2020年中考数学题型专练三 阴影部分面积的相关计算(含答案)
中考数学 阴影部分面积-含答案
阴影部分面积未命名一、填空题1.如图,已知水平放置的圆柱形污水排水管道的截面半径12cmOB=,截面圆心O到污水面的距离6cmOC=,则截面上有污水部分的面积为________.【答案】48π【分析】连接OA,阴影部分的面积等于扇形AOB的面积与三角形AOB的面积差,计算圆心角∠AOB的大小即可.【详解】如图,连接OA,∵OB=12,OC=6,OC⊥AB,∴sin∠OBA=12OCOB=,AC=BC,∴∠OBA=30°,BC AB=2BC ∵OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=120°,∴212012=360AOB S π⨯⨯扇形=48π,∴11=622AOB S AB OC ⨯=⨯△∴阴影部分的面积为-AOB AOB S S △扇形=48π故答案为:48π【点睛】本题考查了垂径定理,特殊角的三角函数,扇形的面积,三角形的面积,熟练进行图形面积分割,并运用相应的公式计算是解题的关键.2.如图,已知Rt ABC 中,6AB =,8BC =,分别以点A 、点C 为圆心,以2AC 长为半径画圆弧,则图中阴影部分的面积为____________.(结果保留π)【答案】2524.4π-【分析】 先计算,,A C AC ∠+∠ 再由阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,再分别计算ABC 的面积,圆心角为90,︒ 以12AC 为半径的扇形面积,从而可得答案. 【详解】 解: Rt ABC 中,6AB =,8BC =,90,B ∠=︒90,10,A C AC ∴∠+∠=︒===115,6824,22ABC AC S ∴==⨯⨯= 又阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,290525,3604S ππ⨯∴==扇形 2524.4S π∴=-阴影 故答案为:2524.4π- 【点睛】本题考查的是勾股定理的应用,扇形面积的计算,掌握扇形面积的计算是解题的关键.3.如图,在等腰Rt ABC △中,90BAC ∠=︒,BC =A ,B ,C 为圆心,以12AB 的长为半径画弧分别与ABC 的边相交,则图中阴影部分的面积为______.(结果保留π)【答案】82π-【分析】三角形面积公式S=1AC AB 2⨯,扇形面积公式:S =2360n r π,阴影面积=三角形面积—180°扇形的面积,计算即可.【详解】∵等腰Rt ABC △中,90BAC ∠=︒,BC =∴AB=BC•sin45°==42, ∴S △ABC =144=82⨯⨯, ∵∠A+∠B+∠C=180°, ∴1=4=2212AB ⨯, 以2为半径,180°扇形是半圆=212=22ππ⨯, 阴影面积=8-2π.故答案为:8-2π.【点睛】本题主要考查扇形的面积公式,三角形面积,熟知扇形的面积公式的运用,解题的关键是阴影面积=等腰直角三角形的面积-以2为半径180°扇形面积.4.如图,在正方形ABCD 的边长为6,以D 为圆心,4为半径作圆弧.以C 为圆心,6为半径作圆弧.若图中阴影部分的面积分别为12S S 、时,则12S S -=_____________.(结果保留π)【答案】1336π-【分析】根据割补法可进行求解.【详解】解:由题意可得:设以以D 为圆心,4为半径作圆弧所在的扇形面积为S ,则有: 222906904636,==94360360ABCD DCB S S S ππππ⨯⨯====正方形扇形,, ∴12=1336ABCD DCB S S S S S π-=+--正方形扇形;故答案为1336π-.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算是解题的关键.5.如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)【答案】4π 【分析】由图可知,阴影部分的面积是扇形ABO 和扇形DEO 的面积之和,然后根据题目中的数据,可以求得AB 、OA 、DE 的长,∠BAO 和∠EDO 的度数,从而可以解答本题.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵AB =AO ,∴△ABO 是等边三角形,∴∠BAO =60°,∴∠EDO =30°,∵AC =2,∴OA =OD =1,∴图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点睛】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.6.如图,在△ABC 中,∠A =90°,AB =AC =2,以AB 为直径的圆交BC 于点D ,求图中阴影部分的面积为_____.【答案】1【分析】连接AD ,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD ,∵AB =BC =2,∠A =90°,∴∠C =∠B =45°,∴∠BAD =45°,∴BD =AD ,∴BD =AD∴由BD ,AD 组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD 的面积,∴S △ABD =12AD•BD =121.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.7.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆交于点E 、F ,则图中阴影部分的面积是_______.【答案】142π- 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】。
2020年中考数学三角形专题练习(含答案)
2020年中考数学三角形专题练习【名师精选全国真题,值得下载练习】一.选择题(每题3分,共30分)1.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边中线的交点B.三条角平分线的交点C.三边高的交点D.三边垂直平分线的交点2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AC,则∠BCD的度数等于()A.20°B.30°C.40°D.50°4.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°5.适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°,(3)a=5,b=12,c=13,(4)a=52,b=122,c=132,A.1个B.2个C.3个D.4个6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为()A.36°B.39°C.38°D.40°7.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a,最大等边三角形的边长为b,则a与b的关系为()A.b=3a B.b=5a C.b=a D.b=a8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE.分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH =45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④10.如图,在Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P 作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=P A;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共30分)11.如图,△ABC为等边三角形,D、E分別是AC、BC上的点,且AD=CE,AE与BD 相交于点P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为.12.已知等腰△ABC中,顶角∠A为36°,BD平分∠ABC交AC于D,那么AD:AC =.13.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA ⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)14.已知点O是三角形ABC的重心,DE经过点O且平行于BC,则△ADE与四边形DBCE的面积比为.15.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =5cm,AC=3cm,BC=4cm,则△DEB的周长为.16.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=.18.如图,在△ABC中,中线BD,CE相交于点O,若S△ABC=4,则S△DOE=.19.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.20.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造根.三.解答题(每题8分,共40分)21.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC 于E,点F是AE的中点.(1)线段FD与线段FC的数量关系,位置关系;(2)如图2,将△BDE绕点B逆时针旋转a(0°<a<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.24.已知,如图,∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC.求证:E是CD的中点.25.△ABC是等边三角形,BD是角平分线,过点D作DE⊥AB于E,交BC边的延长线于点F,AE=2.(1)求证:△DCF是等腰三角形;(2)求BF的长.参考答案一.选择题1.解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选:A.2.解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.解:∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B.4.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.5.解:(1)∵a=b,∠A=45°,∴∠A=∠B=45°,∴∠C=90°,∴△ABC是直角三角形;(2)∵∠A=32°,∠B=58°,∴∠C=90°,∴△ABC是直角三角形;(3)a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形;(4)a=52,b=122,c=132,∴a2+b2≠c2,∴△ABC不是直角三角形.∴是直角三角形的有(1)(2)(3).故选:C.6.解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠P=38°,∴∠C=2×38°﹣40°=36°,故选:A.7.解:设第二个小的等边三角形的边长为x,则第三个小的等边三角形的边长为:x+a,第四个小的等边三角形的边长为:x+2a,最大的个小的等边三角形的边长b=x+3a,又∵b=3x,∴3x=x+3a,∴x=a,∴b=3x=a,故选:D.8.解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.解:∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°,∵EH平分∠AEG,∴∠AEH=∠GEH∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG,∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°,∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确,∴∠AFE=∠CFG=90°,∴∠FCG=∠FGC=45°,∴CF=FG,∵∠ADC=∠GFC=90°,∠ACD=∠GCF,AC=GC,∴△ADC≌△GFC(AAS),∴AD=CF=FG,∵AE=EG,∴EF=DE,∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠ECD=∠DBG,EC=GB,∵∠DHC=∠DHB,∠HCD=∠HBD,HD=HD,∴△HDC≌△HDB(AAS),∴HC=HB,∴HE=EG,∵∠DHE=∠DHG,DH=DH,∴△HDE≌△HDG(SAS),∴∠HDG=∠HDE=45°,故①正确,∴DE=DM,EF=DE≠2DM,故③错误,作ET∥AC交CD于T.∵∠DET=∠A=45°,∠DTE=∠ACD=45°,∴DE=DT=DG,∵DA=DC,∴AE=CT,∴CG=CT+TG=AE+2DG,故④正确,故选:B.10.解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,故②正确.在△APH和△FPD中,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.二.填空题(共10小题)11.解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE,BD=AE,∴∠APD=∠ABP+∠P AB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴BP=2PF=8,∵PD=1,∴BD=BP+PD=9,∴AE=BD=9.故答案为9.12.解:假设AB=AC=1,那么在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC,∴AC:BC=BC:DC,而BC=BD=DA(等腰的性质)所以设AD=x,那么CD=1﹣x,1:x=x:(1﹣x),所以舍负根,得到:x=,∴AD:AC=.13.解:①∵AH是PC的垂直平分线,∴P A=AC=AB,∵AD平分∠P AB,∴∠P AD=∠BAD,在△P AD和△BAD中,,∴△P AD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠P AD,∴∠BAC=∠CAQ+∠BAQ=∠P AD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠P AB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.14.解:连接AO并延长交BC于F,如图,∵点O是三角形ABC的重心,∴OA=2OF,∴AO:AF=2:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△ADE与四边形DBCE的面积比为4:5.故答案为4:5.15.解:∵AD平分∠CAB交BC于D,DE⊥AB,DC⊥AC,∴DC=DE,在Rt△ADC和△ADE中,∴Rt△ADC≌△ADE(HL),∴AE=AC=3,∴BE=AB=5﹣3=2,∴△DEB的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).故答案为6cm.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.17.解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG===4,故答案为4.18.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=,∴△DOE∽△BOC,,∴S△DOE=S△BDE=S△ABD=S△ABC==,故答案为.19.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.故答案为:48;28.20.解:∵BC=AB,∴∠BCA=∠A=15°,∴∠DBC=∠BCA+∠A=30°.同理,∠CDB=∠DBC=30°,∴∠DCE=∠CDB+∠A=45°,∠DEC=∠DCE=45°,∴∠FDE=∠DEC+∠A=60°,∠DFE=∠FDE=60°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有5条.故答案是:5.三.解答题(共5小题)21.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.22.(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD,∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°,∵AB=AC,∴∠ABC=∠ACB=50°,∴∠A=180°﹣50°﹣50°=80°.23.解:(1)如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FCA,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC,故答案为:DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF≤3.24.证明:作EF⊥AB于点F,∵∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC,∴EF=ED,EF=EC,∴ED=EC,∴点E为CD的中点.25.证明:(1)∵△ABC是等边三角形,BD是中线,∴∠A=∠ACB=60°,AC=BC,AD=CD=AC,∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=4,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴△DCF是等腰三角形,(2)∵DC=CF,∴BF=BC+CF=2AD+AD=12。
阴影部分面积专题复习经典例题(含答案)
小升初阴影部分面积专题姓名:1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.()3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:cm)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3.计算如图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点组合图形的面积.专题平面图形的认识与计算.分析由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.5.求如图阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点圆、圆环的面积.分析先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可.解答解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点组合图形的面积.专题平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
利用扇形面积公式求阴影部分面积(精选4种类型32道)—2024学年九年级数学上册(解析版)
z k.com利用扇形面积公式求阴影部分面积(精选4种类型32道)1.如图,在△ABC 中,∠A =30°,∠ACB =90°,BC =4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则图中阴影部分的面积是( )A .8√3−4πB .8√3−2πC .16√3−8πD .16√3−4π【答案】A【分析】根据直角三角形的性质得到AC =4√3,根据扇形和三角形的面积公式即可得到结论. 【详解】解:∵在Rt △ABC 中,∠A =30°,∠ACB =90°,BC =4, ∴AB =2BC =8,AC =√8!−4!=4√3, ∴阴影部分的面积=S △#$%−S 扇形#$&='!×4×4√3−()*⋅,-√(/!(0)=8√3−4π,故选:A .【点睛】本题考查了扇形面积的计算,含30°角的直角三角形的性质,正确的识别图形是解题的关键.2.如图,以Rt △AOB 直角顶点为圆心、以一定的长为半径画弧CD ,恰好与边AB 相切,分别交OA ,OB 于点C ,D ,已知OA =OB =4,则图中阴影部分的面积是( )A .8−2πB .2π−√!!C .8−4πD .4π−2√2【答案】A【分析】过点O 作OE ⊥AB ,交AB 于点E ,先求出扇形的半径长,根据阴影部分的面积等于Rt △AOB 的面积减去扇形COD 的面积即可求解.【详解】过点O 作OE ⊥AB ,交AB 于点E ,com∵Rt △AOB 中,OA =OB =4, ∴AB =√OA !+OB !=4√2, ∴OE =2√2,阴影部分的面积=S △#1%−S 扇形#1%='!⋅OA ⋅OB −2)π⋅,!√!/!(0)='!×4×4−2π=8−2π.故选:A .【点睛】本题考查了不规则图形的面积,涉及勾股定理,扇形面积公式,熟练掌握知识点是解题的关键. 3.如图,在正方形ABCD 中,AB =2,若AC 绕点C 旋转后,点A 落在CD 的延长线上的点A 3处,点A 经过的路A .π-−2 B .π!−1C .π(−1D .π−2【答案】D【分析】根据正方形的性质得到∠ACD =45°,由勾股股定理可得AC =2√2,利用S 阴影=S 扇形$##"−S △#$&解题即可.【详解】解:∵ABCD 是正方形, ∴∠ACD =45°,AB =BC =DA =2, ∴AC =√AB !+BC !=√2!+2!=2√2, ∴S 阴影=S 扇形$##"−S △#$&=-5*×,!√!/!(0)−'!×2×2=π−2,故选D .【点睛】本题考查正方形的性质,扇形的面积,掌握正方形的性质是解题的关键.zcm4.如图,以边长为4的等边△ABC 顶点A 为圆心,一定的长为半径画弧,恰好与BC 边相切,分别交AB ,AC 于点D ,E ,则图中阴影部分的面积是( )A .4√3−π B .8√3−πC .(08π)√((D .4√3−2π【答案】D【分析】作AF ⊥BC ,再根据勾股定理求出AF ,然后根据阴影部分的面积= S △#%$−S 扇形#&:得出答案. 【详解】解:如图所示,过点A 作AF ⊥BC ,交BC 于点F .∵△ABC 是等边三角形,BC =4, ∴CF =BF =2.在Rt △ACF 中,AF =√AC !−CF !=2√3.∴S 阴影=S △#%$−S 扇形#&:=12×4×2√3−60π×,!√3/2360=4√3−2π.故选:D .【点睛】本题主要考查了求阴影部分的面积,涉及等边三角形的性质,勾股定理及扇形面积计算等知识,将阴影部分的面积转化为三角形的面积-扇形的面积是解题的关键.5.如图,扇形的圆心角为90°,半径OC =4,∠AOC =60°,CD ⊥OB 于点D ,则阴影部分的面积是( )A .-(π−√3B .π−4√3C .π−2√3D .-*(−2√3.com【答案】D【分析】根据S 阴=S 扇形1$%−S △1$&求解即可. 【详解】解:∵∠AOB =90°,∠AOC =60°, ∴∠BOC =90°−60°=30°, ∵CD ⊥OB , ∴∠CDO =90°,∴CD ='!OC =2,OD =√OC !−CD !=√4!−2!=2√3, ∴S 阴=S 扇形1$%−S ;1$&=()*×-!(0)−'!×2×2√3=-(π−2√3,故选:D .【点睛】本题考查了扇形的面积公式,直角三角形的性质,勾股定理,三角形的面积,解题的关键是利用分割法求阴影部分面积.6.如图,在Rt △ABC 中,∠BAC =90°,BC =8,∠C =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点A .8√3−<(π B .16√3−<(πC .8√3−'0(π D .16√3−'0(π【答案】A【分析】先求出AB ='!BC =4,∠B =60°,AC =√BC !−AB !=√8!−4!=4√3,再由S △$%&−S扇形$%'即可求出答案.【详解】解:在Rt △ABC 中,∠BAC =90°,BC =8,∠C =30°, ∴AB ='!BC =4,∠B =60°,∴AC =√BC !−AB !=√8!−4!=4√3, ∴图中阴影部分的面积是S △$%&−S扇形$%'='!AB ⋅AC −0)*×-!(0)='!×4×4√3−<(π=8√3−<(π.故选:A【点睛】此题考查了含30°角的直角三角形的性质、勾股定理、扇形面积等知识,准确计算是解题的关键.z7.如图,正六边形边长为a ,分别以C 、F 为圆心,a 长为半径画弧,则图中阴影部分的面积是( )A.C (√(!−!(πD a !B .C(√(!−'(πD a !C .C(√(-−!(πD a !D .C3√3−!(πD a !【答案】A【分析】根据S 阴影=S 正六边形−2S 扇形计算即可. 【详解】边长为a 的等边三角形的面积为:'!×a ×√(!a =√(-a !, 则正六边形的面积S 正六边形=6×√(-a !=(√(!a !, 正六边形的内角度数为120°,即∠EFA =∠DCB =120°, 则S 扇形='!)°×*×>!(0)°=*>!(则阴影的面积为:S 阴影=S 正六边形−2S 扇形=(√(!a !−!*>!(=C(√(!−!(πD a !,故选:A .【点睛】本题考查了正六边形的性质、等边三角形的面积公式和扇形的面积公式等知识,得到S 阴影=S 正六边形−2S 扇形是解答本题的关键.8.如图,在Rt △ABC 中,∠A =90°,AB =AC =4,分别以点B ,C 为圆心,线段BC 长的一半为半径作圆弧,交AB ,BC ,AC 于点D ,E ,F ,则图中阴影部分的面积是( )A .16−2πB .8−4πC .8−2πD .4−π【答案】C【分析】阴影部分的面积等于△ABC 的面积减去空白处的面积即可得出答案. 【详解】解:等腰直角三角形ABC 中,∠A =90°,AB =AC =4,∴∠B =∠C =45°,BC =√2AB =4√2, ∵E 为BC 中点,∴BE =CE ='!BC =2√2,∴阴影部分的面积S =S △#%$−S 扇形%&:−S 扇形$:?='!×4×4−-5*×(!√!)!(0)×2=8−2π.故选:C .【点睛】本题考查了等腰直角三角形的性质、扇形的面积公式,正确熟记扇形的面积公式是解此题的关键,题目比较好,难度适中.9.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径等于2,则图中阴影部分的面积是( )【答案】C【分析】由题意可知S △#1%=S △1&%,所以图中阴影部分的面积=S 扇形1#%=0)(0)π×2!=!(π.【详解】解:∵正六边形ABCDEF 内接于⊙O , ∴∠ABD =90°,∠AOB =(0)°0=60°,OA =OD ,∴S △#1%=S △1&%,∴图中阴影部分的面积=S 扇形1#%=0)(0)π×2!=!(π,故选:C .【点睛】本题考查了正多边形与圆,将阴影部分面积转化为扇形面积是解题的关键.10.如图,菱形OABC 的三个顶点A ,B ,C 在⊙O 上,对角线AC ,OB 交于点D ,若⊙O 的半径是2√3,则图中阴影部分的面积是( )z co mA .2π B .6π C .√((π D .√3π【答案】A【分析】根据四边形OABC 是菱形,得BC =OC =OB ,即△COB 是等边三角形,根据S △#&%=S △1$&,所以图中阴影部分的面积=S 扇形$1% 【详解】解:∵四边形OABC 是菱形, ∴BC =OC =OB, ∴△COB 是等边三角形, ∴∠COB =60°, ∵S △#&%=S △1$&,∴图中阴影部分的面积=S 扇形$1%=0)*×(!√()!(0)=2π.故选∶A .【点睛】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.11.小明将直径为6cm 的半圆绕点A 逆时针旋转60°设计了如图所示的图案,那么图中阴影部分的面积是( )A .4.5πcm 2B .6πcm 2C .9πcm 2D .18πcm 2【答案】B【分析】根据整体思想,可知S 阴影=S 半圆#%"+S 扇形#%%"−S 半圆#%=S 扇形#%%",再利用扇形面积公式计算即可.z【详解】解:∵S 阴影=S 半圆#%"+S 扇形#%%"−S 半圆#%, 而根据旋转的性质可知S 半圆#%"=S 半圆#%,∴S 阴影=S 半圆#%"+S 扇形#%%"−S 半圆#%=S 扇形#%%", 而由题意可知AB =6cm ,∠BAB 3=60°, 即S 阴影=0)⋅*⋅0!(0)=6π(cm !).故选:B .【点睛】本题考查的是扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.12.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =√2,则图中阴影部分的面积是( )A .*-B .'!+√!-C .√!!D .'!+√!!【答案】A【分析】先利用圆周角定理可得∠ACB =90°,然后可得△ABC 是等腰直角三角形,进而可得△AOC 和△BOC 都为等腰直角三角形,于是得到S △#1$=S △%1$,然后根据扇形面积公式可进行求解.【详解】解:∵AB 为直径, ∴∠ACB =90°, ∵AC =BC =√2,∴△ABC 是等腰直角三角形, ∴AB =√2AC =2,则OA =OB =1, ∴OC ⊥AB ,∴△AOC 和△BOC 都为等腰直角三角形, ∴S △#1$=S △%1$, ∴S 阴影=S 扇形#1$=2)⋅*×'!(0)=*-;故选:A .【点睛】本题主要考查扇形面积公式及圆周角定理,熟练掌握扇形面积公式及圆周角定理是解题的关键.z13.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M .连接OC ,DB .如果OC∥DB ,图中阴影部分的面积是2π,那么图中阴影部分的弧长是( )A.√((π B .!√((π C .√3π D .2√3π【答案】B【分析】连接OD ,BC ,根据垂径定理和等腰三角形的性质得到DM =CM ,∠COB =∠BOD ,推出ΔBOD 是等边三角形,得到∠BOC =60°,之后证明阴影部分面积等于扇形面积,继而求出圆的半径,根据弧长公式即可得到结论.【详解】解:连接OD ,BC ,∵CD ⊥AB ,OC =OD ,∴DM =CM ,∠COB =∠BOD , ∵OC//BD , ∴∠COB =∠OBD , ∴∠BOD =∠OBD , ∴OD =DB ,∴ΔBOD 是等边三角形, ∴∠BOD =60°, ∴∠BOC =60°, ∵DM =CM , ∴S ;1%$=S ;1%&, ∵OC//DB , ∴S ;1%&=S ;$%&,z∴S ;1%$=S ;&%$,∴图中阴影部分的面积=扇形COB 的面积 设扇形的半径为r ,则0)*×A !