为阴极注意:1、通常两种不同金属在电解溶液中构成原电池时,较活泼的金属作负极,但也不是绝对的,严格地说,应以发生的电极反应来定.例如,Mg-Al 合金放入稀盐酸中,Mg 比Al 易失去电子,Mg 作负极;将Mg-Al 合金放入烧碱溶液中,由于发生电极反应的是 Al,故Al 作负极。

电化学基础知识点总结归纳

电化学基础知识点总结归纳

电化学基础知识点总结归纳原电池1、概念:化学能转化为电能的装置叫做原电池。

2、组成条件:(1)两个活泼性不同的电极(2)电解质溶液(3)电极用导线相连并插入电解液构成闭合回路3、电子流向:外电路:负极——导线——正极内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。

4、电极反应:以锌铜原电池为例:负极:氧化反应:Zn-2e=Zn2+(较活泼金属)正极:还原反应:2H++2e=H2↑(较不活泼金属)总反应式:Zn+2H+=Zn2++H2↑5、正、负极的判断:(1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。

(2)从电子的流动方向:负极流入正极(3)从电流方向:正极流入负极(4)根据电解质溶液内离子的移动方向:阳离子流向正极,阴离子流向负极电化学分析方法1、电化学分析法也称电分析化学法,是基于物质在溶液中的电化学性质基础上的一类仪器分析方法,由德国化学家C.温克勒尔在19世纪首先引入分析领域,仪器分析法始于1922年捷克化学家 J.海洛夫斯基建立极谱法。

通常将试液作为化学电池的一个组成部分,根据该电池的某种电参数(如电阻、电导、电位、电流、电量或电流-电压曲线等)与被测物质的浓度之间存在一定的关系而进行测定的方法。

2、电分析化学是利用物质的电学和电化学性质进行表征和测量的科学,它是电化学和分析化学学科的重要组成部分,与其它学科,如物理学、电子学、计算机科学、材料科学以及生物学等有着密切的关系。

电分析化学已经建立了比较完整的理论体系。

电分析化学既是现代分析化学的一个重要分支,又是一门表面科学,在研究表面现象和相界面过程中发挥着越来越重要的作用。

3、电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法,其操作方便。

许多电化学分析法既可定性,又可定量;既能分析有机物,又能分析无机物,并且许多方法便于自动化,在生产等各个领域有着广泛的应用。

天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解-第7~9章【圣才出品】

天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解-第7~9章【圣才出品】

第7章电化学7.1 复习笔记一、电解过程、电解质溶液及法拉第定律1.电解池和原电池相关概念电极反应:在极板与溶液界面上进行的化学反应称为电极反应。

电池反应:两个电极反应之和为总的化学反应,对应原电池为电池反应;对应电解池则为电解反应。

阳极:发生氧化反应的电极,在原电池中对应负极,在电解池中对应正极。

阴极:发生还原反应的电极,在原电池中对应正极,在电解池中对应负极。

2.法拉第定律数学表达式法拉第定律说明通过电极的电量正比于电极反应的反应进度与电极反应电荷数的乘积。

其中,F=L e为法拉第常数,一般取F=96485 C·mol-1,近似数为96500 C·mol-1。

二、离子的迁移数1.电迁移与迁移数定义(1)电迁移把在电场作用下溶液中阳离子、阴离子分别向两极移动的现象称为电迁移。

(2)迁移数定义离子B的迁移数为该离子所运载的电流占总电流的分数,以符号t表示,其量纲为1。

正离子迁移数t+=Q+/(Q++Q-)=v+/(v++v-)=u+/(u++u-)负离子迁移数t-=Q-/(Q++Q-)=v-/(v++v-)=u-/(u++u-)式中,u+与u-称为电迁移率,它表示在一定溶液中,当电势梯度为1V·m-1时,正、负离子的运动速率,单位为m2·V-1·s-1。

