中考求阴影部分面积

合集下载

2024年中考数学复习课件---微专题11 求阴影部分面积常见方法

2024年中考数学复习课件---微专题11 求阴影部分面积常见方法

2.如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心
的两个等圆外切,则图中阴影部分面积为


.
1
2
微专题11
类型二
返回类型清单
求阴影部影部分看成两个规则图形的和或差.
S阴影=S△ABC-S扇形CAD
S阴影=S△AOC+S扇形COB
容斥原理
方法指导
有的阴影部分面积是由两个基本图形相互重叠得到的.常用的方法是:两个基本
图形的面积之和-被重叠图形的面积=组合图形的面积.
11
12
微专题11
求阴影部分面积常见方法
返回类型清单
对应练习
11.如图,正方形ABCD的边长为8,以D为圆心,6为半径作圆弧;以C为
圆心,8为半径作圆弧.若图中阴影部分的面积分别记为S1,S2,则
微专题11
求阴影部分面积常见方法
微专题11
求阴影部分面积常见方





类型一
直接公式法
类型二
和差法
类型三
等积转换法
类型四
容斥原理
微专题11
返回类型清单
求阴影部分面积常见方法
类型一
直接公式法
方法指导
阴影部分是一个规则的几何图形,根据已知条件可以直接利用规则几何图形的
面积公式计算.
S阴影=S扇形EMFN

B. π


C. π



D. π+


)
7
8
9
10
微专题11
返回类型清单
求阴影部分面积常见方法

8.(2022·毕节威宁县模拟)如图,AB为☉O的直径,将沿BC翻折,翻折

不规则阴影部分面积的求解6法

不规则阴影部分面积的求解6法

不规则阴影部分面积的求解六法纵观历年全国各地的中考试卷中求阴影部分的面积试题的图形一般都是一些不规则的图形或没有公式可以直接套用的.因此,同学们在下笔时总感到左右为难,事实上,对于求解这类问题的关键只要能及时地将要求的阴影部分的图形转化为可求解的规则的图形的组合,从而使问题方便、快速、准确地解决.现举例说明一、面积的和差例1、如图所示,求阴影部分面积分析:阴影部分是一个不规则图形,可以转化为规则图形的面积和差来求即一个半圆减去一个直角三角形。

解:阴影部分面积=24825286252-=⨯-ππ 二、构造方程求解例2、如图所示,求阴影部分面积分析:本题虽可以转化为规则图形的面积和差计算阴影部分面积,但在作图中比较麻烦。

这儿的阴影部分和空白部分都有四部分组成,且形状大小一样。

因此可以根据图形中隐含的数量关系来构造方程求解。

解:设每一部阴影部分面积为x ,每一部分的空白部分面积为y ,根据图形得⎪⎩⎪⎨⎧=+=+364423y x 22y x π解得⎪⎩⎪⎨⎧-=-=2918929ππy x 所以阴影部分面积=361892944-=⎪⎭⎫ ⎝⎛-=ππx三、等积变形法 例3、 如图,A 是半径为1的⊙O 外的一点,OA=2,AB 是⊙O 的切线,B 是切点,弦BC ∥OA ,连结AC ,则阴影部分的面积等于_______.分析:一个图形的面积不易或难以求出时,可改求与其面积相等的图形面积,便可以使原来不规则的图形转化为规则图形。

解:连结OB 、OC .∵BC ∥OA ,∴S △ABC=S △OBC ,∴S 阴影=S 扇形OBC .∵AB 是⊙O 的切线,∴∠BOA=90°,∵OB=1,OA=2,∴∠OBC=∠B OA=60°,∴∠BOC= , ∴扇形OBC 是圆的 .∴S 阴影=S 扇形OBC=四、割补法 分析:从表面上看图形异常繁杂,由于两扇形是同一圆的五、整体思想例5、如图,⊙A 、⊙B 、⊙C 两两不相交,且半径都是0.5cm ,则图中的三个扇形的面积之和为( )(A )212cm π(B )28cm π(C )26cm π(D )24cm π分析:由于不知道每个块阴影部分的圆心角的度数,所以部分求和无法实现,而三个阴影部分他们半径相同,圆心角的和是︒180,将三个拼在一起用整体的方法求就很容易了。

阴影部分面积的计算

阴影部分面积的计算

阴影部分面积的计算专题(对应河南中考第14题)※自学提能力,合作生智慧,展示扬风采一、成功目标: 掌握求阴影部分面积的基本思路,进一步体会几何变换在几何化归中的作用.二、专题概述:对于不规则图形(不能直接利用面积公式求面积的图形)常用以下方法求面积:⑴等积转化法:通过等面积转化,将不规则阴影部分的面积转化为规则图形的面积来计算.如图:DO∥AB,则S阴影=S△DAB+S弓形AmB=S△AOB+S弓形AmB=S扇形OABS阴影22 9013604rrππ==⑵(分割求和法)组合法:将图形适当分割,将阴影部分的面积转化成规则图形面积的和或差.如图:如图,扇形OAB的半径为4,∠AOB=90°,C是AB的中点,D、E分别是OA、OB的中点,连接CD、DE,求图中阴影部分的面积.S阴影=S扇形OBC-S△OGE+S△OCD-S△ODG=S扇形OBC+S△OCD-S△ODE=2222π--;⑶整体作差法:将阴影部分看成一些基本图形覆盖而成的重叠部分,用整体做差法求解.如图:(2012汕头13.2015·安顺)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是133π-(结果保留π).⑷等面积变换法:利用图形在平移、旋转、对称变换前后面积不变的性质,可将阴影部分的面积转化为规则图形的面积进行计算.如图:点D是AB的中点,则S阴影=S△ACD三、河南中考回顾1.(2013·河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3). 若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.2.(2014·河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.POAxyA′P′3.(2015•河南)如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径CD 作交OB 于点D .若OA =2,则阴影部分的面积为 . 4.(2016·河南)如图,在扇形AOB 中,∠AOB =90°,以点A 为圆心, OA 的长为半径作OC 交AB 于点C ,若OA =2,则阴影部分的面积是 .33π-四、2017展望1.(2015•达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )BA . 12πB . 24πC . 6πD . 36π2.(2014·泰安)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )AA .(2π﹣1)cm 2 B . (2π+1)cm 2 C . 1cm 2 D . 2πcm 23.(2014•吉林2015·聊城)如图,将半径为3的圆形纸片,按下列顺序折叠.若AB 和BC 都经过圆心O ,则阴影部分的面积是 3π (结果保留π)4.(2016·贵港)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE ,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).【答案】2π;5.如图,半径为1的半圆纸片,按如图所示方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】326π-;2015·17题2016·17题6.(2013•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为4π.7.如图,在扇形OAB中,∠AOB=90°,半径OA=6cm,点C为OB的中点,CD⊥OB交弧AB于点D,则图中阴影部分的面积为.【答案】933+92π-;8.(2014·十堰)如图,在扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为D,当△OCD的面积最大时,则图中阴影部分的面积为.【答案】24π-;五、课外练习1.(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)(83π)2.2016·滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是233π-.3.(2010•衡阳2012青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为(结果保留π).【答案】542π-;4.(2015·绥化)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2 ,则图中阴影部分的面积为____________.(结果保留π)【答案】43 32π+;5.(2012·十堰)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为cm2.9 334π-6.(2014•乐山2016用)如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1-S2= .(139 4π-)7.如图,△ABC中,∠A=70°,BC=2,以BC为直径的⊙O与AB、AC分别交于点D、E,则图中阴影部分的面积为.【答案】718π8.(2014·烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.【答案】163π9.(2014•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.(5233π-)10.(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.【答案】816433π--;11.(2012•恩施州)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是.【答案】3A.B.2 C.3 D.212.(2014•南昌·)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.13.(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=42,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.。

专题03 阴影部分面积的计算-备战2022年中考数学母题题源解密(全国通用)(原卷版)

专题03 阴影部分面积的计算-备战2022年中考数学母题题源解密(全国通用)(原卷版)

专题03 阴影部分面积的计算考向1 静态背景下与扇形有关的阴影部分面积的计算【母题来源】2021年中考山东枣庄卷【母题题文】如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C 为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π【答案】C【试题解析】连接BD,EF,如图,∵正方形ABCD的边长为2,O为对角线的交点,由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.∵点E,F分别为BC,AD的中点,∴FD=FO=EO=EB=1,∴,OB=OD.∴弓形OB=弓形OD.∴阴影部分的面积等于弓形BD的面积.∴S阴影=S扇形CBD﹣S△CBDπ﹣2.故选:C.【命题意图】考查基本的计算能力,注重割补法和转化思想的应用。

【命题方向】以选填为主,主要安排在选填的压轴位置,技巧性较强。

【得分要点】求阴影部分面积的常用方法:(1)公式法:若所求阴影部分是规则图形,如扇形、特殊四边形、三角形等,可直接利用公式计算;(2)和差法:若所求阴影部分是不规则图形,可将图形适当分割,将不规则的阴影部分面积转化为几个规则图形面积的和或差;(3)等积转化法:当直接求面积较麻烦或根本求不出来时,可通过等面积转化(利用图形的平移、旋转、对称变换前后面积不变的性质或同底等高的两个三角形面积相等)为公式法或和差法创造条件;(4)一般地,图形中若出现弧线,则先找到这条弧所在圆的圆心,将其补全为扇形,再利用图形间的关系进行求解. 考向2 动态背景下与扇形有关的阴影部分面积的计算【母题来源】2021年中考内蒙古兴安盟卷【母题题文】(2021•兴安盟)如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于()A.B.C.π﹣1 D.π﹣2【答案】D【试题解析】两扇形的面积和为:π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故选:D.【命题意图】考查了扇形的面积,正方形面积公式,构造辅助线运用转化思想解答关键.【命题方向】以选填为主,多为选填的压轴位置,试题区分度较高.【得分要点】动态背景下阴影部分面积的主要以平移、折叠、旋转变换为背景,结合勾股定理以及锐角三角函数知识求出扇形的半径和圆心角,进而得出扇形的面积,在解答过程中要注意合理添加辅助线,将不规则图形的面积通过割补或转化进行计算.1.(2021•东胜区二模)如图,已知所在圆的半径为4,弦AB长为,点C是上靠近点B的四等分点,将绕点A逆时针旋转120°后得到,则在该旋转过程中,线段CB扫过的面积是()A.B.C.πD.2.(2021•峨山县模拟)如图,在菱形ABCD中,AB=4,∠ABC=120°,以A为圆心,AB为半径画圆弧,交AC于点E,过点E作EF∥AB交AD于点F,则阴影部分的面积为()A.B.C.D.3.(2021•驻马店二模)如图,已知点C、D是以AB为直径的半圆的三等分点,的长为,连接OC、AD,则图中阴影部分的面积为()A.B.C.D.4.(2021•河南模拟)如图,扇形AOB中,∠AOB=90°,点C为OA上一个动点,连接BC,以BC为对称轴折叠△OBC得到△DBC,点O的对应点为点D,当点D落在弧AB上时,若OA=2,则阴影部分的面积为()A.B.C.D.5.(2021•新洲区模拟)在矩形ABCD中,AB=6,BC=3,把以AB为直径的半圆O绕点B顺时针旋转至如图位置(点A落在CD上的点A′处),则半圆O扫过的面积(图中阴影部分)是()A.3πB.πC.D.6.(2021•姜堰区一模)如图,OA是⊙O的半径,弦BC⊥OA,垂足为M,连接OB、AC,如果OB∥AC,OB=2,那么图中阴影部分的面积是()A.B.C.πD.2π7.(2021•江岸区模拟)有一张矩形纸片ABCD,已知AB=2,AD=4,上面有一个以AD为直径的半圆,如图甲,将它沿DE折叠,使A点落在BC上,如图乙,这时,半圆还露在外面的部分(阴影部分)的面积是()A.π﹣2B.πC.πD.8.(2021•山西模拟)如图所示的是小慧设计的一个美丽的图案,该图案是由两个圆心相同,半径分别为9cm 和3cm的圆构成的,那么该图案中阴影部分的面积为()cm2A.72πB.60πC.48 D.36π9.(2021•硚口区模拟)如图,AB和CD是⊙O的两条互相垂直的弦,若AD=4,BC=2,则阴影部分的面积是()A.2π﹣1 B.π﹣4 C.5π﹣4 D.5π﹣810.(2021•湘潭模拟)如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将沿直线AC翻折,若翻折后的圆弧恰好经过点O,则图中阴影部分的面积为()A.B.C.D.11.(2021•紫金县模拟)如图,正方形ABCD边AB=1,和都是以1为半径的圆弧,阴影两部分的面积分别记为S1和S2,则S1﹣S2等于()A. 1 B.1C. 1 D.112.(2021•漳平市模拟)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D,若OA=4,则图中阴影部分的面积为()A.3πB.3π﹣2C.2D.13.(2021•卧龙区一模)如图,在菱形ABCD中,AB=2,以点B为圆心,BA长为半径画弧,恰好过顶点D和顶点C,点E,F分别是弧AC上的两点,若∠EBF=60°,则图中阴影部分的面积为.14.(2021•澄海区模拟)如图,已知Rt△ACB≌Rt△BDE,∠ACB=∠BDE=90°,∠CAB=30°,点C在线段BD上,BC=2,将△BDE绕点B按顺时针方向旋转30°,使得BE与BA重合,则线段DE经旋转运动所形成的平面图形(即阴影部分)的面积为.15.(2021•峡江县模拟)如图,扇形AOB的圆心角为直角,边长为1的正方形ODCF的顶点F,D,C分别在OA,OB,上,过点B作BE⊥FC,交FC的延长线于点E,则图中阴影部分的面积等于.16.(2021•中原区校级四模)如图,AC的半圆O的一条弦,将弧AC沿弦AC为折线折叠后过圆心O,图中阴影部分的面积为,则⊙O的半径为.17.(2021•江北区校级模拟)如图,半径为4的扇形AOB的圆心角为90°,点D为半径OA的中点,CD⊥OA交于点C,连接AC、CO,以点O为圆心OD为半径画弧分别交OC、OB于点F、E,则图中阴影部分的面积为.18.(2021•德城区二模)如图,等边△ABC中,BC=6,O、H分别为边AB、AC的三等分点,AH AC,AO AB,将△ABC绕点B顺时针旋转100°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积为.19.(2021•福州模拟)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=2,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.20.(2021•成都模拟)如图,在平面直角坐标系xOy中,等边△ABC的顶点A在y轴的正半轴上,B(﹣5,0),C(5,0),点D(11,0),将△ACD绕点A顺时针旋转60°得到△ABE,则的长度为,图中阴影部分面积为.。