(0)=2π,∴r =2√3, ∴弧BC 的长=0)*×!√('<)=!√(*(, 故选:B .【点睛】本题考查了垂径定理、扇形面积的计算、圆周角定理、弧长的计算,解答本题的关键是证明ΔBOD 是等边三角形.14.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,把△ABC 绕点B 按顺时针方向旋转90°后得到△A 3BC 3,则线段AC 在上述旋转过程中所扫过部分(阴影部分)的面积是( )A .*!B .πC .*-D .B*-【答案】C【分析】先求出AB 、BC 的长度,然后观察图像可以得到S 阴=S 扇#%#3+S △#"%$"−S 扇$%$3−S △#%$,用扇形面积计算公式代入数据计算即可.【详解】在Rt △ABC 中,∵∠ABC =30°,AC =1, ∴AB =2,BC =√AB !−AC !=√3,∵把△ABC 绕点B 按顺时针方向旋转90°后得到△A 3BC 3, ∴∠ABA′=90°,∠CBC′=90°,S △#%$=S △#"%$", 由图可得,S 阴=S 扇#%#3+S △#"%$"−S 扇$%$3−S △#%$, 化简得S 阴=S 扇#%#3−S 扇$%$3, 即S 阴=2)*×!!(0)−2)*×(√()!(0)=*-,故选:C .z 【点睛】本题考查了扇形面积计算,旋转的性质,求阴影部分面积的主要思路是将不规则图形转化为规则图形的面积.15.如图,半径为5的扇形AOB 中,∠AOB =90°,点C 在OB 上,点E 在OA 上,点D 在弧AB 上,四边形OCDE 是正方形,则图中阴影部分的面积等于( )A .!5*- B .!5*< C .!5*'0 D .!5*(! 【答案】B【分析】连接OD ,交CE 于点F .由正方形的性质得出S △1:?=S △?$&,∠EOD =45°.即根据扇形面积公式求出扇形AOD 的面积即可.【详解】如图,连接OD ,交CE 于点F .∵四边形OCDE 是正方形,∴S △1:?=S △?$&,∠EOD =45°,∴S 阴=S 扇形#1&=-5*×5!(0)=!5*<. 故选B .【点睛】本题考查正方形的性质,扇形的面积公式.理解S 阴=S 扇形#1&是解题关键.16.已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是( )zA.*!B .π﹣2C .1+*!D .1﹣*! 【答案】B【分析】如图,标注顶点,连接AB ,由图形的对称性可得阴影部分面积=S 扇形AOB-S △ABO ,从而可得答案.【详解】解:标注顶点,连接AB ,由对称性可得:阴影部分面积=S 扇形AOB-S △ABO=2)*×!!(0)−'!×2×2=π−2. 故选:B .【点睛】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键. !17.如图,在矩形ABCD 中,AB =1,AD =2,取AD 的中点E ,连接BE 、CE ,以BE 为半径,B 为圆心画弧交BC 于G ;以CE 为半径,C 为圆心画弧交BC 于F ,则阴影部分面积是 .【答案】*!−1【分析】根据题意得出∠GBE =∠AEB =45°,BE =√2,进而根据阴影部分的面积=2S 扇形%:C −S △%:$,求出答案.【详解】解:在矩形ABCD 中,∵AB =1,AD =2,E 是AD 中点,∴ED =AE =1,AD ∥BC ,∴∠ABE =∠AEB =45°,∴∠GBE =∠AEB =45°,∴AB =AE =1,BE =√2,∴图中阴影部分的面积=2S 扇形%:C −S △%:$ =2×-5*×(√!)!(0)−'!×1×2=*!−1. 故答案为:*!−1.【点睛】此题主要考查了扇形面积的计算以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.18.如图,正方形ABCD 的边长是4,分别以点A ,B ,C ,D 为圆心,2为半径作圆,则图中阴影部分的面 【答案】16−4π/−4π+16 【分析】分析出阴影面积=正方形面积−圆的面积,再利用相应的面积公式计算即可.【详解】解:由图得,阴影面积=正方形面积−4个扇形面积,即阴影面积=正方形面积−圆的面积,∴S 阴影=42−π⋅2!=16−4π.故答案为:16−4π.【点睛】本题考查了扇形面积的求法,正方形面积及圆的面积的求法是解题关键.19.如图,在扇形OBA 中,∠AOB =135°,AC ∥OB ,交AB⌢于点C ,过点C 作AC 的垂线,交OB 于点D .若OA =2,则图中阴影部分的面积之和为 .z【答案】(!π−3/−3+(!π 【分析】作OH ⊥AC 于点H ,则∠OHC =90°,AH =HC ='!AC ,先证明△AOH 是等腰直角三角形,则AH =OH =√!!AO =√2,AH =HC =OH ,再证明四边形CDOH 是正方形,利用S 扇形)%$−S △$)*−S 正方形)'&*即可得到答案.【详解】解:如图,作OH ⊥AC 于点H ,则∠OHC =∠AHO =90°,AH =HC ='!AC ,∵AC ∥OB ,∴∠DOH =180°−∠CHO =90°,∴∠AOH =∠AOB −∠DOH =45°,∴△AOH 是等腰直角三角形,∴AH =OH =√!!AO =√2,AH =HC =OH =√2,∵过点C 作AC 的垂线,交OB 于点D .∴∠DCH =90°,∴∠DCH =∠DOH =∠CHO =90°,∴四边形CDOH 是正方形,∴阴影部分的面积之和为=S扇形)%$−S △$)*−S 正方形)'&*='(5*×!!(0)−'!AH ⋅OH −OH !=(!π−3. 故答案为:(!π−3 【点睛】此题考查了扇形面积、正方形的判定和性质、等腰直角三角形的判定和性质、垂径定理等知识,证明△AOH 是等腰直角三角形是正方形是解题的关键.z 20.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O 3,B 3,连接BB 3,则图中阴影部分的面积是 .【答案】2√3−!*(【分析】连接OO 3,BO 3,根据旋转的性质得到∠OAO 3=60°,推出△OAO 3是等边三角形,得到∠AOO 3=60°,推出△OO 3B 是等边三角形,得到∠AO 3B =120°,得到∠O 3B 3B =∠O 3BB 3=30°,根据图形的面积公式即可得到答案.【详解】解:连接OO 3,BO 3,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO 3=60°, ∴△OAO 3是等边三角形,∴∠AOO 3=60°,OO 3=OA ,∴当O 3中⊙O 上,∵∠AOB =120°,∴∠O 3OB =60°,∴△OO 3B 是等边三角形,∴∠AO 3B =120°,∵∠AO 3B 3=120°,∴∠B 3O 3B =120°,∴∠O 3B 3B =∠O 3BB 3=30°,z ∴图中阴影部分的面积=S △%"1"%−(S 扇形1"1%−S △11"%)=12×1×2√3−(60⋅π×2!360−12×2×√3) =2√3−!*(,故答案为:2√3−!*(.【点睛】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.21.如图,AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为O .以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是 .【答案】!)*(−8√3【分析】如图,连接CE ,BE .图中S 阴影=S 扇形%$:−S 扇形%1&−S ;1$:.根据已知条件易求得OB =OC =OD =4,BC =CE =8.∠ECB =60°,OE =4√3所以由扇形面积公式、三角形面积公式进行解答即可. 【详解】解:如图,连接CE ,BE .∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB , ∴∠ACB =90°,OB =OC =OD =4,BC =CE =8,CE =BE ,∴CE =BE =BC ,∴△BCE 是等边三角形,z ∠BCE =60°.又∵OE∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴OE =√CE !−OE !=4√3,∴S 阴影=S 扇形%$:−S 扇形%1&−S ;1$:=0)*×<!(0)−'-π×4!−'!×4×4√3=!)*(−8√3, 故答案为:!)*(−8√3.【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.22.如图,AB 为半圆O 的直径,AB =4,将半圆O 沿直线AO 向右平移使圆心O 与点B 重合得到半圆B ,AB⌢与OB3⌢相交于点C ,则图中阴影部分的面积是 .【答案】-(π−√3 【分析】连接OC,BC ,作CD ⊥AB 于点D ,先证明△OBC 是等边三角形,根据勾股定理求出CD 的长,然后根据S 阴影=2CS 扇形1%$−S △1$&D 求解即可. 【详解】连接OC,BC ,作CD ⊥AB 于点D ,由题意可知,OB =OC =BC =2,∴△OBC 是等边三角形,∴∠COB =60°,OD =BD =1,∴CD =√2!−1!=√3,∴S 阴影=2CS 扇形1%$−S △1$&D=2V 60π×2!360−12×1×√3W =-(π−√3.故答案为:-(π−√3.z【点睛】本题考查了不规则图形的面积计算,勾股定理,等边三角形的判定与性质,证明△OBC 是等边三角形是解答本题的关键.23.矩形ABCD 中,AB =2,以A 为圆心,AB 为半径作圆弧交于AD 点M ,且M 为边AD 的中点,以AD 为直径的圆交弧BM 于点E ,则阴影部分面积 .【答案】!(π+√3【分析】连接AE 、ME 根据S 阴=S 半圆−S 扇形#:D −S 弓形#:即可求值.【详解】解:如图,连接AE 、ME ,由题意可得:AE =AB =2,AM =ME =2,∴△AEM 是等边三角形, ∵S 阴=S 半圆−S 扇形#:D −S 弓形#:,其中,S 半圆='!π×2!=2π, ∵∠MAE =60°,∠BAE =30°,∴S 扇形#:D =60360×π×2!=23π ∴S 弓形#:=S 扇形D#:−S △#D:=23π−12×2×√3 =23π−√3 ∴S 阴=2π−!(π−C !(π−√3D =!(π+√3, 故答案为:!(π+√3.z【点睛】本题主要考查扇形面积的计算方法,把求不规则图形的面积通常转化为求规则图形的面积是解题的关键. 24.如图,曲线AMNB 和MON 是两个半圆,MN∥AB ,大半圆半径为4,则阴影部分的面积是 .【答案】8π−8【分析】连接OM 、ON ,则OM ⊥ON ,阴影部分面积为扇形MON 的面积+半圆MON 的面积−三角形MON 的面积.【详解】解:如图,连接OM 、ON ,∵ MN 是半圆MON 的直径,∴OM ⊥ON ,且OM =ON =4,∴S △D1E ='!OM ×ON ='!×4×4=8,MN =√4!+4!=4√2,∴S 半圆D1E ='!π×Y4√2÷2[!=4π,S 扇形D1E =2)(0)×π×4!=4π,∴S 阴影=S 扇形D1E +S 半圆D1E −S △D1E =4π+4π−8=8π−8,故答案为:8π−8.【点睛】本题考查了组合图形的面积计算,涉及到扇形面积、三角形面积、半圆的面积的计算,解题的关键是把不规则图形面积计算通过割补的方法转化为规则的已学过的图形面积的计算.zx x k co m25.如图,矩形ABCD 中,AB =8,BC =6,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S '−S !为 .【答案】48-13π【分析】根据图形可以求出BF 的长,然后根据图形即可求出S '−S !.【详解】∵在矩形ABCD 中,AB=8,BC=6,F 是AB 中点,∴BF=BG=4,∴S '=S 矩形#%$&−S 扇形#&:−S 扇形%?C +S !,∴S '-S !=6×8-2)*×0!(0)-2)*×-!(0)=48-13π,故答案为:48-13π.【点睛】此题考查扇形的面积公式,矩形的性质.26.如图,在直角三角形ABC 中,∠C 是直角,AC =a ,BC =b .分别以直角边AC 和BC 为直径画半圆,则阴影部分的面积是 .(用含有a 、b 的代数式表示且结果保留π)【答案】*>!<+*F !<−'!ab . 【分析】图中阴影部分的面积为两个半圆的面积-三角形的面积,然后列式计算即可.【详解】设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:z∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC 的面积是:S3+S4+S5,阴影部分的面积是:S1+S2+S4, ∴图中阴影部分的面积为两个半圆的面积减去三角形的面积,即阴影部分的面积= 12π×C >!D !+12π×C F !D !−'!ab =*>!<+*F !<−'!ab . 【点睛】本题考查扇形面积的计算,正确分析出图形的计算方法是解题关键.27.如图,在直角△ABC 中,∠BAC =90°,AB =3,AC =4,分别以AB 、AC 为直径作圆,则图中阴影部分的面积是 .【答案】!5<π-6 【分析】观察图形发现:阴影部分的面积=两个半圆的面积-直角三角形的面积,根据半圆面积公式和直角三角形面积公式求面积即可. 【详解】解:S 阴影=S 大半圆+ S 小半圆-S △ ='!·((!)!π+'!·(-!)!π-(×-! =2<π+2π−6=!5<π−6.故图中阴影部分的面积是!5<π−6.故答案为!5<π−6. 【点睛】此题考查了圆面积和直角三角形面积,关键是由图形发现:阴影部分的面积=两个半圆的面积-直角三角形的面积..c o m28.如图,在矩形ABCD 中,AB =6,BC =4,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是 .【答案】13π−24【分析】根据扇形的面积公式和矩形的性质即可得到结论.【详解】解:∵在矩形ABCD 中,AB =6,BC =4,∠A =∠C =90°,∴CD =AB =6,AD =BC =4,∴图中阴影部分的面积=S 扇形?$&−CS 矩形#%$&−S 扇形&#:D=90π×6!360−V6×4−90π×4!360W =13π−24,故答案为:13π−24.【点睛】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.E ,以CB 长为半径画弧,交CD 于点H ,两弧交于点B ,则图中形成的阴影部分的面积是 .【答案】34π−60【分析】根据扇形的面积公式和矩形的性质即可得到结论.【详解】∵在矩形ABCD 中,AB=10,AD=6,∠A=∠C=90°,∴CD=AB=10,AD=BC=6,z ∴图中阴影部分的面积= S 扇形#%:−(S 矩形#%$&−S 扇形$%G )=90×π×10!360−(10×6−90×π×6!360) =25π−(60−9π)=34π−60,故答案为:34π−60.【点睛】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.30.如图,扇形AOB 中,半径OA =2,圆心角∠AOB =60°,以OA 为直径的半圆交OB 于点C ,则图中两个阴影部分面积的差的绝对值是 .【答案】*0 【分析】先计算出半圆面积,再计算出扇形OAB 的面积,通过观察,图中两个阴影部分面积的差的绝对值为半圆面积减去扇形AOB 的面积的差的绝对值,即可得答案. 【详解】解:由OA =2可得半圆的半径为1,则半圆面积为'!×π×1!=*!,扇形AOB 面积为0)×*×!!(0)=!*(,则图中两个阴影部分面积的差的绝对值为|*!−!*(|=*0, 故答案为:*0. 【点睛】本题考查了圆面积及扇形面积的求法,解题的关键是熟练掌握这两种图形的计算方法.31.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是 .z【答案】3π-6【分析】连接BE ,可得△ABE 是等腰直角三角形,弓形BE 的面积=π−2,再根据阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-△BCE 的面积,即可求解.【详解】连接BE ,∵在正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,∴∠AEB=90°,即:AC ⊥BE ,∵∠CAB=45°,∴△ABE 是等腰直角三角形,即:AE=BE ,∴弓形BE 的面积='-π×2!−'!×2×2=π−2,∴阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-△BCE 的面积=π−2+-5×*×-!(0)-'!×'!×4×4=3π-6. 故答案是:3π-6.【点睛】本题主要考查正方形的性质,扇形的面积公式,添加辅助线,把不规则图形进行合理的分割,是解题的关键.32.如图,在△ABC 中,AB =AC =4,∠BAC =120°,以点A 为圆心,1为半径作弧,分别交 AB ,AC 于点D ,E ,以点C 为圆心,4为半径作弧,分别交AC ,BC 于点A ,F .若图中阴影部分的面积分别为S 1,S 2,则S 1-S 2的值为 .【答案】4√3−5π(【分析】过点C 作CM ⊥BA 交的延长线于点M ,则可得∠MAC=60°,再进一步利用“30°锐角所对直角边等于斜边的一半及勾股定理”求出CM 的长,然后分别求出S △#%$,S 扇形#&:,S 扇形#$?,据此可求出S '−S !的值.【详解】如图所示,过点C 作CM ⊥BA 交BA 的延长线于点M ,∵ ∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴ AM ='!AC ='!×4=2,在Rt △CAM 中,AM=2,AC=4, ∴ CM =√AC !−AM !=√4!−2!=2√3,∴S △#%$='!×AB ×CM ='!×4×2√3=4√3,∵∠BAC=120°,AD=1,∴ S 扇形#&:='!)(0)×π×1!='(π, ∵∠BAC=120°,AB=AC=4,∴∠C=30°,∴S 扇形#$?=()(0)×π×4!=-(π, ∴S '−S !=S △#%$−S 扇形#$?−S 扇形#&:=4√3−-(π−'(π=4√3−5(π. 故答案为:4√3−5π(.【点睛】本题考查了三角形及扇形的面积公式,掌握扇形的面积公式,理解S '−S !=S △#%$−S扇形#&:−S 扇形#$?是解题的关键.。
初中数学(初升高)中考全国真题题库3(含解析)
初中数学初升高(中考)全国真题题库3(含解析)一、选择题1.(2023·大庆)端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A.20%B.25%C.75%D.80% 2.(2023·大庆)下列说法正确的是( )A.一个函数是一次函数就一定是正比例函数B.有一组对角相等的四边形一定是平行四边形C.两条直角边对应相等的两个直角三角形一定全等D.一组数据的方差一定大于标准差3.(2023·大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4.(2021·河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.5.(2021·河池)下列各式中,与 2a2b 为同类项的是( )A.−2a2b B.−2ab C.2a b2D.2a2 6.(2021·河池)二次函数 y=a x2+bx+c(a≠0) 的图象如图所示,下列说法中,错误的是( )A.对称轴是直线 x=12B.当−1<x<2 时, y<0C.a+c=b D.a+b>−c7.(2021·河池)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.8.(2020·攀枝花)下列式子中正确的是( ).A.a2−a3=a5B.(−a)−1=a C.(−3a)2=3a2D.a3+2a3=3a3 9.(2020·攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV .该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为 a×10n 的形式,则 n 为( ).A.-8B.-7C.7D.8 10.(2020·徐州)3的相反数是( ).A.-3B.3C.−13D.1311.(2020·攀枝花)若关于 x 的方程 x2−x−m=0 没有实数根,则m的值可以为( ).A.-1B.−14C.0D.112.(2020·攀枝花)下列说法中正确的是( ).A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是 ±1 13.(2020·攀枝花)实数a、b在数轴上的位置如图所示,化简 √(a+1)2+√(b−1)2−√(a−b)2 的结果是( ).A.-2B.0C.-2a D.2b 14.(2020·攀枝花)如图,直径 AB=6 的半圆,绕B点顺时针旋转 30° ,此时点A到了点 A′ ,则图中阴影部分的面积是( ).A.π2B.3π4C.πD.3π二、填空题15.(2023·大庆)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,¿展开的多项式中各项系数之和为 .16.(2023·大庆)一个圆锥的底面半径为5,高为12,则它的体积为 .17.(2023·大庆)若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为 .18.(2023·大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .19.(2023·大庆)已知(x−2)x+1=1,则x的值为 .20.(2021·河池)分式方程3x−2=1 的解是 x=¿ .21.(2021·河池)在平面直角坐标系中,一次函数 y=2x 与反比例函数 y=kx(k≠0) 的图象交于A(x1,y1) , B(x2,y2) 两点,则 y1+y2 的值是 .22.(2020·攀枝花)因式分解:a-ab2= .23.(2020·攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门反而合算.三、计算题24.(2021·河池)先化简,再求值:(x+1)2−x(x+1) ,其中 x=2021.四、解答题25.(2023·大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球五、综合题26.(2023·大庆)如图,二次函数y=a x2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯−101234⋯y⋯0−3−4−305⋯(1)求二次函数y=a x2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=a x2+bx+c的图象交于P,Q两点(P在Q 左边),R为二次函数y=a x2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+√2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(a x2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.27.(2021·河池)如图,在 Rt△ABC 中, ∠A=90° , AB=4 , AC=3 ,D,E分别是AB,BC边上的动点,以BD为直径的 ⊙O交BC于点F.(1)当 AD=DF 时,求证:△CAD≅△CFD;(2)当 △CED 是等腰三角形且△DEB 是直角三角形时,求AD的长.28.(2021·河池)为了解本校九年级学生的体质健康情况,李老师随机抽取35名学生进行了一次体质健康测试,根据测试成绩制成统计图表.组别分数段人数A x<602B60≤x<755C75≤x<90aD x≥9012请根据上述信息解答下列问题:(1)本次调查属于 调查,样本容量是 ;(2)表中的 a=¿ ,样本数据的中位数位于 组;(3)补全条形统计图;(4)该校九年级学生有980人,估计该校九年级学生体质健康测试成绩在D组的有多少人?29.(2021·河池)如图, ∠CAD 是 △ABC 的外角.(1)尺规作图:作 ∠CAD 的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若 AE/¿BC ,求证:AB=AC.30.(2020·攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线 MN 的距离皆为 100cm .王诗嬑观测到高度 90cm矮圆柱的影子落在地面上,其长为 72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线 MN互相垂直,并视太阳光为平行光,测得斜坡坡度 i=1:0.75 ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为 150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为 100cm ,则高圆柱的高度为多少cm?答案解析部分1.【答案】A【解析】【解答】解:设粽子的降价幅度为x,成本价为a元,则标价为(1+25%)m元,根据题意得(1+25%)m(1-x)≥m,解之:x≥20%,∴当粽子降价出售时,为了不亏本,降价幅度最多为20%.故答案为:A.【分析】设粽子的降价幅度为x,成本价为a元,根据当粽子降价出售时,为了不亏本,可得到关于x的不等式,然后求出不等式的最小值即可.2.【答案】C【解析】【解答】解:A、一个函数是正比例函数就一定是一次函数,故A不符合题意;B、有一组对角相等的四边形不是平行四边形,故B不符合题意;C、两条直角边对应相等的两个直角三角形一定全等,故C符合题意;D、一组数据的方差不一定大于标准差,故D不符合题意;故答案为:C.【分析】利用一次函数不一定是正比例函数,可对A作出判断;利用平行四边形的判定定理可对B 作出判断;利用SAS可对C作出判断;利用一组数据的方差不一定大于标准差,可对D作出判断. 3.【答案】A【解析】【解答】解:从上往下看是一个矩形.故答案为:A.【分析】俯视图就是从几何体的上面往下看,所看到的平面图形,根据几何体可得到是俯视图的选项.4.【答案】A【解析】【解答】解:主视图是由前向后看得到的物体的视图,由前向后看共3列,中间一列有3个小正方形,左右两列各一个小正方形.故从坐左边看只有1列,三行,每一行都只有一个小正方形,故答案为:A.【分析】左视图是由视线从左向右看在侧面所得的视图,从左边看只有1列,三行,每一行都只有一个小正方形,则可解答.5.【答案】A【解析】【解答】与 2a2b 是同类项的特点为含有字母a,b ,且对应 a 的指数为2, b 的指数为1,只有A选项符合;故答案为:A.【分析】字母相同,并且相同字母的指数也相同的两个式子叫同类项. 同类项的条件有两个:1、所含的字母相同;2、相同字母的指数也分别相同. 根据条件分别判断即可.6.【答案】D【解析】【解答】解:A、对称轴为:直线 x=−1+22=12 ,故答案为:A正确,不符合题意;B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,∴当-1<x<2时,y<0,故答案为:B正确,不符合题意;C、由图可知:当x=-1时,y=a-b+c=0,∴a +c=b,故答案为:C正确,不符合题意;D、由图可知:当x=1时,y=a+b+c<0∴a+b<-c,故答案为:D错误,不符合题意;故答案为:D.【分析】根据抛物线与x轴的交点坐标求对称轴方程判断A;在图象中找出x下方部分x的范围判断B;根据x=-1时,y=a-b+c=0,变形可判断C;根据当x=1时,y=a+b+c<0,变形可判断D.7.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C、是中心对称图形,不是轴对称图形,故C不符合题意;D、是轴对称图形,不是中心对称图形,故A不符合题意;故答案为:B.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合。
2020年中考数学模拟试卷03含解析 (2)
2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。
专题17 圆中阴影部分的面积七种计算方法-2023年中考数学二轮复习核心考点拓展训练(解析版)
