高一物理动能定理经典题型总结(全)知识分享

合集下载

物理高一动能和动能定理知识点归纳

物理高一动能和动能定理知识点归纳

物理高一动能和动能定理知识点归纳物理高一动能和动能定理知识点归纳在平时的学习中,大家最熟悉的就是知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

相信很多人都在为知识点发愁,以下是店铺整理的物理高一动能和动能定理知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。

物理高一动能和动能定理知识点归纳篇1一、动能如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量是相对量。

二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+=mvt2-mv021.反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2.增量是末动能减初动能.EK0表示动能增加,EK0表示动能减小。

3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等。

物理高一动能和动能定理知识点归纳篇21、什么是动能?它与哪些因素有关?物体由于运动而具有的能叫动能,它与物体的质量和速度有关。

下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。

所以说动能是表征运动物体做功的一种能力。

2、动能公式动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。

因此我们可以通过做功来研究能量。

外力对物体做功使物体运动而具有动能。

下面我们就通过这个途径研究一个运动物体的动能是多少。

列出问题,引导学生回答:光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。

高一物理重难点之动能定理2(经典整理)

高一物理重难点之动能定理2(经典整理)

动能定理(一)动能的概念:例1:A、B两物体的动能相等,质量比m A:m B=1:4,则它们的速率之比v1:v2= ________。

例2:以初速度v 0竖直上抛一小球,若不计空气阻力,在上升过程中,从抛出到动能减少一半所用的时间为多长?重力势能和弹性势能:例3:物体在运动过程中,克服重力做功50J,则()A.重力做功50JB.物体重力势能一定增加50JC.物体的动能一定减少50JD.重力做功为-50J例4:如图轻质弹簧长为L,竖直固定在地面上,质量为m的小球,由离地面高度为H处,由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,小球受到的空气阻力恒为f,则弹簧在最短时具有的弹性势能为()A.(mg-f)(H-L+x)B.mg(H-L+x)-f(H-L)C.mgH-f(H-L)D.mg(L-x)+f(H-L+x)例5:如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2连接,劲度系数为k2的轻质弹簧上端与物块2连接,下端压在桌面上(不连接),整个系统处于平衡态,现施力将物块1缓慢竖直向上提,直到下边的弹簧的离开桌面,则在此过程中,物块1和2的重力势能分别增加了多少?重力功的特点:例6:如图所示,一段质量为m的均匀柔软绳索,A、B两端固定在天花板上,在最低点C施加一个竖直向下的力,使绳拉至D 点,绳索AB的重心将()A.升高B.降低C.不变D.无法判断例7:有一个质量为m,边长为a的正方体与地面之间的动摩擦因数μ=0.3,可以将它翻倒或向前匀速平推距离a,则()A.将它翻倒比平推前进做功少B.将它翻倒比平推前进做功多C.两种情况做功一样多D.翻倒时不做功能量变化的对应关系:例8:某人以恒力F=20N,将质量为1kg的物体竖直向上举起2m高,受阻力是重力的0.2倍,(g=10m/s2),则在此过程中(1)物体动能的增量为______________;(2)重力势能的增量为______________;(3)机械能的增量为______________;(4)人对物体做的功为______________;(5)克服阻力做功为______________。

(完整版)高中物理动能定理的运用归纳及总结

(完整版)高中物理动能定理的运用归纳及总结

一、整过程运用动能定理 (一)水平面问题1、一物体质量为 2kg ,以 4m/s 的速度在圆滑水平面上向左滑行。

从某时辰起作用向来右的 水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为 4m/s ,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J2、 一个物体静止在不圆滑的水平面上,已知 m=1kg , u=0.1 ,现用水平外力 F=2N ,拉其运动 5m 后马上撤去水平外力F ,求其还能够滑m ( g 取 10m / s 2)【解析】对物块整个过程用动能定理得:Fs 0 umg s s 0 0解得: s=10m3、总质量为 M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为 m ,中途脱节,司机察觉时,机车已行驶 L 的距离,于是马上关闭油门,除去牵引力,以下列图。

设运动的阻力 与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离是多少?【解析】 对车头,脱钩后的全过程用动能定理得:FL k( Mm) gS 11(M m)V 02 V 02对车尾,脱钩后用动能定理得:V 0LS1kmgS 2mV 0212而 S S 1S 2 ,由于原来列车是匀速前进的,S 2所以 F=kMg由以上方程解得SML 。

M m(二)竖直面问题(重力、摩擦力和阻力)1、人从地面上,以必然的初速度v 0将一个质量为m 的物体竖直向上抛出,上升的最大高度为 h ,空中受的空气阻力大小恒力为 f ,则人在此过程中对球所做的功为()1 mv 021 mv 02 mgh fhmgh fhA.2B. mgh fhC.2D.2、一小球从高出地面 H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。