上述两式表明,正(负)离子迁移电量与在同一电场下正、负离子运动速率v+、v-有关。

2.适用条件温度及外电场一定且只含有一种正离子和一种负离子的电解质溶液。

其电解质溶液中含有两种以上正(负)离子时,则其中某一种离子B的迁移数计算式为3.电迁移率将离子B在指定溶剂中电场强度E=1 V·m-1时的运动速度称为该离子的电迁移(又称为离子淌度),以u B表示。

(m2·V-1·s-1)三、电导、电导率、摩尔电导率1.电导G=1/R电阻R的倒数称为电导,单位为S(西门子),1 S=1 Ω-1。

电化学研究方法 笔记

电化学研究方法  笔记

阶梯波伏安(SCV)
• 方法简介:该方法施加到电极的电位如下图,所施加的电位从起 始电位开始,在经历过一段平衡时间后每隔一段固定的时间朝终 止电位方向步进一个固定的值,直到达到终止电位后再反向扫描 到起始电位(可选)。在电位步进的同时,对每一个电位步进末 尾一定宽度范围内连续采集电流响应,并以此段范围内电流的平 均值作以直流电位为函数的图,即可得到阶梯波伏安图。此方法 起源于极谱,可以在一定程度避免电极表面充电电流带来的影响。
循环伏安法(CV)
• • • • • • • • • • I vs. E Plot ————电流 - 电位关系曲线 I vs. T Plot ————电流 - 时间关系曲线 log(I) vs. E Plot ——电流对数 - 电位关系曲线 E vs. log(I) Plot ——电位 - 电流对数关系曲线 Q vs. E Plot ————电量 - 电位关系曲线 Q vs. I Plot ————电量 - 电流关系曲线 Q vs. T Plot ————电量 - 时间关系曲线 P vs. E Plot ————功率 - 电位关系曲线 P vs. I Plot ————功率 - 电流关系曲线 P vs. T Plot ————功率 - 时间关系曲线
恒电位IT曲线(IT)
• 方法简介:恒电位 IT 曲线施加一个恒定的电位到研究体 系,并在设定的时间范围内,按照设定的采样间隔采样。 在采样前,有一个可选的平衡阶段,在平衡阶段电极处于 接通状态,电位因此也施加在电极上,但此时并不采样, 此段时间不计入总运行时间。施加到电极体系的电位波形 如下图所示。
• 方法简介:该方法施加到研究体系的是如下图所示的一个 随时间变化的电位,电位从起始电位开始平衡一段时间后, 按照设定的扫描速率开始扫描,扫描到终止电位停止。采 集到的电流以电位为横坐标电流为纵坐标作图,即得到线 性扫描伏安图。