专题17 圆中阴影部分的面积七种计算方法(解析版)第一部分典例剖析+针对训练方法一公式法典例1 (2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC=90°,则扇形部件的面积为( )A.12π米2B.14π米2C.18π米2D.116π米2思路引领:连结BC,AO,90°所对的弦是直径,根据⊙O的直径为1米,得到AO=BO=12米,根据勾股定理得到AB的长,根据扇形面积公式即可得出答案.解:连结BC,AO,如图所示,∵∠BAC=90°,∴BC是⊙O的直径,∵⊙O的直径为1米,∴AO=BO=12(米),∴AB=AO2+BO2=22(米),∴扇形部件的面积=90360π×(22)2=π8(米2),故选:C.总结提升:本题考查了扇形面积的计算,掌握设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=n360πR2是解题的关键.针对训练1.(2021•卧龙区二模)如图,△ABC中,D为BC的中点,以点D为圆心,BD长为半径画弧,交边BC 于点B,交边AC于点E,若∠A=60°,∠B=100°,BC=6,则扇形BDE的面积为 .思路引领:求出扇形的圆心角以及半径即可解决问题.解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=40π×32360=π.故答案为:π.总结提升:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式.方法二和差法典例2(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.3―π4B.23―πC.(6―π)33D.3―π2思路引领:作AF⊥BC,由勾股定理求出AF,然后根据S阴影=S△ABC﹣S扇形ADE得出答案.解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF=AB2―AF2=3,∴S阴影=S△ABC﹣S扇形ADE=12×2×3―60π×(3)2360=3―π2,故选:D.总结提升:本题主要考查了等边三角形的性质,求扇形面积,理解切线的性质,将阴影部分的面积转化为三角形的面积﹣扇形的面积是解题的关键.针对训练1.(2022•玉树市校级一模)如图,在扇形OAB中,已知∠AOB=90°,OA=2,过AB的中点C作CD⊥OA,CE⊥OB,垂足分别为点D,E,则图中阴影部分的面积为( )A.π﹣1B.π﹣2C.π﹣4D.π2―1思路引领:连接OC,求出∠AOC=∠BOC=45°,求出∠DCO=∠AOC=∠ECO=∠COE=45°,求出CD=OD,CE=OE,根据勾股定理求出CD=OD=OE=CE=2,再求出阴影部分的面积即可.解:连接OC,∵OA=2,∴OC=0A=2,∵∠AOB=90°,C为AB的中点,∴∠AOC=∠BOC=45°,∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,∴∠DCO=∠AOC=∠ECO=∠COE=45°,∴CD=OD,CE=OE,∴2CD2=22,2OE2=22,即CD=OD=OE=CE=2,∴阴影部分的面积S=S扇形AOB﹣S△CDO﹣S△CEO=90π×22360―2×12×2×2=π﹣2,故选:B.总结提升:本题考查了等腰直角三角形的性质和判定,圆心角、弧、弦之间的关系,扇形面积的计算等知识点,把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:如果扇形的圆心角为n°,半径为r,那么该扇形的面积为nπr2360.方法三等积变形法典例3(2020•朝阳)如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD ∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为 .思路引领:由圆周角定理可得∠AOB的度数,由OD∥AB可得S△ABD=S△ABO,进而可得S阴影=S扇形AOB,然后根据扇形面积公式计算即可.解:∵∠ACB=15°,∴∠AOB=30°,∵OD∥AB,∴S△ABD=S△ABO,∴S阴影=S扇形AOB=30π×22360=π3.故答案为:π3.总结提升:本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.针对训练1.(2022秋•天桥区期末)如图,菱形OABC的三个顶点A,B,C在⊙O上,对角线AC,OB交于点D,若⊙O的半径是23,则图中阴影部分的面积是( )A.2πB.6πC.33πD.3π思路引领:根据四边形OABC是菱形,得BC=OC=OB,即△COB是等边三角形,根据S△ADB=S△OCD,所以图中阴影部分的面积=S扇形COB.解:∵四边形OABC是菱形,∴BC=OC=OB,∴△COB是等边三角形,∴∠COB=60°,∵S△ADB=S△OCD,∴图中阴影部分的面积=S扇形COB=60π×(23)2360=2π.故选:A.总结提升:本题考查的是扇形面积的计算和菱形的性质,掌握扇形的面积公式是解题的关键.方法四化零为整法(整体法)典例4(2021•天桥区二模)如图,已知正六边形的边长为4,分别以正六边形的6个顶点为圆心作半径是2的圆,则图中阴影部分的面积为 .思路引领:先求出六边形的内角和,再根据扇形的面积公式即可求出.解:∵六边形的内角和=(6﹣2)×180°=720°,∴阴影面积=6×π×22―720π×22360=16π.故答案为:16π.总结提升:本题主要考查了扇形的面积公式,学会把图中不规则图形的面积由几何关系转化为规则图形的面积.针对训练1.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为 π cm2.思路引领:根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.解:图中阴影部分的面积为π×12=π.故答案为:π.总结提升:此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.方法五割补法(拼接法)典例5(2022•铜仁市)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是( )A.9B.6C.3D.12思路引领:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到弓形BE的面积=弓形CE的面积,则S阴影=S△ABE=S△ABC―S△BCE=12×6×6―12×6×3=9.解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,∵四边形ABCD是正方形,∴∠OCE=45°,∵OE=OC,∴∠OEC=∠OCE=45°,∴∠EOC=90°,∴OE垂直平分BC,∴BE=CE,∴弓形BE的面积=弓形CE的面积,∴S阴影=S△ABE=S△ABC―S△BCE=12×6×6―12×6×3=9,故选:A.总结提升:本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.针对训练1.(2021•郑州模拟)如图,在扇形CBA中,∠ACB=90°,连接AB,以BC为直径作半圆,交AB于点D.若阴影部分的面积为(π﹣1),则阴影部分的周长为 .思路引领:根据BC为直径可知∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,设AC=BC=m,则AB=2m,CD=AD=BD=22m,阴影部分的面积可以看作是扇形ACB的面积与△ADC的面积之差,据此求得直角三角形的边长,进而求得AB和CD的长,进一步求得阴影部分的周长.解:设BC的中点为O,连接OD,连接CD,∵以BC为直径作半圆,交AB于点D.∴CD⊥AB,∵AC=BC,∠ACB=90°,∴AD=BD,CD=12 AB,∴CD=BD,∴CD=BD,∵AD=BD,CO=BO,∴OD∥AC,∴∠BOD=90°,设AC=BC=m,则AB=2m,CD=AD=BD=22 m,∵阴影部分的面积为(π﹣1),∴S阴影部分=S扇形ACB﹣S△ADC=14π•m2―12×(22m)2=π﹣1.∴14πm2―14m2=π﹣1,∴14m2=1,∴m=2,∴AC=BC=2,AB=22,OC=OB=1,∴AB的长为:90⋅π×2180=π,BD的长为:90⋅π×1180=12π,∴阴影部分的周长为:π+2×12π+22+2=2π+22+2故答案为:2π+22+2.总结提升:本题考查了扇形的面积和弧长的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.方法6 图形变化法(旋转、平移、翻折)典例6(2022•武威模拟)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC 绕点A按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为 .思路引领:解直角三角形得到AB=3BC=3,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=3BC=3,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=90⋅π⋅22360―60⋅π⋅(3)2360―12×1×3=π―32,故答案为:π―32;总结提升:本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.针对训练1.(2022•西宁)如图,等边三角形ABC内接于⊙O,BC=23,则图中阴影部分的面积是 4π3 .思路引领:根据内接于圆O的等边三角形的性质可得S△AOB=S△AOC,∠AOC=120°,将阴影部分的面积转化为扇形AOC的面积,利用扇形面积的公式计算可求解.解:∵△ABC为等边三角形,∴S△BOC=S△AOC,∠AOC=120°,在△OBC中,OB=OC,∠BOC=120°,BC=23,∴OB=OC=2,∴S阴影=S扇形AOC=120π×22360=4π3,故答案为:4π3.总结提升:本题主要考查扇形面积的计算,等边三角形的性质,掌握扇形面积公式是解题的关键.典例7(2022•九龙坡区自主招生)如图,正方形ABCD的边长为4,O为对角线的交点,点E,F分别为BC,AD的中点,以C为圆心,4为半径作圆弧BD,再分别以E,F为圆心,2为半径作圆弧BO,OD,则图中阴影部分的面积为 .(结果保留π)思路引领:连接BD,根据在同圆或等圆中,相等的圆心角所对的弧,所对的弦分别相等,利用面积割补法可得阴影部分的面积等于弓形面积,即等于扇形CBD减去直角三角形CBD的面积之差.解:连接BD,EF,如图,∵正方形ABCD的边长为4,O为对角线的交点,由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.∵点E,F分别为BC,AD的中点,∴FD=FO=EO=EB=2,∴OB=OD,OB=OD.∴弓形OB=弓形OD.∴阴影部分的面积等于弓形BD的面积.∴S阴影=S扇形CBD﹣S△CBD=90π×42360―12×4×4=4π﹣8.故答案为:4π﹣8.总结提升:本题主要考查了正方形的性质,扇形面积的计算.通过添加适当的辅助线将不规则的阴影部分的面积转化成规则图形的面积的差是解题的关键.针对训练1.(2021•重庆模拟)如图,在正方形ABCD中,扇形BAD的半径AB=4,以AB为直径的圆与正方形的对角线BD相交于O,连接AO.则图中阴影部分的面积为 .(结果保留π)思路引领:理由圆周角定理得出AO⊥BD,利用正方形的性质性质和等腰直角三角形的性质得出OD=OA =OB,结合转化思想得出阴影部分面积=S扇形ABD﹣S△ADC,进而得出答案.解:如图,∵AB是直径,∴∠AOB=90°,∴AO⊥BD,∵AB=AD=4,∠BAD=90°,∴OD=OA=OB,∴S弓形OA=S弓形OB,∴阴影部分面积=S扇形ABD﹣S△ADC=14π×42―12×4×4=4π﹣8,故答案为4π﹣8.总结提升:本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.典例8(2019•招远市一模)如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.点E为圆上一点,∠ECD=15°,将CE沿弦CE翻折,交CD于点F,图中阴影部分的面积= .思路引领:根据AB⊥CD,垂足为G,OG:OC=3:5,AB=8,可以求得⊙O的半径;要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.解:如图,连接AO,将阴影部分沿CE翻折,点F的对应点为M,过点M作MN⊥CD于点N,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG=12AB=4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×3 2,∴S阴影=S扇形OMC﹣S△OMC=120×π×25360―2534=25π3―2534,即图中阴影部分的面积是:25π3―2534.总结提升:本题考查翻折变换、扇形的面积、垂径定理,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.针对训练1.(如图,将半径为4cm的圆形纸片折叠后,圆弧恰好经过圆心O,折痕为AB,则图中阴影部分的面积为 .思路引领:作OC⊥AB于C,交AB于点D,连接AO,BO,AD,BD,根据轴对称的性质可以得出CO=CD,由三角函数值就可以求出∠AOB的度数,由扇形的面积﹣三角形AOB的面积就可以得出结论.解:作OC⊥AB于C,交AB于点D,连接AO,BO,AD,BD,∴∠ACO=90°.∵△AOB与△ADB关于AB对称,∴△AOB≌△ADB∴AO=AD,∠ACO=∠ACD=90°,∴CO=CD.∵OD=AO=4,∴OC=2.在Rt△AOC中,由勾股定理,得AC=23.∵cos∠AOC=COAO=12,∴∠AOC=60°.∵AO=BO,OC⊥AB,∴∠AOB=2∠AOC=120°.AB=2AC=43.∴S扇形AOBD=120π×16360=163π.∵S△AOB=43×22=43.阴影部分的面积为:(163π―43)cm2.故答案为:(163π―43)cm2.总结提升:本题考查了轴对称的性质的运用,勾股定理的运用,三角函数值的运用,扇形的面积公式的运用,三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.方法七重叠求余法例七(2022•鄂尔多斯二模)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是 .思路引领:根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积,即可求解.解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:60π×62360=6π,故答案为:6π.总结提升:本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.针对训练1.(2022•市南区校级一模)如图所示,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,将三角形绕着BC的中点O逆时针旋转60°,点A的对应点为E,则图中阴影部分的面积为 .思路引领:如图,连接OE,OA.根据S阴=S扇形EOA+S△EOF﹣S△BOF﹣S△AOB﹣S△PBE,求解即可.解:如图,连接OE,OA.由题意可知△BOF为等边三角形.∴OB=OF=BF=1,∴S△BOF=3 4,在Rt△ABC中,∵BC=2,∠CAB=30°,∴AB=2BC=4,AC=DE=23,∴S△EOF=12•OF•DE=3,∵OF=OD,∴S△EOF=S△DEO=3,∵∠AOE=60°,AO=AC2+OC2=(23)2+12=13,∴S扇形EOA=60⋅π⋅(13)2360=13π6,由题意,△BPE为直角三角形,BE=EF﹣BF=4﹣1=3,∴BP=12BE=32,PE=32―(32)2=332,∴S△PBE=12×32×332=938,∴S阴=S扇形EOA+S△EOF﹣S△BOF﹣S△AOB﹣S△PBE=13π6+3―34―3―938=13π6―1138.解法二:可以根据S阴=S△APE+(S扇形AOE﹣S△AOE)计算.总结提升:本题考查扇形的面积,旋转变换,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.第二部分专题提优训练一.选择题(共15小题)1.(2022•兰州)如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为( )A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2思路引领:根据S阴=S扇形DOA﹣S扇形BOC,计算即可.解:S阴=S扇形DOA﹣S扇形BOC=120π×9360―120π×94360=2.25πm2.故选:D.总结提升:本题考查的是扇形面积的计算,掌握扇形的面积公式S=nπR2360是解题的关键.2.(2022秋•西华县期末)如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,则图中阴影部分的面积是( )A.π﹣1B.π﹣2C.12π﹣1D.12π+1思路引领:已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看作是扇形ACB的面积与△ADC的面积之差.解:在Rt△ACB中,AB=22+22=22,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=2,∴D为半圆的中点,∴S阴影部分=S扇形ACB﹣S△ADC=12π×22―12×(2)2=π﹣1.故选:A.总结提升:本题主要考查扇形面积的计算,在解答此题时要注意不规则图形面积的求法.3.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为( )A.6π﹣93B.12π﹣93C.6π―932D.12π―932思路引领:根据平行线的性质,扇形的面积公式,三角形面积公式解答即可.解:过点E作EG⊥DF交DF于点G,∵∠A=60°,AB∥CD,DE⊥AD交AB于点E,∴∠GDE=∠DEA=30°,∵DE=EF,∴∠EDF=∠EFD=30°,∴∠DEF=120°,∵∠GDE=30°,DE=6,∴GE=3,DG=33,∴DF=63,阴影部分的面积=120π×36360―12×63×3=12π﹣93,故选:B.总结提升:本题主要考查了扇形面积和平行线的性质,熟练掌握扇形面积公式是解决本题的关键.4.(2022•达州)如图所示的曲边三角形可按下述方法作出:作等边△ABC,分别以点A,B,C为圆心,以AB长为半径作BC,AC,AB,三弧所围成的图形就是一个曲边三角形.如果一个曲边三角形的周长为2π,则此曲边三角形的面积为( )A.2π﹣23B.2π―3C.2πD.π―3思路引领:此三角形是由三段弧组成,如果周长为2π,则其中的一段弧长为2π3,所以根据弧长公式可得60πr 180=2π3,解得r=2,即正三角形的边长为2.那么曲边三角形的面积就=三角形的面积+三个弓形的面积.解:设等边三角形ABC的边长为r,∴60πr180=2π3,解得r=2,即正三角形的边长为2,∴这个曲边三角形的面积=2×3×12+(60π×4360―3)×3=2π﹣23,故选:A.总结提升:本题考查了扇形面积的计算.此题的关键是明确曲边三角形的面积就=三角形的面积+三个弓形的面积,然后再根据所给的曲边三角形的周长求出三角形的边长,从而求值.5.现在很多家庭都使用折叠型餐桌来节省空间,两边翻开后成圆形桌面(如图①),餐桌两边AB和CD 平行且相等(如图②),小华用皮尺量出BD=1米,BC=0.5米,则阴影部分的面积为( )A.(π12―38)平方米B.(π6―38)平方米C.(π12―34)平方米D.(π6―34)平方米思路引领:设圆心为O,连接CO,过点O作OE⊥CD于点E,进而得出CD,EO的长以及∠COD的度数,进而由S弓形CD面积=S扇形COD﹣S△COD得出弓形CD的面积,进一步即可求得阴影部分的面积.解:设圆心为O,连接CO,过点O作OE⊥CD于点E,由题意可得出:∠BCD=90°,∴BD是⊙O的直径,∵BD=1米,BC=0.5米,∴BC=12BD,CD=BD2―CD2=32米,∴∠BDC=30°,∴OE=12OD=14米,∵OC=OD,∴∠OCD=∠BDC=30°,∴∠COD=120°,∴S弓形CD面积=S扇形COD﹣S△COD=120π×(12)2360―12×14×32,=(π12―316)平方米,∴阴影部分的面积为:2×(π12―316)=(π6―38)平方米.∴故选:B.总结提升:此题主要考查了勾股定理以及扇形面积计算以及三角形面积求法等知识,熟练掌握特殊角的三角函数关系是解题关键.6.(2022•鞍山)如图,在矩形ABCD中,AB=2,BC=3,以点B为圆心,BA长为半径画弧,交CD于点E,连接BE,则扇形BAE的面积为( )A.π3B.3π5C.2π3D.3π4思路引领:解直角三角形求出∠CBE=30°,推出∠ABE=60°,再利用扇形的面积公式求解.解:∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵BA=BE=2,BC=3,∴cos∠CBE=CBBE=32,∴∠CBE=30°,∴∠ABE=90°﹣30°=60°,∴S扇形BAE=60⋅π⋅22360=2π3,故选:C.总结提升:本题考查扇形的面积,矩形的性质等知识,解题的关键是求出∠CBE的度数.7.(2022•赤峰)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D 落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A.2πB.22C.2π﹣4D.2π﹣22思路引领:连接OE,OC,BC,推出△EOC是等腰直角三角形,根据扇形面积减三角形面积计算即可.解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°﹣30°)÷2=75°,∴∠BCE=90°﹣∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=22,∴S阴影=S扇形OEC﹣S△OEC=90π×(22)2360―12×22×22=2π﹣4,故选:C.总结提升:本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.8.(2022•毕节市)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45cm,扇面BD 的长为30cm,则扇面的面积是( )A.375πcm2B.450πcm2C.600πcm2D.750πcm2思路引领:先求出AD的长,再根据扇形的面积公式求出扇形BAC和扇形DAE的面积即可.解:∵AB的长是45cm,扇面BD的长为30cm,∴AD=AB﹣BD=15cm,∵∠BAC=120°,∴扇面的面积S=S扇形BAC﹣S扇形DAE=120π×452360―120π×152360=600π(cm2),故选:C.总结提升:本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键,注意:圆心角为n°,半径为r的扇形的面积S=nπr2 360.9.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在AB上的点C处,图中阴影部分的面积为( )A.3π﹣33B.3π―932C.2π﹣33D.6π―932思路引领:根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.解:沿AB折叠扇形纸片,点O恰好落在AB上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=32AC=332,∴AB=2AD=33,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=120π×32360―12×3×33=3π―932,故选:B.总结提升:本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.10.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A.23π―32B.23π―3C.43π﹣23D.43π―3思路引领:连接OA、OB,过点O作OC⊥AB,根据等边三角形的判定得出△AOB为等边三角形,再根据扇形面积公式求出S扇形AOB=23π,再根据三角形面积公式求出S△AOB=3,进而求出阴影部分的面积.解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB=60π×22360=23π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=3,∴S△AOB=12×2×3=3,∴阴影部分的面积为:23π―3;故选:B.总结提升:本题考查有关扇形面积、弧长的计算,熟练应用面积公式,其中作出辅助线是解题关键.二.填空题11.(2020•巩义市二模)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°,则图中阴影部分的面积为 .思路引领:连接OB,交CA于E,根据圆周角定理得到∠BOA=60°,根据平行线的性质得到∠D=∠OAC =30°,即可得出∠OBD=90°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.解:连接OB,交CA于E,∵∠C=30°,∠C=12∠BOA,∴∠BOA=60°,∵BD∥AC,∴∠D=∠OAC=30°,∴∠OBD=90°,∴BD=3OB=83,∴S阴影=S△BDO﹣S扇形AOB=12×8×83―60π×82360=323―32π3,故答案为323―32π3.总结提升:本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.12.(2021•宛城区一模)如图所示,在扇形OAB中,∠AOB=90°,OA=2,长为2的线段CD的两个端点分别在线段OA、OB上滑动,E为CD的中点,点F在AB上,连接EF、BE.若AF的长是π3,则线段EF的最小值是 ,此时图中阴影部分的面积是 .思路引领:如图,连接OF,OE,BF,取OF的中点T,连接BT.根据弧长求得∠AOF=30°,jk证明△OBF是等边三角形,利用直角三角形斜边中线的性质求出OE,EF≥OF﹣OE=1,推出当O,E,F共线时,EF的值最小,此时点E与点T重合,求出BT,然后根据S阴影=S扇形BOF﹣S△BOT求得阴影的面积.解:如图,连接OF,OE,BF,取OF的中点T,连接BT.∵AF的长是π3,OA=2,∴π3=nπ×2180,∴n=30,∴∠AOF=30°,∵∠AOB=90°,∴∠BOF=60°,∵CE=DE,∴OE=12CD=12×2=1,∵OF=2,∴EF≥OF﹣OE=1,∴当O,E,F共线时,EF的值最小,此时点E与点T重合,∴此时EF=1,∵OF=OB,∠BOF=60°,∴△BOF是等边三角形,∵OT=TF,∴BT⊥OF,∴BE=BT=32OB=3,∴此时S阴影=S扇形BOF﹣S△BOT=60π×22360―12×3×1=23π―32.故答案为:1,23π―32.总结提升:本题考查了扇形的面积,等边三角形的判定,直角三角形斜边中线的性质等知识,明确当O,E,F共线时,EF的值最小是解题的关键.13.(2022•贵港)如图,在▱ABCD中,AD=23AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=32,则图中阴影部分的面积是 .思路引领:过点D作DF⊥AB于点F,根据等腰直角三角形的性质求得DF,从而求得EB,最后由S阴影=S▱ABCD−S扇形ADE−S△EBC结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.解:过点D作DF⊥AB于点F,∵AD=23AB,∠BAD=45°,AB=32,∴AD=23×32=22,∴DF=AD sin45°=22×22=2,∵AE=AD=22,∴EB=AB−AE=2,∴S阴影=S▱ABCD−S扇形ADE−S△EBC=32×2―45π×(22)2360―12×2×2=52―π,故答案为:52―π.总结提升:本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,准确添加辅助线是解题关键.14.(2020春•亭湖区校级期中)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=6,则阴影部分的面积是 .思路引领:根据扇形的面积公式计算即可.解:∵∠BOD=2∠DCB,∠DCB=30°,∴∠BOD=60°,∴S扇形OBD=60⋅π⋅62360=6π,故答案为6π.总结提升:本题考查扇形的面积,圆周角定理等知识,解题的关键是计算扇形的面积公式,属于中考常考题型.15.(2022•黔西南州)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角∠FOH=90°.则图中阴影部分面积是 .思路引领:证明△OBE≌△OCG(SAS),推出S△OBE=S△OCG,推出S四边形OECG=S△OBC=4,再根据S 阴=S扇形OFH﹣S四边形OECG,求解即可.解:如图,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∠OBE=∠OCG=45°,S△OBC=14S四边形ABCD=4,∵∠BOC=∠EOG=90°,∴∠BOE=∠COG,在△BOE和△COG中,∠BOE=∠COGOB=OC∠OBE=∠OCG,∴△OBE≌△OCG(SAS),∴S△OBE=S△OCG,∴S四边形OECG=S△OBC=4,∵△OBC是等腰直角三角形,BC=4,∴OB=OC=22,∴S阴=S扇形OFH﹣S四边形OECG=90π⋅(22)2360―4=2π﹣4,故答案为:2π﹣4.总结提升:本题考查扇形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16.(2020•康巴什一模)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为 .思路引领:先根据正方形的边长,求得CB1=OB1=AC﹣AB1=2―1,进而得到S△OB1C=12(2―1)2,再根据S△AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积.解:连接DC1,∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,∴∠AC1B1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC=2,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=2―1,∴S△OB1C=12•OB1•CB1=12(2―1)2,∵S△AB1C1=12AB1•B1C1=12×1×1=12,∴图中阴影部分的面积=45⋅π⋅(2)2360―12(2―1)2―12=π4―2+2.故答案为π4―2+2.总结提升:本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.17.(2021秋•招远市期末)如图,在扇形OAB中,点C在AB上,∠AOB=90°,∠ABC=30°,AD⊥BC 于点D,连接AC,若OA=4,则图中阴影部分的面积为 .思路引领:连接OC,作CM⊥OB于M,根据等腰直角三角形的性质得出∠ABO=∠OAB=45°,AB=42,进而得出∠OCB=OBC=75°,即可得到∠BOC=30°,解直角三角形求得AD、BD、CM,然后根据S阴影=S△ABD+S△AOB﹣S扇形OAB+(S扇形OBC﹣S△BOC)计算即可求得.解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=42,∵∠ABC=30°,AD⊥BC于点D,∴AD=12AB=22,BD=32AB=26,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB=OC,∴∠OCB=∠OBC=75°,∴∠BOC=30°,∴∠AOC=60°,CM=12OC=12×4=2,∴S阴影=S△ABD+S△AOB﹣S扇形OAB+(S扇形OBC﹣S△BOC)=S△ABD+S△AOB﹣S扇形OAC﹣S△BOC=12×22×26+12×4×4―12×4×2―60π×42360=4+43―8π3.故答案为:4+43―8π3.总结提升:此题考查了运用切割法求图形的面积.解决本题的关键是把所求的面积转化为容易算出的面积的和或差的形式.。
【最新】2020年中考数学典例精做专题17 图形的面积(求阴影部分的面积) (学生版)
A. 18+36π C. 18+18π
B. 24+18π D. 12+18π
7.如图,正方形 ABCD 的面积为
,点 E 在 BC 上,点 G 在 AB 的延长线上,四边形 EFGB 是正方
形,以 B 为圆心,BC 长为半径画弧 AC,连结 AF,CF,则图中阴影部分面积为
.