【解析】钢球从开始自由下落到落入沙中停止为研究过程 依照动能定理 w 总= △ E K可得:W G+W f=0-0 ①重力做功 W G=G (H+h )②阻力做功 W f=-fh ③H由 ①②③ 解得: f= (1+ )h(三)斜面问题1、以下列图,斜面足够长,其倾角为α,质量为m 的滑块,距挡板 P 为 S ,以初速度 V沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力 分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总行程为多少?【解析】 设其经过和总行程为 L ,对全过程, 由动能定理得:V 0mgS sinng cos L1mv 22 0SPmgS 0 sin1mv 2α得 L2mg cos2、一块木块以 v 0 10m / s 初速度沿平行斜面方向冲上一段长L=5m ,倾角为30 的斜面,见图所示木块与斜面间的动摩擦因数0.2,求木块冲出斜面后落地时的速率(空气阻力不计,g 10 m / s 2)。

(完整版)动能定理经典题型总结,推荐文档

(完整版)动能定理经典题型总结,推荐文档

21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 表达式:Ek = 动能是标量,是状态量 单位:焦耳( J )221mv 2、动能定理内容:合力对物体所做的功等于物体动能的变化。

3、动能定理表达式:二、经典例题例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合 表达式:=-S f F )(221mv得到牵引力:N kmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s2)提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。

两阶段的联系是,前一段的末速度等于后一段的初速度。

考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。

解析 这里提供三种解法。

解法一(应用牛顿第二定律与运动学公式求解):石头在空中做自由落体运动,落地速度gH v 2=在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有v2=2ah ,解得g hH a =由牛顿第二定律,ma mg F =-所以泥对石头的平均阻力N=820N 。

10205.005.02)()(⨯⨯+=⋅+=+=+=mg h h H g h H g m a g m F 例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.一个物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的是-()A.W2=W1B.W2 =2W1C.W2 =3W1D.W2 =4W12.质量m=2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E K与其发生位移x之间的关系如图所示。

