中考数学计算专练4
2023年湖南省中考数学专练方程及其解法(含解析)
2023年湖南省中考数学专练:4方程及其解法一.选择题(共12小题)1.(2021•安徽)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( ) A .a >b >c B .c >b >aC .a ﹣b =4(b ﹣c )D .a ﹣c =5(a ﹣b )2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后64人患上新冠肺炎,则x 的值为( ) A .4B .5C .6D .73.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a 元的商品降价x %销售一段时间后,为了加大促销力度,再次降价x %,此时售价共降低了b 元,则( ) A .b =a (1﹣2x %) B .b =a ﹣a (1﹣x %)2 C .b =a (1﹣x %)2D .b =a ﹣a (1﹣2x %)4.(2022•蜀山区校级三模)当b +c =1时,关于x 的一元二次方程x 2+bx ﹣c =0的根的情况为( ) A .有两个实数根 B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或26.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤07.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±28.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣89.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =112.(2022•定远县模拟)方程(7﹣a )x 2+ax ﹣8=0是关于x 的一元一次方程,那么a 的值是( ) A .0B .7C .8D .10二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x 2﹣4x +m =0有两个相等的实数根,则m = . 14.(2022•定远县模拟)一元二次方程x 2﹣px +q =0的两根分别为x 1=1和x 2=2,那么将x 2+px +q 分解因式的结果为 .15.(2022•合肥模拟)定义新运算“*”,规则:a *b ={a(a ≥b)b(a <b),如1*2=2,(−√5)*√2=√2.若x 2+x ﹣2=0的两根为x 1,x 2,则x 1*x 2= .16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.20.(2022•安徽二模)一小船由A港到B港顺流需要6小时,由B港到A港逆流需要8小时,小船从上午7时由A港到B港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是时掉入水中的.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?22.(2022•定远县校级模拟)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若方程有一个根是1,求k的值及方程的另一个根.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.25.(2022•定远县模拟)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x2﹣x﹣6=0;②2x2−2√3x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程mx2+nx+2=0(m,n是常数,m>0)是“邻根方程”,令t=n2﹣4m2,试求t的最大值.26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)27.(2022•博望区校级一模)已知实数a1,a2,…,a n,(其中n是正整数)满足:{ a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2) (1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示); (3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km /h ,刚开通的高铁从合肥站到宣城站全程的平均速度为140km /h ,行完全程高铁比普通快车节省了90min .求合肥站到宣城站的距离为多少千米?31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.2023年湖南省中考数学专练:4方程及其解法参考答案与试题解析一.选择题(共12小题)1.(2021•安徽)设a,b,c为互不相等的实数,且b=45a+15c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【解答】解:∵b=45a+15c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.7【解答】解:依题意得:(1+x)2=64,解得:x1=7,x2=﹣9(不合题意,舍去).故选:D.3.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a元的商品降价x%销售一段时间后,为了加大促销力度,再次降价x%,此时售价共降低了b元,则()A.b=a(1﹣2x%)B.b=a﹣a(1﹣x%)2C.b=a(1﹣x%)2D.b=a﹣a(1﹣2x%)【解答】解:根据题意得,b=a﹣a(1﹣x%)2,故选:B.4.(2022•蜀山区校级三模)当b+c=1时,关于x的一元二次方程x2+bx﹣c=0的根的情况为()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【解答】解:∵b+c=1,∴c =1﹣b ,∴Δ=b 2﹣4×(﹣c )=b 2+4(1﹣b )=(b ﹣2)2≥0, ∴方程有两个实数解. 故选:A .5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或2【解答】解:∵关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根, ∴Δ=(a ﹣2)2﹣16=0, 即(a ﹣2)2=16,开方得:a ﹣2=4或a ﹣2=﹣4, 解得:a =6或﹣2. 故选:C .6.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤0【解答】解:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0, 整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.由ac +b +1=0得到:b =﹣(ac +1).则:b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². 当b 2﹣4ac =0,即(ac ﹣1)²=0时,ac =1. 由a =1得到c =1,与c ≠1相矛盾, 故a =1,b 2﹣4ac >0.方法二:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0,整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². ∵a =1,c ≠1,∴b 2﹣4ac =(ac ﹣1)2>0. 故选:A .7.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±2【解答】解:根据题意得{4x −y =−53x +y =−9,解得{x =−2y =−3,把{x =−2y =−3代入含有a ,b 的两个方程得{−2a −3b =−1−6a −12b =18, 解得{a =11b =−7,则√a +b =2,2的平方根是±√2. 故选:C .8.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣8【解答】解:依题意得,x +8=2+7,∴x =1∵1+y +5=8+2+5, ∴y =9, 解得:{x =1y =9,∴x y =19=1, 故选:A .9.