3
A.
B.
C.
D.
8.如图,直角三角形两直角边的长分别为 3 和 4,以直角三角形 的两直边为直径作半圆,则阴影部分的 面积是( )
A.
B.
C.
D.
4
11.如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,点 O,B 的对应点分别为 O',B',连 接 BB',则图中阴影部分的面积是 ( )
A.
B. 2 -
C. 2 -
D. 4 -
12.如图,边长为 1 的正方形 ABC D 绕点 A 逆时针旋转 后得到正方形 点 O,则图中阴影部分的面积是
9
关系式为
;
解决问题:
(4)在图 5 中,E、G、F、H 分别为任意四边形 ABCD 的边 AD、AB、BC、CD 的中点,并且图中阴
影部分的面积为 20 平方米,求图中四个小三角形的面积和是多少?即求 S1+ S2+ S3+ S4=?
10
实践探究
(1)在图 2 中,E、F 分别为矩形 ABCD 的边 AD、BC 的中点,则 S 阴和 S 矩形 ABCD 之间满足的关系式
为
;
(2)在图 3 中,E、F 分别为平行四边形 ABCD 的边 AD、BC 的中点,则 S 阴和 S 平行四边形 ABCD 之间满足
2020年中考数学 中考新题型 实际应用型(含解答)-
中考新题型 实际应用型命题思路导航近年来,在全国各地的中考试卷中,都有一些密切联系实际的应用型题.强调“学习数学在于应用”这一导向已受到广泛的关注和肯定,为了有效地解答中考应用型题.应当对此进行深入的研究,从近几年的中考“应用问题”来看,始终贯穿着一条主线——将生产、生活实际问题转化为数学问题,数学问题的解答就可能是生产、生活实际问题的解答.一般地应用问题的解答包括三个环节:一是将生产、生活实际问题转化成纯数学问题;二是对数学问题作出解答,得出数学问题的解法;三是检验数学问题作出的解是否符合实际问题.在这三个环节中最关键的环节就是“如何将实际问题转化成数学问题”,我们认为解决这类问题的有效方法之一就是撇开试题中非本质的东西,抓住题目的本质要素,建立数学模型.典型例题解析例1 农作物栽植时在株距相等的条件下,一般选用菱形或正方形两种栽植方式,如图所示,试比较两种栽植方式的优劣.(a ) (b )分析:可以从两种栽植方式的土地利用率,栽植密度,采光面积分析比较,并将问题转化为几何量的计算.解:(1)土地利用率设AB =BC =CD =DA =a ,A ′B ′=B ′C ′=C ′D ′=D ′A ′=a ,∴ S 菱形=2S △ABC =2·243a =223a ,S 正方形=a 2, ∴ 正方形菱形S S =23≈0.866. 即菱形种植方式的占地面积小,只占正方形种植方式的86.6%.(2)栽植密度显然:AD =23AB ≈0.866A ′B ′. 即正方形种植方式的7行,可改菱形种植方式的8行,大面积栽植时每行达数百棵,假设为300棵.正方形栽植方式的700行,可改为菱形栽植800行,即多栽植300×100=30000棵.(3)采光面积作物生长中叶子的截面大体面圆形,充分长大后相邻两圆外切,因而阴影部分有面积减少,作物采光面积增大.图(a )中阴影部分的面积S 1为:S 1=2·21a ·23a -π22⎪⎭⎫ ⎝⎛a =24π23a ⎪⎪⎭⎫ ⎝⎛-. 图(b )中阴影部分面积S 2为:S 2=a 2-π22⎪⎭⎫ ⎝⎛a =24π1a ⎪⎭⎫ ⎝⎛- ∴ 12S S =224π234π1a a ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=π32π4--≈2.56, 即菱形种植方式作物采光面积比正方形种植方式作物采光面积大得多.综上所述,菱形种植方式较好.剖析:我国国土资源十分珍贵,特别是温室大棚寸土寸金,因此研究作物栽培方式具有现实意义,从而培养学生环保意识.例2 为了巩固1998年抗洪抢险的胜利成果,进一步增强长江大堤的防洪能力,经专家测算,长江某段堤坝(断面为如图所示的ABCD )的水坡面还需加宽1米,沿背水面由原来的坡度1︰1改建成坡度为1︰3,即∠EFG =30°,已知坝高10米,堤长1000米(参考数据2=1.41,3=1.73)(1)求坝底增加的宽度(如图中AF 的长);(2)若某工程队平均每天完成4500立方米的筑坝任务,问该工程队完成这一次任务至多要多少天?分析:该题以抗洪抢险为背景,立意于环境保护,科教兴国,是一道解直角三角形,梯形和工程问题的综合应用题,解答时应熟悉坡度概念,需要空间观念,会进行直角三角形、梯形中的有关计算从而求出所需土方数.解:(1)由DH ︰AH =1︰1,DH =10,得AH =10,故AB =AH -GH =9.又由Rt △EFG 中,FG =EG ·cot30°=103;得AF =FG -AG =(103-9)米.(2)S 梯形AFED =21(AF +DE )×EG =21×(103-9+1)×10 =5(103-8)得V =5·(103-8)×1000=(500003-40000)(m 3),则所需天数为:V ÷4500≈11(天),所以至多需要11天.例3 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A 、B 两种产品的生产件数,有哪几种方案,请你设计出来.(2)设生产A 、B 两种产品获总利润为y 元,其中一种的生产件数为x ,试写出y 与x 之间的函数关系,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?分析:设安排生产A 种产品x 件,则生产B 种产品(50-x )件.安排生产方案的建模条件是:甲种原料用料不超过360千克,乙种原料用料不超过290千克,所以生产方案满足的数学模型是 ()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 而获得利润是由函数y =700x +1200(50-x )所决定的,问题转化为上述函数在闭区间内的最值问题.解:(1)解不等式组:()⎩⎨⎧≤-+≤-+290)50(1033605049x x x x 解得30≤x ≤32.∵ x 为整数.∴ x 只取30,31,32.∵ A 、B 两种生产方案有三种:生产A 产品30件,B 产品20件;或者生产A 产品31件,B 种产品19件;或者生产A 产品32件,B 产品18件.(2)在每种确定的生产方案下所获利最大利润为y =700x +1200(50-x )=-500x +60000.因y 随x 的增大而减小,因此当x =30时,y 取得最大值,此时y =-500×30+60000=45000(元).剖析:此题涉及利润、生产、决策等市场经济方面的应用题,富有时代气息,既考查了学生的构建函数、不等式数学模型解决实际问题的能力,也增强了学生的经济意识和决策意识.例4 我国为了缩小个人收入差异,采取了征缴个人所得税政策,某地规定:月收入不超过100元的不纳税;月收入超过1100元就必须纳税,纳税标准为:超过1100元的部分不多于500元的按超过部分5%纳税;超过1100元的部分多于500元而不多于2000元的,超过的500元按5%比例,超过部分中的其余部分按10%的比例纳税.若某人六月份缴纳个人所得税为85元.问此人六月份的收入为多少元.分析:由500×5%=25,500×55+(200-50)×10%=175,25<85<175,故知此人收入超过1100元部分多于500元而不多于2000元,设此人六月份收入为x 元,于是可得方程:500×5%+(x -1100-500)×10%=85,解得x =2200(元);所以此人六月份的收入为2200元.剖析:本题涉及收入与纳税,着重考查学生运用一元一次方程解决实际问题的能力,增强依法纳税意识.例5 (吉林省)某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?”(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.解:下面仅给出一例供评分时对照参考.补充部分:若两车分别从两地同时开出,相向而行,经几小时两车相遇?解:经x 小时两车相遇.依题可得45x +35x =40,∴ x =21. 答:经半小时两车相遇.剖析:此题有多种解法.本文只给出一种解法,这种问题以及前面涉及的自编题均属于命题方式上为“开放题“,其解法、结论均不惟一.例6 (山西省)某市场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况,如何购销获利较多?解:设商场投资x 元,在月初出售,到月末可获利y 1元;在月末出售可获利y 2元. 根据题意,得y 1=15%+10%(x +15%x )=0.265x ,y 2=30%x -700=0.3x -700.(1)当y 1=y 2时,0.265x =0.3x -700,x =20000;(2)当y 1<y 2时,0.265x <0.3x -700,x <20000;(3)当y 1>y 2时,0.265x >0.3x -700,x >20000.答:当商场投资为20000元时,两种销售方式获利相同;当商场投资超过20000元时,第二种销售方式获利多;当商场投资不足20000元时,第一种销售方式获利较多.剖析:此类属于探索型试题,此类试题通过转换情景,让考生站在决策的高度解决问题,综合考查了学生运用所学知识综合解题的能力.例7 (1)据《北京日报》2000年5月16日报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的81,世界人均占有量的321.问:全国人均水资源占有量有多少立方米?世界人均水资源占有量是多少立方米?(2)北京市一年漏掉的水,相当于新建一个自来水厂,据不完全统计,全市至少有6×105个水龙头、2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a 立方米水;一个漏水马桶,一个月漏掉b 立方米水,那么一个月造成的水流失量至少是多少立方米?(用含a 、b 的代数式表示)(3)水源透支令人担忧,节约迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交消费22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量为多少立方米.解:(1)300÷81=2400,300÷321=9600. 答:全国人均水资源占有量是2400立方米,世界人均水资源占有量是9600立方米. (2)一个月造成的流失量至少为(6×105a +2×105b )立方米.(3)设北京市规定三口之家楼房每月标准用水为x 立方米,依题意,得1.3x +2.9(12-x )=22,解这个方程,得x =8.答:北京市规定三口之家楼房每月标准用水量为8立方米.剖析:此类阅读理解试题结合社会上的一些热点或考生所熟悉的生活设置问题的场景,编拟新颖,使试题密切贴近生活,突出了时代感,此类问题通常伴有大量的阅读理解,因此解这种问题的关键在于认真审题,准确理解,将身边的生活问题转化成数学问题.中考真题演练1.(武汉市)今年入夏以来,湖北部分地区旱情严重,为缓解甲、乙两地旱情,某水库计划向甲、乙两地送水,甲地需水量为180万立方米,乙地需水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水48万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米.问:完成往甲地、乙地送水任务还各需多少天?2.(吉林省)一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,例如:存入一年期100元,到期储户纳税后所得利息的计算公式为:税后利息=100×2.25%-100×2.25%×20%=100×2.25%(1-20%).已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?3.(云南省)在直径为AB 的平面内,.划出一块三角形区域.使三角形一边为AB ,顶点C 在半圆上,其他两边分别为6和8,现要建造一个内接于△ABC 的矩形水池DEFN ,其中,DE 在AB 上,如图的设计方案是使AC =8,BC =6,(1)求△ABC 中AB 上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?(3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另一种方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.4.(宁夏回族自治区)列方程解应用题:(1)某同学勤工俭学挣的100元钱,按活期存入银行,如果月息是0.15%,数月后本金与利息的和为100.9元,那么该同学的钱在银行存了几个月?(2)王老师把500元钱按一年定期存入银行,到期后,取出了300元捐给了灾区,剩下的200元和应得利息又全部按一年期存入,由于利息下调,第二次的年利率是第一年存款年利率的53,这样到期后可得利息15元,求第一次存款的年利率(144=12).5.(连云港市)有一座抛物线形拱桥,正常水位在桥下面宽度为20米,拱顶距离水面4米.(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h (米)时,桥下水面的宽度为d (米),试求出将d 表示为h 的函数解析式;(3)设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就分影响过往船只在桥下顺利航行6.(北京市东城区)商场出售的A 型冰箱每台令售价2190元,每日耗电量为1千瓦·时,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55千瓦·时,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年.每年365天,每千瓦·时电0.40元计算)?7.(沈阳市)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望.到1998年底,全县沙漠的绿化率已达30%,此后,政府计划在近几年内,每年将当年年初未绿化的沙漠面积的m%栽上树进行绿化,到2000年底,全县沙漠的绿化率已达43.3%,求m 值.已被绿化的沙漠总面积注:沙漠的绿化率=被绿化的部分)原有沙漠总面积(含已8.(安徽省)目前,包括长江与黄河等七大流域在内,全国水土流失面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失问题更为严重,它的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,问长江流域的水土流失面积是多少?(结果保留整数)9.(福州市)如图为某地的等高线示意图,图中a、b、c为等高线,海拔最低的一条为60米,等高距为10米,结合地理知识写出等高线a为________米,b为_________米,c 为_________米.10.(安徽省)我们知道,溶液的酸碱度由pH确定.当pH>7时,溶液呈碱性,当pH<7时,溶液呈酸性.若将给定的HCL溶液加水稀释,那么在下列图象中,能反映HCL溶液的pH与所加水的体积(v)的变化关系的是()A B C D11.(四川省)某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()(A)a元(B)0.8a元(C)1.04a元(D)0.92a元12.(新疆乌鲁木齐)今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输了一场得0分.某小组四个队进行单循环赛后,其中一队积7分.若该队赢了x场,平了y场,则(x,y)是()(A)(1,4)(B)(2,1)(C)(0,7)(D)(3,1)13.(安微省)据报载,我省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩.若不采取措施,继续按此速度减下去,若干年后我省将无地可耕.无地可耕的情况最早会发生在()(A)2022年(B)2023年(C)2024年(D)2025年14.(北京市东城区)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32.若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的52;零售票每张16元,共售出零售票数的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?15.(北京市西城区)在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天燃气的开支情况,从11月15日起,小强连续八天每天晚上记录了天燃气表显示的读数,如下表[注:天燃气表上先后两次显示的读数之差就是这段时间内使用天燃气的数量(单位:米3)]:小强的妈妈11月15日买了一张面值600元的天燃气使用卡,已知每立方米天燃气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?16.(河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式(不必写出x 的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?17.(沈阳市)某书店老板去批发市场购买某种图书.第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购书数量比第一次多10本.当这批书售出54时,出现滞销,便以定价的5折售完剩余的图书.试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素)?若赔线,赔多少?若赚钱,赚多少?18.(哈尔滨市)哈市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元.“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 元和2y 元.(1)1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算? 19.(山东省)如图,是凸透镜成像的光路图,已知AB ⊥l ,l B A ⊥'',EO ⊥l ,它们的垂足分别是A 、A '、O ;BE ∥l ,f f OF O F AF ,211===为凸透镜的焦距.利用数学知识证明B A ''=AB .20.(山东省)如图表示近5年来某市的财政收入情况.图中x轴上1,2,…,5依次表示第1年,第2年,…,第5年,即1997年,1998年,…,2001年.可以看出,图中的折线近似于抛物线的一部分.(1)请你求出过A、C、D三点的二次函数的解析式;(2)分别求出当x=2和x=5时(1)中的二次函数的函数值;并分别与B、E两点的纵坐标相比较;(3)利用(1)中的二次函数的解析式预测今年该市的财政收入.21.(江西省)有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口后,还需7分钟到达学校.(1)此时,若绕道而行,要15分钟到达学校.从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?22.(长沙市)某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价xx 3 5 9 11y 18 14 6 2(1)在直角坐标系中①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为 P元,根据日销售规律:①试求日销售利润P元与日销售单价x元之间的函数关系式,并求出日销售单价x为多少元时,才能获得最大日销售利润.试问日销售利润P是否存在最小值?若有,试求出,若无,请说明理由;②在直角坐标系中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.参考答案1.设完成往甲地送水任务还需x 天,完成往乙地送水任务还需y 天.根据题意得:⎪⎪⎩⎪⎪⎨⎧=⋅++⋅+=⋅++⋅+813512025180842512035180y x y x ,整理得:⎪⎪⎩⎪⎪⎨⎧=+++=+++95405407520545y x y x解之是⎩⎨⎧==35y x ,经检验⎩⎨⎧==35y x 是原方程组的解.答:完成往甲地送水任务还需5天,完成往乙地送水任务还需3天.2.设存入x 元本金,根据题意,得:2.25%(1-20%)x =450. 解之得x =25000(元). 3.(1)∵ C 点是半圆周上的点,∴ ∠ACB =90°,从而知△ABC 是直角三角形, ∴ AB =22BC AC +=10,∵ 10h =48, ∴ h =4.8;(2)设NF =y ,∵ △CNF ∽△CAB ,∴ 108.48.4yx =-, ∴ y =10-1225x ,∴ S 矩形DEFN =1225x 2+10x (0<x <4.8)∴ 当x =⎪⎭⎫ ⎝⎛-1225210x =2.4时,S 矩形DEFN 的值最大,即此时水池DEFN 的面积最大.(3)在现设计方案中,欲判断大树是否位于水池边上,需求EB 的值. ∵ 当水池DEFN 的面积最大时,DN =2.4,∴ 此时F 是BC 的中点,在Rt △FEB 中,EF =2.4,BF =3.∴ EB =22EF BF -=24.29-=1.8∵ BM =1.85,∴ BM >EB ,从而在现设计方案中有BM >EB ,知大树必位于欲修建的水池边上,故应重新设计施工方案.∵ 当x =2.4时,DE =5,∴ AD =AB -(DE +BE )=3.2由圆的对称性知满足题设条件的另外设计方案是将最大面积的水池建成使AC =6,图略(注,不要求作图) 4.(1)设该同学的钱在银行存了x 个月.根据题意,得100+100×0.15%·x =100.9,解这个方程,得x =6. 答:略,(2)设第一次存款的年利率为x根据题意得[500(1+x )-300]·x 53=15, 整理,得20x 2+8x -1=0 解得x =101=10%,x =-105(不符合题意舍去) 答:第一次存款的年利率为10%. 5.(1)设抛物线的解析式为y =ax 2,在正常水位时,B 点坐标为B (10,-4),将它代入解析式得:-4=a ·102,∴ a =-251, ∴ 解析式为y =-251 x 2. (2)水位上升h (米)时,D 点的纵坐标为-(4-h ).设D 点横坐标为x (x >0),则-(4-h )=-251x 2, 解得x =5h -4, ∴ d =2h =10h -4,(3)当桥下水面宽度为18米时,得18=10h -4,2581=4-h , h =4-2581=2519=0.76. ∴ 桥下水深超过2.76米时就影响过往船只在桥下顺利航行. 6.设商场将A 型冰箱打x 折出售,消费者购买才合算. 依题意,有2190×10x+365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 2190×⎪⎭⎫⎝⎛-1.110x ≤365×10×0.4×(0.55-1)解这个不等式得x ≤8,答:商场应将A 型冰箱至少打八折出售,消费者购买才合算. 7.依题意:(1-30%)(1-m%)=(1-43.3%) 整理,得(-m%)2=0.81,1-m%=±0.9,m 1=10,m 2=190,m 2=190不合题意,舍去,所以m =10. 答:m 的值为10.8.设长江流域的水土流失面积为x 万平方千米,根据题意得 x +(x -29)=367×32.4%,解得x ≈74.答:长江流域的水土流失面积约是74万平方千米. 9.60,8010.C 11.C 12.B 13.D14.设总票数为a 张,六月份零售票应按每张x 元定价. 五月份:团体票售出数为,523253a a =⨯票款收入为a a 524325312=⨯⨯(元); 零售票售出票数为a a 613121=⨯,票款收入为a a 386116=⨯(元).