已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是()A.x=1m时物块的速度大小为2m/sB.x=3m时物块的加速度大小为C.在前4m位移过程中拉力对物块做的功为9JD.在前4m位移过程中物块所经历的时间为2.8s3.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R4.如图所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为05.如图所示,水平传送带长为x,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功不可能()A.等于mv2B.小于mv2C.大于μmgxD.小于μmgx6.如图所示,足够长的传送带与水平面夹角为θ=37o,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数,则图中能客观地反映小木块的速度随时间变化关系的是()A. B. C. D.7.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)()A. B. C. D.08.电磁轨道炮射程远、精度高、威力大.假设一款电磁轨道炮的弹丸(含推进器)质量为20.0kg,从静止开始在电磁驱动下速度达到2.50×103m/s.则此过程中弹丸所受合力做的功是()A.2.50×104JB.5.00×104JC.6.25×107JD.1.25×108J9.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR10.物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则()A.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,但A的动能较大二、多选题11.如图所示,有两固定且竖直放置的光滑半圆环,半径分别为R和2R,它们的上端在同一水平面上,有两质量相等的小球分别从两半圆环的最高点处(如图所示)由静止开始下滑,以半圆环的最高点为零势点,则下列说法正确的是()A.两球到达最低点时的机械能相等B.A球在最低点时的速度比B球在最低点时的速度小C.A球在最低点时的速度比B球在最低点时的速度大D.两球到达最低点时的向心加速度大小相等12.某足球运动员罚点球直接射门,球恰好从横梁下边缘A点踢进,球经过A点时的速度为v,A点离地面的高度为h,球的质量为m,运动员对球做的功为,球从踢飞到A点过程中克服空气阻力做的功为,选地面为零势能面,下列说法正确的是()A.运动员对球做的功B.从球静止到A点的过程中,球的机械能变化量为-C.球刚离开运动员脚面的瞬间,球的动能为D.从球刚离开运动员脚面的瞬间到A点的过程中,球的动能变化量为-mgh13.如图所示,三角形传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m且与水平方向的夹角均为37°.现有两个小物块A,B同时从传送带顶端都以1m/s的初速度沿传送带下滑,已知物块与传送带间的动摩擦因数都是0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是()A.物块A,B运动的加速度大小不同B.物块A,先到达传送带底端C.物块A,B运动到传送带底端时重力的功率相等D.物块A,B在传送带上的划痕长度之比为1:314.如图所示,现有一端固定在地面上的两根长度相同竖直弹簧(K1>K2),两个质量相同的小球分别由两弹簧的正上方高为H处自由下落,落到轻弹簧上将弹簧压缩,小球落到弹簧上将弹簧压缩的过程中获得的最大弹性势能分别是E1和E2,在具有最大动能时刻的重力势能分别是E P1和E P2(以地面为重力势能的零势能),则()A.E1<E2B.E1>E2C.E P1=E P2D.E P1>E P215.如图所示,在a点由静止释放一个质量为m,电荷量为q的带电粒子,粒子到达b点时速度恰好为零,设ab所在的电场线竖直向下,a、b间的高度差为h,则()A.带电粒子带负电B.a、b两点间的电势差U ab=C.b点场强大于a点场强D.a点场强大于b点场强16.如图所示,光滑杆O′A的O′端固定一根劲度系数为k=10N/m,原长为l0=1m的轻弹簧,质量为m=1kg的小球套在光滑杆上并与弹簧的上端连接,OO′为过O点的竖直轴,杆与水平面间的夹角始终为θ=30°,开始杆是静止的,当杆以OO′为轴转动时,角速度从零开始缓慢增加,直至弹簧伸长量为0.5m,下列说法正确的是()A.杆保持静止状态,弹簧的长度为0.5mB.当弹簧伸长量为0.5m时,杆转动的角速度为rad/sC.当弹簧恢复原长时,杆转动的角速度为rad/sD.在此过程中,杆对小球做功为12.5J17.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时,对轨道的压力为其重力的一半.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()A.机械能减少mgRB.动能增加mgRC.克服摩擦力做功mgRD.合外力做功mgR18.在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了14J,金属块克服摩擦力做功10J,重力做功22J,则以下判断正确的是()A.金属块带正电荷B.金属块克服电场力做功8 JC.金属块的电势能减少2 JD.金属块的机械能减少8 J三、实验探究题19.某兴趣小组准备探究“合外力做功和物体速度变化的关系”,实验前组员们对初速为O的物体提出了以下几种猜想:①W∝v;②W∝v2;③W∝为了验证猜想,他们设计了如图甲所示的实验装置.PQ 为一块倾斜放置的木板,在Q处固定一个光电计时器(用来测量物体上的遮光片通过光电门时的挡光时间).(1)如果物体上的遮光片宽度为d,某次物体通过光电计时器挡光时间为△t,则物体通过光电计时器时的速度v=________.(2)实验过程中,让物体分别从不同高度无初速释放,测出物体初始位置到光电计时器的距离L1、L2、L3、L4…,读出物体每次通过光电计时器的挡光时间,从而计算出物体通过光电计时器时的速度v1、v2、v3、v4…,并绘制了如图乙所示的L﹣v图象.为了更直观地看出L 和v的变化关系,他们下一步应该作出:____________A.L﹣v2图象B.L﹣图象C.L﹣图象D.L﹣图象(3)实验中,物体与木板间摩擦力________(选填“会”或“不会”)影响探究的结果.四、综合题20.一质量为m=2kg的小滑块,从半径R=1.25m的1/4光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平。

动能定理知识点总结

动能定理知识点总结

动能定理知识点总结动能定理知识点总结动能定理是高中物理中必须掌握的一部分内容,下面就是小编为您收集整理的动能定理知识点总结的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!1、什么是动能?它与哪些因素有关?物体由于运动而具有的能叫动能,它与物体的质量和速度有关。

下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。

所以说动能是表征运动物体做功的一种能力。

2、动能公式动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。

因此我们可以通过做功来研究能量。

外力对物体做功使物体运动而具有动能。

下面我们就通过这个途径研究一个运动物体的动能是多少。

列出问题,引导学生回答:光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。

在恒定外力F作用下,物体发生一段位移s,得到速度v(如图1),这个过程中外力做功多少?物体获得了多少动能?样我们就得到了动能与质量和速度的定量关系:物体的动能等于它的质量跟它的速度平方的乘积的一半。

用Ek表示动能,则计算动能的公式为:由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。

它在国际单位制中的单位也是焦耳(J)。

一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。

下面通过一个简单的例子,加深同学对动能概念及公式的理解。

试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)①物体甲的速度是乙的两倍;②物体甲向北运动,乙向南运动;③物体甲做直线运动,乙做曲线运动;④物体甲的质量是乙的一半。

在学生得出正确答案后总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。

3、动能定理(1)动能定理的推导将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?外力F做功:W1=Fs摩擦力f做功:W2=-fs可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。

高中物理《动能定理》深层解读典型题详解

高中物理《动能定理》深层解读典型题详解

高中物理《动能定理》深层解读典型题详解【考点考向】按照高考考纲的要求,本章内容可以分成四部分,即:功和功率;动能、势能、动能定理;机械能守恒定律及其应用;功能关系、动量、能量综合。