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法

初三数学圆阴影部分面积10种解题方法01和差法对于不规则图形实施分割、叠合后,把所求的图形面积用规则图形面积的和、差表示,再求面积.贵港中考如图1,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA= 4,∠AOB=120°,则图中阴影部分的面积为( 结果保留π) .图1解析: 图形中的阴影部分是不规则图形,较难直接计算.注意到阴影部分是环形BECA的一部分,因此阴影部分面积等于环形BECA的面积减去图形DCA的面积,又图形DCA的面积等于扇形DOA 的面积减去△ODC的面积.图2如图2,连接OD交弧CE于M.因为OA=4,C是OA的中点,CD⊥OA,所以OD=4,OC=2,DC=2√3,所以∠ODC=30°,∠DOC=60°02割补法对图形合理分割,把不规则图形补、拼成规则图形会,再求面积.吉林中考如图3,将半径为3的圆形纸片,按下列顺序折叠,若弧AB和弧BC都经过圆心O,则阴影部分的面积是( 结果保留π) .图3解析: 观察图形可以发现: 下方树叶形阴影部分的面积分成左右两块后,可以补到上方两个空白的新月形的位置.是否能够完全重合,通过计算验证即可.图4如图4,过点O作OD⊥AB于D,连接OA、OC、OB.由折叠性质知OD=1/2r=1/2AO,03等积变形法运用平行线性质或其他几何图形性质把不规则图形面积转化为与它等面积的规则图形来进行计算.天水中考如图5,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为2π/3,则阴影部分的面积为图5解析: 阴影部分是Rt△ABC的一部分,运用平行线的性质可将图形ABE面积转化成扇形BOE面积.连接BD、BE、BO、OE,如图6.图6因为点E、B是半圆弧的三等分点,所以∠DOB=∠BOE=∠EOA=60°,所以∠BAD=∠EBA=∠BAE=30°,所以BE∥AD.04平移法一些图形看似不规则,将某一个图形进行平移变换后,利用平移的性质,把不规则的图形的面积转化为规则图形的面积来计算.2019年黄石中考模拟如图7,从大半圆中剪去一个小半圆( 小半圆的直径在大半圆的直径MN上),点O为大半圆的圆心,AB是大半圆的弦,且与小半圆相切,AB∥MN,已知AB=12cm,则阴影部分的面积是.图7解析: 因为AB∥MN,由平行线间的距离处处相等,可以平移小半圆,使小半圆的圆心与大半圆的圆心重合,这样不规则的阴影图形就变成一个环形.图8如图8.过点O作OC⊥AB,垂足为C,连接OB,设大半圆的半径为R,小半圆的半径为r.05旋转法一些图形看似不规则,把某个图形进行旋转变换后,利用旋转的性质,把不规则图形的面积转化为规则图形的面积,再进行计算.安顺中考如图9,矩形ABCD中,BC=2,DC=4,以AB 为直径的⊙O与DC相切于点E,则阴影部分的面积为图9解析: 若直接利用弓形面积公式求解相当繁琐,根据已知条件及圆的旋转不变性,利用图形的旋转可实现解题.图10如图10,连接OE 交BD于M.因为CD 是⊙O 的切线,所以OE⊥CD,又AB∥CD,则OE⊥AB,而OE=OB,易知△OBM ≌△EDM,把△OBM绕点M旋转180°就会转到△EDM,阴影部分就转化为扇形BOE,恰好是半径为2的圆的四分之一,06对称法一些图形看似不规则,利用轴对称和中心对称的性质,把不规则图形进行轴对称和中心对称变换,转化为规则图形的面积,再进行计算.赤峰中考如图11,反比例函数y=k/x( k>0) 的图象与以原点(0,0)为圆心的圆交A、B两点,且A( 1,√3) ,图中阴影部分的面积等于 (结果保留π) .图11解析: 根据反比例函数图象及圆的对称性———既是轴对称图形,又是中心对称图形,可知图中两个阴影面积的和等于扇形AOB的面积.过点A作AD⊥x轴于D,如图12.图12因为A( 1,√3) ,所以∠AOD=60°,OA=2,又因为点A、B关于直线y=x对称,所以∠AOB=2×( 60°-45°)=30°.07整体法当已知条件不能或不足以直接求解时,可整体思考,化单一、分散为整体,把所求的未知量整体转换为已知量,再将问题整体化求解.安徽中考如图13,半径均为1的⊙A、⊙B、⊙C、⊙D、⊙E两两外离,A、B、C、D、E分别为五边形的五个顶点,则图中阴影部分的面积是图13解析: 由已知条件,分别求阴影部分的圆心角不易求得,但将五个扇形的圆心角合为一整体,它们的圆心角的和也是五边形的外角之和360°,所以阴影部分面积是一个整圆的面积,所以S阴影=π.08方程法有些图形的局部可以看成某个规则图形,或某些图形具有等面积的性质,这时可以把它们的关系用方程( 组) 来表示,再解方程( 组) ,求出图形的面积.2019年武汉模拟如图14,在边长为2的正方形ABCD 中,分别以2为半径,A、B、C、D 为圆心作弧,则阴影部分的面积是 ( 结果保留π) .图14解析: 仔细观察图形,有两种相同特征的图形在正方形内部,一起围成所求的阴影部分.设弧AC与弧BD交于点G,连接BE、EC,如图15.图15设形如AED 图形的面积为x,形如DEG 图形的面积为y,那么S阴影= S正-4 ( x+y) ,只需求出(x+y)的结果即可.09推算法某些题目运用已知条件,和图形的性质或定理进行推理,可把阴影部分面积用某个式子表示,从而求得不规则图形的面积.南宁中考如图16,Rt△ABC 中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC 为直径作三个半圆,那么阴影部分的面积为平方单位.图16解析: 设左边阴影部分面积为S1,右边阴影部分面积为S2,整个图形的面积可以表示成: 以AC 为直径的半圆+ 以BC为直径的半圆+△ABC.也可以表示成: S1+S2+以AB为直径的半圆。

中考数学专题复习和训练--求阴影部分的面积

中考数学专题复习和训练--求阴影部分的面积

合 .在解此类问题时,要注意观察和分析图形,会分析和组合图形,常常借助
阴影部分(不规则图形)转化为规则的易求的图形求解
.
转化化归 思想,将
典例精析:
例 1.如图 , AB 是⊙ O 的直径,弦 CD AB, C 30 ,CD 2 3 ,则 S 阴影 =
A.
B. 2
2 C. 3
3
分析: 本题的阴影部分是不规则的,要可以转化到规则的阴影部分,比
形中心的对角线长为 2,间隔一个顶点的对角线长为 3 ,则 CE 4 ;若 △AEC 和 △BEC 都以 CE 为求其面积的底边 ,则它们相应的高怎样化归在直角三角形中来求出呢? 解:(由同学们自我完成解答过程)
师生互动练习:
1.如图已知网格中每个小正方形的边长为 2,图中阴影部分的
每个端点位置情况计算图中的阴影部分的面积之和为
小圆⊙ O′向右 平移 至大圆⊙ O 使圆心重合(见 图① 的第二个图) ,这样来求圆环的面积更容易O;
图② 虽然是半圆也可以采用相同的方法求阴影部分半圆环的面积
.
A
B
A
C B
O O'
O
O' O
O
A
B
A
B
C
图① 三 .补转化为一个整体:
图②
如图第一个图是以等腰 Rt△AOB 的直角顶点 O 为圆心画出的直角扇形 OAB 和以 OA 、 OB 为
如转化为扇形 AOD 的面积来求;利用垂径定理和三角函数计算可以得出
C
EC ED,EO EA ,由此可以证明⊿ AEC ≌⊿ DEO ; 所以阴影部分等于
扇形 AOD 的面积,利用扇形面积的计算公式求出结果为
2 . 选D

中考专题-圆中阴影部分面积求解解析(教案)

中考专题-圆中阴影部分面积求解解析(教案)
(4)数学运算的熟练程度:在求解阴影部分面积时,学生需题失败。
难点举例:在计算过程中,注意分数、小数的运算,以及平方、开方等运算的准确性。
(5)数据分析能力的运用:在解决不同类型的题目时,学生需要分析数据,找出解题规律,提高解题效率。
难点举例:分析不同类型题目的共同点和差异,总结解题方法,形成自己的解题策略。
在学生小组讨论环节,我发现学生们在讨论过程中能够积极思考,提出自己的观点。但与此同时,也有一部分学生在讨论中过于依赖他人,缺乏独立思考。为了解决这个问题,我将在今后的教学中注重培养学生的独立思考能力,鼓励他们在讨论中敢于发表自己的见解。
最后,我注意到在总结回顾环节,部分学生对所学知识点的掌握程度并不理想。这说明我在教学过程中可能没有充分关注到学生的个体差异,导致他们在学习过程中跟不上整体进度。因此,我将在今后的教学中更加关注每个学生的学习情况,因材施教,确保每个学生都能掌握所学知识。
五、教学反思
在今天的教学中,我发现学生们在圆中阴影部分面积求解方面存在一些问题。首先,他们在构建空间观念上还有一定的困难,尤其是在处理复杂的几何图形时,难以准确把握图形之间的关系。在接下来的教学中,我需要加强这方面的训练,多提供一些直观的教具或图形,帮助学生建立更清晰的空间观念。
其次,学生在逻辑推理能力方面也表现出一定的不足。在解决实际问题时,他们往往不能迅速找到解题的关键步骤,导致解题思路不清晰。针对这一问题,我打算在讲授过程中,更多地运用案例分析,引导学生逐步分析问题,培养他们的逻辑推理能力。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制圆形和扇形,并进行面积求解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)