六月份:团体票所剩票数为a a 1543252=⨯,可收入a a 156415416=⨯(元); 零售票所剩票数为a a 613121=⨯,可收入ax x a 6161=⨯(元).依题意,得ax a a a 61156438524+=+.解这个方程,得x =19.2答:六月份零售票应按每张19.2元定价.15.小强家这一周平均每天用天燃气10立方米.由此估计小强家冬季取暖第一个月使用天燃气约为300立方米. ∵ 1.7×300=510<600,∴ 估计这张卡够小强家用一个月. 16.(1)当销售单价定为每千克55元时,月销售量为:500―(55―50)×10=450(千克), 所以月销售利润为:(55-40)×450=6750(元).(2)当销售单价为每千克x 元时,月销售量为:[500―(x ―50)×10]千克, 而每千克的销售利润是:(x ―40)元, 所以月销售利润为:y =(x ―40)[500―(x ―50)×10]=(x ―40)(1000-10x )=-10x 2+1400x -40000(元),∴ y 与x 的函数解析式y =-10x 2+1400x -40000. (3)要使月销售利润达到8000元,即y =8000, ∴ -10x 2+1400x -40000=8000,即:x 2-140x +4800=0,解得x 1=60,x 2=80.当销售单价定为每千克60元时,月销售量为: 500―(60―50)×10=400(千克), 月销售成本为:40×400=16000(元);当销售单价定为每千克80元时,月销售量为: 500―(80―50)×10=200(千克) 月销售成本为:40×200=8000(元);由于8000<10000<16000,而月销售成本不能超过10000元, 所以销售单位应定为每千克80元.17.解法一:设第二次购书x 本,则第一次购书(x -10)本.由题意,得xx 1502110100=+-, 整理得x 2-110x+3000=0,解得x 1=50,x 2=60. 经检验,x 1=50,x 2=60都是原方程的根.当x =50时,每本书的批发价为150÷50=3(元),高于书的定价,不合题意,舍去.当x =60时,每本书的批发价为150÷60=2.5(元),低于书的定价,符合题意.因此第二次购书60本.⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯218.2608.25460-150=151.2-150=1.2(元)答:该老板第二次售书赚了1.2元钱.解法二:设第一次购书的批发价为x 元,则第二次的批发价为(x +0.5)(元).由题意,得5.015010100+=+x x , 整理得2x 2-9x +10=0,解得x 1=2.5,x 2=2. 经检验,x 1=2.5,x 2=2都是原方程的根.当x =2.5时,第二次的批发价为2.5+0.5=3(元)高于书的定价,不舍题意,舍去.当x =2时,第二次的批发价为2+0.5=2.5(元)低于书的定价,符合题意. 因此第二次购书:150÷(2+0.5)x +60(本).以下解法同解法一.解法三:设第一次购书x 本,则第二次购书(x +10)本.由题意,得1015021100+=+x x , 整理得x 2-90 x +2000=0,解得x 1=40,x 2=50. 经检验,x 1=40,x 2=50都是原方程的根.当x =40每本书的批发价为100÷40=2.5(元), 第二次的批发价为2.5+0.5=3(元),高于书的定价,不合题意,舍去. 当x =50时,每本书的比发价为100÷50=2(元),第二次的比发价为2.0+0.5=2.5(元)低于书的定价,符合题意.因此第一次购书本.第二次购书50+10=60(本).以下解法同解法一.18.y 1=50+0.4x (x ≥0的整数).y 2=0.6x (x ≥0的整数). (2)若两种通讯费用相同,则50+0.4x =0.6.∴ x =250. 答:一个月内通话250分钟,两种移动通讯费用相同. (3)当y 1=200时,即200=50+0.4x ,则x =375(分). 当y 2=200时,即200=0.6x 则x =33331(分). ∴ “全球通”可通话375分钟,“神州行”可通话33331分钟. 答:选择“全球通”较合算. 19.∵ AB ⊥l ,EO ⊥l ,∴ AB ∥EO ,又∵ BE ∥l ,∴ 四边形AOEB 是矩形.∵ AF 1=F 1O =OF 2=f , ∴ BE =AO =2f , ∴ O F 2=21BE ,即BE OF 2=21.∵E B O O ''2=BE OF 2=21,即B 'O =BO , 又∠B 'O A '=∠BOA ,∴ Rt △B 'O A '≌Rt △BOA , ∴ A 'B '=AB .20.(1)设所求二次函数的解析式为y =ax 2+bx +c ,得⎪⎩⎪⎨⎧=++=++=++54168.3396.2c b a c b a c b a ,解这个方程组,得a =0.2,b =-0.2,c =2.6,因此,所求二次函数的解析式为:y =0.2x 2-0.2x +2.6.(*)(2)由(*)式,当x =2时,y =3,此时所求函数值与B 点纵坐标的误差为0(亿元). 当x =5时,y =6.6,此时所求函数值与E 点纵坐标的误差为0.3(亿元)(3)把x =6代入(*)式,得y =8.6,所以预测2002年该市的财政收入约为8.6亿元.21.(1)∵ 7336+=19>15, ∴ 王老师应选择绕道而行去学校. (2)设维持秩序时间为t .则⎪⎭⎫ ⎝⎛-+-9336336t t =6,解之得t =3(分). 答:维持好秩序的时间是3分钟.22.(1)①准确描出四点位置②猜测它是(3,18),(5,14)代入上式求得k =-2,b =24则有y =-2x+24时,(9,6),(11,2)代入知同样满足∴ 所求是y =-2x+24由实际意义知所求y =-2x+24(*) (0≤x <12和y =0(x ≥12)画出图象(2)①因为销售利润=售出价-进货价, 则P =xy -2y将(1)中(*)式代入,则P =y (x -2)=(24―2x )(x ―2)=-2x 2+28x -48=―2(x ―7)2+50. 当x =7时,日销售利润获得最大值为50元.又当x >12时,即销售单价大于是2元时,此时无人购买,所以此时利润P =0(x ≥12)由实际意义知,当销售价x =0,即亏本卖出此时利润P =-48,即为最小值.②根据实际意义,有:0≤x<2时亏本卖出当x=2或x=12时利润P=0,当x>12时,即高价卖出无人购买P=0 故作出图象,知:x≥0,-48≤P≤50。
中考数学专卷2020届中考数学总复习(22)圆-精练精析(1)及答案解析
图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1 参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD 的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( )A .B .1﹣C .﹣1D . 1﹣考点: 扇形面积的计算. 分析: 图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答: 解:如图: 正方形的面积=S 1+S 2+S 3+S 4;① 两个扇形的面积=2S 3+S 1+S 2;② ②﹣①,得:S 3﹣S 4=S 扇形﹣S 正方形=﹣1=.故选:A .点评: 本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB⊥CD,垂足为M ,则AC 的长为( )A . cmB .cmC .cm 或cmD . cm 或cm考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在Rt△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
冲刺2020年数学中考专题练习:《扇形面积的计算》(包含答案)
冲刺2020年数学中考专题练习:《扇形面积的计算》一.选择题1.如图一个扇形纸片的圆心角为9090°°,半径为6.将这张扇形纸片折叠,使点A与点O 恰好重合,折痕为CD,则阴影部分的面积为( )A. B. C. D. 2.如图,菱形ACBD中,AB与CD交于O点,∠ACB=120°,以C为圆心AC为半径作弧AB,再以C为圆心,CO为半径作弧EF分别交AC于F点,BC于E点,若CB=2,则图中阴影部分的面积为( )A. B. C. D. 3.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为( )A.π﹣2 B.π+2 C.2﹣π D. +π 4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A. B. C.2 D.2 5.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为( )A.π B.π C.π D.π6.如图,矩形ABDC与⊙O交于E,F两点,且AE=EF,CD过圆心O,且CD=4,则阴影部分的面积为( )A.2﹣π B.4﹣π C.3﹣π D.2﹣π 7.如图,在矩形ABCD中,AB=,BC=1,把矩形ABCD绕点A顺时针旋转3030°°得到矩形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为( )A.﹣ B.﹣+2 C.﹣+2 D.﹣二.填空题8.如图所示,扇形AOB中,∠AOB=130°,点C为OA中点,OA=10,CD⊥AO交于D,以OC为半径画交OB于E,则图中阴影部分面积为 .9.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为 (结果保留π).10.如图,在△ABC中,BA=BC,∠ABC=90°,AC=4,D为AC的中点,以D为圆心,DB为半径作圆心角为90°的扇形DEF,则图中阴影部分的面积为 .11.如图,已知△OAB是等腰直角三角形,OA=OB=,点E是AB上一点,且∠AOE =15°,以O为圆心,OE的长为半径画弧,与△OAB的三边分别交于点C、F、D,则图中阴影部分的面积为 (结果保留π).12.如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值= .13.如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积 .14.如图,以直角三角形的两条直角边AC、AB为直径,向三角形内作半圆,两半圆交于点D,CD=1,BD=3,则图中阴影部分的面积为 (平方单位).15.如图:矩形ABCD中,AB=6,BC=4,O为AB上一点,且OB=4,以O为圆心,OB长为半径画弧,切CD于E,交AD于F,则扇形OBEF的面积是 .16.已知, OA是⊙O的半径,AB是以OA为直径的⊙O′的弦,O′B的延长线交⊙O 于点C,且OA=4,∠OAB=45°.则由和线段BC所围成的图形面积是 .17.如图,在扇形OAB中,∠AOB=90°,OA=OB=2,将扇形OAB绕边OB的中点D顺时针旋转9090°°得到扇形O'A'B',弧A'B′交OA于点E,则图中阴影部分的面积为 .三.解答题18.如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.(1)求证:AB=AC.(2)若AB=4,∠ABC=30°.①求弦BP的长.②求阴影部分的面积.19.如图,△ABC中,∠ABC=9090°°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.20.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,他测量出了相关数据,他测量出了相关数据,并画出了示意图,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A ,B 两点的距离为12米,求这种装置能够喷的草坪面积.21.如图,点C ,D 是半圆O 上的三等分点,直径AB =4,连接AD ,AC ,作DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求证:AF =DF .(2)求阴影部分的面积(结果保留π和根号)22.如图,四边形ABCD 内接于圆O ,对角线AC 是圆O 的直径,DB 平分∠ADC ,AC 长10cm .(1)求点O 到AB 的距离;(2)求阴影部分的面积.23.如图,在矩形ABCD中,点F在BC边上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以A为圆心,AB长为半径作弧交AF于点G,若AD=4,tan∠ADE=,求阴影部分的面积(结果保留π)24.已知,如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把把该套三角板放置在平面直角坐标系中,且AB=3.(1)若某开口向下的抛物线的顶点恰好为点A,请写出一个满足条件的抛物线的解析式;(2)若把含3030°°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).参考答案一.选择题1.解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=3030°°,∠COD=6060°°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣×3×3=6π﹣,∴阴影部分的面积为﹣2×(6π﹣)=9﹣3π,故选:A.2.解:∵四边形ACBD是菱形,∠ACB=120°,∴∠DCA=∠ACB=6060°°,AB⊥CD,AD=BC=AC=2,∴∠CBA=∠CBA=(180°﹣∠ACB)=30°,∠AOC=9090°°,∴OC=AC==1,由勾股定理得:AO==,∵AC=AD,∠ACD=6060°°,∴△ACD是等边三角形,∴CD=AC=2,∴DO=CD﹣OC=2﹣1=1,∴阴影部分的面积S=S扇形DCA﹣S△DOA=﹣=﹣,故选:A.3.解:连接OE,∵∠BOA=9090°°,点C为BD的中点,CE∥OA,OA=4∴∠ECO+∠COA=180°,OB=OE=4,OC=2,∴∠OCE=9090°°,OE=2OC,∴∠EOC=6060°°,CE=2,∴阴影部分的面积为:=, 故选:A.4.解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵A D⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S==π,扇形BAC∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.5.解:如图,连接ED,作AM⊥EC于M,BN⊥CD于N.∵BC=2AC,∴设AC=x,BC=2x,∵∠C=9090°°,∴x2+(2x)2=5,∴x=1,2x=2,AC=1,BC=2,∵∠AMC=∠BNC=∠ACB=9090°°,∴∠ACM+∠CAM=9090°°,∠ACM+∠BCN=90°,∴∠BCN=∠CAM,∵∠CBN+∠BCN=90°,∴∠CAM+∠CBN=9090°°,∵AE=AC,AM⊥EC,BC=BD,BN⊥CD,∴∠CAE=2∠CAM,∠CBD=2∠CBN,∴∠CAE+∠CBD=180°,∵的长度恰好是的倍,设∠CBD=m,∠CAE=n, ∴=×,∴4m=5n,∵m+n=180°,∴m=100°,n=80°,∴S阴=+=,故选:B.6.解:如图,连接OE、OF,作OM⊥AB于M.∵OM⊥AB,∴EM=MF,∵四边形OCAM,四边形ODBM是矩形,∴AM=OC.BM=OD,∵OC=OD,∴AM=BM,∴AE=BF,∵EF=2AE,CD=AB,∴EF=OC=OD=OE=OF,∴△OEF是等边三角形,∴∠EOF=∠OEF=∠OFE=60°,∵CD∥AB,∴∠COE=∠OEF=6060°°,∠DOF=∠OFE=60°,∴OM=,∴S阴=S矩形ABCD﹣S扇形OCE﹣S扇形ODF﹣S△OEF+S弓形EFM=4﹣2×﹣×22+(﹣×22)=2﹣π.故选:A.7.解:如图连接AC′,CB′.在矩形ABCD中,∵∠B=90°,AB=,BC=1,∴tan∠BAC=,∵旋转角为30°,∴A、B′、C共线.设C′B′交CD于E.S阴=S扇形ACC′﹣S△AB′C′﹣S△ECB′=﹣•1•﹣•(2﹣)••(2﹣)=﹣+2,故选:B.二.填空题(共10小题)8.解:如图,连接OD.∵CD⊥OA,AC=OC,∴OAO=2OC,∴∠CDO=3030°°,∴∠COD=6060°°,∴S阴=S扇形OAB﹣S扇形OCE﹣(S扇形OAD﹣S△OCD)=﹣﹣(﹣×5×5)=+,故答案为: +.9.解:过O作OD⊥AB于D,交劣弧AB于E,如图:∵把半径为2的⊙O沿弦AB折叠,经过圆心O,∴OD=DE=1,OA=2,∵在Rt△ODA中,sin A==,∴∠AOE=60°,同理∠BOE=60°,∴∠AOB=6060°°+60°=120°,在Rt△ODA中,由勾股定理得:AD===,∵OD⊥AB,OD过O,∴AB=2AD=2,∴阴影部分的面积S=S扇形AOB﹣S△AOB=﹣=﹣, 故答案为:﹣.10.解:在Rt△ABC中,∠ABC=90°,BC=AB,AC=4,由勾股定理得:BC=AB=2,∵在Rt△ABC中,∠ABC=90°,BC=AB,AC=4,D为AC的中点,∴BD=AC=2=DE=DF,CD=AD=2,∠DBM=∠ABC=4545°°=∠A=,CD=AD,∠BDA=90°,∵∠MDN=9090°°,∴∠MDB=∠NDA=9090°°﹣∠BDN,在△BDM和△ADN中,,∴△BDM≌△ADN(ASA),∴△ADN与△BDN的面积之和=△BDM与△BDN的面积之和,∴四边形DNBM的面积等于△CDB的面积,∴阴影部分的面积是S=S扇形DEF﹣S四边形DNBM=﹣××2×2=π﹣2,故答案为:π﹣2.11.解:如图,连接OF.作OH⊥EF于H.由题意:∠AOE=∠FOB=1515°°,∠EOF=9090°°﹣15°﹣15°=60°,∵∠AOB=9090°°,OA=OB=,∴AB=2,∵OH⊥AB,OA=OB,∴AH=BH,∴OH=AB=,∠EOH=∠FOH=30°,∴OF==2,∴S阴=(S△AOB﹣2•S扇形EOC﹣S△EOF)+(S扇形OEF﹣S△OEF)=××﹣2×﹣×22+﹣×22=3+﹣2.故答案为3+﹣2.12.解:由题意当OP⊥A'B'时,阴影部分的面积最小,∵P(,),∴OP=2,∵OA'=OB'=4,∴P A'=PB'=2,∴tan∠A'OP=tan∠B'OP=,∴∠A'OP=∠B'OP=6060°°,∴∠A'OB'=120°,∴S阴=S扇形OA'B'﹣S△A'OB'=,故答案为:.13.解:如图,设点O为弧的一个交点,连接OA、OB,过O作OE⊥AB于E,则△OAB为等边三角形,所以∠OBC=3030°°,过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣,∴阴影部分的面积S=4×(S正方形ABCD﹣S△AOB﹣2S扇形CBO)=4×(2×2﹣﹣2×)=16﹣4﹣.故答案为:16﹣4﹣.14.解:如图,设N是以AC为直径的半圆的圆心,连接ND,M为以AB为直径的半圆的圆心,连接MD,连接AD.则AD⊥BC,根据射影定理有:AC2=CD•CB=CD(CD+BD)=4,即AC=2;同理可求得AB=2;因此∠ABD=30°,∠ACD=6060°°;∴∠AMD=6060°°,∠AND=120°.∴扇形MAD中,弓形AD的面积=S扇形MAD﹣S△MAD=﹣=﹣;同理可求得扇形AND中,S=﹣;弓形AD=﹣(﹣+﹣)=﹣(平方单位). 因此S阴影15.解:由题意,AO=AB﹣OB=2,OF=BC=OB=4,∴Rt△OF A中,=,∴∠FOA=6060°°,∴∠FOB=120°∴S扇形OBEF==.16.解:连接OC、AC.∵O′A=O′B,∠OAB=45°,∴∠AO′B=90°.又OO′=AO′,∴OC=AC.又OA=OC,∴△AOC是等边三角形.∴∠A=6060°°.∵O′A=2,∴O′C=2.∴阴影部分的面积=S扇形OAC﹣S△OO'C﹣S扇形O'A0B=﹣2.17.解:延长EO交O'A'于P,则由∠AOB=9090°°,OA=OB=2,D为OB中点,可得 S=12﹣=1﹣;阴影OPO′∵O′P=OE,∠EPO'=90°,∴cos∠EO'P=,∴∠EO'P=6060°°,EP=∴S阴影A′PE=S扇形O′A′E﹣S△O′PE=﹣××1=﹣∴S阴影═1﹣+﹣=1﹣+.故答案为1﹣+.三.解答题(共7小题)18.(1)证明:连接AP,∵AB是半圆O的直径,∴∠APB=90°,∴AP⊥BC.∵PC=PB,∴△ABC是等腰三角形,即AB=AC;(2)解:①∵∠APB=9090°°,AB=4,∠ABC=3030°°, ∴AP=AB=2,∴BP===2;②连接OP,∴∠P AB=60°,∴∠POB=120°.∵点O时AB的中点,∴S△POB=S△P AB=×AP•PB=×2×2=, ∴S阴影=S扇形BOP﹣S△POB=﹣=π﹣.19.(1)证明:连接DB.∵AB是⊙O的直径,∴∠ADB=9090°°,∴∠CDB=9090°°,∵点E是BC的中点,∴DE=CE=BC,∴∠EDC=∠C,∵OA=OD,∴∠A=∠ADO,∵∠ABC=9090°°,∴∠A+∠C=9090°°,∴∠ADO+∠EDC=90°,∴∠ODE=9090°°,∴OD⊥DE;(2)∵AB=8,∠BAC=3030°°,∴AD=4,阴影部分的面积=﹣×4×2=π﹣4.20.解:过O作OC⊥AB于C,则∠ACO=90°,∵OC过O,OC⊥AB,AB=12米,∴AC=BC=6米,∵旋转喷水装置的旋转角度为240°,∴∠AOB=120°,∵OA=OB,∴∠OAC=∠OBC=(180°﹣120°)=3030°°,∴OA===4(米),∴这种装置能够喷的草坪面积是=3232ππ(平方米). 21.(1)证明:连接OD,OC,∵C、D是半圆O上的三等分点,∴∠AOD=∠DOC=∠COB=6060°°,∴∠DAC=3030°°,∠CAB=30°,∵DE⊥AB,∴∠AEF=9090°°,∴∠ADE=180°﹣9090°°﹣30°﹣30°=30°,∴∠DAC∠ADE=3030°°,∴AF=DF;(2)解:由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2×=π﹣.22.解:(1)过点O作OE⊥AB于点E,∵对角线AC是圆O的直径,DB平分∠ADC,∴∠ADC=9090°°,则∠ADB=∠CDB=45°,∴∠AOB=9090°°,∵AO=BO,∴△AOB是等腰直角三角形,则EO=A O•sin45°=5×=(cm);(2)阴影部分的面积为:﹣×5×5=﹣.∴∠ABC=9090°°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠FBA,在△ABF和△DEA中,∴△ABF ≌△DEA (AAS),∴DE =AB;(2)解:∵tan∠ADE=,∴∠ADE =60°,∵AD=4,∠AED=9090°°,∴AE=AD•sin∠ADE=4×=6,DE =2,由(1)知,△ABF≌△DEA,∴AB=DE=2,BF=EA=6,∠BAF=∠EDA=60°, ∴阴影部分的面积=△ABF 的面积﹣扇形ABG的面积=×2×6﹣=6﹣2π.24.解:(1)在Rt△OBA中,∠AOB=3030°°,AB=3, ∴OA=2AB=6,∴,∴点A(3,3).∴抛物线的解析式可以为:;21 / 22(2)由(1)可知 OA=6,由题意得:∠AOC=60°, ∴S扇形AOA′=πOA2=6π.在Rt△OCD中,∠DOC=45°,OC=OB=3,∴S阴影=S扇形AOA′﹣S△ODC=6π﹣22 / 22。
江西省2020届中考数学单元专题练之几何探究题附全解全析