其中重点是对动能定理、机械能守恒定律的理解,能够熟练运用动能定理、机械能守恒定律分析解决力学问题。

难点是动量能量综合应用问题。

动能定理是一条适用范围很广的物理规律,解题的优越性很多。

根本原因在于它省去了矢量式的很多麻烦。

【典型题】题型一对动能定理的理解例1.关于运动物体所受的合外力、合外力做的功及动能变化的关系,下列说法正确的是()A.合外力为零,则合外力做功一定为零B.合外力做功为零,则合外力一定为零C.合外力做功越多,则动能一定越大D.动能不变,则物体合外力一定为零【深层解读】1.对“外力”的两点理解(1)“外力”指的是合力,重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用。

(2)既可以是恒力,也可以是变力。

2.“=”体现的二个关系跟踪练习题1:(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。

电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H时,电梯的速度达到v,则在这个过程中,以下说法中正确的是()A.电梯地板对物体的支持力所做的功等于mv2 2B.电梯地板对物体的支持力所做的功大于mv2 2C.钢索的拉力所做的功等于mv22+MgHD.钢索的拉力所做的功大于mv22+MgH题型二动能定理的应用例2、泥石流是在雨季由于暴雨、洪水将含有沙石且松软的土质山体经饱和稀释后形成的洪流,它的面积、体积和流量都较大。

泥石流流动的全过程虽然只有很短时间,但由于其高速前进,具有强大的能量,因而破坏性极大。

某课题小组对泥石流的威力进行了模拟研究,如图甲所示,他们设计了如下的模型:在水平地面上放置一个质量为m=5 kg的物体,让其在随位移均匀减小的水平推力作用下运动,推力F随位移变化如图乙所示,已知物体与地面间的动摩擦因数为μ=0.6,g取10 m/s2。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

高一物理动能定理经典题型汇总

高一物理动能定理经典题型汇总

高一物理动能定理经典题型汇总————————————————————————————————作者:————————————————————————————————日期:1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.一、整过程运用动能定理(一)水平面问题1、一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J2、一个物体静止在不光滑的水平面上,已知m=1kg,u=0.1,现用水平外力F=2N,拉其运动5m后立即撤去水平外力F,求其还能滑m(g取2/10s m)3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。

【高中物理】动能定理的应用知识点总结,考前必过一遍!

【高中物理】动能定理的应用知识点总结,考前必过一遍!

【⾼中物理】动能定理的应⽤知识点总结,考前必过⼀遍!⼀、动能1、定义:物体由于运动⽽具有的能量叫做动能,⽤符号来表⽰。

⽐如运动的汽车、飞机,流动的河⽔、空⽓等,都具有动能。

2、公式:3、动能是⼀个标量,只有⼤⼩没有⽅向,其单位为焦⽿(J)。

4、动能是状态量,对应物体运动的某⼀个时刻。

5、动能具有相对性,对于不同的参考系⽽⾔,物体的运动速度具有不同的瞬时值,也就有不同的动能。

在研究物体的动能时,⼀般都是以地⾯为参考系。

⼆、动能定理动能定理的推导过程:设物体质量为m,初速度为,在与运动⽅向相同的恒⼒作⽤下发⽣⼀段位移s,速度增加到。

在这⼀过程中,⼒F所做的功。

根据⽜顿第⼆定律有,根据匀加速运动的公式,有,由此可得1、动能定理的内容:合外⼒对物体做的总功等于物体动能的改变量。

2、动能定理的物理意义:该定理提出了做功与物体动能改变量之间的定量关系。

3、动能定理的表达式:4、动能定理的理解:(1)是所有外⼒做功的代数和。

可以包含恒⼒功,也可以包含变⼒功;做功的各⼒可以是同时作⽤的,也可以是各⼒在不同阶段做功的和。

应注意分析各⼒做功的正、负。

(2)求各外⼒功时,必须确定各⼒做功所对应的位移段落,逐段累计,并注意重⼒、电场⼒做功与路径⽆关的特点。

(3)下述关系式提供了⼀种判断动能(速度)变化的⽅法。

(4)代⼊公式时,要注意书写格式和各功的正负号,所求的功⼀般都按正号代⼊,如,式中动能增量为物体的末动能减去初动能,不必考虑中间过程。

(5)利⽤动能定理解题时也有其局限性,有时不能利⽤其直接求出速度的⽅向,且只适⽤于单个质点或能看成质点的物体。

5、应⽤动能定理的解题步骤(1)选择过程(哪⼀个物体,由哪⼀位置到哪⼀位置)过程的选取要灵活,既可以选取物体运动的某⼀阶段为研究过程,也可以选取物体运动的全过程为研究过程。