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b【解答】解:若ac =bc ,c ≠0,则a =b ,故A 错误,不符合题意; 若a =b ,c ≠0,则ac=bc ,故B 错误,不符合题意;若c a=cb,c ≠0,则a =b ,故C 错误,不符合题意;若3﹣4b =3﹣4a ,则a =b ,故D 正确,符合题意; 故选:D .10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元【解答】解:设该商品原来的价格是x 元,依题意有: (1+20%)×(1﹣10%)x =2160, 解得x =2000.故该商品原来的价格是2000元. 故选:C .11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =1【解答】解:设要用x天可以铺好这条管线,则可列方程:(112+124)x=1.故选:B.12.(2022•定远县模拟)方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,那么a的值是()A.0B.7C.8D.10【解答】解:∵方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,∴7﹣a=0且a≠0,解得:a=7,故选:B.二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.14.(2022•定远县模拟)一元二次方程x2﹣px+q=0的两根分别为x1=1和x2=2,那么将x2+px+q分解因式的结果为(x+1)(x+2).【解答】解:由根与系数的关系可知:x1+x2=p,x1•x2=q,即1+2=p,1×2=q,∴p=3,q=2,∴x2+px+q=x2+3x+2=(x+1)(x+2).故答案为(x+1)(x+2).15.(2022•合肥模拟)定义新运算“*”,规则:a*b={a(a≥b)b(a<b),如1*2=2,(−√5)*√2=√2.若x2+x﹣2=0的两根为x1,x2,则x1*x2=1.【解答】解:解方程x2+x﹣2=0得:x1=1,x2=﹣2.∵a*b={a(a≥b) b(a<b),∴x1*x2=1.故答案为:1.16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=2022.【解答】解:∵a,b是方程x2﹣x﹣2021=0的两实数根,∴a2=a+2021,a+b=1,∴a3+2022b﹣2021=a(a+2021)+2022b﹣2021=a2+2021a+2022b﹣2021=a+2021+2021a+2022b﹣2021=2022(a+b)=2022×1=2022.故答案为:2022.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<94.【解答】解:根据题意得Δ=(﹣3)2﹣4k>0,解得k<9 4,即k的取值范围为k<9 4.故答案为:k<9 4,18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程200(1+x)2=648.【解答】解:依题意得:200(1+x)2=648.故答案为:200(1+x)2=648.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≥﹣1 .【解答】解:①当k =0时,﹣2x ﹣1=0,解得x =−12;②当k ≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+3x ﹣1=0有实数根,∴Δ=(﹣2)2﹣4×k ×(﹣1)≥0,解得k ≥﹣1;由①②得,k 的取值范围是k ≥﹣1.故答案为:k ≥﹣1.20.(2022•安徽二模)一小船由A 港到B 港顺流需要6小时,由B 港到A 港逆流需要8小时,小船从上午7时由A 港到B 港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是 12 时掉入水中的.【解答】解:设小船按水流速度由A 港漂流到B 港需要x 小时,由题意得:16−1x =18+1x , 解得:x =48.经检验,x =48是原方程的解,且符合题意.即小船按水流速度由A 港漂流到B 港需要48小时.设救生圈是在y 点钟落下水中的,救生圈每小时顺水漂流的距离等于全程的148, 由题意得:(7+6﹣y )(16−148)=1×(18+148),解得:y =12.即救生圈是在中午12点钟掉下水的,故答案为:12.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表: 年份 进口额/亿元 出口额/亿元 进出口总额/亿元2020x y 520 2021 1.25x 1.3y 1.25x +1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【解答】解:(1)由表格可得,2021年进出口总额为:1.25x +1.3y ,故答案为:1.25x +1.3y ;(2)由题意可得,{x +y =5201.25x +1.3y =520+140, 解得{x =320y =200, ∴1.25x =400,1.3y =260,答:2021年进口额是400亿元,出口额是260亿元.22.(2022•定远县校级模拟)如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若方程有一个根是1,求k 的值及方程的另一个根.【解答】解:(1)∵关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根, ∴Δ≥0,且k ≠0,∴(2k +1)2﹣4k 2≥0,∴k ≥−14,∴k 的取值范围k ≥−14且k ≠0;(2)把x =1代入k 2x 2﹣(2k +1)x +1=0中,可得k 2﹣(2k +1)+1=0解得:k =2,或k =0当k =0时方程为一元一次方程,不符合题意∴k =2∴原方程为4x 2﹣5x +1=0,解方程得:x 1=1,x 2=14综上所述k =2,x 2=14.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.【解答】解:(1)每﹣横行有(n+3)块,每﹣竖列有(n+2)块;故答案为:(n+3),(n+2)块;(2)y=(n+3)(n+2);(3)由题意,得(n+3)(n+2)=506,解之n1=20,n2=﹣25(舍去).答:此时n的值为20;(4)当黑白砖块数相等时,有方程n(n+1)=(n2+5n+6)﹣n(n+1).整理得n2﹣3n﹣6=0.解之得n1=3+√332,n2=3−√332.由于n1的值不是整数,n2的值是负数,故不存在黑砖白块数相等的情形.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.【解答】解:(1)设该届学生人均阅读量这两年中每年的平均增长率为x,依题意得:80(1+x )2=115.2,解得:x 1=﹣2.2(不符合题意,舍去),x 2=0.2=20%.∴该届学生人均阅读量这两年中每年的平均增长率为20%.(2)学校的目标不能实现,理由如下:按照(1)中的阅读量增长率,九年级结束时该届学生人均阅读量为115.2×(1+20%)=138.24(万字),∵140>138.24,∴学校的目标不能实现.答:(1)该届学生人均阅读量这两年中每年的平均增长率为20%;(2)学校的目标不能实现.25.(2022•定远县模拟)如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x 2﹣x ﹣6=0;②2x 2−2√3x +1=0.(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,令t =n 2﹣4m 2,试求t 的最大值.【解答】解:(1)①解方程x 2﹣x ﹣6=0得:x =3或x =﹣2,∵3﹣(﹣2)=5,∴x 2﹣x ﹣6=0不是“邻根方程”;②解方程2x 2−2√3x +1=0得:x =2√3±√12−84=√3±12, ∵√3+12−√3−12=1, ∴x 2﹣x ﹣6=0是“邻根方程”;(2)由方程x 2﹣(m ﹣1)x ﹣m =0解得:x =m 或x =﹣1,由于方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,则m ﹣(﹣1)=1或﹣1﹣m =1,解得m =0或﹣2;(3)解方程mx 2+nx +2=0得:x =−n±√n 2−8m 2m , ∵关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,∴−n+√n 2−8m 2m −−n−√n 2−8m 2m =1,∴n 2=m 2+8m ,∵t =n 2﹣4m 2,∴t =﹣3m 2+8m =−3(m −43)2+163, ∴当m =43时,t 有最大值163. 