电化学知识点总结

电化学知识点总结

电化学知识点总结电化学是研究电能转化为化学能,或者化学能转化为电能的科学与技术。

它是电学和化学的交叉学科,广泛应用于电池、蓄电池、电解槽、电解质溶液、腐蚀等领域。

下面将介绍电化学的几个重要知识点。

第一个知识点是电化学电池。

电化学电池是电化学系统的核心。

电池分为两个电极,一个是阳极,一个是阴极。

在电化学电池中,阳极是发生氧化反应的电极,阴极是发生还原反应的电极。

当两个电极通过导电介质连接后,阳极上发生氧化反应,产生电子,并且在阴极上发生还原反应,消耗电子。

这样就形成了电池中的电流。

常见的电化学电池包括原电池、库仑电池、氢燃料电池等。

第二个知识点是电化学反应动力学。

电化学反应动力学是研究电化学反应速率的科学。

在电化学反应中,有两个重要的动力学参数,一个是电极电势,一个是交换电流密度。

电极电势是指电极与溶液之间的电势差,是衡量反应进行方向和程度的重要指标。

交换电流密度是指电极界面上电子从电极向溶液传输的电流密度,是反应速率的决定因素之一。

电化学反应动力学的研究对于揭示反应机制、优化反应条件具有重要意义。

第三个知识点是电化学电容器。

电化学电容器是利用电荷在电介质中的吸附和解吸附现象储存电能的装置。

常见的电化学电容器包括超级电容器和电化学锂离子电容器。

超级电容器具有高能量储存密度和高电荷-放电速率的特点,被广泛应用于电动车、电池管理系统等领域。

电化学锂离子电容器则利用锂离子在电极材料中的嵌入和脱嵌过程储存电能,具有高能量密度和长循环寿命的优点。

第四个知识点是电化学腐蚀。

电化学腐蚀是指金属在电解质溶液中遭受的腐蚀现象。

在电化学腐蚀中,金属表面存在阳极和阴极两个区域,阳极区发生氧化反应,金属离散为阳离子并且溶解入电解质溶液中,而阴极区发生还原反应,电子从电解质溶液传输到金属表面。

这样就形成了电流,产生腐蚀作用。

电化学腐蚀是金属材料破坏的主要原因之一,研究电化学腐蚀对于预防腐蚀具有重要意义。

以上就是电化学知识的一些重要点的简要总结。

电化学基础知识归纳

电化学基础知识归纳

电化学基础知识一、原电池:将化学能转变成电能的装置。

(一)原电池构成与原理:1、构成条件:①活动性不一样的两个电极(常有为金属或石墨);②将电极插入电解质溶液中;③两电极间形成闭合电路(两电极接触或导线连结);④能自觉发生氧化复原反响。

2、电极名称:负极:较开朗的金属(电子流出的一极);正极:较不开朗的金属或能导电的非金属(电子流入的一极)。

3、电极反响特色:负极:氧化反响,失电子;正极:复原反响,得电子。

4、电子流向:由负极经外电路沿导线流向正极。

注意:电子流向与电流的方向相反。

比如:右图原电池装置,电解质溶液为硫酸铜溶液。

负极 Zn:Zn-2e-= Zn2+;正极 Cu:Cu2+ +2e -=Cu(硫酸铜溶液)总反响: Cu2+ +Zn =Cu +Zn2+盐桥作用:盐桥是装有含 KCl 饱和溶液的琼脂溶胶的 U 形管,管内溶液的离子能够在此中自由挪动。

即供给离子迁徙通路,形成闭合电路。

(盐桥是如何构成原电池中的电池通路呢?左烧杯里 Zn 电极失电子成为 Zn2+进入溶液中,使得 ZnSO4溶液带正电荷,而右烧杯里 Cu2+得电子生成 Cu,因为 Cu2+减少,使得CuSO4溶液带负电荷。

为了使两边烧杯里溶液仍旧保持电中性,盐桥中的 Cl -向 ZnSO4溶液迁徙,而盐桥中的 K+向 CuSO4溶液迁徙,所以盐桥起了形成闭合电路的作用。

)拓展:大海电池 : 我国开创以铝-空气-海水为能源的新式电池。

大海电池是以铝合金为负极,网状金属Pt 为正极,海水为电解质溶液,它靠海水中的溶解氧与铝反响络绎不绝地产生电能。

电极反响式:负极( Al ): Al - 3e -= Al 3+正极( Pt ): O2+ 2H2O+ 4e -= 4 OH-总反响方程式: 4Al + 3O2+ 6H2 O= 4Al(OH) 3(二)分别写出CH4燃料电池在以下环境里,正极、负极反响式、总反响方程式。

1、CH4、O2,以 H2SO4溶液为电解质环境;2、CH4、O2,以 NaOH溶液为电解质环境;2-3、CH4、O2,以固体氧化物为电解质 ( 能传达 O ) ;二、电解池:把电能转变成化学能的装置。

电化学知识归纳总结

电化学知识归纳总结

电化学知识归纳总结一、电解原理1、电解(1)电解的概念:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程叫电解。