关于阴影部分的面积求值问题是中考的一类考题

关于阴影部分的面积求值问题是中考的一类考题

关于阴影部分的面积求值问题是中考的一类考题,归纳起来可以分为 间接求值法(即用相关面积间接表示求值)、分割求值法(即分成若干部分求和)、割补求值法(即通过割补转化成有面积公式的图形求面积)、等积变形求值法等。

我们通过下面的问题来体会这些方法的的应用:1. (2009深圳)如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为(A .B .C .D . 等积变形2. (2009嘉兴)如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ▲ )A .3B .4C .6D .9间接求值,参数意识3. (2009遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是 A.4π-8 B. 8π-16 C.16π-16 D. 16π-32 间接求值4. (2009湖州)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 . 等积变形5. 2009娄底)如图7,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是 . 割补法求值6. (2009衡阳)如图8,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD . (1)求证:AC=BD ;(第9题)(第15题)CABS 1S 2 图8(2)若图中阴影部分的面积是243cm π,OA=2cm ,求OC 的长.割补法求值7. 如图7-341,正方形ABCD 、A1B1C1D1边长都是a .(2)在正方形A 1B 1C 1D 1中,分别以A 1,B 1,C 1,D 1为圆心,设两图中阴影部分周界长为S 1,S 2,则S 1与S 2的关系是[ ]A .S 1>S 2; B .S 1=S 2;C .S 1<S 2; D .大小关系不定.间接求值法8. 如图:正方形ABCD 的边长为a , 以各边为直径在正方形内作半圆 , 所围成的图中阴影部分的面积为[ ]A .2)21(a π- 2)21(a π-B .2)22(a π-C .2)12(a -πD .2)42(a π-9. 如图:以直角三角形三边为直径的三个半圆围成的两个月牙形(阴影部分)的面积和等于[ ]A .AB ·AC B .AC ·BC C .AB ·BD D .21AC ·BC 10. 如图:以正△ABC 的三边为弦的三条圆弧相交于△ABC 的外心O,若AB=a, 则图中阴影部分的面积为[ ]A .2)233(a -πB .2)8343(a π-C .2)343(a π-D .2)3433(a π- 11如图:∠AOM=90°,AN ∥OM ,OA=1cm ,是以O 为圆心的圆的一部分,是以A 为圆心的圆的一部分,这个曲边形ABC (阴影部分)的面积为___________.221cm 12图:⊙O 1与⊙O 2交于A , B , ⊙O 2的直径AC 切⊙O 1于A , ⊙O 2的弦CB 的延长线交⊙O 1于E , 且AC=5 , BC=3 , 求图中阴影部分的面积.13如图:平行四边形ABCD中 , AB=6 , AD=3 , BD^AD , 以BD为直径的圆交 AB于E , 交DC于F,求阴影部分的面积.14 已知:如图,AB为半圆⊙O的直径,C、D为半圆⊙O的三等分点,若AB=12,求阴影部分的面积.15 如图,已知:∠AOB=90°,AC∥OB,AO=3,分别以O点,A点为圆心,AO、AB为半径画弧,交OB、AC于B、C,求阴影部分的周长和面积.。

与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(解析版)

与圆有关的计算求阴影部分面积-2024年中考数学答题技巧与模板构建(解析版)