26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)【解答】解:设矩形田地的宽为x 步,则长为(x +12)步,依题意得:(x +12)x =864,整理得:x 2+12x ﹣864=0,解得:x 1=24,x 2=﹣36(不合题意,舍去),∴x +12=24+12=36.答:矩形田地的长为36步,宽为24步.27.(2022•博望区校级一模)已知实数a 1,a 2,…,a n ,(其中n 是正整数)满足: { a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2)(1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示);(3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.【解答】解:①∵a 1+a 2=8,a 1+a 2+a 3=20,∴(a 1+a 2+a 3)﹣(a 1+a 2)=20﹣8=12,∴a 3=12;②a n =13(a 1+a 2+a 3+…+a n )−13(a 1+a 2+a 3+…+a n ﹣1)=13n n (n +1)(n +2)−13(n ﹣1)n (n +1)=13n (n +1)[n +2﹣(n ﹣1)]=n (n +1),即a n =n (n +1);③2022a 1+2022a 2+2022a 3+•+2022a 2021 =2022×(11×2+12×3+13×4+⋯+12020×2021) =1−12+12−13+13−14+⋯+12020−12021=20202021.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?【解答】解:设黄金每枚重a 两,白银每枚重b 两,根据题意列方程组:{9a =11b 8a +b =10b +a −13解得:{a =1434b =1174 答:黄金每枚重1434两,白银每枚重1174两.29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.【解答】解:设他第一天读了x 个字,根据题意得x +2x +4x =34685,解得x =4955,答:他第一天读了4955个字.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km/h,刚开通的高铁从合肥站到宣城站全程的平均速度为140km/h,行完全程高铁比普通快车节省了90min.求合肥站到宣城站的距离为多少千米?【解答】解:设合肥站到宣城站的距离为x千米,依题意得:x70−x140=9060,解得:x=210.答:合肥站到宣城站的距离为210千米.31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.【解答】解:设该款奶茶线下销售价格为x元/杯,则线上销售价格为(1+20%)x元/杯,依题意得:6×(1+20%)x﹣28+4=6x,解得:x=20.答:该款奶茶线下销售价格为20元/杯.。
2023年中考数学专题练——4反比例函数
2023年中考数学专题练——4反比例函数一.选择题(共9小题)1.(2022•泉山区校级三模)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)随气球内气体的体积V (立方米)的变化情况如下表所示,此时p 与V 的函数关系最可能是( ) V (立方米) 64 48 38.4 32 24 … p (千帕) 1.522.534…A .正比例函数B .一次函数C .二次函数D .反比例函数2.(2022•鼓楼区校级二模)如图,正比例函数y =kx 的图象与反比例函数y =8x(x >0)的图象交于点A (a ,4).点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图象于点C ,交正比例函数的图象于点D .若BC =85,则△ACD 的面积为( )A .15B .635C .625D .143.(2021•徐州模拟)点(3,2)在反比例函数y =kx上,则下列不可能在该函数图象上的点是( ) A .(2,3)B .(﹣2,﹣3)C .(2,﹣3)D .(﹣3,﹣2)4.(2021•徐州模拟)如图,在平面直角坐标系中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=kx(k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连接OC ,OD .若△COE 的面积是△DOB 的面积的2倍,则k 的值是( )A .6B .12C .2D .45.(2021•徐州一模)如图,反比例函数y 1=k1x 和正比例函数y 2=k 2x 的图象交于A (﹣2,﹣3)、B (2,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A .x <﹣2或0<x <2B .﹣2<x <0或x >2C .﹣2<x <0D .﹣2<x <26.(2021•丰县校级模拟)如图,平行四边形ABCO 的顶点B 在双曲线y =6x 上,顶点C 在双曲线y =kx上,BC 中点P 恰好落在y 轴上,已知S ▱OABC =10,则k 的值为( )A .﹣8B .﹣6C .﹣4D .﹣27.(2021•邳州市模拟)如图,在直角坐标系中,以坐标原点O (0,0),A (0,4),B (3,0)为顶点的Rt △AOB ,其两个锐角对应的外角角平分线相交于点P ,且点P 恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.648.(2021•徐州模拟)如图,菱形AOBC的顶点A在x轴上,反比例函数y=kx(k>0,x>0)的图象经过顶点B,和边AC的中点D.若OA=6,则k的值为()A.√5B.2√5C.4√5D.8√5 9.(2021•徐州模拟)如图,在平面直角坐标系中,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在函数y=kx(x>0,k>0)的图象上.若正方形ADEF的面积为4,且BF=2AF,则k的值为()A.24B.12C.6D.3二.填空题(共10小题)10.(2022•泉山区校级三模)如图,▱OABC的顶点C在反比例函数y=kx的图象上,且点A坐标为(1,﹣3),点B坐标为(5,﹣1),则k的值为.11.(2022•丰县二模)如图,点A、B在反比例函数y=kx(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E.若OE=1,OC=2CD,则AC的长为.12.(2022•徐州二模)如图,点A,B分别在x轴,y轴的正半轴上,反比例函数y=kx(x<0)的图象经过线段AB的中点C,△ABO的面积为1,则k的值是.13.(2022•徐州一模)已知反比例函数y=1x的图象过点A(a﹣1,y),B(a+1,y2),若y2>y1,则a的取值范围为.14.(2022•睢宁县模拟)如图,反比例函数y=kx(k>0,x>0)的图象经过菱形OABD的顶点A和边BD的一点C,且DC=13DB,若点D的坐标为(8,0),则k的值为.15.(2022•鼓楼区校级一模)如图,一次函数y =2x 与反比例函数y =kx(k >0)的图象交于A ,B 两点,点M 在以C (2,0)为圆心,半径为1的⊙C 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是 .16.(2021•邳州市模拟)设函数y =3x与y =﹣3x ﹣9的图象的交点坐标为(a ,b ),则a +b 值是 .17.(2021•徐州模拟)若A (﹣3,y 1),B (1,y 2),C (2,y 3)是反比例函数y =kx (k >0)图象上的三点,则y 1,y 2,y 3的大小关系是 (用“<”号连接). 18.(2021•徐州一模)若反比例函数y =kx的图象经过点A (2,1),则k = . 19.(2021•徐州模拟)若正比例函数y =2kx 与反比例函数y =kx (k ≠0)的图象交于点A (m ,1),则k 的值是 . 三.解答题(共7小题)20.(2022•贾汪区二模)如图,直线y 1=kx +3分别与x 轴、y 轴交于点A 、B ,与反比例函数y 2=mx (x <0)的图象交于点C ,连接OC .已知点A 的坐标(6,0),AB =3BC . (1)求k 、m 的值;(2)若OC绕点O旋转得OC′,当点C′落在反比例函数y2=mx的图象上时,请直接写出点C′坐标(点C除外).21.