电解质在电流的作用下发生氧化还原反应,是电能转化为化学能的过程,电解反应是非自发的。

阳极失去电子发生氧化反应,阴极得到电子发生还原反应。

(2)电解池的概念:把电能转变为化学能的装置叫电解池或电解槽。

其中根直流电源或原电池的负极相连的电极是电解池的阴极;反之,跟直流电源或原电池的正极相连的电极是电解池的阳极。

构成电解池的条件是:①直流电源;②两个电极,与电源的正极相连的电极叫阳极,与电源负极相连的电极叫阴极;③电解质溶液或熔融态电解质。

2、电解原理和规律(1)电极分为惰性电极和活泼电极两种。

惰性电极在电解过程中只导电,电极本身不发生任何化学变化,电极材料为石墨、铂、金等;活泼电极是指除石墨、铂、金以外的导电材料做阳极时,金属原子失去电子时发生氧化还原反应的电极。

(2)放电顺序①阳离子在阴极的放电顺序:(H+)、Zn2+、Fe2+、Sn2+、Pb2+、(H+)、Cu2+、Fe3+、Hg2+、Ag+从左到右放电能力依次增强(越排在后面越容易先得电子)注意:a金属离子在阴极放电与否,既跟金属的活泼性有关,又跟离子浓度有关。

例如在一般盐溶液中氢离子浓度很小,放电顺序在Zn2+前,而在相同浓度或浓度相差不大时,放电顺序在Pb2+后。

b Al3+、Mg2+、Na+、Ca2+、K+在水中不放电,只在熔融时放电。

②阴离子在阳极(惰性电极)放电顺序:OH-、Cl-、Br-、I-、S2-放电能力依次增强(越排在后面越容易失去电子)注意:a阳极若为活泼电极,则是活泼电极自身溶解放电,此时不考虑阴离子的放电。

b F-及含氧酸根在水溶液中不放电。

3、电解精炼电解精炼是利用电解原理提纯金属。

如电解精炼铜时,要把粗铜挂在电解槽的阳极,用硫酸铜溶液做电解液,阴极挂纯铜。

电解时阳极发生氧化反应,Cu 失去电子变为Cu2+进入溶液,比铜活泼的金属也失去电子进入溶液;不如铜活泼的金属杂质不能失去电子而变成“阳极泥”被除去。

高中电化学知识点归纳

高中电化学知识点归纳

高中电化学知识点归纳考试中的细节通常所指的是:考试填涂、卷面、书写、符号、术语、标点符号等。

下面是店铺为大家整理的高中电化学知识点归纳,希望对大家有所帮助。

高中电化学知识点归纳电极的构成:a.活泼性不同的金属—锌铜原电池,锌作负极,铜作正极;b.金属和非金属(非金属必须能导电)—锌锰干电池,锌作负极,石墨作正极;c.金属与化合物—铅蓄电池,铅板作负极,二氧化铅作正极;d.惰性电极—氢氧燃料电池,电极均为铂。

电解液的选择:电解液一般要能与负极材料发生自发的氧化还原反应。

原电池正负极判断:负极发生氧化反应,失去电子;正极发生还原反应,得到电子。

化学原电池和电解池电子由负极流向正极,电流由正极流向负极。

溶液中,阳离子移向正极,阴离子移向负极。

负极:活泼金属失电子,看阳离子能否在电解液中大量存在。

如果金属阳离子不能与电解液中的离子共存,则进行进一步的反应。

例:甲烷燃料电池中,电解液为KOH,负极甲烷失8个电子生成CO2和H2O,但CO2不能与OH-共存,要进一步反应生成碳酸根。

正极:①当负极材料能与电解液直接反应时,溶液中的阳离子得电子。

例:锌铜原电池中,电解液为HCl,正极H+得电子生成H2。

②当负极材料不能与电解液反应时,溶解在电解液中的O2得电子。

如果电解液呈酸性,O2+4e-+4H+==2H2O;如果电解液呈中性或碱性,O2+4e-+2H2O==4OH-。

特殊情况:Mg-Al-NaOH,Al作负极。

负极:Al-3e-+4OH-==AlO2-+2H2O;正极:2H2O+2e-==H2↑+2OH- Cu-Al-HNO3,Cu作负极。

注意:Fe作负极时,氧化产物是Fe2+而不可能是Fe3+;肼(N2H4)和NH3的电池反应产物是H2O和N2无论是总反应,还是电极反应,都必须满足电子守恒、电荷守恒、质量守恒。