江西省2020届中考数学单元专题练之几何探究题【题型解读】几何探究题为江西近10年的必考题型,题位在解答题最后两道题中的一道.考查类型有:(1)操作探究问题(3次);(2)旋转探究问题(3次);(3)新定义探究问题(2次);(4)动点探究问题(2次);主要设问有:(1)求线段长;(2)判断图形的形状;(3)求角度;(4)判断两条线段的数量和位置关系并证明.类型一操作探究问题1.如图,在正方形ABCD中,点E、F是正方形内两点,BE∥DF,EF⊥BE.为探索研究这个图形的特殊性质,某数学学习小组经历了如下过程:●初步体验如图①,连接BD,若BE=DF,求证:EF与BD互相平分.●规律探究(1)在图①中,(BE+DF)2+EF2=________AB2;(2)如图②,若BE≠DF,其他条件不变,(1)中的数量关系是否会发生变化?如果不会,请证明你的结论;如果会发生变化,请说明理由.●拓展应用如图③,若AB=4,∠DPB=135°,2BP+2PD=46,求PD的长.第1题图2. 如图①,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上的一动点,Q是上的一动点,连接PQ.发现:当∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图②,若P是OB中点,且QP⊥OB于点P,求的长;(2)如图③,将扇形AOB沿折痕AP折叠,使点B的对应点恰好落在OA的延长线上,求阴影部分的面积;探究:如图④,将扇形OAB沿PQ折叠,使折叠后的恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.第2题图3. 综合与实践 问题情境:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图①所示的长方形纸条ABCD ,其中AD =BC =1,AB =CD =5.然后在纸条上任意画一条截线段MN ,将纸片沿MN 折叠,MB 与DN 交于点K ,得到△MNK ,如图②所示:深入探究: (1)若∠1=70°,求∠MKN 的度数;(2)试判断△MNK 的形状;若改变折痕MN 的位置,△MNK 的形状是否发生变化,请说明理由;拓展应用:(3)爱动脑筋的小明在研究△MNK 的面积时,发现KN 边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN 的面积最小值为12,求此时∠1的度数;(4)小明继续动手操作,发现了△MNK 面积的最大值.请你求出这个最大值.第3题图4. 如图,在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为点E ,这时折痕与边BC 或者边CD (含端点)交于点F ,然后展开铺平,连接BE 、EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个______三角形; ②当折痕经过点A 时,cos ∠BEF 的值为________; (2)深入探究:在矩形ABCD 中,AB =3,BC =23,①当△BEF是等边三角形时,求出BE的长度;②在任意折叠中,△BEF的面积是否存在最大值,若存在,求出EF的长;若不存在,请说明理由.第4题图5. 如图①,已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°,AM、AN分别交BC于点M、N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到△ACQ,请在图①中画出△ACQ;(不写画法)【探究】(2)在(1)中所作图的基础上,连接NQ,①求证:MN=NQ;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由;【拓展】如图②,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与点E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE、DF于点K、L,连接GH,分别交DE、DF于点S、T,(3)线段GS,ST和TH之间满足的数量关系是________;(4)设DK=a,DE=b,求DP的值.(用a、b表示)第5题图6.现有三角形纸板ABC, AC=BC=6,∠ACB=90°,将该三角形纸板放在足够大的圆中移动,⊙O交直线AB于点D,连接DO并延长交⊙O于点E,连接AE.(1)操作发现:如图①,当⊙O经过A、C两点,且圆心O在△ABC内部时,连接CD、CE,①试判断CD与CE的数量关系,并说明理由;②求AE+AD的值;(2)数学思考:如图②,当⊙O 经过A 、C 两点,且圆心O 在△ABC 外部时,连接CD 、CE ,求AE -AD 的值;(3)问题解决:如图③,点F 为CA 延长线上一点,且AC =3AF .当⊙O 经过A ,F 两点,且圆心O 在△ABC 外部时,连接DF ,EF ,①猜想AE 、AD 之间的数量关系,并证明;②连接CE ,是否存在△AEC 为直角三角形?若存在,请直接写出⊙O 的半径;若不存在,请说明理由.第6题图类型二 旋转探究问题1. 在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转,旋转角为θ(0°<θ<180°),得到△A ′B ′C .(1)设△ACA ′和△BCB ′的面积分别为S 1和S 2.若θ=40°,请求出S 1S 2的值;(2)如图①,设A ′B ′与CB 相交于点D ,且AB ∥CB ′: ①求证:CD =B ′D ; ②求BD 的长;(3)如图②,设AC 中点为点M ,A ′B ′中点为点N ,连接MN ,MN 是否存在最大值,若存在,求出MN 的值,判断出此时AA ′与BB ′的位置关系;若不存在,请说明理由.第1题图2. 如图①,在△ABC中,AC=BC=22,∠ACB=90°,点D、E分别是AC、BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,旋转角为α,连接AD′、BE′.(1)如图①,若0°<α<90°.①求证:AD′=BE′;②当AD′∥CE′时,求BE′的长;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)如图③,将△CDE绕点C旋转一周,在旋转过程中,若AD′与直线BE′相交于点P,M为AB的中点,那么在整个旋转过程中,求PM扫过的图形面积.第2题图3. 如图①,边长为6的等边△ABC中,点D在AB边上(不与点A,B重合),点E在BC 边上(不与点B,C重合).第一次操作:将线段DE绕点E顺时针旋转,当点D落在三角形上时,记为点F;第二次操作:将线段EF绕点F顺时针旋转,当点E落在三角形上时,记为点G;依次操作下去….(1)如图②中的四边形DEFG是经过三次操作后得到的,且DE⊥EC.①四边形DEFG的形状为________;②若BE=CF,求线段DE的长;(2)若经过两次操作可得到△DEF如图③.①请判断△DEF的形状为________,此时AD与BE的数量关系是________;②以①中的结论为前提,设AD的长为x,△DEF的面积为y,求y与x的函数关系式;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.第3题图4. 已知△ABC与△DEF均为透明的完全一样的等腰直角三角板,且AC=BC=2,∠C =∠E=90°.在数学活动课上,小颖同学用这两块三角板进行探究活动.操作:使点D落在线段AB的中点处并使DF过点B(如图①),然后将△DEF绕点D顺时针旋转,直至点E落在CB的延长线上时结束操作,在此过程中,射线ED与射线CA交于点N,射线CB与DF相交于点M,连接MN(如图②,图③).(1)如图②,若AB∥MN,求证:△ADN≌△BDM;(2)如图②,在以上操作过程中,求证:AN·BM的值不会发生变化;(3)①如图③,在以上操作过程中,ND始终平分∠ANM吗?若平分,请加以证明;若不平分,请说明理由;②设AN=m,请直接写出△DMN的面积(用含m的式子表示).第4题图5. 如图①,把边长为2的正方形纸片ABCD沿对角线BD剪开,将△BCD平移得到△DEF,使得BC边与AD边重合,如图②所示,固定△ABC,将△EFD绕点A顺时针旋转,当ED边与AB边重合时,旋转停止.不考虑旋转开始和结束时重合的情况,设ED、EF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图③所示.(1)图②四边形ABCF的形状是________,连接BF,则BF=________;(2)在旋转过程中,∠CEF+∠CHE的度数为________;(3)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图③所示的情况说明理由);(4)当x为何值时,△AGH是等腰三角形?(直接写出答案,不必说明理由)第5题图6.将两张完全相同的平行四边行纸片按如图①所示放置(其中点E在BC上,点A在BG 上,AB=BE=4,BC=BG=23+2,∠B=60°,▱ABCD固定不动,将▱GBEF绕点B顺时针旋转,旋转角为α(0°<α<360°).(1)如图①,连接AF,求AF的长.(2)如图②,当▱GBEF绕点B旋转到点F与点D重合时,AD与BG相交于点M,BC与ED相交于点N,求证:四边形BMDN是菱形.(3)如图③,在旋转过程中,当旋转角α为多少度时,以点C,G,D,F为顶点的四边形是正方形?是矩形?请给予证明.第6题图类型三 新定义探究问题1. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,若△PBC 与△CAB 相似,那么就称点P 为△ABC 的黄金点.(1)在下列三角形中,一定没有黄金点的是( ) A . 锐角三角形 B . 钝角三角形 C . 等腰三角形 D . 直角三角形(2)如图②,已知Rt △ABC 中,∠ACB =90°,∠ABC >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为点E ,试说明点E 是△ABC 的黄金点;(3)如图③,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,BC =4. ①若点P 1是△ABC 的黄金点,求AP 1的长;②若点P 1是△ABC 的黄金点,点P 2是△P 1BC 的黄金点, 点P 3是△P 1P 2C 的黄金点,点P 4是△P 1P 2 P 3的黄金点,…,以此类推,请求出△P 2016P 2017P 2018的周长.第1题图2. 我们知道若线段上的一个点把这条线段分割为两部分,其中一部分与全长之比等于5-12时,则这个点称为黄金分割点.类比三角形中线的定义,我们规定:连接一个顶点和它对边的黄金分割点的线段叫做这个三角形的黄金线.(1)如图①,已知CD 是△ABC 的黄金线(AD >BD ),△ABC 的面积为4,则△BCD 的面积为________;(2)如图②,在△ABC 中,∠A =36°,AB =AC =1,过B 点作BD 平分∠ABC ,与AC 相交于点D ,求证:BD 是△ABC 的黄金线;(3)如图③, BE 、CD 是△ABC 的黄金线(AD >BD ,AE >CE ),BE 、CD 相交于点O . ①设△BOD 与△COE 的面积分别为S 1、S 2,试猜想S 1、S 2的数量关系,并说明理由;②求ODCD的值.第2题图3.如果在两个相似但不全等的三角形中,其中一个三角形的一边等于另一个三角形的一边,那么,我们称这两个三角形为梦幻三角形,例如:(如图①所示)△ABC 的三边长分别为a 、b 、c ,(如图②所示)△A 1B 1C 1的三边长分别为a 1、b 1、c 1,且△ABC ∽△A 1B 1C 1,c =a 1,那么我们将△ABC 与△A 1B 1C 1称为梦幻三角形.(1)若△ABC 与△A 1B 1C 1为梦幻三角形,且相似比为k (k >1),求证:a =kc ; (2)如图③,在△ABC 中,∠ACB =80°,∠B =60°,CD 平分∠ACB 交AB 于点D ,求证:△CBD 与△ABC 为梦幻三角形;(3)如图④,△ABC 内接于⊙O ,且AB 为⊙O 的直径,∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点C 作CF ⊥PD 于点F ,与AD 相交于点E ,且△ACE 与△ADC 刚好构成梦幻三角形.①若AE ·AD =36,BC =8,求线段AD 的长;②若CDAB=m ,请直接写出PC 与PD 的数量关系(用含m 的式子表示,不必说明理由).第3题图4.阅读理解如图①,在正n边形A1A2A3…A n的边A2A3上任取一不与点A2重合的动点B2,并以线段A1B2为边在线段A1A2上方作一正n边形A1B2B3…B n,把正n边形A1B2B3…B n叫正n边形A1A2A3…A n的准位似图形,点A3称为准位似中心.特例论证(1)如图②,已知正三角形A1A2A3的准位似图形为正三角形A1B2B3,试证明:随着点B2的运动,∠B3A3A1的大小始终不变.数学思考(2)如图③,已知正方形A1A2A3A4的准位似图形为正方形A1B2B3B4,随着点B2的运动,∠B3A3A4的大小是否始终不变?若不变,请求出∠B3A3A4的大小;若改变,请说明理由.归纳猜想(3)在图①的情况下:①试猜想∠B3A3A4的大小是否会发生改变?若不改变,用含n的代数式表示出∠B3A3A4的大小(不要求证明);若会改变,请说明理由;②∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠B n A n A1=________.(用含n的代数式表示)第4题图类型四 动点探究问题1.在四边形OABC 中,AB ∥OC ,∠OAB =90°, ∠OCB =60°,AB =2,OA =2 3.(1)如图①,连接OB ,请直接写出OB 的长度;(2)如图②,过点O 作OH ⊥BC 于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,设点P 运动的时间为t 秒,△OPQ 的面积为S (平方单位).①求S 与t 之间的函数关系式;②设PQ 与OB 交于点M ,当△OPM 为等腰三角形时,试求出△OPQ 的面积S 的值.第1题图2. 如图,点O 为正方形ABCD 的中心,AB =2,点E 为AB 上的一动点,DF ⊥DE 于点D ,DF 与BC 的延长线相交于点F . OM ⊥DE 于点M , ON ⊥DF 于点N .(1)求证:DE =DF ;(2)在点E 的运动过程中,OM 2+ON 2是否是一个定值,如果是,请求出 OM 2+ON 2的值,若不是,请说明理由;(3)如图②,若DE 与AC 相交于点P ,DF 的延长线与AC 的延长线相交于点Q ,求证: AP CQ =DP DQ.第2题图3. 如图①,在等腰△ABC中,∠BAC=90°,AB=AC,点D是BC边上的动点,P为AB边上的动点,连接DP,以DP为边构造△DEP,∠DPE=90°,PD=PE.(1)如图②,若点P与点A重合,①求证:CD=BE;②猜想BD、CD与PD之间的数量关系,并说明理由;(2)如图③,若BP=2AP时,AC=62,设DP2=y,BD=x.①求y关于x的函数关系式;②连接CP,请问是否存在△CDP为等腰三角形?若存在,请求出△DPE的面积;若不存在,请说明理由.第3题图4. 如图,在锐角△ABC中,AB=8,BC=6,CD⊥AB于点D,点E是AC的中点,连接DE.(1)如图①,①当DE∥BC时,则cos∠B的值为________;②当DE⊥AC时,求sin∠B的值;(2)设△ACD的面积为S,求S-AC2的最大值;(3)如图②,M、F为线段AB上的两动点,在运动的过程中,EF始终与CM平行,延长FE到点P,随着∠B的变化,是否存在∠DEP=k∠A(k为正整数)?若存在,请直接写出tan∠MCA的取值范围;若不存在,请说明理由.第4题图江西省2020届中考数学单元专题练之几何探究题答案全解全析类型一操作探究问题1.解:●初步体验证明:如解图①,连接BD交EF于点O,连接DE、BF,第1题解图∵BE=DF,BE∥DF,∴四边形BFDE是平行四边形,∴EF与BD互相平分.●规律探究(1) 2;(2)(1)中的数量关系不会发生变化.理由如下:如解图①,过点D作BE的垂线,与BE的延长线交于点M,连接BD,第1题解图①∵BE∥DF,EF⊥BE,DM⊥BM,∴EF∥DM,∴四边形EFDM是矩形,∴DF=EM,EF=DM,BM=BE+DF,∵在正方形ABCD中,∴BD=2AB,∵BD2=BM2+DM2,∴(BE+DF)2+EF2=2AB2.●拓展应用如解图②,过点P作EP⊥DP,过点B作BE⊥EP,第1题解图②∵∠DPB=135°,∴∠EPB=45°,即△EBP为等腰直角三角形,∴PB=2BE,∵2BP+2PD=46,∴2·2BE +2PD =46, ∴BE +PD =26,设PE =BE =x ,则有(BE +PD )2+x 2= 2AB 2,即(26)2+x 2=32, 解得x =±22(负值舍去), ∴PD =26-BE =26-2 2. 2. 解:发现:90°,102;【解法提示】∵点Q 在AB ︵上,点P 在OB 上,∴当PQ 取最大值时,点Q 与点A 重合,点P 与点B 重合, 此时∠POQ =90°,PQ =OA 2+OB 2=10 2.思考:(1)如解图①,连接OQ ,则OP =12OB =12OQ ,∵QP ⊥OB , ∴cos ∠QOP =OP OQ =12∴∠QOP =60°,∴l BQ ︵=60180π×10=103π ;第2题解图①(2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B ′OP 中,OP 2+(102-10)2=(10-OP )2, 解得OP =102-10, S 阴影=S 扇形AOB -2S △AOP =90360π×102-2×12×10× (102-10)=25π-1002+100;探究:如解图②,找点O 关于PQ 的对称点O ′,连接OO ′、O ′B 、O ′C 、O ′P ,OO ′与PQ 交于点M ,则OM =O ′M ,OO ′⊥PQ ,O ′P =OP =6,第2题解图②∵点O ′是B ′Q ︵所在圆的圆心, ∴O ′C =OB =10,∵折叠后的B ′Q ︵恰好与半径OA 相切于C 点,∴O ′C ⊥AO , ∴O ′C ∥OB ,∴四边形OCO ′B 是矩形,在Rt △O ′BP 中,O ′B =62-42=2 5在Rt △OBO ′中,OO ′=102+(25)2=230, ∴OM =12OO ′=12×230=30,即点O 到折痕PQ 的距离为30.3. 解:深入探究:(1)∵折叠前的四边形ABCD 是矩形, ∴AM ∥DN ,∴∠KNM =∠KMN =∠1=70°, ∴∠MKN =40°;(2)△MNK 为等腰三角形;不发生变化; 理由如下:∵AM ∥DN , ∴∠1=∠MNK ,∵将纸片沿MN 折叠, ∴∠1=∠KMN , ∴∠MNK =∠KMN , ∴KM =KN ,∴△MNK 始终为等腰三角形;拓展应用:(3)如解图①,当△KMN 的面积最小值为12时,KN =KM =BC =1,∴KM ⊥KN ,第3题解图①∵∠NMB =∠KMN ,∠KMB =90°, ∴∠1=∠NMB =45°,同理将纸条向下折叠时,∠1=∠NMB =135°, ∴∠1=45°或∠1=135°; (4)分两种情况:情况一:如解图②,将矩形纸片对折,使点B 与D 重合,此时点K 也与D 重合,第3题解图②设MK =MB =x ,则AM =5-x ,在Rt △AMK 中,由勾股定理得12+(5-x )2=x 2, 解得x =2.6,∴MK =NK =2.6,(由(2)可得)∴S △MNK =12×1×2.6=1.3;情况二:如解图③,将矩形纸片沿对角线AC 对折,此时折痕即为AC ,第3题解图③设MK =AK =CK =x ,则DK =5-x . 同理可得MK =NK =2.6, ∵MD =1,∴S △MNK =12×1×2.6=1.3,∴△MNK 的面积最大值为1.3. 4. 解:(1)①等腰;【解法提示】由折叠的性质可知BF =EF ,∴△BEF 为等腰三角形. ②22; 【解法提示】由折叠的性质可知∠BEF =∠EBF =45°, ∴cos ∠BEF =22; (2)①当△BEF 是等边三角形时,则∠ABE =30°, ∵AB =3,∴cos ∠ABE =AB BE =32,∴BE =2;②根据题意可得矩形ABCD 的面积为6; 第一种情况:当点F 在边BC 上时,此时可得S △BEF ≤12S 矩形ABCD ,即当点F 与点C 重合时,S △BEF 存在最大值,最大值为3;由折叠可知CE =CB =23,即EF = 23; 第二种情况:当点F 在边CD 上时,如解图,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,第4题解图∵S △EKF =12KF ·AH ≤12HF ·AH =12S 矩形AHFD ,S △BKF =12KF ·BH ≤12HF ·BH =12S 矩形BCFH ,∴S △BEF ≤12S 矩形ABCD =3,即当点F 为CD 中点时,△BEF 的面积最大,此时,点E 与点A 重合,△BEF 面积最大为3, ∴EF =AD 2+DF 2=(23)2+(32)2=512, 综上所述,当△BEF 的最大面积为3时,EF 的长为23或512. 5. (1) 解:如解图①,△ACQ 即为所求;第5题解图①(2)①证明:由旋转可得,△ABM ≌ △ACQ ,∴AM =AQ ,∠BAM =∠CAQ , ∵∠MAN =45°,∠BAC = 90°, ∴∠BAM +∠NAC =45°, ∴∠CAQ +∠NAC =45°,即∠NAQ =45°, 在△MAN 和△QAN 中, ⎩⎪⎨⎪⎧AM =AQ ∠MAN =∠QAN ,AN =AN∴△MAN ≌△QAN (SAS ), ∴MN =NQ ;② 解:MN 2=BM 2+NC 2; 理由如下:由①中可知,MN =NQ ,MB =CQ ,又∵∠NCQ =∠NCA +ACQ =∠NCA +∠ABM =45°+45°=90°, ∴在Rt △NCQ 中,NQ 2=CQ 2+NC 2,即MN 2=BM 2+NC 2; (3)解:ST 2=GS 2+TH 2;【解法提示】如解图③,连接SP 、PT ,用(2)中的方法可证△DGS ≌△DPT ,△GSP ≌△PTH ,∴GS =PT ,TH =SP ,由题意易知GH ⊥PD ,△SPT 为直角三角形, ∴ST 2=PT 2+SP 2=GS 2+TH 2.(4)解:如解图③,∵DE =DF ,DG =DP ,∠EDF =∠GDP =45°,第5题解图③∴∠DPK =∠DEP , 又∵∠PDK =∠EDP , ∴△DPK ∽△DEP ,∴DPDE=DKDP,即DP2=DK·DE,∵DK=a, DE=b,∴DP=ab.6.解:(1)①CD=CE,理由如下:∵AC=BC=6,∠ACB=90°,∴∠CAB=45°,∴∠CED=∠CAB=45°,又∵DE是⊙O的直径,∴∠ECD=90°,∴∠CDE=∠CED=45°,∴CD=CE;②由题意可得∠ECD=∠ACB=90°,∴∠ECA=∠BCD,又∵AC=BC=6,CD=CE,∴△ECA≌△DCB,∴AE=BD,∴AE+AD=BD+AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE+AD的值为62;(2)∵DE是⊙O的直径,∴∠DAE=∠DCE=90°,又∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°,∠ECA=∠DCB,∠CEA=∠ADC∴∠EAC=∠B=45°,∴△ECA≌△DCB,∴AE=BD,∴AE-AD=BD-AD=AB,在Rt△ABC中,由勾股定理可得AB=62,即AE-AD的值为62;(3)①AD-AE=22,证明如下:第6题解图①∵DE是⊙O的直径,∴∠DFE=90°,如解图①,过点F作FM⊥AF于点F,交AD于点M,∴∠DFM=∠EF A,又∵∠MAF=∠CAB=45°,∴∠AMF=45°,∴AF=MF,又∵∠FDM=∠FEA,∴△FDM ≌△FEA (AAS), ∴AE =DM ,∴AD -AE =AD -DM =AM ,由AC =3AF ,AC =6可得AF =2,在Rt △AMF 中,由勾股定理可得AM =22,即AD -AE 的值为22; ②存在,⊙O 的半径为5.6或17. 