(2022•徐州一模)如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=8x的图象只有一个公共点C.(1)点C的坐标是;(2)点M为线段BC的中点,将点C和点M向左平移m(m>0)个单位,平移后的对应点都落在反比例函数y=kx(k≠0)的图象上时,求k的值.22.(2022•鼓楼区校级三模)如图,在平面直角坐标系xOy中,正方形ABCO的对角线BO在x轴上,若正方形ABCO的边长为2√2,点B在x轴负半轴上,反比例函数y=kx的图象经过C点.(1)求该反比例函数的解析式;(2)当函数值y>﹣2时,请直接写出自变量x的取值范围;(3)若点P是反比例函数上的一点,且△PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.23.(2021•徐州模拟)如图,在平面直角坐标系中,已知点A(2,0),B(0,−32),作直线AB与反比例函数y=mx(x>0)的图象交于点C,且A是线段BC的中点.(1)求m的值;(2)D是线段BC上一动点,过点D作DE∥y轴,交反比例函数的图象于点E,是否存在点D,使△ODE的面积有最大值?若存在,求出最大值及点D的坐标.24.(2021•徐州模拟)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.25.(2021•徐州模拟)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.26.(2021•徐州模拟)如图,▱OABC的边OA在x轴的正半轴上,OA=5,反比例函数y=m x(x>0)的图象经过点C(1,4).(1)求反比例函数的关系式和点B的坐标;(2)过AB的中点D作DP∥x轴交反比例函数图象于点P,连接CP,OP.求△COP 的面积.2023年江苏省徐州市中考数学专题练——4反比例函数参考答案与试题解析一.选择题(共9小题)1.(2022•泉山区校级三模)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)随气球内气体的体积V (立方米)的变化情况如下表所示,此时p 与V 的函数关系最可能是( ) V (立方米) 64 48 38.4 32 24 … p (千帕) 1.522.534…A .正比例函数B .一次函数C .二次函数D .反比例函数【解答】解:由题意可知,64×1.5=96;48×2=96;38.4×2.5=96;32×3=96;24×4=96,…由此可得出p 和v 的函数关系是为:p =96V. 故选:D .2.(2022•鼓楼区校级二模)如图,正比例函数y =kx 的图象与反比例函数y =8x(x >0)的图象交于点A (a ,4).点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图象于点C ,交正比例函数的图象于点D .若BC =85,则△ACD 的面积为( )A .15B .635C .625D .14【解答】解:∵A (a ,4)在y =8x , ∴a =2, ∴A (2,4),把x =2,y =4代入y =kx , 2k =4, ∴k =2,∴y=2x,∵BC=85,即y=85代入y=8x,解得x=5,即OB=5,∵D点在y=2x上,把x=5代入y=2x=10,∴DC=10−85=425,点A到DC距离为3,∴S△ACD=12×3×425=12.6.故选:B.3.(2021•徐州模拟)点(3,2)在反比例函数y=kx上,则下列不可能在该函数图象上的点是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣3,﹣2)【解答】解:∵点(3,2)在反比例函数y=kx上,∴k=3×2=6,A、∵2×3=6,∴此点在该函数图象上,故本选项错误;B、∵﹣2×(﹣3)=6,∴此点在该函数图象上,故本选项错误;C、∵2×(﹣3)=﹣6≠6,∴此点不在该函数图象上,故本选项正确;D、∵﹣3×(﹣2)=6,∴此点在该函数图象上,故本选项错误.故选:C.4.(2021•徐州模拟)如图,在平面直角坐标系中,直线y=12x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=kx(k>0,x>0),y2=2kx(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连接OC,OD.若△COE的面积是△DOB的面积的2倍,则k的值是()A .6B .12C .2D .4【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1), ∴OB =1,把y =12x ﹣1代入y 2=2k x (x <0)得,12x ﹣1=2kx (x <0),解得,x =1−√4k +1, ∴x D =1−√4k +1,∴S △OBD =12OB •|x D |=12√4k +1−12,∵CE ⊥x 轴, ∴S △OCE =12k ,∵△COE 的面积是△DOB 的面积的2倍, ∴2(12√4k +1−12)=12k , ∴k =12,或k =0(舍去). 经检验,k =12是原方程的解. 故选:B .5.(2021•徐州一模)如图,反比例函数y 1=k1x 和正比例函数y 2=k 2x 的图象交于A (﹣2,﹣3)、B (2,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.x<﹣2或0<x<2B.﹣2<x<0或x>2 C.﹣2<x<0D.﹣2<x<2【解答】解:根据图象,当k1x>k2x,即反比例函数的值大于正比例函数值时自变量的取值范围为0<x<2或x<﹣2,故选:A.6.(2021•丰县校级模拟)如图,平行四边形ABCO的顶点B在双曲线y=6x上,顶点C在双曲线y=kx上,BC中点P恰好落在y轴上,已知S▱OABC=10,则k的值为()A.﹣8B.﹣6C.﹣4D.﹣2【解答】解:连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在双曲线y=6x上,所以△BOE面积=12×6=3.∵点C在双曲线y=kx上,且从图象得出k<0,∴△COD面积=12|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=3+12|k|=5.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(3+12|k|),∴2(3+12|k|)=10,解得k=±4,因为k<0,所以k=﹣4.故选:C.7.(2021•邳州市模拟)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.64【解答】解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB=√32+42=5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴12×t ×(t ﹣4)+12×5×t +12×t ×(t ﹣3)+12×3×4=t ×t ,解得t =6, ∴P (6,6),把P (6,6)代入y =kx 得k =6×6=36. 故选:A .8.(2021•徐州模拟)如图,菱形AOBC 的顶点A 在x 轴上,反比例函数y =kx (k >0,x >0)的图象经过顶点B ,和边AC 的中点D .若OA =6,则k 的值为( )A .√5B .2√5C .4√5D .8√5【解答】解:设B (t ,k t), ∵四边形OBCA 为菱形, ∴OA =OB =BC =6,BC ∥OA , ∴C (t +6,kt ),∵点D 为AC 的中点, ∴D (12t +6,k2t),∵点B (t ,k t)和点D (12t +6,k2t)在反比例函数y =kx 上,∴k =(12t +6)•k2t,解得t =4,∴B (4,k4),∵OB =6,∴42+(k4)2=62,解得k 1=﹣8√5,k 2=8√5,∵k >0, ∴k =8√5. 故选:D .9.(2021•徐州模拟)如图,在平面直角坐标系中,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在函数y =kx(x >0,k >0)的图象上.若正方形ADEF 的面积为4,且BF =2AF ,则k 的值为( )A .24B .12C .6D .3【解答】解:∵正方形ADEF 的面积为4, ∴正方形ADEF 的边长为2,∴BF =2AF =4,AB =AF +BF =2+4=6. 设B 点坐标为(t ,6),则E 点坐标(t +2,2), ∵点B 、E 在反比例函数y =kx 的图象上, ∴k =6t =2(t +2), 解得t =1,k =6. 