与圆有关的计算求阴影部分面积 题型解读|模型构建|通关试练模型01 阴影部分面积计算求阴影部分面积在考试中主要考查学生对图形的理解和数形结合的认识能力具有一定的难度.一般考试中选择题或填空题型较多,熟练掌握扇形面积、弧长的计算、等边三角形的判定和性质,特殊平行四边形性质是解题的关键. 模型02 阴影部分周长计算求阴影部分弧长或周长的计算,掌握弧长计算方法是正确计算的前提,求出相应的圆心角度数和半径是正确计算的关键.该题型一般考试中选择题或填空题型较多,圆心角是n °,圆的半径为R 的扇形面积为S ,则S 扇形=n 360πR 2或S 扇形=12lR (其中l 为扇形的弧长).熟练应用公式是解题的关键. 模型03 与最值相关的计算阴影部分面积和周长中求最值,此题有一定的难度,解题中注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.本题考查中经常与轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短等知识点相结合,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.求阴影部分面积方法总结 方法一 直接利用公式法求阴影部分面积方法二 直接或构造和差法求阴影部分面积 方法三 利用等积转换法求阴影部分面积方法四 利用容斥原理求阴影部分面积模型01 阴影部分面积计算 考|向|预|测阴影部分面积计算问题该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是将所给问题抽象或转化为规则图形的面积进行求解,属于中考选择或填空题中的压轴题.答|题|技|巧 第一步: 确定弧所对的圆心,(找圆心)第二步: 连接圆心与弧上的点;(连半径) 第三步: 确定圆心角度数(有提示角度的话注意求解相应角,没有提示角度的话一般为特殊角,大胆假设小心论证)第四步: 把不规则图形面积转化为规则图形面积进行求解例1.(2023·四川)一个商标图案如图中阴影部分,在长方形ABCD 中,6cm AB =,4cm BC =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则阴影部分的面积是( )A .2(4π4)cm +B .2(4π8)cm +C .2(8π4)cm +D .2(4π16)cm −【答案】A 【详解】解:由题意知4cm AF AD BC ===,10cm BF AF AB =+=,阴影部分的面积211π42S AB BC AD BF BC =⋅+−⋅ 21164π410442=⨯+⨯−⨯⨯244π20=+−4π4=+,故选A .例2.(2023·湖北)如图,在ABC 中,90A ∠=︒,3,6,AB AC O ==是BC 边上一点,以O 为圆心的半圆分别与,AB AC 边相切于,D E 两点,则图中两个阴影部分面积的和为 .【答案】5π−/5π−+【详解】解:如图,连接OD ,OE ,以O 为圆心的半圆分别与,AB AC 边相切于,D E 两点,∴OD AB ⊥,OE AC ⊥,90A ∠=︒,∴四边形ADOE 是矩形, 又OD OE =,∴四边形ADOE 是正方形,∴AD DO OE AD ===,90DOE ∠=︒,90A OEC ∠=∠=︒,A C B E C O ∠=∠,∴ACB ECO ∠∽, ∴AC AB EC EO =,设AD DO OE AD r ====,则6EC AC AE r =−=−, ∴636r r =−,解得2r =,∴2AD DO OE AD ====, 90DOE ∠=︒,∴DOB 和EOC △所包含扇形的面积之和为:22180901ππ2π3604r ︒−︒⨯=⨯=︒,∴图中两个阴影部分面积的和为:21π362π5π2ABC ADOE S S −−=⨯⨯−−=−正方形,故答案为:5π−.模型02 阴影部分周长计算考|向|预|测阴影部分弧长或周长计算该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查求与弧结合的不规则图形的周长,准确应用弧长公式是解题的关键.但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求规则图形的长度问题.答|题|技|巧第一步: 观察图形特点,确定弧长和线段长;第二步: 利用弧长公式求长度;第三步: 求图形中其它边的长度;例1.(2023·河北)如图,正方形ABCD 的边长为2,分别以B ,C 为圆心,以正方形的边长为半径的圆相较于点P ,那么图中阴影部分①的周长为 ,阴影部分①②的总面积为 .【答案】 2π+ 2233π【详解】解:连接PB 、PC ,作PF BC ⊥于F ,2PB PC BC ===,PBC ∴△为等边三角形,60PBC PCB ∴∠=∠=︒,30PBA ∠=︒,∴sin602PF PB =⋅︒=∴阴影部分①的周长AP BP l l AB =++ 3026022180180ππ⨯⨯=++2π=+阴影部分①②的总面积()2BPC ABP BPC S S S ⎡⎤=−−⨯⎣⎦扇形扇形223026021223603602ππ⎡⎤⎛⨯⨯=−−⨯⨯⎢⎥ ⎝⎣⎦ 23π=,,故答案为:2π+;23π.例2.(2023·浙江)如图,正方形ABCD 中,分别以B ,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为 .【答案】a π 【详解】解:四边形ABCD 是正方形,边长为a ,AB CB AD CD a ∴====,90B D ∠=∠=︒,∴树叶形图案的周长902180a a ππ⋅=⨯=.故答案为:a π. 模型03 与最值相关的计算 考|向|预|测圆的弧长与面积和最值相关的计算主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”“点到直线距离垂线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题,进而解决求阴影部分的最值问题. 答|题|技|巧 第一步: 观察图形特点,确定变量和不变的量(一般情况下弧长固定,线段长变化)第二步: 利用将军饮马或者“两点之间线段最短”“点到直线距离垂线段最短”等知识点进行转化 第三步: 牢记弧长公式,求对弧长和线段长;第四步: 利用数形结合思想注意确定最值;例1.(2023·江苏)如图,点C 为14圆O 上一个动点,连接AC ,BC ,若1OA =,则阴影部分面积的最小值为( )A .3144πB .142π−C .24πD .184π− 【答案】C【详解】解:连接AB ,OC ',AC ',BC ',要使阴影部分的面积最小,需要满足四边形AOBC 的面积最大,只需满足ABC 的面积最大即可, 从而可得当点C 位于弧AB 的中点C '时,ABC 的面积最大,连接OC ',则OC AB '⊥于D ,12OD AB ∴===,1DC OC OD ''∴=−=,1111122AOB ABC AOBC S S S ''⎛∴=+=⨯⨯+⎝⎭四边形, 扇形AOB 的面积29013604ππ⨯==, ∴阴影部分面积的最小值42π=−,故选:C . 例2.(2022·浙江)如图,⊙O 是以坐标原点O 为圆心,P 的坐标为(2,2),弦AB 经过点P,则图中阴影部分面积的最小值为()A .8πB .323πC .8π﹣16D .323π−【答案】D【详解】解:由题意当OP ⊥A'B'时,阴影部分的面积最小,∵P (2,2),∴,∵OA'=OB'=∴=,∴tan ∠A'OP=tan ∠,∴∠A'OP=∠B'OP=60°,∴∠A'OB'=120°,∴S 阴=S 扇形OA'B'-S △A'OB''=()212042132462236023ππ−=− ,故答案为:D . 例3.(2023·吉林)如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,4AC =,以AB 直径作圆,P 为BC 边的垂直平分线DE上一个动点,则图中阴影部分周长的最小值为.【答案】483π+【详解】解:如图,连接CE ,连接BP∵P 为BC 边的垂直平分线DE 上一个动点,∴点C 和点B 关于直线DE 对称,∴CP BP =,∴AP CP AP BP +=+∴当动点P 与点E 重合时AP BP +最小,此时AP CP +最小,∵90ACB ∠=︒,30B ∠=︒,4AC =,∴28AB AC ==,4AE =,∴CP AP AC ==,∴ACP △是等边三角形,∴60APC ∠=︒,∵8AP CP AP BP AB +=+==, ∴阴影部分的周长最小值为6044881803ππ︒⨯⨯+=+︒. 故答案为483π+.1.(2023·江苏)如图,在Rt ABC △中,9034A AB AC ∠=︒==,,,以O 为圆心的半圆分别与AB AC 、边相切于D E 、两点,且O 点在BC 边上,则图中阴影部分面积S =阴( )A .12B .π3C .35π4−D .15036π4949− 【答案】D 【详解】解:连接,OD OE ,设O 与BC 交于M 、N 两点,∵AB AC 、分别切O 于D 、E 两点,∴90ADO AEO ∠=∠=︒,又∵90A ∠=︒,∴四边形ADOE 是矩形,∵OD OE =,∴四边形ADOE 是正方形,∴90DOE ∠=︒,∴90DOM EON ∠+∠=︒,设OE x =,则AE AD OD x ===,4EC AC AE x =−=−. ∵,90C C CEO A ∠=∠∠=∠=︒,∴COE CBA ∽, ∴CE OE CA AB = , ∴443x x −= , 解得127x = ,∴()ABC ADOE DOM EON S S S S S =−−+阴影正方形扇形扇形 22129011273427360π⎛⎫⨯ ⎪⎛⎫⎝⎭=⨯⨯−− ⎪⎝⎭ 150364949π=−.故选D .2.(2022·湖北)如图,在Rt ABC 中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、F .若圆半径为2.则阴影部分面积( ).A .13πB .43πC .23π D3− 【答案】C【详解】解:连接OD ,OF .∵AD 是∠BAC 的平分线,∴∠DAB =∠DAC ,∵OD =OA ,∴∠ODA =∠OAD ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴S △AFD =S △OFA ,∴S 阴=S 扇形OFA ,∵OD=OA=2,AB=6,∴OB=4,∴OB=2OD,∴∠B=30°,∴∠A=60°,∵OF=OA,∴△AOF是等边三角形,∴∠AOF=60°,∴S阴=S扇形OFA=2 6022= 3603 p p.故选:C.3.(2023·安徽)如图是某芯片公司的图标示意图,其设计灵感源于传统照相机快门的机械结构,圆O中的阴影部分是一个正六边形,其中心与圆心O重合,且AB BC=,则阴影部分面积与圆的面积之比为()A B C D【答案】B【详解】解:如图所示,连接OA,OB,OC设正六边形的边长为1,则1OA =,60AOB ∠=︒,OA OB =∴AOB 为等边三角形,则60BOA OBA ∠=∠=︒,1OA OB AB ===,2AC =,∴BCO BOC ∠=∠,又∵ABO BCO BOC ∠=∠+∠,∴30BCO BOC ∠=∠=︒,则=90AOC ∠︒,∴OC所以圆的面积为3π,正六边形的面积为1166sin 6061122AOB S AB OA =⨯⋅⋅︒=⨯⨯⨯△,则阴影部分面积与圆的面积之比为23π=, 故选:B .4.(2022·广西)如图所示,⊙O 是以坐标原点O 为圆心,4为半径的圆,点P),弦AB 经过点P ,则图中阴影部分面积的最小值等于( )A .2π﹣4B .4π﹣8 CD【答案】D 【详解】由题意当OP ⊥AB 时,阴影部分的面积最小,∵P),∴OP=2,∵OA=OB=4,∴∴tan ∠AOP=tan ∠∴∠AOP=∠BOP=60°,∴∠AOB=120°,∴S 阴=S 扇形OAB ﹣S △AOB=2120·41-23602π⨯= ,故选D .5.(2023·山东)如图,正比例函数与反比例函数的图象相交于AB 、两点,分别以AB 、两点为圆心,画与x 轴相切的两个圆,若点A 的坐标为(2,1),则图中两个阴影部分面积的和是( )A .12πB .14πC .πD .4π【答案】C【详解】解:∵点A 的坐标为(2,1),且⊙A 与x 轴相切,∴⊙A 的半径为1,∵点A 和点B 是正比例函数与反比例函数的图象的交点,∴点B 的坐标为(-2,-1),同理得到⊙B 的半径为1,∴⊙A 与⊙B 关于原点中心对称,∴⊙A 的阴影部分与⊙B 空白的部分完全重合,∴⊙A 的阴影部分与⊙B 空白的部分的面积相等,∴图中两个阴影部分面积的和=π•12=π.故选C .6.(2023·山西)如图,在Rt ABC △中,90C ∠=︒,30B ∠=︒,点O 在AB 上,以O 为圆心作圆与BC 相切于点D ,与AB 、AC 相交于点E 、F ;连接AD 、FD ,若O 的半径为2.则阴影部分面积为( )A .13πB .43πC .23πD .23π【答案】C【详解】解:连接OD ,OF .∵O 与BC 相切,∴90ODB ∠=︒.∵90C ∠=︒,∴ODB C ∠=∠,∴OD AC ∥,∴.AFD OFA S S =,∴OFA S S =阴影扇形,∵30B ∠=︒,∴60BAC ∠=︒,∵OF OA =,∴AOF 是等边三角形,∴60AOF ∠=︒, ∴260223603OFA S S ππ⋅⋅===阴影扇形.故选C .7.(2023·黑龙江)如图,ABC 中,90ACB ∠=︒,4AC BC ==,分别以点A ,B 为圆心,AC ,BC 的长为半径作圆,分别交AB 于点DE ,则弧CD 弧CE 和线段DE 围成的封闭图形(图阴影部分)的面积 (结果保留π)【答案】4π8−【详解】解:∵904ACB AC BC ∠=︒==,, ∴14482ABC S =⨯⨯=△,4542CAD S ππ⨯==扇形,()282164S ππ=⨯−=−空白, ∴()816448ABC S S S ππ=−=−−=−阴影空白,故答案为:48π−.8.(2022·河南)在矩形ABCD 中,4,AB AD ==,以BC 为直径作半圆(如图1),点P 为边CD 上一点.将矩形沿BP 折叠,使得点C 的对应点E 恰好落在边AD 上(如图2),则阴影部分周长是 .4+/4【详解】解:设阴影部分所在的圆心为O ,如图,连接OF ,∵四边形ABCD 是矩形,∴∠ABC=∠A=90°,由折叠得,BE BC ==∵4,AB =∴4AE ==∴,AB AE = ∴1(18090)452ABE AEB ∠=∠=︒−︒=︒∴90904545,OBE ABE ∠=︒−∠=︒−︒=︒∵OB OF =∴45OBF OFB ∠=∠=︒∴180454590BOF ∠=︒−︒−︒=︒∴BF 的长==,4BF ==,∴ 阴影部分周长4+4+.9.(2022·内蒙古)如图,在Rt AOB 中,90AOB ∠=︒,以O 为圆心,OB 的长为半径的圆交边AB 于点D ,点C 在边OA 上且CD AC =,延长CD 交OB 的延长线于点E .(1)求证:CD 是圆的切线;(2)已知4sin 5OCD ∠=,AB =AC 长度及阴影部分面积. 【答案】(1)证明见详解;(2)AC=3,阴影部分面积为50-43π.