pH变化规律高中电化学知识点总结原电池的构成条件有三个:(1)电极材料由两种金属活动性不同的金属或由金属与其他导电的材料(非金属或某些氧化物等)组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UV-vis and PL spectra:紫外-可见和荧光光谱
量子限制效应(quantum confinement effect) 微结构材料三维尺度中至少有一个维度与电子德布罗意(deBroglie)波长相当,因此电子在此维度中的运动受到限制,电子态呈量子化分布,连续的能带将分解为离散的能级,即形成分立的能级和驻波形式的波函数。当能级间距大于某些特征能量(如热运动量KB;塞曼能hω,超导能隙Δ等)时,系统将表现出和大块样品不同的甚至是特有的性质,例如超晶格中由于能级离散引起的带隙展宽及吸收边的蓝移。
漫反射的定量分析:利用K-M方程可以实现漫反射的定量研究,具体公式为:f(R∞)=(1-R∞)2/2R∞=K/S;R∞代表样品层无限厚时的反射率(实际上几个毫米就能满足),K为样品的吸光系数,S为样品的散射系数,由于K与粉末样品浓度C呈正比,由此有f(R∞)与C呈正比,可以进行定量分析。
-------------------------------------------------------------------------------------------------------
接触角 是一只在液体/气体界面接触固体表面而形成的夹角。接触角是由三个不同界面相互作用的一个系统。最常见的概念解说是,一个小液滴在一单位横向的固体表面,由杨格—拉普拉斯方程所定义的水滴的形状,接触角扮演了约束条件。接触角测量可由接触角量角器所测得。接触角并不限于液体/气体界面;它同样适用于两种液体界面或两种蒸气界面。
在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。)
傅立叶变换红外吸收光谱仪(FTIR)(由红外光源S发出的红外光经准直为平行红外光束进入干涉系统,经干涉仪调整制后得到一束干涉光。干涉光通过样品Sa,获得含有光谱信息的干涉信号到达探测器D上,由D将干涉信号变为电信号。此处的干涉信号是一时间函数,即由干涉信号绘出的干涉图,其横坐标是动镜移动时间或动镜移动距离。这种干涉图经过A/D转换器送入计算机,由计算机进行傅立叶变换的快速计算,即可获得以波数为横坐标的红外光谱图。然后通过D/A转换器送入绘图仪而绘出人们十分熟悉的标准红外吸收光谱图。)
XPS可以用来测量:
表面的元素构成(通常范围为1纳米到10纳米)
纯净材料的实验式
不纯净表面的杂质的元素构成
表面每一种元素的化学态和电子态
表面元素构成的均匀性)
量子点(QDs)(是准零维的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应特别显著。由于量子局限效应会导致类似原子的不连续电子能阶结构,因此量子点又被称为“人造原子”。量子点具有激发光谱宽且连续分布,而发射光谱窄而对称,颜色可调,光化学稳定性高,荧光寿命长等优越的荧光特性,是一种理想的荧光探针)
ZETA电位(界达电位, 在胶体化学中,是指胶体粒子上累积的离子所引发的静电压;胶体粒子由电双层构成,包含固定层和扩散层。一个粒子可以借由亨利公式导出电泳的移动率,进而求出其界达电位的值.)
XRD(X-ray powder diffraction)(X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,分析材料的成分等),
X射线光电子能谱(简称XPS)(是一种用于测定材料中元素构成、实验式,以及其中所含元素化学态和电子态的定量能谱技术。这种技术用X射线照射所要分析的材料,同时测量从材料表面以下1纳米到10纳米范围内逸出电子的动能和数量,从而得到X射线光电子能谱。X射线光电子能谱技术需要在超高真空环境下进行。
XPS是一种表面化学分析技术,可以用来分析金属材料在特定状态下或在一些加工处理后的表面化学。
Diffuse Reflectance Spectrophotometry(DRS)( 漫反射光谱)漫反射原理:当光线照射到样品上,一部分光在样品表面产生镜面反射,另一部分光经折射进入样品内部,在样品内部与样品分子作用而发生反射、折射、散射和吸收现象,最后光线由样品表面辐射出来,辐射出来的光由于散向空间各个方向而被称为漫反射。由于漫反射光曾进入样品内部与样品分子发生作用,因此漫反射光将载有样品分子的结构信息,这是漫反射光谱技术工作的基础。