故选:C .二.填空题(共10小题)10.(2022•泉山区校级三模)如图,▱OABC 的顶点C 在反比例函数y =kx的图象上,且点A 坐标为(1,﹣3),点B 坐标为(5,﹣1),则k 的值为 8 .【解答】解:作CD ⊥x 轴于D ,BF ∥x 轴,交y 轴于F ,作AG ⊥x 轴,交BF 于E ,交x 轴于G ,∵四边形OABC 是平行四边形, ∴OA ∥BC ,∠AOC =∠ABC ,OC =AB , ∴∠FBC =∠AFB , ∵BF ∥x 轴, ∴∠AFB =∠AOD , ∴∠FBC =∠AOD , ∴∠DOC =∠ABE , 在△COD 和△ABE 中, {∠DOC =∠ABE∠ODC =∠AEB =90°OC =AB, ∴△COD ≌△ABE (AAS ), ∴OD =BE ,CD =AE ,∵点A 坐标为(1,﹣3),点B 坐标为(5,﹣1). ∴EF =1,AG =3,BF =5,EG =1, ∴AE =3﹣1=2,BE =5﹣1=4, ∴OD =4,CD =2, ∴C (4,2),∵顶点C 在反比例函数y =kx 的图象上, ∴k =4×2=8, 故答案为:8.11.(2022•丰县二模)如图,点A、B在反比例函数y=kx(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E.若OE=1,OC=2CD,则AC的长为32.【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,∴四边形BDOE是矩形,∴BD=OE=1,把y=1代入y=kx,求得x=k,∴B(k,1),∴OD=k,∵OC=2CD,∴OC=23k,∵AC⊥x轴于点C,把x=23k代入y=kx得,y=32,∴AC=3 2,故答案为:32.12.(2022•徐州二模)如图,点A ,B 分别在x 轴,y 轴的正半轴上,反比例函数y =k x(x <0)的图象经过线段AB 的中点C ,△ABO 的面积为1,则k 的值是 −12.【解答】解:设点A (a ,0),点B (0,b ), ∵点C 是AB 中点, ∴点C (a2,b2),∵△ABO 的面积为1,即12(﹣a )b =1,∴ab =﹣2, ∴a =−2b , ∴C (−1b,b2),∵点C 在双曲线y =kx (x <0)上, ∴k =−1b ×b 2=−12, ∴k 的值为−12, 故答案为:−12.13.(2022•徐州一模)已知反比例函数y =1x 的图象过点A (a ﹣1,y ),B (a +1,y 2),若y 2>y 1,则a 的取值范围为 ﹣1<a <1 . 【解答】解:∵反比例函数y =1x 中的k =1>0,∴反比例函数y =1x的图象经过第一、三象限,且在每一象限内y 随x 的增大而减小. ∵y 2>y 1,a +1>a ﹣1,∴点A 位于第三象限,点B 位于第一象限, ∴{a −1<0a +1>0,解得﹣1<a <1. 故答案是:﹣1<a <1.14.(2022•睢宁县模拟)如图,反比例函数y =k x(k >0,x >0)的图象经过菱形OABD 的顶点A 和边BD 的一点C ,且DC =13DB ,若点D 的坐标为(8,0),则k 的值为 3√55 .【解答】解:作AE ⊥x 轴于E ,CF ⊥x 轴于F , ∵四边形OABD 是菱形,点D 的坐标为(8,0), ∴OA ∥BD ,OA =BD =8, ∴∠AOE =∠CDF , ∵∠AEO =∠CFD =90°, ∴△AOE ∽△CDF , ∴OE DF=AE CF =OA CD,∵DC =13DB , ∴OE DF=AE CF=OA CD=3,∴OE =3DF ,AE =3CF ,设DF =m ,CF =n ,则C (8+m ,n ),A (3m ,3n ), ∵点A 、C 在反比例函数y =kx(k >0,x >0)的图象上, ∴(8+m )•n =3m •3n , ∴m =1, ∴A (3,3n ), ∴OE =3,AE =3n ,在Rt △AOE 中,OA 2=OE 2+AE 2, ∴82=32+(3n )2,解得n =√553,∴A (3,√55), ∴k =3×√55=3√55, 故答案为:3√55.15.(2022•鼓楼区校级一模)如图,一次函数y =2x 与反比例函数y =kx (k >0)的图象交于A ,B 两点,点M 在以C (2,0)为圆心,半径为1的⊙C 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是3225.【解答】解:方法一、联立{y =kxy =2x ,∴x 2=k 2, ∴x =±√k 2,∴A (−√k2,−2√k2),B (√k2,2√k2), ∴A 与B 关于原点O 对称, ∴O 是线段AB 的中点, ∵N 是线段AM 的中点,连接BM ,则ON ∥BM ,且ON =12BM , ∵ON 的最大值为32,∴BM 的最大值为3, ∵M 在⊙C 上运动,∴当B ,C ,M 三点共线时,BM 最大, 此时BC =BM ﹣CM =2, ∴((√k 2−2)2+(2√k 2)2=4, ∴k =0或3225,∵k >0, ∴k =3225,方法二、设点B (a ,2a ),∵一次函数y =2x 与反比例函数y =kx(k >0)的图象交于A ,B 两点, ∴A 与B 关于原点O 对称, ∴O 是线段AB 的中点, ∵N 是线段AM 的中点,连接BM ,则ON ∥BM ,且ON =12BM , ∵ON 的最大值为32,∴BM 的最大值为3,∵M 在⊙C 上运动,∴当B ,C ,M 三点共线时,BM 最大, 此时BC =BM ﹣CM =2, ∴√(a −2)2+(2a)2=2,∴a 1=45或a 2=0(不合题意舍去), ∴点B (45,85),∴k =3225, 故答案为:3225.16.(2021•邳州市模拟)设函数y =3x 与y =﹣3x ﹣9的图象的交点坐标为(a ,b ),则a +b 值是 ﹣6−√5或﹣6+√5 .【解答】解:∵函数y =3x 与y =﹣3x ﹣9的图象的交点坐标为(a ,b ), ∴ab =3,b =﹣3a ﹣9, a (﹣3a ﹣9)=3, 整理得,a 2+3a +1=0, 解得a =−3+√52或a =−3−√52∴b =−9−3√52或b =−9+3√52, ∴a +b =﹣6−√5或﹣6+√5 故答案为:﹣6−√5或﹣6+√5.17.(2021•徐州模拟)若A (﹣3,y 1),B (1,y 2),C (2,y 3)是反比例函数y =kx (k >0)图象上的三点,则y 1,y 2,y 3的大小关系是 y 1<y 3<y 2 (用“<”号连接). 【解答】解:∵k >0,故反比例函数图象的两个分支在一三象限,且在每个象限内y 随x 的增大而减小.∴A (﹣3,y 1)在第三象限,B (1,y 2),C (2,y 3)在第一象限,且1<2, ∴y 1<0,0<y 3<y 2,故y 1,y 2,y 3的大小关系为y 1<y 3<y 2. 故答案为y 1<y 3<y 2.18.(2021•徐州一模)若反比例函数y =k x的图象经过点A (2,1),则k = 2 . 【解答】解:把点A (2,1)代入反比例函数y =kx 得, k =2×1=2, 故答案为:2.19.(2021•徐州模拟)若正比例函数y =2kx 与反比例函数y =kx (k ≠0)的图象交于点A (m ,1),则k 的值是 ±√22. 【解答】解:∵点A (m ,1)在反比例函数y =k x(k ≠0)的图象上, ∴k =m ×1=m ,∵点A (m ,1)在正比例函数y =2kx 的图象上, ∴1=2km ,即2m 2=1,解得m =±√22,即k =±√22. 三.解答题(共7小题)20.(2022•贾汪区二模)如图,直线y 1=kx +3分别与x 轴、y 轴交于点A 、B ,与反比例函数y 2=mx(x <0)的图象交于点C ,连接OC .已知点A 的坐标(6,0),AB =3BC . (1)求k 、m 的值;(2)若OC 绕点O 旋转得OC ′,当点C ′落在反比例函数y 2=mx 的图象上时,请直接写出点C ′坐标(点C 除外).【解答】解:(1)作CD ⊥x 轴于D , 则△ABO ∽△ACD , ∴AB AC=OB CD,∵AB =3BC ,∴CD=43OB,∵x=0时,y1=kx+3=3,∴B(0,3),∴OB=3,∴CD=4,∵点A(6,0)在一次函数y1=kx+3的图象上,∴6k+3=0,∴k=−1 2,∴y=−12x+3,当y=4时,则4=−12x+3,解得x=﹣2,∴C(﹣2,4),∵点C在反比例函数y2=mx(x<0)的图象上,∴m=﹣2×4=﹣8;(2)若OC绕点O旋转得OC′,当点C′落在反比例函数y2=mx的图象上,C(﹣2,4),由反比例函数的对称性,C′(﹣4,2)或(2,﹣4)或(4,﹣2).21.