【解法提示】由①可得CF =8, 如解图②,当∠ECA =90°时,△AEC 为直角三角形, 可证EC =AC =6,在Rt △ECF 中,由勾股定理可得EF =10,在Rt △EDF 中,由勾股定理可得DE =102,即⊙O 的半径为52, 如解图③,当∠AEC =90°时,△AEC 为直角三角形, 过点E 作EH ⊥AC 于点H ,可得EH =AH =3, ∴FH =5,第6题解图在Rt △EHF 中,由勾股定理可得EF =34,在Rt △EDF 中,由勾股定理可得DE =217,即⊙O 的半径为17.类型二 旋转探究问题1. (1)解: ∵△ABC 绕顶点C 顺时针旋转40°,得到△A ′B ′C , ∴CA =CA ′,CB =CB ′,∠ACA ′=∠BCB ′=θ, ∴△ACA ′∽△BCB ′,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=32∶42=9∶16; ∴S 1S 2=916; (2)①证明:∵AB ∥B ′C , ∴∠ABC =∠BCB ′;由旋转的性质得∠ABC =∠DB ′C , 即∠BCB ′ =∠DB ′C ; ∴CD =B ′D ;②解:根据勾股定理可得A ′B ′=AB =5,据题意可得∠BCB ′ +∠BCA ′ =∠DB ′C +∠CA ′B ′=90°, ∴∠BCA ′ =∠CA ′B ′,∴CD =A ′D =B ′D =12A ′B ′=52 ,∴ BD =BC -CD =32;(3)解:存在,∵∠A ′CB ′=90°,点M 为AC 的中点,∴CM =12AC =32,∵△A ′B ′C 是由△ABC 绕顶点C 顺时针旋转所得,∴A ′B ′=AB =5,第1题解图如解图,连接CN ,可得MN ≤CM +CN ,∴只有当点N 在MC 的延长线上时,MN =CM +CN ,此时MN 最大, ∵点N 为A ′B ′的中点,∴CN =12 A ′B ′=52,MN =CM +CN =4,即MN 的最大值为4.此时AA ′⊥BB ′.2. (1)证明:①∵AC =BC ,D , E 分别是 AC ,BC 的中点, ∴CD =CE ,由旋转可得∠D ′CE ′=∠DCE =90°,CD =CD ′,CE =CE ′, ∴∠ACD ′=∠BCE ′,CD ′=CE ′, ∴△ACD ′≌ △BCE ′, ∴AD ′=BE ′;②解:∵AD ′∥CE ′,∴∠AD ′C =∠E ′CD ′=90°, ∵AC =2CD ′,∴∠CAD ′=30°, ∴ AD ′=cos 30°×AC =32×22=6, 由①得BE ′=AD ′= 6 ;第2题解图①(2)解:根据题意可得CD ′=CE ′= 2 ,∵△CD ′E ′是等腰直角三角形,CD ′=CE ′= 2 , ∴D ′E ′=2,如解图①,作CK ⊥BE ′于点K .可得KD ′=E ′K , ∴CK =12D ′E ′=1,∴sin ∠CBE ′=CK BC =122=24;(3)解:如解图②,连接PM ,由(1)得△ACD ′≌ △BCE ′,第2题解图②∴∠P AC =∠E ′BC ,AD ′=BE ′, 又∠P AC +∠ACB =∠PBC +∠APB , ∴∠APB =∠ACB =90°, 设AD ′=x ,则BD ′=x -2,在△ABD ′中可得AD ′2+BD ′2=AB 2,即x 2+(x -2)2=42, 解得x 1=7+1,x 2=-7+1 (舍去), ∴BD ′=7-1,∴S △BD ′M =S △ABD′2=(7+1)(7-1)4=32,由轴对称性可得PM 扫过的图形面积为:180π×22360-32×2=2π-3.3. 解: (1)①正方形;【解法提示】由旋转性质可知DE =EF =FG =DG , ∴四边形DEFG 为菱形, ∴DG ∥BC . 又∵DE ⊥EC ,∴四边形DEFG 为正方形. ②∵四边形DEFG 为正方形, ∴DG ∥BC .∴∠ADG =∠B ,∠AGD =∠C . ∵△ABC 为等边三角形, ∴∠B =∠C =60°.∴△ADG 为等边三角形. ∴AD = DG =DE .又∵BD =DE sin ∠B =DE sin 60°=233DE ,∴BD +AD =233DE +DE =6.解得DE =1823+3=123-18.(2)①等边三角形,相等;②据题意可得△ADF ≌△BED ≌△CFE ,AD =x ,BD =6-x , 如解图①,过点D 作DG ⊥BC 于点G , 可得DG =sin ∠B ·BD =32(6-x ), y =S △ABC -3S △BDE =12×33×6-3×x 2×32(6-x ),化简得y =334x 2-932x +9 3.图①图② 第3题解图(3)如解图②,经过多次操作可得到首尾顺次相接的多边形,其最大边数是6,它可能为正多边形,边长为2.4. (1)证明:据题意可得∠CAB =∠CBA ,AD =BD , ∴∠NAB =∠MBA ,又∵AB ∥MN ,AC =BC ,∴AC AN =BC BM,即AN =BM , ∴△ADN ≌△BDM (SAS );(2)证明:据题意可得AD =BD =2, 由(1)得∠NAB =∠MBA =135°,∠EDM = 45°,∴∠AND +∠ADN =∠EDB +∠BDM =45°, ∴∠AND =∠BDM , ∴△ADN ∽△BMD , ∴AD BM =ANBD,即AN ·BM =AD ·BD =2·2=2, ∴AN ·BM 的值不会发生变化;(3)解:①平分.证明:由(2)可得∠ADN +∠BDM =45°, ∴∠MDN =∠DAN =135°, 又∵△ADN ∽△BMD , ∴AN BD =ND DM , 又∵AD =BD , ∴AN AD =ND DM, ∴△ADN ∽△DNM ,∴∠AND =∠DNM ,即ND 始终平分∠ANM ; ②S △DMN =m 2+2m +22m;【解法提示】由(2)可得:AN ·BM =2,AN =m , ∴BM =2m,如解图,分别过点D 作AC 、MN 、CM 的垂线,垂足分别为H 、H ′、H ″ ,第4题解图∵ND 平分∠ANM ,且DH ⊥CA ,DH ′⊥MN 在Rt △ABC 中,DH ∥BC ,AD =BD 可得DH ′=DH =BC2=1,同理DH ″=1,∴S △DMN =S △CMN -S △ADN -S △ABC -S △DMB =12·CN ·CM -12·AN ·DH -12·AC ·BC -12·BM ·DH ″ =12×(2+m )×(2+2m )-12×m ×1-12×2×2-12×2m ×1 =m 2+2m +22m.∴△DMN 的面积为m 2+2m +22m.5. 解:(1)平行四边形;25;【解法提示】依题意可知,正方形ABCD 沿对角线剪开后为第5题解图①两个等腰直角三角形,当ED 边与AB 边重合时,AB =DF ,BC =EF ,∴四边形ABCF 是平行四边形,设AD 与BF 交于点O ,如解图①,可知AO =DO =12AD =1,∴BO =AB 2+AO 2=5,∴BF =2 5. (2)45°或135°;【解法提示】当△EFD 转到如解图②所示的位置时,∠CEF +∠CHE =∠ACB =45°;当△EFD 旋转到如解图③所示的位置时,∠CEF +∠CHE =180°-∠C =135°,综上可知,∠CEF +∠CHE 的度数为45°或135°.第5题解图(3)由题意知∠DEF =∠ACB =∠B =45°,∴∠DAC +∠CAH =45°,∠AHB +∠CAH =∠ACB =45°, ∴∠DAC =∠AHB ,∴△AGC ∽△HAB , ∴AC HB =GCAB ,∴2y =x 2,∴y =4x(0≤x <22); (4)当x 为2或2时,△AGH 是等腰三角形. 【解法提示】由题意可得△AGC ∽△HGA .∴要使△AGH 是等腰三角形,只要△AGC 是等腰三角形即可.第5题解图分三种情况讨论,①如解图④,当CG =AG ,此时CG =2, ②如解图⑤,当CG =AC ,此时CG =2,③如解图⑥,当AG =AC ,此时ED 与AB 重合,不合题意,舍去. 综上所述,当x =2或2时,△AGH 是等腰三角形.6. (1)解:如解图①,连接DF ,过点F 作FH ⊥AD 于点H .第6题解图①∵四边形ABCD 和四边形BEFG 是平行四边形. ∴AK ∥BE ,AB ∥EK .∴四边形ABEK 是平行四边形. ∵AB =BE ,∴四边形ABEK 是菱形.∴DK =FK =23+2-4=23-2,∠FKD =∠AKE =∠B =60°, ∴△FKD 是等边三角形. ∵FH ⊥AD ,∴KH =12DK =3-1,FH =3-3,在Rt △AFH 中,AH =4+3-1=3+3, ∴AF =AH 2+FH 2=(3+3)2+(3-3)2=24=2 6.(2)证明:∵四边形ABCD 和四边形GBEF 是平行四边形,∴四边形BMDN 是平行四边形.∵∠A =∠G ,∠AMB =∠GMD ,AB =GD . ∴△ABM ≌△GDM (AAS ). ∴BM =DM .∴四边形BMDN 是菱形.(3)解:①如解图①,当旋转角α为30°时,四边形CGDF 是正方形(此时也是矩形).第6题解图② 证明:∵BG =BC ,∠ABG =∠α=30°, ∴∠GBC =60°-30°=30°, ∴∠BGC =∠BCG =75°, ∴∠GCO =∠CGO =45°, ∴OG =OC ,∠GOC =90°,如解图②,过点G 作GN ⊥BC 于点N , 在Rt △BNG 中,∠GBC =30°, ∴GN =12BG =3+1,BN =3GN =3+ 3.∴NC =BC -BN =23+2-(3+3)=3-1. ∴GC =GN 2+NC 2=(3+1)2+(3-1)2=8=22,∴OG =OC =CG 2=222=2,∴OD =OF =4-2=2, ∴OD =OC =OG =OF , ∴四边形CGDF 是矩形, ∵GF ⊥CD ,∴四边形CGDF 是正方形;②如解图③,当旋转角α为300°时,四边形CGFD 是矩形.第6题解图③证明:∵∠α=300°,∴点E 与点A 重合,∠CBG =120°. ∵BC =BG ,∴∠GCD =120°-30°=90°.∵四边形ABCD 和四边形GBEF 是平行四边形, ∴CD ∥AB ,AB ∥GF ,AB =CD ,AB =GF , ∴CD ∥GF ,CD =GF ,∴四边形CGFD 是平行四边形, ∵∠GCD =90°,∴四边形CGFD 是矩形.类型三 新定义探究问题1. 解: (1)C ;(2)∵在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴CD =12AB ,∴CD =BD ,∴∠BCE =∠ABC , ∵BE ⊥CD , ∴∠BEC =90°, ∴∠BEC =∠ACB , ∴△BCE ∽△ABC ,∴点E 是△ABC 的黄金点;(3)①据题意可得∠P 1CB =60°,∠BP 1C =90°,AC =43, ∴P 1C =cos ∠P 1CB ·BC =cos 60°·BC =2,如解图,过点P 1作P 1D ⊥AC 于点D ,连接AP 1,可得∠P 1CD =30°, ∴P 1D =12P 1C =1,CD = 3 ,∴ AD =AC -CD =33,在Rt △AP 1D 中,根据勾股定理可得AP 1=(33)2+12=27;第1题解图②据题意可得△P 1BC ∽△CAB , ∴C △P 1BC C △CAB=BC AB =12, 同理可得C △P 2CP 1C △P 1BC =P 1C BC =12,即 C △P 2CP 1C △CAB=P 1C AB =14, ∴C △P 2016P 2017P 2018C △CBA=P 2017P 2018AB =122016,可得△CAB 的周长为12+43,∴△P 2016P 2017P 2018的周长为3+3220142. (1)解: 6-25;【解法提示】∵CD 是△ABC 的黄金线(AD >BD ), ∴AD AB =5-12, ∵S △ABC =4, ∴S △ADC =5-12×4=25-2, ∴S △BCD =S △ABC -S △ADC =6-25; (2)证明:∵∠A =36°,AB =AC , ∴∠ABC =∠C =72°,∵过点B 作BD 平分∠ABC ,与AC 相交于点D , ∴∠CBD =∠A =36°,∠BDC =∠C =72°, ∴AD =BD =BC , ∴△BCD ∽△ABC , ∴CD BC =BDAC ,即1-AD BC =1-BC BC =BC 1, 解得BC =5-12, ∴AD =5-12, ∴AD AC =5-12, ∴D 点是AC 的黄金分割点, ∴BD 是△ABC 的黄金线; (3)解:①S 1=S 2.理由如下:如解图,连接ED ,第2题解图据题意得:AD AB =AEAC =5-12,∴S △ABE S △ABC =S △ACD S △ABC=5-12,∴S △ABE =S △ACD ,∴ S △COE =S △BOD ,即S 1=S 2; ②由①得AD AB =AE AC, 又∵∠A 为公共角, ∴△ADE ∽△ABC ,∴∠DEA =∠BCA ,DE BC =AEAC =5-12, ∴DE ∥BC ,∴△ODE ∽△OCB , ∴OD OC =DEBC =5-12, ∴OD CD =5-15+1=(5-1)24. 3. (1)证明:根据题意可得△ABC ∽△A 1B 1C 1,且相似比为k (k >1), ∴aa 1=k ,即a =ka 1, 又∵c =a 1, ∴a =kc ;(2)证明:根据题意得∠A =40°, ∵CD 平分∠ACB ,∴∠BCD =12∠ACB =40°,即∠BCD =∠A ,又∵∠B =∠B , ∴△CBD ∽△ABC , 又∵BC 是公共边,∴△CBD 与△ABC 为梦幻三角形;(3)解:①∵△ACE 与△ADC 刚好构成梦幻三角形, ∴△ACE ∽△ADC , ∴AC AD =AEAC,即AC 2=AE ·AD =36, ∴AC =6,∵AB 为⊙O 的直径, ∴∠ACB =90°, 又∵BC =8,∴由勾股定理可得AB =10, 如解图,连接OD ,又∵∠ACB 的平分线交⊙O 于点D , ∴∠ACD =45°, ∴∠AOD =90°,∴∠OAD =∠ADO =45°,∵OD =5, ∴AD =52; ②PCPD=2m ;第3题解图【解法提示】根据题意可得AD =22AB , ∴CD AD =CD 2AB2=2·CD AB =2m , ∵PD 是⊙O 的切线, ∴∠ODP =90°, ∴∠ADP =45°,即∠ADP =∠PCD , 又∵∠P =∠P ,∴△ADP ∽△DCP ,且DP 为两三角形的公共边, ∴PC PD =CDDA=2m . 4. (1)证明:∵△A 1A 2A 3与△A 1B 2B 3都是正三角形, ∴A 1A 2=A 1A 3,A 1B 2=A 1B 3,∠A 2A 1A 3=∠B 2A 1B 3=60°, ∴∠A 2A 1B 2=∠A 3A 1B 3,∴△A 2A 1B 2≌△A 3A 1B 3(SAS ), ∴∠B 3A 3A 1=∠A 2=60°;∴随着点B 2的运动,∠B 3A 3A 1的大小始终不变,为60°. (2)解:∠B 3A 3A 4的大小不变.如解图,在边A 1A 2上取点D ,使A 1D =A 3B 2,连接B 2D .第4题解图∵四边形A 1A 2A 3A 4与四边形A 1B 2B 3B 4都是正方形, ∴A 1B 2=B 2B 3,∠A 1B 2B 3=∠A 1A 2A 3=90°, ∴∠A 3B 2B 3+∠A 1B 2A 2=90°, ∠A 2A 1B 2+∠A 1B 2A 2=90°, ∴∠A 3B 2B 3=∠A 2A 1B 2, ∴△A 3B 2B 3≌△DA 1B 2, ∴∠B 2A 3B 3=∠A 1DB 2, ∵A 1A 2=A 2A 3,A 1D =A 3B 2, ∴A 2B 2=A 2D .又∵∠A 1A 2A 3=90°,∴△DA 2B 2为等腰直角三角形, ∴∠A 1DB 2=135°, ∴∠B 2A 3B 3=135°, ∵∠A 4A 3A 2=90°, ∴∠B 3A 3A 4=45°,∴∠B 3A 3A 4的大小始终不变,为45°; (3)解:①∠B 3A 3A 4的大小不会发生改变,始终为180°n;②90°(n -1)(n -2)n.【解法提示】∠B 3A 3A 4+∠B 4A 4A 5+B 5A 5A 6+…+∠B n A n A 1=180°n ×1+180°n×2+180°n ×3+…180°n ×(n -2)=180°n ×[1+2+3+…+(n -2)]=90°(n -1)(n -2)n. 类型四 动点探究问题1. 解:(1)OB =4;(2)①∵AB =2,OB =4,∠OAB =90°,∴∠ABO =60°,又∵∠OCB =60°,∴△BOC 为等边三角形,∴OH =OBcos 30°=4×32=23, ∴OP =OH -PH =23-t ,如解图①,过P 点作PE ⊥OA ,垂足为点E ,第1题解图①则EP =OPcos 30°=3-32t , ∴S =12·OQ ·EP =12·t ·(3-32t )=-34t 2+32t (0<t <23);②若△OPM 为等腰三角形:(ⅰ)若OM =PM ,如解图②,则∠MPO =∠MOP =∠POC ,第1题解图②∴PQ ∥OC ,过点P 作PK ⊥OC 于点K , ∴OQ =PK =OP 2,即t =3-t2,解得:t =233,此时S =-34×(233)2+32×233=233; (ⅱ)若OP =OM ,如解图③,则∠OPM =∠OMP =75°,第1题解图③∴∠OQP =∠OMP -∠QOM =75°-30°=45°,此时EQ =EP ,即t -(3-12t )=3-32t , 解得:t =2,此时S =-34×22+32×2=3-3; (ⅲ)若OP =PM ,∠POM =∠PMO =∠AOB ,则PQ ∥OA ,此时点Q 在AB 上,不满足题意,舍去.综上所述,当△OPM 为等腰三角形时,△OPM 的面积为233或2. 2. (1)证明:根据题意得AD =CD ,∠ADC =∠DCF =∠DAB =90°,又∵DF ⊥DE 于点D ,∴∠ADE =∠CDF ,∴△ADE ≌△CDF ,∴DE =DF ;(2)解: OM 2+ON 2 的值为定值;理由:∵OM ⊥DE 于点M , ON ⊥DF 于点N ,∴四边形DMON 为矩形,∴DN =OM ,如解图①,连接OD ,可得OM 2+DM 2=OD 2,即OM 2+ON 2=OD 2,第2题解图①∵点O 为正方形ABCD 的中心,AB =2,∴OD =2,即OM 2+ON 2=OD 2=2;(3)证明:由正方形的性质可得∠DAC =45°,如解图②,过点Q 作C ′Q ⊥AQ 于点Q ,QC ′与DC 的延长线相交于点C ′,第2题解图②可得∠C ′=45°,即∠DAC =∠C ′,CQ =C ′Q ,又∠ADE +∠EDC =∠QDC ′+∠EDC =90°,∴∠ADE =∠QDC ′,∴△ADP ∽△C ′DQ ,∴AP C ′Q =AP CQ =DP DQ. 3. (1)①证明:据题意可得∠EAB +∠BAD =∠CAD +∠BAD =90°,∴∠EAB =∠CAD ,又AB =AC ,AD =AE ,∴△ABE ≌△ACD ,∴CD =BE ;②解:猜想:CD 2+BD 2=2PD 2.理由:据题意可得∠ABC =∠C =45°,由①可得∠ABE =∠C =45°,即∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,即CD 2+BD 2=2PD 2;(2)解:①据题意可得BP =42,如解图,过点P 作PF ∥AC ,PF 与BC 相交于点F ,第3题解图可得BF =BP sin 45°=42×22=8, 由(1)可得△PBE ≌△PFD ,∴DF =BE ,∠ABE =∠PFD =45°,∴∠EBD =90°,∴BE 2+BD 2=PE 2+PD 2,∴DF 2+BD 2=2PD 2,即2y =x 2+(8-x )2,化简得y =x 2-8x +32;②存在;理由如下:据题意可得BC =12,CD =12-x ,AP =22, 在Rt △ACP 中,可得:CP =(62)2+(22)2=45, 当CD =DP 时,△CDP 为等腰三角形,此时,可得 y =12-x ,即x 2-8x +32=(12-x )2,解得x =7,∴y =x 2-8x +32=72-8×7+32=25,∴S △DPE =252; 当CP =CD 时,△CDP 为等腰三角形;此时,可得12-x =45,解得x =12-45,∴y =x 2-8x +32=(12-45)2-8×(12-45)+32=160-645,∴S △DPE =160-6452=80-325,综上,△DPE 的面积为252或(80-325). 4. 解:(1)① 23; 【解法提示】∵E 是AC 的中点,∴当DE ∥BC 时,D 为AB 的中点,即BD =12AB =4, 又∵CD ⊥AB ,∴cos ∠B =BD BC =46=23. ②∵点E 是AC 的中点,∴当DE ⊥AC 时,DE 为AC 的垂直平分线,∴CD =AD ,设CD =AD =x ,则BD =8-x ,在Rt △BCD 中,根据勾股定理得:(8-x )2+x 2=62,解得x 1=4+2,x 2=4-2,∴sin ∠B =CD BC =4+26或4-26; (2)∵CD ⊥AB ,∴ S -AC 2=AD ·CD 2-(AD 2+CD 2)=-(AD 2+CD 2-2AD ·CD )-3AD ·CD 2, ∴ S -AC 2=-(AD -CD )2-3AD ·CD 2, ∴当AD =CD 时,S -AC 2的值最大,最大值为-3AD ·CD 2, 由(1)可知:-3AD ·CD 2= -3×(4-2)22=122-27; (3)34<tan ∠MCA <377. 【解法提示】当∠ABC 为直角时,根据勾股定理可得AC =10,此时可得 tan ∠A =BC AB =68=34. 当∠ACB 为直角时,根据勾股定理可得AC =27 ,此时可得tan ∠A =BC AC =627=377. ∵△ABC 是锐角三角形,∴34<tan ∠A <377. 由题意可知∠DEP =∠DEC +∠CEP =2∠A +∠CEP ,又∵∠DEP =k ∠A ,且k 为正整数,∴k =3,即∠CEP =∠AEF =∠A ,又∵EF始终与CM平行,∴∠MCA=∠AEF=∠A,∴34<tan∠MCA<377.。
2020年中考复习之圆的阴影部分面积相关计算(含答案解析)