【详解】(1)证明:连接OD∵OD=OB∴∠OBD=∠ODB∵AC=CD∴∠A=∠ADC∵∠ADC=∠BDE∴∠A=∠EDB∵∠AOB=90°∴∠A+∠ABO=90°∴∠ODB+∠BDE=90°即OD ⊥CE ,又D 在o 上∴CD 是圆的切线;(2)解:由(1)可知,∠ODC=90°在Rt △OCD 中,4sin 5OD OCD OC ∠==∴设OD=OB=4x ,则OC=5x ,∴3CD x∴AC=3x∴OA=OC+AC=8x在Rt △OAB 中:222OB OA AB +=即:()()(22248x x += 解得1x =,(-1舍去)∴AC=3,OC=5,OB=OD=4在Rt △OCE 中,4sin 5OE OCD ∠==∴设OE=4y ,则CE=5y ,∵222OE OC CE +=()()222455y y += 解得53y =,(53−舍去) ∴2043OE y ==219012050-5-4-42360233OB S OE OC πππ⋅=⋅=⨯⨯=阴影 ∴阴影部分面积为50-43π.1.如图,在以点O 为圆心的半圆中,AB 为直径,且AB=4,将该半圆折叠,使点A 和点B 落在点O 处,折痕分别为EC 和FD ,则图中阴影部分面积为( )A .3πB .23πC .3πD .23π 【答案】D 【详解】∵AB 是直径,且AB=4,∴OA=OE=2,∵使点A 和点B 落在点O 处,折痕分别为EC 和FD ,∴AC=OC=OD=DB=1,∴CD=2,∴△EOF 是等边三角形,∴∠EOF=60°,S 半圆=21222=ππ⨯,S 长方形CDFE=2∴S 阴=S 长方形CDFE -(S 半圆-S 长方形CDFE)+2(S 扇形OEF -S △EOF )=212232+(-ππ⨯=23π 故选D.2.如图,在矩形ABCD 中,AB =4,BC =6,点E 是AB 中点,在AD 上取一点G ,以点G 为圆心,GD 的长为半径作圆,该圆与BC 边相切于点F ,连接DE ,EF ,则图中阴影部分面积为( )A.3πB.4πC.2π+6D.5π+2【答案】B【详解】如图,连接GF,∵四边形ABCD是矩形∴AD=BC=6,∠ADC=∠C=90°=∠A=∠B,AB=CD=4∵点E是AB中点∴AE=BE=2∵BC与圆相切∴GF⊥BC,且∠ADC=∠C=90°∴四边形GFCD是矩形,又∵GD=DF∴四边形GFCD是正方形∴GD=GF=CD=CF=4∴BF=BC﹣FC=2∵S阴影=(S四边形ABFD﹣S△AED﹣S△BEF)+(S扇形GDF﹣S△GDF)∴S阴影=((26)4116222222+⨯−⨯⨯−⨯⨯)+(4π﹣1442⨯⨯)=4π.故选B.3.如图,四边形ABCD为正方形,边长为4,以B为圆心、BC长为半径画AB,E为四边形内部一点,且BE⊥CE,∠BCE=30°,连接AE,求阴影部分面积( )A .4π−B .6πC .42π−−D .43π−−【答案】C【详解】过E 点作EM ⊥BC 于M 点,作EN ⊥AB 于N 点,如图,∵BE ⊥CE ,∴∠BEC=90°,∵∠BCE=30°,∴∠EBC=60°,∵EM ⊥BC ,∴在Rt △EMC 中,∴tan ∠ECM=EM MC =tan30°=,∴,∴∴在Rt △EBM 中,∴tan ∠EBM=EMBM∴BM=,∵BM+MC=BC=4,∴=4,∴EM =∴BM=1==,∵NE ⊥AB ,EM ⊥BC ,且∠ABC=90°,∴四边形BMEN 是矩形,∴NE=BM=1,∵AB=BC=4,∠ABC=90°,∴1141222ABE S AB NE =⨯⨯=⨯⨯=△,11422BEC S BC EM =⨯⨯=⨯=△22901443604ABCS AB πππ=⨯⨯=⨯⨯=扇形o o∴42ABE BEC ABC S S S S π=−−=−−△△阴影扇形故选:C .4.如图,正三角形ABC 的边长为4cm ,D ,E ,F 分别为BC ,AC ,AB 的中点,以A ,B ,C 三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(πcm 2C .(2π)cm 2D .(2π-cm 2【答案】C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF=1226023360π⨯⨯2π)cm2,故选C .5.如图,在Rt AOB △中,90AOB ∠=︒,2OA =,1OB =,将Rt AOB △绕点O 顺时针旋转90︒后得Rt FOE △,将线段EF 绕点E 逆时针旋转90︒后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .5π+C .524π−D .724π− 【答案】C 【详解】解:作DH AE ⊥于H ,∵90AOB ∠=︒,2OA =,1OB =,∴AB 由旋转,得EOF BOA ≌,∴OAB EFO ∠=∠,∵90FEO EFO FEO HED ∠+∠=∠+∠=︒,∴EFO HED ∠=∠,∴HED OAB ∠=∠,∵90DHE AOB ∠=∠=︒,DE AB =,∴()AAS DHE BOA ≌,∴1DH OB ==,阴影部分面积ADE =V 的面积EOF +V 的面积+扇形AOF 的面积−扇形DEF 的面积211902905311222360360ππ⨯⨯=⨯⨯+⨯⨯+−5124π=−故选:C .6.如图,在半径为2、圆心角为90︒的扇形OAB 中,2BC AC =,点D 从点O 出发,沿O A →的方向运动到点A 停止.在点D 运动的过程中,线段BD ,CD 与BC 所围成的区域(图中阴影部分)面积的最小值为( )A .23πB .213π−C .3πD .132π− 【答案】B【详解】当点D 在线段OA 上时,易得当点D 与点A 重合时,阴影部分面积最小,连接OC 、BC ,过点C 作CH OA ⊥于点H ,如图,190303AOC ︒︒∠=⨯=,112CH OC ∴==, ∵290603BOC ︒︒=⨯=∠, ∴260223603BOC S =⨯⨯=扇形ππ.∴ 2112212213223BOC AOC AOB S S S S ππ=+−=+⨯⨯−⨯⨯=−△△阴扇形;∴线段BD 、CD 与BC 所围成的区域(图中阴影部分)面积的最小值为213π−.故答案为B .7.如图,矩形ABCD 中,4,3AB BC ==,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差12S S −为( )A .13124π−B .9124π−C .1364π+D .6【答案】A 【详解】解:∵在矩形ABCD 4,3AB BC ==,F 是AB 中点,∴2BF BG ==,∴12ABCD ADE BGF S S S S S −+=−矩形扇形扇形, ∴22129039021343123603604S S πππ⋅⨯⋅⨯−=⨯−−=−, 故选A .8.如图,在半径为4的扇形OAB 中,90AOB ∠=︒,点C 是AB 上一动点,点D 是OC 的中点,连结AD 并延长交OB 于点E ,则图中阴影部分面积的最小值为( )A .44π−B .4πC .24π−D .2π【答案】B 【详解】∵点D 是OC 的中点,2OD =,∴点D 在以O 为圆心2为半径的圆弧上,∴可知当AE 与小圆O 相切于D 时,OE 最大,即△AOE 的面积最大,此时阴影部分的面积取得最小值, ∵24OA OD ==, ∴1sin =2OD OAE OA =∠,则30OAE ∠=︒,∵∠AOB=90°,∴tan OE OA OAE =⋅∠=,∴4OAE OAB S S S π=−=阴影扇形, 故选B .9.如图,在Rt ABC △中,90C ∠=︒,6AB =,AD 是BAC ∠的平分线,经过A ,D 两点的圆的圆心O 恰好落在AB 上,O 分别与AB 、AC 相交于点E 、.F 若圆半径为2.则阴影部分面积= .【答案】23π/23π【详解】解:连接OD ,OF .AD 是BAC ∠的平分线,DAB DAC ∴∠=∠,OD OA =,ODA OAD ∴∠=∠,ODA DAC ∴∠=∠,OD ∴∥AC ,90ODB C ∴∠=∠=︒,∴AFD OFA S S =,∴OFA S S =阴扇形,2OD OA ==,6AB =,4OB ∴=,2OB OD ∴=,30B ∴∠=︒,60A ∴∠=︒,OF OA =,AOF ∴是等边三角形,60AOF ∴∠=︒,260π22π3603OFA S S ⋅∴===阴影部分扇形,故答案为:2π3.10.如图,在Rt ABC 中,30A ∠=︒,BC =点O 为AC 上一点,以O 为圆心,OC 长为半径的圆与AB 相切于点D ,交AC 于另一点E ,点F 为优弧DCE 上一动点,则图中阴影部分面积的最大值为 .【答案】223π+ 【详解】解:连接DE ,OD ,∵Rt ABC 中,30A ∠=︒,BC =∴6tan 30BC AC ===︒,∵AB 为O 的切线,∴90ADO ∠=︒,∴2AO OD =,60AOD ∠=︒,∵OD OE OC ==,∴36AC AO OC OD =+==,△ODE 为等边三角形,∴2DE OE OD OC ====,∵S 阴影=S 弓形DGE+S △DEF∴当OF ⊥DE 时,阴影部分面积最大,此时OF 与DE 交于G ,∴∠DOG=∠EOG=30°,∠DGO=90°,∴cos302OG OD =⋅︒==,2GF OG OF =+=,∴S 阴影= S 扇形ODE - S △DEO +S △DEF=260211222(22360223ππ⨯⨯−⨯⨯⨯=+.11.如图,点C 为14圆O 上一个动点,连接AC ,BC ,若OA =1,则阴影部分面积的最小值为 .【答案】42π−【详解】取弧AB 的中点C′,连接AB 、OC '、AC '、BC ',要使阴影部分的面积最小,需要满足四边形AOBC 的面积最大,只需满足△ABC 的面积最大即可,从而可得当点C 位于弧AB 的中点C '时,△ABC 的面积最大,则OC AB '⊥于D1222OD AB ∴===12DC OC OD ''∴=−=−1111(122AOB ABC AOBC S S S D D ''∴=+=⨯⨯+=四边形扇形AOB 的面积29013604ππ⨯== ∴阴影部分面积的最小值为4π=故答案为:4π.12.如图所示,⊙O 是以坐标原点O 为圆心,4为半径的圆,点P),弦AB 经过点P ,则图中阴影部分面积的最小值= .【答案】【详解】解:由题意当OP ⊥AB 时,阴影部分的面积最小.∵P,∴OP=2.∵OA'=OB'=4,∴∴tan ∠A'OP=tan ∠∴∠AOP=∠BOP=60°,∴∠A'OB'=120°,∴S 阴=S 扇形OA'B'-S △A'OB'=2120π4360⋅⋅﹣122⋅.故答案为:.13.如图,扇形OAB 中,OA R =,60AOB ∠=︒,C 为弧AB 的中点,点D 为OB 上一动点,连接AD DC 、,当阴影部分周长最小时,tan ADC ∠等于 .【答案】【详解】解:如图,作点C 关于OB 的对称点E ,连接AE 交OB 于点F ,连接FA 、OC , 由对称可知,DC DE =,FC FE =,∵AD CD AD DE AE AF EF +=+≥=+,当点D 移动到点F 时,取等号,此时AD CD +最小, ∵C 为弧AB 的中点,∴AC BC =,则30AOC COB BOE ∠=∠=∠=︒,90AOE ∴∠=︒, 又OA OE =,∴45OEF ∠=︒,∴304575EFB BOE OEA ∠=∠+∠=︒+︒=︒,由轴对称可知,75CFB EFB ∠=∠=︒,∴30AFC ∠=︒,∴当阴影部分周长最小时,30ADC AFC ∠=∠=︒,则tan ADC ∠= .故答案为:.14.如图,扇形AOB 中,120AOB ∠=︒,M 切弧AB 于点C ,切OA ,OB 分别于点D ,E ,若1OA =,则阴影部分面积的周长为 .【答案】13π16−+【详解】∵⊙M 内切于扇形AOB ,∴C 、M 、O 三点共线,连接C 、M 、O ,连接ME 、MD ,如图所示,根据相切的性质可知DM ⊥AO ,ME ⊥OB ,设⊙M 的半径为R ,∴ME=MD=MC=R ,∠MDO=∠MEO=90°,结合MO=MO ,可得t t R MDO R MEO ≅△△,∴∠MOD=∠MOE=12∠AOB=120°×12=60°,∴在Rt △MOE 中,∠OME=90°-∠MOE=30°,∴OE=ME=R ,OM=2OE=R ,又∵OA=OC=OB=1,∴OM+MC=1,即R+R=1,解得R=3,∴OE=2BE=OB -1,∵∠MOE=60°,∴»60123603BC OA ππ=⨯⨯=o o ,∵∠OME=30°,∴∠CME=180°-∠OME=180°-30°=150°,15015015223603606EC ME R πππ=⨯⨯=⨯⨯=−,则阴影部分的周长为:BE+BC +EC 1+13π+156π−=1316π−,故答案为:1316π−.15.如图,在AOB 中,2OA =,3OB =,32AB =.将AOB 绕点O 逆时针旋转45︒后得到COD △,则图中阴影部分(边AB 扫过的图形)的周长为 .【答案】534π+ 【详解】解:∵32CD AB ==,AC 的长为4521801802n OA πππ⋅⨯==,BD 的长为45331801804n OB πππ⋅⨯==,∴阴影部分的周长为533534224AC BD AB CD ππ+++=++=+. 故答案为534π+. 16.如图,在ABC 中,90ACB ∠=︒,以点C 为圆心,CA 长为半径的圆交AB 于点D .(1)若25B ∠=︒,求AD 的度数;(2)若D 是AB 的中点,且4AB =,求阴影部分(弓形)的面积.【答案】(1)50°(2)23π【详解】(1)解:连接CD ,如图,90ACB ∠=︒,25B ∠=︒,902565BAC ∴∠=︒−︒=︒,CA CD =,65CDA CAD ∴∠=∠=︒,180656550ACD ∴∠=︒−︒−︒=︒,∴AD 的度数为50︒;(2)解:过点C 作CH AB ⊥于点H ,D 是AB 的中点,90ACB ∠=︒,122CD AD BD AB ∴====,CD CA =, ACD ∴为等边三角形,60ADC ∴∠=︒,sin 60CH CD =⋅︒=∴阴影部分的面积260212236023ACD ACD S S ππ⋅⋅=−=−⨯=扇形17.如图,在△ABC 中,AB =AC , 以AB 为直径作圆O ,分别交AC , BC 于点D 、E .(1)求证:BE =CE ;(2)当∠BAC =40°时,求∠ADE 的度数;(3)过点E 作圆O 的切线,交AB 的延长线于点F ,当AO =BE =2时,求图中阴影部分面积.【答案】(1)见解析(2)110︒(3)23π【详解】(1)证明:如图,连接AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∴AE ⊥BC ,∵AB=AC ,∴BE=CE ;(2)∵AB=AC ,AE ⊥BC ,∠BAC =40° ∴1==20°,2BAE BAC ∠∠∴∠ABE=90°-∠BAE=70°,∵四边形ABED 是圆内接四边形,∴∠ADE=180°-∠ABE=110°,(3)连接OE ,∵EF 是O 的切线,∴OE EC ⊥,∵22AO BE OB OE AO =====,,∴BOE 是等边三角形,∴60BOE ∠=︒,30F ∠=︒∴EF ==∴160××42==223603OEF OBE S S S ππ−⨯⨯阴影部分扇形. 18.如图,ABC 中,90,ACB BAC ∠=︒∠的平分线交BC 于点O ,以点O 为圆心,OC 长为半径作圆.(1)求证:AB 是O 的切线;(2)若30,4CAO OC ∠=︒=,求阴影部分面积.【答案】(1)见解析;(2)163π−【详解】解:(1)证明:过O 作OD AB ⊥于D ,如图所示,90,ACB ∠=︒OC AC ∴⊥, OA 平分,BAC ∠OD OC ∴=, OC 为O 的半径,OD ∴为O 的半径,AB ∴是O 的切线.(2)∵OD ⊥AB ,∴∠ODB=90°,∵∠CAO=30°,∠ACB=90°,∴∵∠AOC=90°-30°=60°,∴∠COD=2∠AOC=120°,由(1)得:AB 是⊙O 的切线,OC ⊥AC ,∴AC 为⊙O 的切线,∴∴阴影部分面积=△AOC的面积+△AOD的面积-扇形OCD的面积2 1112044422360π⨯=⨯+⨯−163π=.。