(2022•徐州一模)如图,已知一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=8x的图象只有一个公共点C.(1)点C的坐标是(2,4);(2)点M为线段BC的中点,将点C和点M向左平移m(m>0)个单位,平移后的对应点都落在反比例函数y=kx(k≠0)的图象上时,求k的值.【解答】解:(1)∵一次函数y=﹣2x+8的图象与反比例函数y=8x的图象只有一个公共点C,∴﹣2x+8=8 x,∴x=2,∴点C坐标为(2,4),故答案为:(2,4);(2)∵一次函数y=﹣2x+8的图象与坐标轴交于A,B两点,∴点B(4,0),∵点M为线段BC的中点,∴点M(3,2),∴点C和点M平移后的对应点坐标分别为(2﹣m,4),(3﹣m,2),∴k=4(2﹣m)=2(3﹣m),∴m=1,∴k=4.22.(2022•鼓楼区校级三模)如图,在平面直角坐标系xOy中,正方形ABCO的对角线BO在x轴上,若正方形ABCO的边长为2√2,点B在x轴负半轴上,反比例函数y=kx的图象经过C点.(1)求该反比例函数的解析式;(2)当函数值y>﹣2时,请直接写出自变量x的取值范围;(3)若点P是反比例函数上的一点,且△PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.【解答】解:(1)过C 作CE ⊥x 轴于E ,则∠CEB =90°, ∵正方形ABCO 的边长为2√2, ∴CO =2√2,∠COE =45°, ∴CE =OE =2√2√2=2, 即k =﹣2×(﹣2)=4,所以反比例函数的解析式是y =4x ;(2)把y =﹣2代入y =4x 得:x =﹣2,所以当函数值y >﹣2时,自变量x 的取值范围是x <﹣2或x >0;(3)设P 点的纵坐标为a , ∵正方形ABCO 的边长为2√2,∴由勾股定理得:OB =√(2√2)2+(2√2)2=4, ∵△PBO 的面积恰好等于正方形ABCO 的面积, ∴12×4×|a |=2√2×2√2,解得:a =±4,即P 点的纵坐标是4或﹣4,代入y =4x得:x =1或﹣1,即P 点的坐标是(1,4)或(﹣1,﹣4).23.(2021•徐州模拟)如图,在平面直角坐标系中,已知点A (2,0),B (0,−32),作直线AB 与反比例函数y =mx (x >0)的图象交于点C ,且A 是线段BC 的中点. (1)求m 的值;(2)D 是线段BC 上一动点,过点D 作DE ∥y 轴,交反比例函数的图象于点E ,是否存在点D ,使△ODE 的面积有最大值?若存在,求出最大值及点D 的坐标.【解答】解:(1)∵点A (2,0),B (0,−32), ∴OA =2,OB =32, 过C 作CF ⊥x 轴于F , ∴∠AOB =∠AFC =90°, ∵A 是线段BC 的中点, ∴AB =AC , ∵∠BAO =∠CAF , ∴△AOB ≌△AFC (AAS ), ∴AF =AO =2,CF =OB =32, ∴OF =4 ∴C (4,32),∴m =4×32=6;(2)设直线AB 的解析式为y =kx +b ,把点A (2,0),B (0,−32),代入得{2k +b =0b =−32,解得{k =34b =−32, ∴直线AB 的解析式为y =34x −32; ∵点D 为线段AB 上的一个动点, ∴设D (x ,34x −32)(0<x ≤4),∵DE ∥y 轴, ∴E (x ,6x ),∴S △ODE =12x •(6x−34x +32)=−38x 2+34x +3=−38(x ﹣1)2+278, ∴当x =1时,△ODE 的面积的最大值为278,点D 的坐标为(1,−34).24.(2021•徐州模拟)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.如图,煅烧时温度y (℃)与时间x (min )成一次函数关系;锻造时,温度y (℃)与时间x (min )成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并且写出自变量x 的取值范围; (2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.【解答】解:(1)材料锻造时,设y=kx(k≠0),由题意得600=k 8,解得k=4800,当y=800时,4800x=800,解得x=6,∴点B的坐标为(6,800),材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).∴锻造操作时y与x的函数关系式为y=4800x(x>6);(2)把y=400代入y=4800x中,得x=12,12﹣6=6(min),答:锻造的操作时间6min;(3)当y=400时,由128x+32=400,∴x=23 8,从400℃升到800℃需要6−238=258(min),∵加工每个零件需要12min,每次锻造6min,∴加工第一个零件需要锻造、煅烧两次,一共需要12+258+6=1698min .25.(2021•徐州模拟)如图,在平面直角坐标系中,一次函数y =12x +5和y =﹣2x 的图象相交于点A ,反比例函数y =kx的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.【解答】解:(1)联立y =12x +5①和y =﹣2x 得:{y =12x +5y =−2x,解得:{x =−2y =4,故点A (﹣2,4),将点A 的坐标代入反比例函数表达式得:4=k−2,解得:k =﹣8, 故反比例函数表达式为:y =−8x ②;(2)联立①②并解得:x =﹣2或﹣8, 当x =﹣8时,y =12x +5=1,故点B (﹣8,1), 设y =12x +5交x 轴于点C ,令y =0,则12x +5=0, ∴x =﹣10,∴C (﹣10,0),过点A 、B 分别作x 轴的垂线交x 轴于点M 、N ,则S △AOB =S △AOC ﹣S △BOC =12×OC •AM −12OC •BN =12×4×10−12×10×1=15. 26.(2021•徐州模拟)如图,▱OABC 的边OA 在x 轴的正半轴上,OA =5,反比例函数y =m x (x >0)的图象经过点C (1,4).(1)求反比例函数的关系式和点B 的坐标;(2)过AB 的中点D 作DP ∥x 轴交反比例函数图象于点P ,连接CP ,OP .求△COP 的面积.【解答】解:(1)∵反比例函数y =m x (x >0)的图象经过点C (1,4).∴m =1×4=4,∴反比例函数的关系式为y =4x (x >0).∵四边形OABC 为平行四边形,且点O (0,0),OA =5,点C (1,4),∴点A (5,0),∴点B (6,4).(2)延长DP 交OC 于点E ,如图所示.∵点D 为线段BA 的中点,点A (5,0)、B (6,4), ∴点D (112,2). 令y =4x 中y =2,则x =2,∴点P (2,2),∴PD =112−2=72,EP =ED ﹣PD =32, ∴S △COP =12EP •(y C ﹣y O )=12×32×(4﹣0)=3.。
中考数学计算题训练
中考数学计算题训练中考数学计算题专项训练一、训练一1.计算:1) sin45° - 1/2 + 3/8;2) 2×(-5) + 23 - 3÷4 + 2^2 + (-1)^4 + (5-2) - |-3|;3) -1-16+(-2)^2/(2×1) + 1001+12-33×tan30°;6) -2+(-2)+2sin30°;8) (-1)-16+(-2)^2/[(2×1)+(1×1)]。
2.计算:[-1/2 + 1/3×(-tan45°)] + 3/2.3.计算:1/3 - 2^-1 - (2010-2012+(-1)^-1)/(1001+12-33×tan30°)。
4.计算:18-[cos60°/(2-1-4sin30°)]+[(2-2)/(2-1)]。
5.计算:[cos60°/(-1)]-1^20+|2-8|-2^-1×(tan30°-1)。
二、训练二(分式化简)1.化简:2x/(x^2-4x-2) - 1/(x-2)。
2.化简:(1+1/(x-2))/(x^2-4)。
3.化简:(1-a)/(2a-1) ÷ [(a^2+2a+1)/(3-a^5)]。
4.化简:[(a-1)/(a^2-1)] ÷ [(a-1)/(2a-1)],其中a≠-1.5.化简:[2x/(x+1)(x-1)] + [1/2(x-1)]。
6.化简:[1/(x-2)^2] ÷ [1/(x^2-4x+1)],其中x≠1.7.化简:[1-(a-1)/(2a)] ÷ [(a^2+2a)/(a-1)],其中a≠a。