(2)分析过程。

分析各⼒做功情况,求解合⼒所做的功。

如果在选取的研究过程中物体受⼒情况有变化,则⼀定要分段进⾏受⼒分析,求解各个⼒的做功情况。

动能定理经典题型

动能定理经典题型

动能定理经典题型动能定理是物理学中的一个重要定理,用来描述物体的运动情况和能量转化过程。

它可以帮助我们理解物体的速度、质量和能量的关系,解决各种与动能相关的问题。

动能定理的表述可以简单地理解为:物体的动能的增量等于物体所受合外力的功。

使用公式表示为:K = Wext,其中K表示物体的动能,Wext表示物体所受合外力的功。

根据动能定理,我们可以通过计算物体所受的合外力的功来求解物体的动能变化。

动能定理的应用范围非常广泛,下面将介绍几个与动能定理相关的经典题型。

1. 通过动能定理计算物体的速度:题目描述:一个质量为2kg的物体从静止开始沿直线运动,受到一个合外力使得该物体的动能增加100J,求物体的末速度。

解题思路:根据动能定理可以得到:K = Wext = ΔKE = 100J。

根据动能的定义:K = 1/2mv^2,其中m为物体的质量,v为物体的速度。

代入已知条件,可以得到:1/2 * 2kg * v^2 =100J,通过化简可以得到物体的末速度:v = 10m/s。

2. 利用动能定理分析物体的运动情况:题目描述:一个小球从竖直向上抛出,并在顶点处停止运动,求小球的初始速度。

解题思路:在小球上抛运动过程中,只有重力对小球做功,物体的动能变化量等于重力所做的负功。

根据动能定理可得:K= Wext = ΔKE = -mgH,其中m为小球的质量,g为重力加速度,H为小球的抛高度。

由于小球在顶点处停止运动,所以动能变化量为0,即-mgH = 0,解得初始速度v = √(2gH)。

3. 利用动能定理解决碰撞问题:题目描述:一个质量为0.5kg的物体和一个质量为0.2kg的物体发生弹性碰撞,已知0.5kg物体的初速度为10m/s,0.2kg物体的初速度为-5m/s,求碰撞后两个物体的末速度。