中考数学阴影部分面积专题含答案

中考数学阴影部分面积专题含答案

专题:阴影部分面积1、圆有关的计算:(1)弧长计算公式:180R n l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) (2)扇形面积:2360R n S π=扇形或lR S 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长)(3) 圆锥:扇形到圆锥三个不变量侧面积计算公式:圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样, S 圆锥侧=S 扇形=21·2πr · l = πrl 其中l 是圆锥的母线长,r 是圆锥的地面半径。

圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )圆锥的高:22r R h -=算弧长:考查形式主要有扇形与三角形、四边形相结合求阴影部分面积。

利用扇形、三角形、四边形的面积公式,以及特殊角的锐角三角函数、勾股定理等,根据图形特征①运用割补法求面积;②运用旋转变换、等面积变换求面积;③运用整体作差法求面积等。

类型一:割补法求面积̂上【经典例题1】(2020•荆门)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为AB一点,∠AOC=30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.【解析】∵∠AOB =90°,∠AOC =30°,∴∠BOC =60°,∵扇形AOB 中,OA =OB =2,∴OB =OC =2,∴△BOC 是等边三角形,∵过C 作OA 的垂线交AO 于点D ,∴∠ODC =90°,∵∠AOC =30°,∴OD =√32OC =√3,CD =12OC =1, ∴图中阴影部分的面积═S 扇形BOC ﹣S △OBC +S △COD=60⋅π×22360−12×2×2×√32+12×√3×1 =23π−√32. 故答案为23π−√32. 练习1-1(2020四川自贡)如图,矩形ABCD 中,E 是AB 上一点,连接DE ,将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,在DF 上取点O ,以O 为圆心,OF 长为半径作半圆与CD 相切于点G .若AD =4,则图中阴影部分的面积为 .【解析】连接OG ,∵将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,∴AD =DF =4,BF =CF =2,∵矩形ABCD 中,∠DCF =90°,∴∠FDC =30°,∴∠DFC =60°,∵⊙O 与CD 相切于点G ,∴OG ⊥CD ,∵BC ⊥CD ,∴OG ∥BC ,∴△DOG ∽△DFC , ∴DO DF =OG FC , 设OG =OF =x ,则4−x 4=x 2, 解得:x =43,即⊙O 的半径是43.连接OQ ,作OH ⊥FQ ,∵∠DFC =60°,OF =OQ ,∴△OFQ 为等边△;同理△OGQ 为等边△;∴∠GOQ =∠FOQ =60°,OH =√32OQ =2√33,S 扇形OGQ =S 扇形OQF ,∴S 阴影=(S 矩形OGCH ﹣S 扇形OGQ ﹣S △OQH )+(S 扇形OQF ﹣S △OFQ )=S 矩形OGCH −32S △OFQ =43×2√33−32(12×43×2√33)=2√39. 故答案为:2√39. 练习1-2如图,在扇形AOB 中,∠AOB=120°,半径OC 交弦AB 于点D ,且OC ⊥AO ,若OA=2√3,则阴影部分的面积为 .【解析】阴影部分面积=△AOD 面积 + BCD 部分面积BCD 部分面积=扇形OBD 面积-△OBD 面积∴阴影部分面积=△AOD 面积+扇形OBD 面积-△OBD 面积 所以阴影部分面积为3+π练习1-3如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交弧AB 于点E .以点O 为圆心,OC 的长为半径作弧CD 交OB 于点D .若OA =2,则阴影部分的面积为 .AD【解析】如图,连接OC ,EC ,由题意得△OCD ≌△OCE,OC ⊥DE,DE=2,所以S 四边形ODCE =21×2×2=2,S △OCD =22, 又S △ODE =21×1×1=21,S 扇形OBC =2π, 所以阴影部分的面积为:S 扇形OBC +S △OCD −S △ODE =2π+22−21;故答案为:2π+22−21.DA【解析】连接OC 、AC ,由题意得,OA=OC=AC=2,∴△AOC 为等边三角形,∠BOC=30∘,∴扇形△COB 的面积为:ππ313602302=⋅, △AOC 的面积为:21×2×3=3, 扇形AOC 的面积为:ππ323602602=⋅, 则阴影部分的面积为:ππ32331-+=π313-, 故答案为:π313-.练习1-7如图,AB 为半圆O 的直径,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,若AB=8,则图中阴影部分的面积为.【解析】连接AD,OD,BD,可得△ACD∽△CDB,有CD2=AC•CB,∴CD=23,OC=2,tan∠COD=23:2=3:1,∴S扇形OAD=π38,S△CDO=21CO×CD=23,∴S ADC=S扇形OAD-S△CDO=π38-23,S扇形CDE=3π,∴阴影部分的面积=S半圆-(S ADC+S扇形CDE)=π37+23.故选A.练习1-8如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π32则图中阴影部分的面积为( )A.9πB.93πC.π23233- D.π32233-EDC OA B【解析】连接BD,BE,BO,EO, ∵B ,E 是半圆弧的三等分点, ∴∠EOA=∠EOB=∠BOD=60∘, ∴∠BAC=∠EBA=30∘, ∴BE ∥AD ,∵弧BE 的长为π32,∴18060R ⋅π=π32, 解得:R=2,∴AB=ADcos30∘=23, ∴BC=0.5AB=3, ∴AC=3,∴S △ABC =21×BC ×AC=21×3×3=233,∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC −S 扇形BOE =233-π32. 故选:D.练习1-9如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆,分别交AB ,AC 边于点D ,E ,再以点C 为圆心,CD 长为半径作圆,交BC 边于点F ,连接E ,F ,那么图中阴影部分的面积为 .【解析】432312-+π练习1-10(2020内蒙古呼和浩特)(3分)如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧,交AC 于点E ,若∠A =60°,∠ABC =100°,BC =4,则扇形BDE 的面积为 .【解析】∵∠A =60°,∠B =100°,∴∠C =20°, 又∵D 为BC 的中点,∵BD =DC =BC =2,DE =DB , ∴DE =DC =2, ∴∠DEC =∠C =20°, ∴∠BDE =40°,∴扇形BDE 的面积=,故答案为:.类型二:与旋转变换有关的面积计算【经典例题2】(2020乐山)在ABC ∆中,已知90ABC ∠=︒,30BAC ∠=︒,1BC =.如图所示,将ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆.则图中阴影部分面积( )A.4π B.C.D.【解析】在Rt △ABC 中,∵30BAC ∠=︒, ∴AC=2BC=2,∴AB∵ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆,∴='''1,'90AB AB BC B C CAC ===∠=∴'60CAB ∠=∴()22''''9039021==1=36023260AB C CAC DAB SS S S πππ---⨯-阴影扇形扇形.故选:B练习2-1如图,把腰长为8的等腰直角三角板OAB 的一直角边OA 放在直线1上,按顺时针方向在l 上转动两次,使得它的斜边转到l 上,则直角边OA 两次转动所扫过的面积为 .【解答】∵△OAB 为腰长为8的等腰直角三角形, ∴OA =OB =8,AB =8√2,∴直角边OA 两次转动所扫过的面积=14π•OA 2+90+45360π(AB 2﹣OB 2)=16π+24π=40π.故答案为:40π.练习2-2如图,在△ABC 中,∠BAC=90°,BC=5,AC=3,将△ABC 绕顶点C 按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中阴影部分)的面积为 .第2-2题图 第2-3题图 第2-4题图 【解析】3π练习2-4如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .π32B .332π-C .3232π-D .3234π-【解析】C练习2-5如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为BB′̂,则图中阴影部分的面积为 .第2-5题图 第2-6题图【解析】2345-π练习2-6如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转C'D'B'ACDB300得到菱形AB'C'D',其中点C 的运动能路径为弧,则图中阴影部分的面积为 . 【解析】3234-+π练习2-7(2020•玉林)如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,此时边AD ′与对角线AC 重叠,则图中阴影部分的面积是 .【解答】解:∵在边长为3的正六边形ABCDEF 中,∠DAC =30°,∠B =∠BCD =120°,AB =BC ,∴∠BAC =∠BCA =30°, ∴∠ACD =90°, ∵CD =3, ∴AD =2CD =6,∴图中阴影部分的面积=S 四边形ADEF +S 扇形DAD ′﹣S 四边形AF ′E ′D ′, ∵将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处, ∴S 四边形ADEF =S 四边形AD ′E ′F ′∴图中阴影部分的面积=S 扇形DAD ′=30⋅π×62360=3π,故答案为:3π.练习2-8(2020•株洲)如图所示,点A 、B 、C 对应的刻度分别为0、2、4、将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A 1,则此时线段CA 扫过的图形的面积为( )A .4πB .6C .4√3D .83π【解析】由题意,知AC =4,BC =4﹣2=2,∠A 1BC =90°. 由旋转的性质,得A 1C =AC =4. 在Rt △A 1BC 中,cos ∠ACA 1=BCA 1C=12.∴∠ACA 1=60°. ∴扇形ACA 1的面积为60×π×42360=83π.即线段CA 扫过的图形的面积为83π. 故选:D .类型三:整体作差法求面积【经典例题3】(2020江苏泰州)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为()A .10πB .9πC .8πD .6π【解析】解:连接OC ,90AOB ∠=︒,CD OA ⊥,CE OB ⊥,∴四边形CDOE 是矩形, //CD OE ∴,36DEO CDE ∴∠=∠=︒,由矩形CDOE 易得到DOE CEO ∆≅∆,36COB DEO ∴∠=∠=︒∴图中阴影部分的面积=扇形OBC 的面积,2361010360OBCS ππ⋅⨯==扇形∴图中阴影部分的面积10π=,故选:A .练习3-1如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =√2,则图中阴影部分面积为( )A .4−π2B .2−π2C .2﹣πD .1−π4【解析】解:连接OD ,过O 作OH ⊥AC 于H ,如图, ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°, ∵⊙O 与BC 相切于点D ,∴OD ⊥BC ,∴四边形ODCH 为矩形,∴OH =CD =√2, 在Rt △OAH 中,∠OAH =45°,∴OA =√2OH =2,在Rt △OBD 中,∵∠B =45°,∴∠BOD =45°,BD =OD =2, ∴图中阴影部分面积=S △OBD ﹣S 扇形DOE =12×2×2−45×π×2180=2−12π. 故选:B .练习3-2如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π- 【解析】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=, ∵四边形ABCD 是正方形,边长为2, ∴=22AC ,∵点O 是AC 的中点,∴OA=2,∴290(2)3602S ππ︒==︒扇形,H GFE OD C B A ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.练习3-3如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=120°,AB=2√3,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)【解析】如图,菱形面积的二分之一减去两个60°扇形的面积.答案:3√3−π.OD CB AA.2π﹣B.π+C.π+2D.2π﹣2【解析】连接CD.练习3-6如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB 相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+【解析】连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.练习3-7中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2 C.24πcm2D.2πcm2【解析】如图,连接CD.∵OC=OD,∠O=60°,∴△COD是等边三角形,∴OC=OD=CD=4cm,∴S阴=S扇形OAB﹣S扇形OCD=﹣=40π(cm2),选:B.练习3-8如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形. 若正三角形边长为6 cm ,则该莱洛三角形(阴影部分)的面积为__________cm 2周长为 cm.【解析】面积18π-183,周长6π;练习3-9如图,分别以边长为 2 的等边三角形 A BC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .【解析】35ππ-23练习3-10如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π-B. 12π-C. 12π-D. 122π- 【解析】连接OC点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴===11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOB S ππ⨯扇形==12CDOE AOB S S S π∴--阴影正方形扇形故选B .练习3-11(2020山东青岛)如图,在ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N .已知120BAC ∠=︒,16AB AC +=,MN 的长为π,则图中阴影部分的面积为__________.【解析】如图,连接OM 、ON 、OA ,设半圆分别交BC 于点E ,F ,则OM ⊥AB ,ON ⊥AC ,∴∠AMO=∠ANO=90º,∵∠BAC=120º,∴∠MON=60º,∵MN 的长为π,∴60180OM ππ=, ∴OM=3,∵在Rt △AMO 和Rt △ANO 中, OM ON OA OA =⎧⎨=⎩, ∴Rt △AMO ≌Rt △ANO(HL),∴∠AOM=∠AON=12∠MON=30º,∴AM=OM·tan30º=33⨯= ∴122332AMO AMON S SAM OM ==⨯=四边形 ∵∠MON=60º, ∴∠MOE+∠NOF=120º,∴211=3=333MOE NOF S S S ππ+=圆扇形扇形, ∴图中阴影面积为()AOB AOC AMON MOE NOF S S S S S +--+四边形扇形扇形=13()32AB AC π⨯+-=243π-,故答案为:243π-.类型四:用图形变换转化求阴影部分面积【经典例题4】如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 .【解析】连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴DC =12AB =1,四边形DMCN 是正方形,DM =√22. 则扇形FDE 的面积是:90π×12360=π4. ∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,{∠DMG=∠DNH ∠GDM=∠HDN DM=DN,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:π4−12.故答案为π4−12.练习4-1如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是.练习4-2如图,点B、C把弧AD三等分,ED是⊙O的切线,过点B、C分别作半径的垂线【解析】∵点B、C把弧线AD分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=2, ∴阴影部分的面积是:2 , 故选C .练习4-3如图,一个半径为22的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为 .【解析】连接AC ,BC ,DC ,AB ,∵⊙D 过⊙C 的圆心C ,⊙D 和⊙C 交于A 、B ,∴AD=BD=DC=22,AC=4,AD 2+DC 2=AC 2=16,∴∠ADC=90°,同理∠BDC=90°,∴A 、D 、B 三点共线,即D 在两圆的公共弦AB 上,∵AD=CD=BD ,∴∠ACB=90°,∴S 弓形AmB =S 扇形ACB -S △ACB =8故答案为:8.练习4-4如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC =33,则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④S 阴影=32.其中正确结论的序号是__①②④__.【解析】①∵AF 是AB 翻折而来,∴AF=AB=6, ∵AD=BC=33,∴DF=322=-AD AF , ∴F 是CD 中点;∴①正确; ②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD , ∵AD ⊥DC ,∴OP ∥CD , ∴AO/AF=OP/DF , 设OP=OF=x ,则x /3=(6−x )/6,解得:x =2,∴②正确; ③∵Rt △ADF 中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°, ∴∠EAF=∠EAB=30°, ∴AE=2EF ; ∵∠AFE=90°,∴∠EFC=90°-∠AFD=30°, ∴EF=2EC ,∴AE=4CE ,∴③错误; ④连接OG ,作OH ⊥FG ,∵∠AFD=60°,OF=OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG=∠FOG=60°,OH=23OG=3,S 扇形OPG=S 扇形OGF , ∴S 阴影=(S 矩形OPDH-S 扇形OPG-S △OGH )+(S 扇形OGF-S △OFG )=S 矩形OPDH-23S △OFG=23.∴④正确; 故答案为①②④.练习4-5如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A ,B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( )【解析】连接AB交O1O2于点C,∵把⊙O1向右平移8个单位长度得⊙O2,∴O1O2=8,∴O1C=8÷2=4,易得△AO1O2为等腰直角三角形,∴AO1=42,∴阴影部分的面积=8π-16,故答案为8π-16.练习4-6如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为________。