金、 银、铂等贵金属纳米粒子在紫外可见光波段展现出很强的光谱吸收,从而可以获得局域表面等离子体共振光谱。该吸收光谱峰值处的吸收波长取决于该材料的微观结构特性,例如组成、 形状、结构、尺寸、 局域传导率。因此,获得局域表面等离子体共振光谱,并对其进行分析,就可以研究纳米粒子的微观组成。同时,LSPR吸收谱还对周围介质极其敏感,因此可以作为基于光学信号的化学传感器和生物传感器。
扫描电镜(SEM)(是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。)
透射电子显微镜(TEM)(简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。
Ret(electron-transfer resistance电子转移电阻)[硬第80页]
倒置荧光显微镜(倒置荧光显微镜由荧光附件与倒置显微镜有机结合构成的,主要用于细胞等活体组织的荧光、相差观察。 倒置显微镜(Inverted microscope)是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于这些活体被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。倒置显微镜多用于无色透明的活体观察,在倒置显微镜的基础上添加一套荧光附件:激光激发块,荧光光源,荧光照明器,激发块切换装置,即可进行倒置荧光观察。 进口四大品牌显微镜都有相应的倒置荧光显微镜,如奥林巴斯的IX71倒置荧光显微镜,CKX41倒置荧光显微镜。国产品牌显微镜厂家近年随着相差技术与荧光成像技术的不断提升,也推出多款倒置荧光显微镜,MSHOT MF51就是一款,其荧光亮度高,且成像清晰,接近国外同类中档显微镜的水准)
拉曼光谱(对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方
电化学原子力显微镜(ECAFM)是将接触式的原子力显微镜用于电解质溶液研究电极的表面形貌,其力的作用原理与大气中的AFM相同。接触模式(Contact mode)和轻敲模式(Tapping mode)是AFM的两种主要工作模式。
由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。
Surface Plasmon Resonance(表面等离子体共振)当光线入射到由贵金属构成的纳米颗粒上时,如果入射光子频率与贵金属纳米颗粒或金属岛传导电子的整体振动频率相匹配时,纳米颗粒或金属岛会对光子能量产生很强的吸收作用,就会发生局域表面等离子体共振(LSPR:mcalized Surface Plasmon Resonance))现象。
-------------------------------------------------------------------------------------------------------
生物素(参与脱羧反应的一种酶的辅助因子。广布于动物及植物组织,已从肝提取物和蛋黄中分离,是多种羧化酶辅基的成分。它与酶蛋白活性部位的某个赖氨酸残基的∈-氨基以酰胺键结合生成∈-N-生物素酰L-赖氨酸,亦称生物胞素。生物素是许多需ATP的羧化反应中羧基的载体,羧基暂时与生物素双环系统上的一个氮原子结合,如在丙酮酸羧化酶催化丙酮酸羧化成草酰乙酸的反应中。动物缺乏生物素引起皮肤疾患和脱毛.)
Western Blotting (以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。)
石墨烯(是一种从石墨材料中剥离出的单层碳原子面材料,是碳的二维结构,是一种“超级材料”,硬度超过钻石,同时又像橡胶一样可以伸展。它的导电和导热性能超过任何铜线,重量几乎为零。这种石墨晶体薄膜的厚度只有0.335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚。石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣 。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。)
Electrochemical impedance spectroscopy (EIS) 电化学阻抗谱(给电化学系统施加一个频率不同的小振幅的交流电势波,测量交流电势与电流信号的比值(此比值即为系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角Φ随ω的变化。进而分析电极过程动力学、双电层和扩散等,研究电极材料、固体电解质、导电高分子以及腐蚀防护等机理。)
相关文档
最新文档