解题思路:根据动能定理可以得到:K1i + K2i = K1f + K2f。

其中K1i和K2i分别为两个物体碰撞前的动能,K1f和K2f分别为两个物体碰撞后的动能。

(完整版)高一物理动能定理经典题型总结(全),推荐文档

(完整版)高一物理动能定理经典题型总结(全),推荐文档

1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常有题型及答题技巧及练习题( 含答案 ) 及分析 (1)一、高中物理精讲专题测试动能与动能定理1.以下图,两物块A、 B 并排静置于高h=0.80m 的圆滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg的子弹 C 以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入 B 并留在 B 中,此时A、 B 都没有走开桌面.已知物块 A 的长度为0.27m, A 走开桌面后,落地址到桌边的水平距离s=2.0m.设子弹在物块A、 B 中穿行时遇到的阻力大小相等,g 取10m/s 2. (平抛过程中物块当作质点)求:(1)物块 A 和物块 B 走开桌面时速度的大小分别是多少;(2)子弹在物块 B 中打入的深度;(3)若使子弹在物块 B 中穿行时物块 B 未走开桌面,则物块 B 到桌边的最小初始距离.【答案】( 1) 5m/s ;10m/s ;( 2)L B 3.5 10 2 m (3)2.5 102m【分析】【剖析】【详解】试题剖析: (1)子弹射穿物块 A 后, A 以速度 v A沿桌面水平向右匀速运动,走开桌面后做平抛运动:h 1gt 2解得:t=0.40s 2A 走开桌边的速度v A s,解得: v A=5.0m/s t设子弹射入物块 B 后,子弹与 B 的共同速度为v B,子弹与两物块作用过程系统动量守恒:mv0 Mv A ( M m)v BB 走开桌边的速度v =10m/sB(2)设子弹走开 A 时的速度为v1,子弹与物块 A 作用过程系统动量守恒:mv0mv12Mv Av1=40m/s子弹在物块 B 中穿行的过程中,由能量守恒fL 1Mv21 mv21(M m)v2①B2A212B 子弹在物块 A 中穿行的过程中,由能量守恒fL A 1mv021mv121( M M )v A2②222由①② 解得 L B 3.5 10 2 m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:fs1(MM )v 2 0 ③1 2A子弹在物块 B 中穿行过程中,物块 B 在水平桌面上的位移为s 2,由动能定理fs 21Mv B21Mv A 2 ④22由②③④解得物块 B 到桌边的最小距离为: s min s 1 s 2 ,解得: s min2.5 10 2 m考点:平抛运动;动量守恒定律;能量守恒定律.2. 以下图,在娱乐节目中,一质量为 m =60 kg 的选手以 v 0= 7 m/s 的水平速度抓住竖直绳下端的抓手开始摇动,当绳摆到与竖直方向夹角 θ= 37°时,选手松开抓手,放手后的上升过程中选手水平速度保持不变,运动到水平传递带左端A 时速度恰巧水平,并在传递带上滑行,传递带以 v =2 m/s 匀速向右运动.已知绳索的悬挂点到抓手的距离为 L = 6 m ,传 送带两头点 A 、B 间的距离 s = 7 m ,选手与传递带间的动摩擦因数为μ= 0.2 ,若把选手看成质点,且不考虑空气阻力和绳的质量.(g = 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求:(1)选手松开抓手时的速度大小; (2)选手在传递带上从A 运动到B 的时间;(3)选手在传递带上战胜摩擦力做的功. 【答案】 (1)5 m/s (2)3 s (3)360 J【分析】试题剖析:( 1)设选手松开抓手时的速度为 v 1,则- mg (L - Lcos θ)= mv 12 - mv 0 2,v 1= 5m/s(2)设选手松开抓手时的水平速度为 v 2, v 2= v 1cos θ①选手在传递带上减速过程中a =- μg ② v = v 2+ at 1③④匀速运动的时间 t 2, s - x 1= vt 2⑤选手在传递带上的运动时间 t = t 1+ t 2⑥联立 ①②③④⑤⑥ 得: t = 3s(3)由动能定理得W f = mv 2- mv 22,解得: W f =- 360J故战胜摩擦力做功为360J .考点:动能定理的应用3.以下图,竖直平面内有一固定的圆滑轨道ABCD AB是足够长的水平轨道,B端,此中与半径为 R 的圆滑半圆轨道 BCD 光滑相切连结,半圆的直径BD 竖直, C 点与圆心 O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬时小球 Q 对半圆轨道 B 点的压力大小为自己重力的 7 倍,碰撞后小球P 恰巧抵达 C 点.重力加快度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 走开半圆轨道后落回水平面上的地点与 B 点之间的距离;(3)若只调理圆滑半圆轨道 BCD半径大小,求小球 Q 走开半圆轨道 D 点后落回水平面上的地点与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【分析】【剖析】【详解】设小球 Q 在 B 处的支持力为;碰后小球 Q 的速度为,小球 P 的速度为;碰前小球 P 的速度为;小球 Q 抵达 D 点的速度为 .(1)由牛顿第三定律得小球Q 在 B 点碰后小球Q 在 B 点由牛顿第二定律得:碰后小球P 恰巧到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够抵达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决此题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确剖析能量是怎样转变,分段运用能量守恒定律列式是重点.4.以下图,斜面高为h,水平面上D、C 两点距离为L。

(word完整版)高一物理动能和动能定理知识精讲.doc

(word完整版)高一物理动能和动能定理知识精讲.doc

高一物理动能和动能定理【本讲主要内容】动能和动能定理动能的概念,动能定理的应用【知识掌握】【知识点精析】221)(mv E k =达式:具有的能叫做动能。

表动能:物体由于运动而一 注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。

(二)动能定理 W E E E mv mv K K K 总==-=-∆21221212121. W 总是所有外力做功的代数和。

可以含恒力功,也可以含变力功;做功的各力可以是同时作用,也可以是各力不同阶段做功的和。

应注意各力做功的正、负。

2. 求各外力功时,必须确定各力做功对应的位移段落,逐段累计,并注意重力、电场力做功与路径无关的特点。

3. W E E W E E W E E k k k k k k 合合合时,;时,;时,>>==<<000212121,提供了一种判断动能(速度)变化的方法。

4. 代入公式时,要注意书写格式和各功的正负号,所求功一般都按正号代入,W W W E k 123+++=…∆,式中动能增量为物体的末动能减去初动能,不必考虑中间过程。

5.用动能定理解题也有其局限性,如不能直接求出速度的方向,只适用单个质点或能看成质点的系。

6. 动能定理解题步骤(1)选择过程(哪一个物体,由哪一位置到哪一位置)过程的选取要灵活,既可以取物体运动的某一阶段为研究过程,也可以取物体运动的全过程为研究过程。

(2)分析过程分析各力做功情况,包括重力。

如果在选取的研究过程中物体受力有变化,一定要分段进行受力分析。

(3)确定状态 分析初、末状态的动能。

(4)列动能定理方程W E E K K 总=-21(列出方程)。

【解题方法指导】例1. 一质量 m =2kg 的物块,放在高h =2m 的平台上,现受一水平推力F =10N ,由静止开始运动,物块与平台间的动摩擦因数μ=0.2。