中考数学 一轮复习 第6单元 小专题7 四种方法求阴影部分的面积 课件(可编辑图片版

中考数学 一轮复习 第6单元  小专题7 四种方法求阴影部分的面积 课件(可编辑图片版

旋转转化法:
对称转化法:当点 D 是 AB 的中点时,
6.(2021·兴安盟)如图,两个半径长均为 2的直角扇形的圆心分别在对方的 圆弧上,扇形 DCF 的圆心 C 是A︵B的中点,且扇形 DCF 绕着点 C 旋转,半 径 AE,CF 交于点 G,半径 BE,CD 交于点 H,则图中阴影面积等于( D )
第六单元 圆
小专题7 四种方法求阴影部分的面积
(10年1考)
2.(2021·成都)如图,正六边形 ABCDEF 的边长为 6,以顶点 A 为圆心, AB 的长为半径画圆,则图中阴影部分的面积为( D )
A.4π C.8π
B.6π D.12π
方法二 和差法
1.整体作差法:将不规则阴影部分看成是以规则图形为载体的一部分,其他 部分空白且为规则图形,此时采用整体作差法求解.如图:
影部分的面积是
5 4
3-π2
.
4.如图,将半径为 2,圆心角为 90°的扇形 ABC 绕点 A 逆时针旋转,在 旋转过程中,点 B 落在扇形 ABC 的弧上的点 B′处,点 C 的对应点为点 C′, 则阴影部分的面积为 3+13π .
5.如图,在矩形 ABCD 中,BC=2,CD= 3,以点 B 为圆心,BC 的长为
2.分割求和法:将不规则阴影部分面积通过作辅助线,分割成几个规则图 形的面积.如图:
3.构造和差法:先设法将不规则阴影部分与空白部分组合,构造规则图形 或分割后为规则图形,再进行面积和差计算.如图:
3.(2021·济宁)如图,△ABC 中,∠ABC=90°,AB=2,AC=4,点 O 为
BC 的中点,以 O 为圆心,以 OB 为半径作半圆,交 AC 于点 D,则图中阴
半径作C︵E交 AD 于点 E;以点 A 为圆心,AE 的长为半径作E︵F交 AB 于点 F,

中考求阴影部分面积

中考求阴影部分面积

中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。

现介绍几种常用的方法。

一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。

例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。

二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。

三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。

这类题阴影一般是由几个图形叠加而成。

要准确认清其结构,理顺图形间的大小关系。

例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。

四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。

例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。

例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。

六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB 与直径CD 平行,且与小半圆相切,那么图中阴影部分的面积等于_______。

七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法

例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。

中考求阴影部分面积(供参考)

中考求阴影部分面积(供参考)

中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。

现介绍几种常用的方法。

一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。

例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和C D⌒围成的阴影部分图形的面积为_________。

二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。

三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。

这类题阴影一般是由几个图形叠加而成。

要准确认清其结构,理顺图形间的大小关系。

例4. 如图4,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。

四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。

例5. 如图5,在四边形ABCD中,AB=2,CD=1,∠=︒∠=∠=A B D60,90︒,求四边形ABCD所在阴影部分的面积。

例2.如图2,PA切圆O于A,OP交圆O于B,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a、宽为b的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。

六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于_______。

七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。

求阴影部分的面积的方法总结

求阴影部分的面积的方法总结

求阴影部分的面积的方法总结求阴影部分面积是历年来各地市考试的热点,分值只有3分,考核的内容可谓是灵活多变,只要是与面积有关的知识点都有可能在这道题目中出现,很多时候阴影部分都不是规则图形,需要同学们认真分析,利用转化思想,将不规则图形转化为规则图形,利用规则图形的差或和进行求解,达到解决问题的目的,最常用的公式:三角形面积公式,扇形面积公式等.想顺利解决求阴影部分的面积,不仅需要牢记公式,而且还要学会观察与分析,认真分析阴影部分的图形可以转化为什么样的规则图形.下面举例说明:一.和差法:将不规则图形转化为规则图形.通过运用规则图形的面积减去另一些规则图形的面积,达到求出阴影部分面积的目的.例1.如图1,等边三角形ABC的边长为2,以A为圆心,1为半径作圆,分别交AB,AC边于点D,E,再以C为圆心,CD长为半径作圆,交BC边于点F,连接E,F,那么图中阴影部分的面积为.图1【分析】这是一道填空题,分值是3分.如图2阴影部分不是规则图形,不能直接求出.此图形中的三块空白部分分别是①扇形DAE :记为S ①;②三角形EFC ,记为:S ②;③不规则图形,但可以看成△BDC的面积-扇形DCF 的面积.记为:S ③. 所以阴影部分的面积等于△ABC 的面积-①的面积-②的面积-③的面积. =-ABC S S S S S ∆--阴影①②③ 下面分别求出.ABC S S S S ∆①②③、、、因为△ABC 是等边三角形,根据等边三角形的面积公式可得:2323ABC S ∆=⨯=, 因为①扇形DAE 是圆心角为60°,半径为1的扇形 所以:60==3606DAE S S ππ=①扇;如图 3.图形 ②是△EFC ,底边是CF ,CF=CD ;因为△ABC 是边长为2的等边三角形,所以CD=3232⨯=, ∴CF=CD=3;过F 作FH ⊥BC , 则∠EHC=90°,因为△ABC 是等边三角形,所以∠ECH=60°,在Rt △ECH 中,图2图3HEC=AC-AE=2-1=1,EH=ECsin60=2所以S ②=13224ECF S ∆==; 下面计算图形③的面积,因为D 是AB 的中点,所以CD ⊥AB ,且CD 平分AB ,且CD 平分∠ACB ,所以11222BCD ABC S S ∆∆===;所以2303604DCF S ππ⨯==扇形所以③的面积S ③=24BCD DCFS S π∆-=-扇形; 所以阴影部分的面积:33=-644412ABCS S S S S πππ∆⎫--=---=+⎪⎪⎝⎭阴影①②③ 小结:本题属于较难的题目,图形①是规则图形;图形②也是规则,可以利用公式进行计算,但是图形③是不规则图形,然后再找出规则图形进行计算.也就是说阴影部分是不规则图形,里面还包括不规则图形,这就需要学生在中考时保持冷静的头脑,仔细分析,认真思考,逐步解决这道难题.从这道题目可以看出,目前的中考难度较大,有利于天才学生的选拔,但是不利于培养全体学生的学习数学的信心.例2.如图4.AC ⊥BC ,AC=BC=2,以BC 为直径作半圆,圆心为O ,以C 为圆心,BC 的长为半径作 ,过点O 作AC 的平行线分别交两弧于点D,E ,则图中阴影部分的面积是【分析】如图5,连接CE ,则阴影部分的面积可以看成扇形ECB 的面积-△COE 的面积-扇形DOB 的面积.由题意可知,CE=CB=2CO=2,∠COE=90°,所以∠ECO=60°;则OE=3;∴22=602190113360236053122ECO EOB DOB S S S S πππ--⨯⨯⨯=-⨯⨯-=-△阴影扇形扇形 【总结】这道题目需要先作辅助线构造扇形与直角三角形,然后通过从扇形中减去直角三角形的面积和一个小扇形的面积就可以得到阴影部分的面积.例3.如图,在矩形ABCD 中,AB=1,BC=2,以点B 为圆心,BC 为半径画弧,交AD 于点E ,再作以AE 为直径的半圆,则图中阴影部AB图4图5分的面积为 .【分析】阴影部分的面积等于矩形的面积-以AE 为直径的半圆面积-空白EDC 的面积.空白EDC 的面积=梯形EDCB 的面积-扇形EBC 的面积. 【解】∵矩形ABCD,BC=AD=2,AB=CD=1∴∠BAD=∠ABC=∠D=∠BCD=90° 由题意得BE=BC=2,在Rt △ABE 中,由勾股定理得,,∠ABE=60°, ∴∠EBC=30°()2-302=2360(22)22323EDC BCDE EBCS S S CD ED BC πππ=•+⨯--=-=--梯形扇形以AE 为直径的半圆面积=213228ππ⎛⎫⨯= ⎪ ⎪⎝⎭∴3=2--8324S πππ⎛⎫ ⎪ ⎪⎝⎭阴影 【小结】求阴影部分的面积就是将不规则图形转化为规则图形来计算.所用的知识点不仅仅只有求面积的公式,而且还要用到解直角三角形的方法:勾股定理或锐角三角函数,求出相应的圆心角.所以要想解决求阴影部分的面积问题,不仅要牢记数学公式,而且还要学会观察,将不规则图形化为规则图形进行解决.图6C练习:1.如图7,∠AOB=90°,∠B=30°,以点O 为圆心,OA 为半径作弧,交AB 于点C ,交OB 于点D ,若OA=3,则阴影部分的面积为.二、等积转化法例 4.如图8.将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB /C /D /的位置,若AB=16cm ,则图中阴影部分的面积为 . 【解】////=-ABCD BAB AB C D S S S S +阴影扇形因为四边形ABCD 与四边形AB /C /D / 全等,所以阴影部分的面积就是扇形BA B //24516=32360BAB S S ππ⨯==阴影扇形【小结】这就是运用的等积转化法,将阴影部分转化为求扇形的面积【总结】求阴影部分的面积的方法不唯一,有的是直接用公式法,有的是直接运用和差法,还有的是需要构造和差,还有的是运用等积转图8O图7D CB化法.总之不管你用什么方法,只要能正确求出阴影部分面积即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考求阴影部分面积【知识概述】计算平面图形得面积问题就是常见题型,求平面阴影部分得面积就是这类问题得难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形与圆、圆弧等基本图形组合而成得,在解此类问题时,要注意观察与分析图形,会分解与组合图形。