8.化简:[2/(a+2)-(a-2)/(a-1)] ÷ [2/(a+1)-2/(a-2)],其中a为整数且-3<a<2.9.化简:[(11/2)x+2]/(x-y) + [9/(x^2+2xy+y^2)],其中x=1,y=-2.10.化简:[(1/2)-(1/12)x]/[2/(x-4)-x/(x^2-4)],其中x=2(tan45°-cos30°)-1.三、训练三(求解方程)1.解方程x-4x+1=0.2.解分式方程(3x-2)/(x+1) + (2x+1)/(x-2) =3.3.解方程:x^3-2x^2+5x-6=0.4.解方程:(x-1)/(x+1) + (x+1)/(x-1) = 4.5.解方程:(x-2)/(x+1) + (x+1)/(x-2) = 2.四、解不等式1.解不等式 $x+2>1$,得 $x>-1$,整数解为 $x\in(-1,+\infty)$。
2023中考数学一轮复习专题4
专题4.14 多边形与平行四边形(基础篇)(真题专练)一、单选题1.(2020·湖南衡阳·中考真题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥DC ,AB =DCB .AB =DC ,AD =BC C .AB ∥DC ,AD =BC D .OA=OC ,OB =OD2.(2021·四川成都·中考真题)如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为( )A .4πB .6πC .8πD .12π3.(2021·江苏扬州·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒4.(2021·黑龙江绥化·中考真题)已知一个多边形内角和是外角和的4倍,则这个多边形是( )A .八边形B .九边形C .十边形D .十二边形 5.(2021·内蒙古呼伦贝尔·中考真题)如图,ABCD 中,AC 、BD 交于点O ,分别以点A和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交AB 于点E ,交CD 于点F ,连接CE ,若6AD =,BCE 的周长为14,则CD 的长为( )A .10B .8C .6D .6.(2021·四川雅安·中考真题)如图,在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,DE 是ABC 的中位线,若6DE =,则BF =( )A .6B .4C .3D .57.(2021·湖北恩施·中考真题)如图,在ABCD 中,13AB =,5AD =,AC BC ⊥,则ABCD 的面积为( )A .30B .60C .65D .6528.(2021·天津·中考真题)如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D .()2,19.(2021·四川南充·中考真题)如图,点O 是ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F .下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠10.(2020·广西玉林·中考真题)点D ,E 分别是三角形ABC 的边AB ,AC 的中点,如图,求证://DE BC 且12DE BC = 证明:延长DE 到F ,使EF=DE ,连接FC ,DC ,AF ,又AE=EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程;∥//DF BC =∴; ∥//,//CF AD CF BD ==; ∥四边形DBCF 是平行四边形;∥//,DE BC ∴且12DE BC ∴=则正确的证明排序应是:( )A .∥→∥→∥→∥B .∥→∥→∥→∥C .∥→∥→∥→∥D .∥→∥→∥→∥ 11.(2020·四川南充·中考真题)如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF∥BD 于F ,EG∥AC 与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112SD .116S 12.(2020·山东临沂·中考真题)如图,P 是面积为S 的ABCD 内任意一点,PAD △的面积为1S ,PBC 的面积为2S ,则( )A .122S S S +>B .122S S S +<C .122S S S +=D .12S S +的大小与P 点位置有关二、填空题 13.(2020·浙江金华·中考真题)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是______°.14.(2020·海南·中考真题)正六边形的每一个外角是___________度15.(2020·四川广安·中考真题)已知三角形三条边的长分别是7cm ,12cm ,15cm ,则连接三边中点所构成三角形的周长为________cm .16.(2020·黑龙江穆棱·中考真题)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD 是平行四边形(填一个即可).17.(2020·湖南株洲·中考真题)如图所示,点D 、E 分别是ABC 的边AB 、AC 的中点,连接BE ,过点C 做//CF BE ,交DE 的延长线于点F ,若3EF =,则DE 的长为________.18.(2020·四川阿坝·中考真题)如图,在ABCD 中,过点C 作CE AB ⊥,垂足为E ,若40EAD ∠=︒,则BCE ∠的度数为____.19.(2020·山东淄博·中考真题)如图,矩形纸片ABCD ,AB =6cm ,BC =8cm ,E 为边CD 上一点.将∥BCE 沿BE 所在的直线折叠,点C 恰好落在AD 边上的点F 处,过点F 作FM∥BE ,垂足为点M ,取AF 的中点N ,连接MN ,则MN =_____cm .20.(2021·青海·中考真题)如图,在ABC 中,D ,E ,F 分别是边AB ,BC ,CA 的中点,若DEF 的周长为10,则ABC 的周长为______.21.(2021·云南·中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF =,则BE 的长是______.22.(2021·山东临沂·中考真题)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.23.(2021·湖南湘西·中考真题)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,1=20∠︒,则2∠的度数是____.三、解答题24.(2021·广西桂林·中考真题)如图,在平行四边形ABCD 中,点O 是对角线BD 的中点,EF 过点O ,交AB 于点E ,交CD 于点F .(1)求证:∥1=∥2;(2)求证:∥DOF ∥∥BOE .⊥,垂足分25.(2021·湖南岳阳·中考真题)如图,在四边形ABCD中,AE BD⊥,CF BD别为点E,F.(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形AECF为平行四边形.26.(2021·湖南怀化·中考真题)已知:如图,四边形ABCD为平行四边形,点E、A、C、F =.求证:在同一直线上,AE CF≌(1)ADE CBFED BF(2)//27.(2021·山东青岛·中考真题)如图,在ABCD 中,E 为CD 边的中点,连接BE 并延长,交AD 的延长线于点F ,延长ED 至点G ,使DG DE =,分别连接AE ,AG ,FG . (1)求证:BCE FDE ≅△△;(2)当BF 平分ABC ∠时,四边形AEFG 是什么特殊四边形?请说明理由.28.(2021·湖南株洲·中考真题)如图所示,在矩形ABCD 中,点E 在线段CD 上,点F 在线段AB 的延长线上,连接EF 交线段BC 于点G ,连接BD ,若2DE BF ==.(1)求证:四边形BFED 是平行四边形;(2)若2tan 3ABD ∠=,求线段BG 的长度.参考答案1.C【分析】根据平行四边形的判定方法逐项分析即可.【详解】A. ∥ AB∥DC,AB=DC,∥四边形ABCD是平行四边形;B. ∥ AB=DC,AD=BC,∥四边形ABCD是平行四边形;C.等腰梯形ABCD满足AB∥DC,AD=BC,但四边形ABCD是平行四边形;D. OA=OC,OB=OD,∥四边形ABCD是平行四边形;故选C.【点拨】本题主要考查了平行四边形的判定,平行四边形的判定方法有:∥两组对边分别平行的四边形是平行四边形;∥一组对边平行且相等的四边形是平行四边形;∥两组对边分别相等的四边形是平行四边形;∥对角线互相平分的四边形是平行四边形;∥.两组对角分别相等的四边形是平行四边形.2.D【分析】根据正多边形内角和公式求出∥F AB,利用扇形面积公式求出扇形AB F的面积计算即可.