当物块滑行了s 1=5m 时撤去F ,继续向前滑行s 2=5m 后飞出平台,不计空气阻力,求物块落地时速度的大小?剖析:本题对全过程利用动能定理比较方便,关键是认真分析物体的运动过程,分析各力的做功情况:在发生位移s 1的过程物体受重力、支持力、水平推力、摩擦力,其中重力、支持力不做功;发生位移s 2的过程受重力、支持力、摩擦力,只有摩擦力做功;从飞出平台到落地,只有重力做功。

动能定理专题复习(考点+题型+专题练习)

动能定理专题复习(考点+题型+专题练习)

21222121mv mv W -=21222121E mv mv W k -=∆=动能和动能定理第1步:讲基础一、动能:1、定义:物体由于运动而具有的能量叫动能.2、表达式:221mv E k =3、物理意义:动能是描述物体运动状态的物理量,是标量。

4、 单位:焦耳( J ) 二、动能定理: >1、内容:合力对物体所做的总功等于物体动能的变化。

2、表达式:第2步:学技巧一、对动能定理的进一步理解 力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,即 。

1、式中的W ,是力对物体所做的总功,可理解为各个外力所做功的代数和,也可以理解为合力所做的功。

2、式中的k E ∆,是物体动能的变化,是指做功过程的末动能减去初动能。

3、动能定理的研究对象一般是单一物体,或者是可以看成单一物体的物体系。

4、动能定理表达式是一个标量式,不能在某个方向上应用动能定理。

&二、常用应用动能定理的几种情况1、动能定理适用于恒力、变力、直线、曲线运动。

2、动能定理是标量式,不涉及方向问题。

在不涉及加速度和时间的问题时,可优先考虑动能定理。

3、对于求解多个过程的问题可全程考虑,从而避开考虑每个运动过程的具体细节。

具有过程简明、方法巧妙、运算量小等优点。

(注意动能损失:例3和例4比较)4、变力做功问题。

在某些问题中,由于力F 大小的变化或方向的改变,不能直接由αcos Fl W =来求变力F 所做的功,此时可由其做功的效果——动能的变化来求变力F 所做的功。

三、经典例题 例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合表达式:=-S f F )(221mv得到牵引力:Nkmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

高一物理必修2动能和动能定理--知识讲解有答案

高一物理必修2动能和动能定理--知识讲解有答案

动能和动能定理要点二、动能、动能的改变要点诠释:1.动能:(1)概念:物体由于运动而具有的能叫动能.物体的动能等于物体的质量与物体速度的二次方的乘积的一半.(2)定义式:212k E mv =,v 是瞬时速度. (3)单位:焦(J ).(4)动能概念的理解.①动能是标量,且只有正值.②动能具有瞬时性,在某一时刻,物体具有一定的速度,也就具有一定的动能.③动能具有相对性,对不同的参考系,物体速度有不同的瞬时值,也就具有不同的动能,一般都以地面为参考系研究物体的运动.2.动能的变化:动能只有正值,没有负值,但动能的变化却有正有负.“变化”是指末状态的物理量减去初状态的物理量.动能的变化量为正值,表示物体的动能增加了,对应于合力对物体做正功;动能的变化量为负值,表示物体的动能减小了,对应于合力对物体做负功,或者说物体克服合力做功.要点三、动能定理要点诠释:(1)内容表述:外力对物体所做的总功等于物体功能的变化.(2)表达式:21k k W E E =-,W 是外力所做的总功,1k E 、2k E 分别为初、末状态的动能.若初、末速度分别为v 1、v 2,则12112k E mv =,22212k E mv =. (3)物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化.变化的大小由做功的多少来量度.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.等号的意义是一种因果关系的数值上相等的符号,并不意味着“功就是动能增量”,也不是“功转变成动能”,而是“功引起物体动能的变化”.(4)动能定理的理解及应用要点.动能定理虽然可根据牛顿定律和运动学方程推出,但定理本身的意义及应用却具有广泛性和普遍性. ①动能定理既适用于恒力作用过程,也适用于变力作用过程.②动能定理既适用于物体做直线运动情况,也适用于物体做曲线运动情况.③动能定理的研究对象既可以是单个物体,也可以是几个物体所组成的一个系统.④动能定理的研究过程既可以是针对运动过程中的某个具体过程,也可以是针对运动的全过程. ⑤动能定理的计算式为标量式,v 为相对同一参考系的速度.⑥在21k k W E E =-中,W 为物体所受所有外力对物体所做功的代数和,正功取正值计算,负功取负值计算;21k k E E -为动能的增量,即为末状态的动能与初状态的动能之差,而与物体运动过程无关.要点四、应用动能定理解题的基本思路和应用技巧要点诠释:1.应用动能定理解题的基本思路(1)选取研究对象及运动过程;(2)分析研究对象的受力情况及各力对物体的做功情况:受哪些力?哪些力做了功?正功还是负功?然后写出各力做功的表达式并求其代数和;(3)明确研究对象所历经运动过程的初、末状态,并写出初、末状态的动能1K E 、2K E 的表达式;(4)列出动能定理的方程:21K K W E E =-合,且求解。