现介绍几种常用得方法、 一、转化法此法就就是通过等积变换、平移、旋转、割补等方法将不规则得图形转化成面积相等得规则图形,再利用规则图形得面积公式,计算出所求得不规则图形得面积。

例1. 如图1,点C 、D 就是以AB 为直径得半圆O 上得三等分点,AB=12,则图中由弦AC 、AD 与C D ⌒围成得阴影部分图形得面积为_________。

分析:连结CD 、OC 、OD,如图2、易证AB//CD,则∆∆A C D O C D和得面积相等,所以图中阴影部分得面积就等于扇形OCD 得面积。

易得∠=︒C O D 60,故S S O C D阴影扇形==⋅=60636062ππ。

例2、 如图,A 就是半径为1得⊙O 外得一点,OA=2,AB 就是⊙O得切线,B就是切点,弦BC ∥OA,连结AC,则阴影部分得面积等于_______.分析:一个图形得面积不易或难以求出时,可改求与其面积相等得图形面积,便可以使原来不规则得图形转化为规则图形、解:连结OB 、OC 。

∵BC ∥OA,∴S△ABC =S△OBC,∴S 阴影=S扇形OBC 、 ∵AB 就是⊙O 得切线,∴∠BO A=90°, ∵OB=1,OA=2,∴∠O BC=∠BOA=60°, ∴∠BOC= , ∴扇形OBC 就是圆得 . ∴S 阴影=S 扇形OBC= 二、与差法有一些图形结构复杂,通过观察,分析出不规则图形得面积就是由哪些规则图形组合而成得,再利用这些规则图形得面积得与或差来求,从而达到化繁为简得目得。

例3。

如图3就是一个商标得设计图案,AB=2B C=8,A D E ⌒为14圆,求阴影部分面积、分析:经观察图3可以分解出以下规则图形:矩形ABC D、扇形ADE 、R t E B C∆。

所以,S S S S A D E A B C DR t E B C 阴影扇形矩形=+-=⋅+⨯-⨯⨯=+∆9043604812412482ππ、三、重叠法就就是把所求阴影部分得面积问题转化为可求面积得规则图形得重叠部分得方法。

这类题阴影一般就是由几个图形叠加而成、要准确认清其结构,理顺图形间得大小关系、例4、 如图4,正方形得边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形得面积。

解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分得面积等于4个半圆得面积与与正方形面积得差。

故S aa a 阴影=⋅-=-2221222ππ()()、 代数法:析解:设每片叶形面积为x,每个空白部分得面积为y, 由面积关系列出方程组: 得, 所以 四、补形法将不规则图形补成特殊图形,利用特殊图形得面积求出原不规则图形得面积。

例5、 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形A BCD 所在阴影部分得面积。

解:延长BC 、AD,交于点E,因为∠=︒∠=︒A B 6090,,所以∠=︒E 30,又∠=︒==EDC CE CD DE 9023,所以,,易求得B E =23,所以S S S A B B EC D D E A B E C D E 阴影=-=⋅-⋅=∆∆1212332。

例2、(南充市)如图2,PA 切圆O于A,OP 交圆O于B,且PB=1,PA=,则阴影部分得面积S=____________。

析解:将图中阴影部分补上扇形O AB,得由勾股定理可得,解可得,所以 五、拼接法例6、 如图6,在一块长为a 、宽为b 得矩形草地上,有一条弯曲得柏油小路(小路任何地方得水平宽都就是c 个单位),求阴影部分草地得面积。

解:(1)将“小路”沿着左右两个边界“剪去";(2)将左侧得草地向右平移c个单位;(3)得到一个新得矩形(如图7)。

由于新矩形得纵向宽仍然为b,水平方向得长变成了()a c -,所以草地得面积为b a c a bb c()-=-。

六、特殊位置法例7. 如图8,已知两个半圆中长为4得弦A B与直径CD 平行,且与小半圆相切,那么图中阴影部分得面积等于_______。

分析:在大半圆中,任意移动小半圆得位置,阴影部分面积都保持不变,所以可将小半圆移动至两个半圆同圆心位置(如图9)。

解:移动小半圆至两半圆同圆心位置,如图9。

设切点为H,连结OH 、OB,由垂径定理,知B H A B ==122。

又AB 切小半圆于点H,故O HA B ⊥,故O B O H22- ==B H 24∴=-=-=S O B O H O B O H 阴影12121222222ππππ() 七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积得方法。

例8. 如图10,正方形得边长为a,分别以两个对角顶点为圆心、以a 为半径画弧,求图中阴影部分得面积。

解:设阴影部分得面积为x,剩下得两块形状、大小相同得每块面积为y,则图中正方形得面积就是x y +2,而x y +就是以半径为a 得圆面积得14。

故有x y a +=22,x y a +=π42。

解得x a =-()π212、即阴影部分得面积就是()π212-a 、需要说明得就是,在求阴影部分图形得面积问题时,要具体问题具体分析,从而选取一种合理、简捷得方法。

八、整体求解法例9:(广东韶关市)如右图12,,,,相互外离,它们得半径都就是,顺次连结四个圆心得到四边形,则图中四个扇形(阴影部分)得面积之与等于_____.(结果保留)析解:如果想将图中四个扇形得面积分别求出,显然就是不可能得,因此应考虑将四个扇形得面积整体求解,因为四边形得内角与为,从而可知所求阴影部分得面积可以组成一个圆得面积, 所以阴影部分面积练习 1、如图,在矩形ABCD 中,E 、F 分别就是边AD 、BC 得中点,点G、H 在DC 边上,且GH =D C.若AB =10,BC=12,则图中阴影部分面积为 、2、如图,正方形ABCD得面积为1,M 就是AB 得中点,则图中阴影部分得面积就是 、 3、如图,扇形OAB,∠AO B=90,⊙P 与OA 、OB分别相切于点F 、E,并且与弧A B切于点C,则扇形OAB 得面积与⊙P 得面积比就是 。

4、如图,四边形OABC 为菱形,点B 、C 在以点O为圆心得上,若OA =1,∠1=∠2,则扇形OEF 得面积为 、(第1题)F6、如图,AB 就是⊙O 1得直径,AO 1就是⊙O 2得直径,弦MN ∥AB ,且MN 与⊙O 2相切于C点,若⊙O 1得半径为2,则O1B、错误!、NC 与错误!所围成得阴影部分得面积就是 。

7、将一块三角板与半圆形量角器按图中方式叠放,重叠部分(阴影)得量角器圆弧()对应得中心角(∠A OB)为120º,AO 得长为4cm,则图中阴影部分得面积为( )A.cm 2B.cm 2 C 、c m2 D 。

c m28、如图,直径为6得半径,绕点逆时针旋转60°,此时点到了点,则图中阴影部分得面积就是( ) (A) (B) (C) (D)9、如图,在△A BC 中,AB = AC,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分得面积就是( )ﻩA 。

B. ﻩC 、ﻩ D .10、如图3,正方形A BCD 内接于⊙O ,直径M N∥AD,则阴影面积占圆面积: ( )A. B 。

C. D.11、如图,正方形ABC D边长为4,以B C为直径得半圆O 交对角线BD 于E .则直线CD 与⊙O得位置关系就是 ,阴影部分面积为 。

(结果保留π)12、如图,在R t△ABC 中,∠C=90°,A C=4,BC=2分别以AC 、BC 为直径画半圆,则图中阴影部分得面积为 。

(结果保留π)13、如图.矩形ABCD 中,AB=1,A D=、以A D得长为半径得⊙A交BC 边于点E,则图中阴影部分得面积为 。

13题14.如图,在半径为,圆心角等于450得扇形AO B内部 作一个正方形C DEF ,使点C 在OA 上,点D 、E 在O B上,点F在上,则阴影部分得面积为(结果保留) 、15、如下图,等腰Rt △ABC得直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边A C于点C1,于点B 1,设弧B C1,,B 1B围成得阴影部分得面积为S 1,然后以A 为圆心,AB 1为半径作弧B1C2,交斜边AC 于点C 2,于点B 2,设弧B 1C2,,B 2B1围成得阴影部分得面积为S 2,按此规律继续作下去,得到得阴影部分得面积S 3= .16、如上图,AB 就是⊙O 得直径,点D 在⊙O 上,∠DAB=45°,B C∥AD,CD ∥A B。

(1)判断直线CD 与⊙O 得位置关系,并说明理由;(2)若⊙O得半径为1,求图中阴影部分得面积(结果保留)第7题图O 1O 2(第8题图)第9题图AB CC A B12题与半圆O 1相切,则图中阴影部分得面积就是 A。

B. C. D.18、如图,从一个直径为2得圆形铁皮中剪下一个圆心角为60°得扇形ABC ,将剪下来得扇形围成一个圆锥,则圆锥得底面圆半径为( )A 、 B. C. D 、19、小刚用一张半径为24c m得扇形纸板做一个如图所示得圆锥形小丑帽子侧面(接缝忽略不计),如果做成得圆锥形小丑帽子得底面半径为10cm,那么这张扇形纸板得面积就是 .2\设AC 与DM 得交点为G,∵△AMG 与△CD G相似,AM=CD 、2 ∴S △AM G=1/12∵S 阴影=S △ADM +S △ACM —2S △AMG∴S 阴影=1/4+1/4-2/12=1/3ﻫ因此图中得阴影部分得面积就是1/3 3解:设圆P 得半径为r,连O C,PEﻫ则OC 经过点P,且OC 平分∠AOB,所以在等腰直角三角形OPE 中,PE=r,OP=√2r,ﻫ所以圆O 得半径为OP +PC=√2r+r 所以扇形OA B得面积=π(√2r+r)^2/4=(3+2√2)πr^2/4 圆P 得面积=πr^2所以扇形OAB 得面积与○P 得面积比 =(3+2√2)πr^2/4:πr^2ﻫ=(3+2√2)/4 4\连接O B∵OB 为半径 ∴OB =O C=BC=1 ∴∠O CB =∠A=60° ∴∠C OA =120° 又∵∠1=∠2(第19题)S扇形OEF=1/3π5\三角形AOC与三角形A′OC′全等,故刮雨刷AC扫过得面积等于扇形AOA′得面积-扇形COC′得面积. ∵OA=OA′,OC=OC′,AC=AC′ﻫ∴△AOC≌△A′OC′ﻫ刮雨刷AC扫过得面积=大扇形AOA′得面积—小扇形COC′得面积刮雨刷AC扫过得面积=90π×(65^2-15^2)/360=1000πcm26\边接O1N,O2C, ﻫS=S(三角形BO1N)+S(梯形CO2O1N)-S(1/4小圆10\ ON = rAB=sqrt(2)rﻫ大阴影面积=ON*AB/2 =sqrt(2)r^2/2 ﻫDN为45度弦,小阴影面积=2(45/360pi*r^2 —r^2 *sin22。

相关文档
最新文档