2020中考复习——之圆的阴影部分面积相关计算(含答案解析)一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.2020中考复习——之圆的阴影部分面积相关计算(含答案解析)参考答案与试题解析一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】L3:多边形内角与外角;MO:扇形面积的计算.【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积.【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小【考点】LE:正方形的性质;MO:扇形面积的计算;R2:旋转的性质.【分析】根据正方形的性质得出OA=OD=OC,∠AOD=90°,再根据图形判断即可.【解答】解:过O点作CD的垂线交CD于G,过O点作BC的垂线交BC于H,记扇形EOF于正方形交点分别为M、N,如图,∴OH=OG=CD,∵∠HOG=∠HOM+∠GOM=90°,∠NOM=∠NOG+∠GOM=90°,∴∠HOM=∠NOG,∴Rt△OHM≌Rt△OGN,∴S四边形CMON=S四边形CMOG+S△OGN=S四边形CMOG+S△OHM=S四边形OHCG=OH2=S正方形ABCD,∵S△AOD=×CD•AD=S正方形ABCD∴S△AOD=S四边形CMON,∵S扇形=S阴影+S△AOD=S′阴影+S四边形CMON∴S阴影=S′阴影=S扇形﹣S△AOD=﹣S正方形ABCD=AD2﹣S正方形ABCD=S正方形ABCD,∴在旋转过程中图中阴影部分的面积不变,故选:A.【点评】本题考查了扇形的面积、旋转的性质、正方形的性质等知识点,能根据正方形的性质和旋转的性质进行判断是解此题的关键.4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.【考点】LB:矩形的性质;MO:扇形面积的计算.【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF,求出答案.【解答】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故选:B.【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2【考点】MM:正多边形和圆;MO:扇形面积的计算.【分析】根据对称性可知阴影部分的面积等于圆的面积减去正方形的,求出圆内接正方形的边长,即可求解.【解答】解:连接AO,DO,∵ABCD是正方形,∴∠AOD=90°,AD==2,圆内接正方形的边长为2,所以阴影部分的面积=[4π﹣(2)2]=(π﹣2)cm2.故选:D.【点评】本题考查正多边形与圆、正方形的性质、圆的面积公式、扇形的面积公式等知识,解题的关键是利用对称性可知阴影部分的面积等于圆的面积减去正方形的,也可以用扇形的面积减去三角形的面积计算,属于中考常考题型.二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.【考点】L5:平行四边形的性质;MO:扇形面积的计算.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)【考点】M6:圆内接四边形的性质;MO:扇形面积的计算;T7:解直角三角形.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.【点评】本题考查了扇形面积的计算,圆内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OA,过O作OF⊥AE于f,得到∠EAO+∠AOF=90°,根据等腰三角形的性质和圆周角定理得到∠EDA=∠AOF,推出OA⊥AC,得到AC是⊙O的切线;(2)根据等腰三角形的性质得到∠C=∠EAC,得到∠AEO=2∠EAC,推出△OAE是等边三角形,根据扇形的面积公式得到S扇形AOE==2π,求得S△AOE=AE•OF=3=3,于是得到结论.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=AOE,∵∠EDA=AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2,∴S扇形AOE==2π,在Rt△OAF中,OF=OA•sin∠EAO=2=3,∴S△AOE=AE•OF=3=3,∴阴影部分的面积=2π﹣3.【点评】本题考查了切线的判定和性质,扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)根据平行线的性质得到∠=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【解答】(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.【点评】本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.【考点】KM:等边三角形的判定与性质;MD:切线的判定;MO:扇形面积的计算.【分析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可;(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,即可求出答案.【解答】(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠AOE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.【点评】本题考查了等边三角形的性质和判定,勾股定理,三角形面积,扇形的面积,切线的判定的应用,能综合运用定理进行推理和计算是解此题的关键.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC =∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE为⊙O的切线;(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S阴影部分=S梯形BODE﹣S扇形OBD进行计算即可.【解答】解:(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.【点评】本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和扇形的面积公式.13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.【考点】KQ:勾股定理;M5:圆周角定理;MO:扇形面积的计算.【分析】(1)根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC,根据圆周角定理求出AD=BD,求出AD即可;(2)根据三角形的面积公式,求出△AOC和△AOD的面积,再求出S扇形COD,即可求出答案.【解答】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,∠ABC=30°,AC=2,∴AB=4,∴BC==2,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD∴=,∴在Rt△ABD中,AD=BD=AB=2;(2)连接OC,OD,∵∠ABC=30°,∴∠AOC=∠2∠ABC=60°,∵OA=OB,∴S△AOC=S△ABC=××AC×BC=××2×2=,由(1)得∠AOD=90°,∴∠COD=150°,S△AOD=×AO×OD=×22=2,∴S阴影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣2=π﹣﹣2.【点评】本题考查了勾股定理、圆周角定理、三角形的面积等知识点的应用,关键是求出∠ACB=∠ADB=90°,题型较好,通过做此题,培养了学生运用定理进行推理的能力.。
2020年中考数学题型专练三 阴影部分面积的相关计算(含答案)
题型三阴影部分面积的相关计算1.(2019扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为cm2.第1题图2.如图,已知每个正方形网格中小正方形的边长都是1,图中的阴影部分图案是以格点为圆心,半径为1的圆弧围成的,则阴影部分的面积是.第2题图3.如图,等边三角形ABC的边长为4,以BC为直径的半圆O交AB于点D,交AC于点E,则阴影部分的面积是.第3题图4.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为.第4题图5.如图,在矩形ABCD中,AB=1,BC=2,以点B为圆心,BC长为半径画弧,交AD于点E,再作以AE为直径的半圆,则图中阴影部分的面积为.,第 5 题图6. (2019 泰安)如图,∠AOB =90°,∠B =30°,以点 O 为圆心,OA 为半径作弧交 AB 于点 C ,交OB 于点 D ,若 OA =3,则阴影部分的面积为.第 6 题图︵7. 如图,在矩形 ABCD 中,BC =2,CD = 3,以点 B 为圆心,BC 的长为半径作CE 交 AD 于点 E ;︵以点 A 为圆心,AE 的长为半径作EF 交 AB 于点 F ,则图中阴影部分的面积为.第 7 题图︵ ︵8. 如图,四边形 OABC 为菱形,OA =2,以点 O 为圆心,OA 长为半径画AE ,AE 恰好经过点 B ,连接 OE ,OE ⊥BC ,则图中阴影部分的面积为 .第 8 题图9. 如图,AB 为半圆 O 的直径,点 C 是半圆 O 的三等分点,CD ⊥AB 于点 △D ,将 ACD 沿 AC 翻折得到△ACE ,AE 与半圆 O 交于点 F ,若 OD =1,则图中阴影部分的面积为.第 9 题图10. 如图,在菱形 ABCD 中,∠B =60°,AB =2,把菱形 ABCD 绕 BC 的中点 E 顺时针旋转 60°︵得到菱形 A ′B ′C ′D ′,其中点 D 的运动路径为DD ′ 则图中阴影部分的面积为.第10题图11.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆,半圆恰好经过△ABC的直角顶点C,以点D为顶点,作∠EDF=90°,与半圆分别交于点E,F,则图中阴影部分的面积是.第11题图12.有一张矩形纸片ABCD,其中AD=8,上面有一个以AD为直径的半圆,正好与对边BC相切,如图①,将它沿DE折叠,使点A落在BC上,如图②,这时,半圆还露在外面的部分(阴影部分)的面积是.第12题图S4=S2.2-【解析】由图可知,S45(S正方形OFDG-S扇形GDO)=2×S正方形OECF-S扇形GDO=2×1×1-=2-,∴阴影部分的面积为2-.3.23-2π=23-.4-S扇形DAE-S扇形GBF+S2,∴S1-S2=4×3-36036045.3-【解析】如解图,连接BE,由题意可知,BE=BC=2,在△Rt ABE中,AE=BE2-AB2 3×1+-π·()2=-.6.3π-S△ACO)=OA·OB-·OA2-π·32+(π·32-·OA2)=×3×33-×32-π+(π-参考答案1.32π【解析】S阴影=S四边形ABCD+S扇形BAB′-S四边形AB′C′D′,由旋转的性质可知:四边形ABCD=S四边形AB′C′D′,∴S阴影=S扇形BAB′=360ππ×162=32π.扇形BEO扇形ECF=S扇形GDO,S阴影=S扇形BEO+(S正方形OECF-S扇形ECF)+90π×12ππ36044 3【解析】如解图,连接OD、DE、△OE,∵ABC为等边三角形,∴∠B=∠C=60°,又∵OB=△OD,∴BOD是等边三角形,∴∠BOD=60°,∠COE=60°,∴∠DOE=60°,即△DOE为等边三角形,∵∠A=∠ODB=60°,∴OD∥AE,同理,OE∥AD,∴四边形ADOE为菱形,∴阴影部分的面积=S菱形ADOE-S扇形DOE=2×3-60π×222π3603第3题解图13π4.12-【解析】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD90·π×3290·π·2213π-=12-.224AE1=22-12=3,∴tan∠ABE=AB=3,∴∠ABE=60°,∠EBC=30°,S阴影=△S ABE+S扇形EBC-S半圆=2×30·π·22133π360222244第5题解图【解析】如解图,连接OC.∵∠AOB=90°,∠B=30°,OA=3,∴∠A=60°.∴OB=33,∵OA=△OC,∴AOC是等边三角形.∴∠AOC=60°,∠BOC=30°.S阴影=△SABO-S△ACO-S扇形COD+(S扇形COA 13306031333324360360424424×32)=.7.5π+【解析】如解图,连接BE,由题意得,BE=BC=2,由勾股定理得,AE=BE2-AB2=1,sin∠ABE==,∴∠ABE=30°,∴∠CBE=60°,则S阴影=S扇形EBC+△SABE-S扇形EAF=BE23602 1×3-=+.8.π-【解析】如解图,连接OB,设OE交BC于点F,∵四边形OABC为菱形,∴OA=AB.-S△AOB-△SBOF=3604-×22-×1×3=π-3-=π-.9.33-【解析】∵点C是半圆O的三等分点,∴∠BOC=60°,∠BAC=30°.在△OCD中,∵=2,∴EF=AE-AF=3-2=1,∴S阴影=S梯形OCEF-S扇形OCF=(1+2)×3-=-.10.7π-53【解析】如解图,连接AE、DE、A′E、D′E,∵菱形ABCD中,∠B=60°,E为BC 3π4第6题解图3122AE160π×221+×90π×125π3360122第7题解图332又∵OA=△OB,∴OAB为等边三角形.∴∠AOB=60°.同理△OBC也是等边三角形,又∵OE⊥BC,∴∠AOE=90°.∴∠BOE=30°.∵OB=2,∴BF=1,OF= 3.∴S1333222=S阴影扇形AOE90π×223第8题解图2π23CD⊥AB于点D,OD=1,∠DOC=60°,∴OC=2,CD=3,∴AD=AO+OD=2+1=△3.∵将ACD沿AC翻折得到△ACE,∴△ACD≌△ACE,∴∠EAC=∠DAC=30°,AE=AD=3,CE=CD= 3.∴∠BAE=∠DAC+∠EAC=60°=∠BOC,∴OC∥AE.∵OA=OF,∠OAF=60°,∴△AOF是等边三角形,∴AF=OA160π×22332π236023 64中点,∴BE=AB=1,∠BAE=30°,∠EAD=90°,∴∠EA′D′=90°,A′E=AE=3,DE=AE2+AD2=×3×2=3,扇形EDD′==,∴S阴影=S扇形DED′-△SEA′D′-△SEA′D=-3-=-53.,△S EA′D′=60π·(7)27π7π11.π-1【解析】如解图,连接CD,设DE交AC于点G,DF交BC于点H,在△Rt ABC中,∠-△SBDC=90π×12-×1×1=-.12.16π-43【解析】如解图,设A′D与半圆交于点K,半圆的圆心为O,连接OK,作OH⊥DK2CD,∴∠DA′C=∠ODK=∠OKD=30°,∴∠A′DC=60°,∴∠DOK=120°,∴S扇形DOK=360π,∵∠ODK=∠OKD=30°,OD=4,∴OH=2,DH=23,∴S△ODK=12=(3)2+22=7,D′E=7,∵旋转角为60°,∴∠DED′=60°,∠BEB′=60°,BB′=BE=B′E111131=1,∴CE=CA′=A′D=1,∴△S EA′D=2△S ECD=2×2CE·AE=4×1×3=42EA′·A′D′137π23606646 4第10题解图42ACB=90°,CA=CB,D为AB的中点,∴CD⊥AB,∵∠CDH+∠EDC=∠EDF=90°,∠ADG+∠EDC=︵︵90°,∴∠CDH=∠ADG,∴AE=CF,∵∠DCH+∠ACD=90°,∴∠DAG+∠ACD=90°,∴∠DCH=∠DAG.⎧⎪∠CDH=∠ADG︵︵在△DCH和△DAG中,⎨AD=CD,∴△CDH≌△ADG,∴AG=CH,又∵AE=CF,∴S阴影=S扇形⎪⎩∠DCH=∠DAGBDC1π1360242第11题解图3于点H,∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∵∠C=90°,由折叠得:AD=A′D=120π×42=161132DK·OH=2×43×2=43,16∴S阴影=3π-43.第12题解图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型三阴影部分面积的相关计算1.(2019扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB=16 cm,则图中阴影部分的面积为cm2.第1题图2.如图,已知每个正方形网格中小正方形的边长都是1,图中的阴影部分图案是以格点为圆心,半径为1的圆弧围成的,则阴影部分的面积是.第2题图3.如图,等边三角形ABC的边长为4,以BC为直径的半圆O交AB于点D,交AC于点E,则阴影部分的面积是.第3题图4.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为.第4题图5.如图,在矩形ABCD中,AB=1,BC=2,以点B为圆心,BC长为半径画弧,交AD于点E,再作以AE为直径的半圆,则图中阴影部分的面积为.第5题图6. (2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点C ,交OB 于点D ,若OA =3,则阴影部分的面积为 .第6题图 7. 如图,在矩形ABCD 中,BC =2,CD =3,以点B 为圆心,BC 的长为半径作CE ︵交AD 于点E ;以点A 为圆心,AE 的长为半径作EF ︵交AB 于点F ,则图中阴影部分的面积为 .第7题图8. 如图,四边形OABC 为菱形,OA =2,以点O 为圆心,OA 长为半径画AE ︵,AE ︵恰好经过点B ,连接OE ,OE ⊥BC ,则图中阴影部分的面积为 .第8题图 9. 如图,AB 为半圆O 的直径,点C 是半圆O 的三等分点,CD ⊥AB 于点D ,将△ACD 沿AC 翻折得到△ACE ,AE 与半圆O 交于点F ,若OD =1,则图中阴影部分的面积为 .第9题图10. 如图,在菱形ABCD 中,∠B =60°,AB =2,把菱形ABCD 绕BC 的中点E 顺时针旋转60°得到菱形A ′B ′C ′D ′,其中点D 的运动路径为DD ′︵,则图中阴影部分的面积为 .第10题图11.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆,半圆恰好经过△ABC的直角顶点C,以点D为顶点,作∠EDF=90°,与半圆分别交于点E,F,则图中阴影部分的面积是.第11题图12.有一张矩形纸片ABCD,其中AD=8,上面有一个以AD为直径的半圆,正好与对边BC相切,如图①,将它沿DE折叠,使点A落在BC上,如图②,这时,半圆还露在外面的部分(阴影部分)的面积是.第12题图参考答案1. 32π 【解析】 S 阴影=S 四边形ABCD +S 扇形BAB ′-S 四边形AB ′C ′D ′,由旋转的性质可知:S 四边形ABCD =S 四边形AB ′C ′D ′,∴S 阴影=S 扇形BAB ′=45360π×162=32π. 2. 2-π4 【解析】由图可知,S 扇形BEO =S 扇形ECF =S 扇形GDO ,S 阴影=S 扇形BEO +(S 正方形OECF -S 扇形ECF )+(S 正方形OFDG -S 扇形GDO )=2×S 正方形OECF -S 扇形GDO =2×1×1-90π×12360=2-π4,∴阴影部分的面积为2-π4. 3. 23-2π3【解析】如解图,连接OD 、DE 、OE ,∵△ABC 为等边三角形,∴∠B =∠C =60°,又∵OB =OD ,∴△BOD 是等边三角形,∴∠BOD =60°,∠COE =60°,∴∠DOE =60°,即△DOE 为等边三角形,∵∠A =∠ODB =60°,∴OD ∥AE ,同理,OE ∥AD ,∴四边形ADOE 为菱形,∴阴影部分的面积=S 菱形ADOE -S 扇形DOE =2×3-60π×22360=23-2π3.第3题解图4. 12-13π4【解析】∵在矩形ABCD 中,AB =4,BC =3,F 是AB 中点,∴BF =BG =2,∴S 1=S 矩形ABCD -S 扇形DAE -S 扇形GBF +S 2,∴S 1-S 2=4×3-90·π×32360-90·π·22360=12-13π4. 5. 32-π24【解析】如解图,连接BE ,由题意可知,BE =BC =2,在Rt △ABE 中,AE =BE 2-AB 2=22-12=3,∴tan ∠ABE =AE AB =3,∴∠ABE =60°,∠EBC =30°,S 阴影=S △ABE +S 扇形EBC -S 半圆=12×3×1+30·π·22360-12π·(32)2=32-π24.第5题解图6. 3π4【解析】如解图,连接OC . ∵∠AOB =90°,∠B =30°,OA =3,∴∠A =60°.∴OB =33,∵OA =OC ,∴△AOC 是等边三角形.∴∠AOC =60°,∠BOC =30°. S 阴影=S △ABO -S △ACO -S 扇形COD +(S 扇形COA-S △ACO )=12OA ·OB -34·OA 2-30360π·32+(60360π·32-34·OA 2)=12×3×33-34×32-34π+(32π-34×32)=3π4.第6题解图7. 5π12+32【解析】如解图,连接BE ,由题意得,BE =BC =2,由勾股定理得,AE =BE 2-AB 2=1,sin ∠ABE =AE BE =12,∴∠ABE =30°,∴∠CBE =60°,则S 阴影=S 扇形EBC +S △ABE -S 扇形EAF =60π×22360+12×1×3-90π×12360=5π12+32.第7题解图8. π-332【解析】如解图,连接OB ,设OE 交BC 于点F ,∵四边形OABC 为菱形,∴OA =AB .又∵OA =OB ,∴△OAB 为等边三角形.∴∠AOB =60°.同理△OBC 也是等边三角形,又∵OE ⊥BC ,∴∠AOE =90°.∴∠BOE =30°.∵OB =2,∴BF =1,OF = 3.∴S 阴影=S 扇形AOE -S △AOB -S △BOF =90π×22360-34×22-12×1×3=π-3-32=π-332.第8题解图9. 332-2π3【解析】∵点C 是半圆O 的三等分点,∴∠BOC =60°,∠BAC =30°.在△OCD 中,∵CD ⊥AB 于点D ,OD =1,∠DOC =60°,∴OC =2,CD =3,∴AD =AO +OD =2+1=3.∵将△ACD 沿AC 翻折得到△ACE ,∴△ACD ≌△ACE ,∴∠EAC =∠DAC =30°,AE =AD =3,CE =CD = 3.∴∠BAE =∠DAC +∠EAC =60°=∠BOC ,∴OC ∥AE .∵OA =OF ,∠OAF =60°,∴△AOF 是等边三角形,∴AF =OA=2,∴EF =AE -AF =3-2=1,∴S 阴影=S 梯形OCEF -S 扇形OCF =12(1+2)×3-60π×22360=332-2π3. 10. 7π6-534【解析】如解图,连接AE 、DE 、A ′E 、D ′E ,∵菱形ABCD 中,∠B =60°,E 为BC中点,∴BE =12AB =1,∠BAE =30°,∠EAD =90°,∴∠EA ′D ′=90°,A ′E =AE =3,DE =AE 2+AD 2=(3)2+22=7,D ′E =7,∵旋转角为60°,∴∠DED ′=60°,∠BEB ′=60°,BB ′=BE =B ′E=1,∴CE =CA ′=A ′D =1,∴S △EA ′D =12S △ECD =12×12CE ·AE =14×1×3=34,S △EA ′D ′=12EA ′·A ′D ′=12×3×2=3,S 扇形EDD ′=60π·(7)2360=7π6,∴S 阴影=S 扇形DED ′-S △EA ′D ′-S △EA ′D =7π6-3-34=7π6-534.第10题解图11. π4-12【解析】如解图,连接CD ,设DE 交AC 于点G ,DF 交BC 于点H ,在Rt △ABC 中,∠ACB =90°,CA =CB ,D 为AB 的中点,∴CD ⊥AB ,∵∠CDH +∠EDC =∠EDF =90°,∠ADG +∠EDC =90°,∴∠CDH =∠ADG ,∴AE ︵=CF ︵,∵∠DCH +∠ACD =90°,∴∠DAG +∠ACD =90°,∴∠DCH =∠DAG .在△DCH 和△DAG 中,⎩⎪⎨⎪⎧∠CDH =∠ADG AD =CD ∠DCH =∠DAG,∴△CDH ≌△ADG ,∴AG =CH ,又∵AE ︵=CF ︵,∴S 阴影=S 扇形BDC -S △BDC =90π360×12-12×1×1=π4-12.第11题解图12. 163π-43 【解析】如解图,设A ′D 与半圆交于点K ,半圆的圆心为O ,连接OK ,作OH ⊥DK 于点H ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD =2CD ,∵∠C =90°,由折叠得:AD =A ′D =2CD ,∴∠DA ′C =∠ODK =∠OKD =30°,∴∠A ′DC =60°,∴∠DOK =120°,∴S 扇形DOK =120π×42360=163π,∵∠ODK =∠OKD =30°,OD =4,∴OH =2,DH =23,∴S △ODK =12DK ·OH =12×43×2=43,∴S 阴影=163π-4 3.第12题解图。