(完整word版)高一物理动能定理经典题型总结(全),推荐文档

(完整word版)高一物理动能定理经典题型总结(全),推荐文档

1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理动能定理经典题型总结(全)1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.一、整过程运用动能定理(一)水平面问题1、一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。

设运动的阻力与质量成正比,机车的牵引力是恒定的。

当列车的两部分都停止时,它们的距离是多少?4a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?4b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少?5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .6、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离.V 07. 如图8-30所示,长为L ,质量为m1的木板A 置于光滑水平面上,在A 板上表面左端有一质量为m2的物块B ,B 与A 的摩擦因数为μ,A 和B 一起以相同的速度v 向右运动,在A 与竖直墙壁碰撞过程中无机械能损失,要使B 一直不从A 上掉下来,v 必须满足什么条件(用m1、m2、L 、μ表示)?倘若V0已知,木板B 的长度L 应满足什么条件(用m1、m2、V0、μ表示)?(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +2a 、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。

2b 、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:v AmgHhvmBAN mg (1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小.3、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功.4、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .(三)斜面问题1、如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?2、一块木块以s m v /100=初速度沿平行斜面方向冲上一段长L=5m ,倾角为︒=30α的斜面,见图所示木块与斜面间的动摩擦因数2.0=μ,求木块冲出斜面后落地时的速率(空气阻力不计,2/10s m g =)。

3、如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。

已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 动摩擦因数。

4、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数5、质量为m 的物体从高为h 顶端以初速度v 0沿斜面滑下,则停在平面上的C(四)圆弧1、如图所示,质量为m 的物体A 物体所做的功 。

2a 、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.2b 、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.3.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

一小球自A 点起由静止开始沿轨道下滑。

已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。

求 (1)小球运动到B 点时的动能;(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C (3)小球下滑到距水平轨道的高度为R 21时速度的大小和方向;4.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。

质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。

用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ;(2)如果水平轨道AB 足够长,试确定小物块最终停在何处?ABC(五)圆周运动1、如图所示,质量为m 的物块与转台之间的动摩擦因数为μ,物体与转轴相距R ,物块随转台由静止开始运动,当转速增加到某值时,物块即将在转台上滑动,此时,转台已开始做匀速运动,在这一过程中,摩擦力对物体做的功为( )A.0B. mgR πμ2C. mgR μ2D. 2/mgR μ2、一个质量为m 的小球拴在绳一端,另一端受大小为F1拉力作用,在水平面上作半径为R1的匀速圆周运动,如图所示,今将力的大小变为F2,使小球在半径为R2的轨道上运动,求此过程中拉力对小球所做的功。

3.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B 、C 分别是两个圆形轨道的最低点,半径R 1=2.0m 、R 2=1.4m 。

一个质量为m =1.0kg 的质点小球,从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。

小球与水平轨道间的动摩擦因数μ=0.2。

两个圆形轨道是光滑的,重力加速度g =10m/s 2。

(计算结果小数点后保留一位数字)试求: (1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,B 、C 间距L 2是多少;二、分过程运用动能定理1、一个物体以初速度v 竖直向上抛出,它落回原处时的速度为2v,设运动过程中阻力大小保持不变,则重力与阻力之比为( )A. 3:5B. 3:4C. 1:2D. 1:12、质量为m 的物体以速度v 竖直向上抛出,物体落回地面时,速度大小为3/4v ,设物体在运动中所受空气阻力大小不变,求:(1)物体运动中所受阻力大小;(23.1cm SdABC L 2 L 1R 1R 2v 01.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端停下,斜面倾角为30°,求拉力F 多大?(2/10s m g =)6.质量为4t 的汽车,以恒定功率沿平直公路行驶,在一段时间内前进了100m ,其速度从36km/h 增加到54km/h 。

若车受到的阻力恒定,且阻力因数为0.02,求这段时间内汽车所做的功。

(2/10s m g =)7.. 子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离2x,求木块获得的动能1k E ∆和子弹损失的动能2k E ∆之比。

三、动能定理求变力做功问题1.、如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。

在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。

在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;( )⑵F为恒力;()⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。

()可供选择的答案有A.θcosFL B.θsinFLC.()θcos1-FL D.()θcos1-mgL2、假如在足球比赛中,某球员在对方禁区附近主罚定位球,并将球从球门右上角擦着横梁踢进球门.球门的高度为h,足球飞入球门的速度为v,足球的质量为m,不计空气阻力和足球的大小,则该球员将足球踢出时对足球做的功W为。

相关文档
最新文档