【详解】解:∥六边形ABCDEF是正六边形,∥∥F AB=()621801206-⨯︒=︒,AB=6,∥扇形ABF的面积=2120612360,故选择D.【点拨】本题考查的是正多边形和圆、扇形面积计算,掌握多边形内角的计算公式、扇形面积公式是解题的关键.3.D【分析】连接BD,根据三角形内角和求出∥CBD+∥CDB,再利用四边形内角和减去∥CBD和∥CDB 的和,即可得到结果.【详解】解:连接BD,∥∥BCD=100°,∥∥CBD+∥CDB=180°-100°=80°,∥∥A+∥ABC+∥E+∥CDE=360°-∥CBD-∥CDB=360°-80°=280°,故选D.【点拨】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.4.C【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.【点拨】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.5.B【分析】由已知可得EA=EC,再根据三角形BCE的周长可以得到AB的长,从而得到CD的长.【详解】解:由已知条件可知EF是AC的垂直平分线,所以EA=EC,∥∥BCE的周长为14,∥BC+CE+EB=14,∥BC+EA+EB=14,即BC+AB=14,∥四边形ABCD为平行四边形,∥DC =AB ,BC =AD =6, ∥DC =14-BC =14-6=8, 故选B .【点拨】本题考查平行四边形的综合应用,熟练掌握平行四边形的性质、线段垂直平分线的作图与性质是解题关键. 6.A 【分析】由DE 是ABC 的中位线,可得AC =12,在Rt ABC 中,点F 为AC 中点,可得BF =6即可. 【详解】解:∥DE 是ABC 的中位线, ∥AC =2DE =2×6=12,∥在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点, ∥BF =1112622AC =⨯=, 故选择A .【点拨】本题考查三角形中位线与三角形中线性质,掌握三角形中位线与三角形中线性质是解题关键. 7.B 【分析】先根据平行四边形的性质可得5BC AD ==,再利用勾股定理可得12AC =,然后利用平行四边形的面积公式即可得. 【详解】解:四边形ABCD 是平行四边形,5AD =, 5BC AD ∴==, ,13AC BC AB ⊥=,12AC ∴,则ABCD 的面积为51260BC AC ⋅=⨯=, 故选:B .【点拨】本题考查了平行四边形的性质与面积公式、勾股定理,熟练掌握平行四边形的性质是解题关键.8.C【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∥四边形ABCD是平行四边形,点B的坐标为(-2,-2),点C的坐标为(2,-2),∥点B到点C为水平向右移动4个单位长度,∥A到D也应向右移动4个单位长度,∥点A的坐标为(0,1),则点D的坐标为(4,1),故选:C.【点拨】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.9.A【分析】首先可根据平行四边形的性质推出∥AEO∥∥CFO,从而进行分析即可.【详解】∥点O是ABCD对角线的交点,∥OA=OC,∥EAO=∥CFO,∥∥AOE=∥COF,∥∥AEO∥∥CFO(ASA),∥OE=OF,A选项成立;∥AE=CF,但不一定得出BF=CF,则AE不一定等于BF,B选项不一定成立;∠=∠,则DO=DC,若DOC OCD由题意无法明确推出此结论,C选项不一定成立;由∥AEO∥∥CFO得∥CFE=∥AEF,但不一定得出∥AEF=∥DEF,则∥CFE不一定等于∥DEF,D选项不一定成立;故选:A.【点拨】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键. 10.A 【分析】根据已经证明出四边形ADCF 是平行四边形,则利用平行四边形的性质可得//CF AD CF AD =,,可得//CF BD CF BD =,,证出四边形DBCF 是平行四边形,得出//DF BC ,且DF BC =,即可得出结论//DE BC 且12DE BC =,对照题中步骤,即可得出答案. 【详解】解:四边形ADCF 是平行四边形,//CF AD CF AD ∴=,, AD BD =//CF BD CF BD ∴=,,∴四边形DBCF 是平行四边形,//DF BC ∴,且DF BC =;12DE DF =, 12DE BC ∴=; //,DE BC ∴且12DE BC =; 对照题中四个步骤,可得∥→∥→∥→∥正确; 故答案选:A.【点拨】本题考查平行四边形性质与判定综合应用;当题中出现中点的时候,可以利用中线倍长的辅助线做法,证明平行四边形后要记得用平行四边形的性质继续解题. 11.B 【分析】由菱形的性质得出OA =OC ,OB =OD ,AC∥BD ,S =12AC×BD ,证出四边形EFOG 是矩形,EF∥OC ,EG∥OB ,得出EF 、EG 都是∥OBC 的中位线,则EF =12OC =14AC ,EG =12OB =14BD ,由矩形面积即可得出答案.【详解】解:∥四边形ABCD 是菱形,∥OA =OC ,OB =OD ,AC∥BD ,S =12AC×BD ,∥EF∥BD 于F ,EG∥AC 于G ,∥四边形EFOG 是矩形,EF∥OC ,EG∥OB , ∥点E 是线段BC 的中点, ∥EF 、EG 都是∥OBC 的中位线,∥EF =12OC =14AC ,EG =12OB =14BD ,∥矩形EFOG 的面积=EF×EG =14AC×14BD =1812AC BD ⨯⎛⎫⨯ ⎪⎝⎭ =18S ; 故选:B .【点拨】本题考查了菱形的性质及面积的求法、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键. 12.C 【分析】过点P 作AD 的垂线PF ,交AD 于F ,再延长FP 交BC 于点E ,表示出S 1+ S 2,得到122S S S +=即可. 【详解】解:如图,过点P 作AD 的垂线PF ,交AD 于F ,再延长FP 交BC 于点E , 根据平行四边形的性质可知PE∥BC ,AD=BC , ∥S 1=12AD×PF ,S 2=12BC×PE ,∥S 1+ S 2 =12AD×PF+12BC×PE=12AD×(PE+PE ) =12AD×EF =12S , 故选C .【点拨】本题考查了三角形的面积和平行四边形的性质,解题的关键是作出平行四边形过点P的高.13.30【分析】根据平行四边形的性质解答即可.【详解】解:四边形ABCD是平行四边形,D C,18060180(54070140180)30,故答案为:30.【点拨】此题考查平行四边形的性质和多边形的内角和,关键是根据平行四边形的邻角互补解答.14.60°.【详解】试题分析:∥正六边形的每个外角都相等,并且外角和是360°,∥正六边形的一个外角的度数为:360°÷6=60°,故答案为60.点睛:本题考查的是多边形的外角和的知识,掌握多边形的外角和等于360度是解题的关键.15.17【分析】三角形两边中点的连线是三角形的中位线,如解图,DE,DF,EF都是∥ABC的中位线,根据中位线的性质可分别求出长度,从而得到周长.【详解】解:如下图,在∥ABC中,点D、E、F分别是AB、BC、CA的中点,AB=15cm,BC=12cm,AC=7cm∥点D、E分别是AB、BC的中点∥DE是∥BAC的中位线∥DE=12AC=72cm同理,EF=12AB=152cm,DF=162CB=cm∥∥DEF的周长=72+152+617=cm故答案为:17.【点拨】本题考查三角形中位线的定理,需要注意,三角形的中位线平行且等于对应底边的一半,且不可弄错边之间的关系.16.AD=BC(答案不唯一)【分析】根据平行四边形的判定方法添加一个条件即可.【详解】解:根据一组对边平行且相等的四边形是平行四边形,可以添加条件AD=BC,根据两组对边分别平行的四边形是平行四边形,可以添加条件AB∥DC,本题只需添加一个即可,故答案为:AD=BC(答案不唯一).【点拨】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.17.3 2【分析】先证明DE为ABC的中位线,得到四边形BCFE为平行四边形,求出BC=EF=3,根据中位线定理即可求解.【详解】解:∥D、E分别是ABC的边AB、AC的中点,∥DE为ABC的中位线,∥DE∥BC,12DE BC=,∥//CF BE,∥四边形BCFE为平行四边形,∥BC=EF=3,∥1322 DE BC==.故答案为:3 2【点拨】本题考查了三角形中位线定理,平行四边形判定与性质,熟知三角形中位线定理是解题关键.18.50°【分析】由平行四边形的性质得出∥B=∥EAD=40°,由角的互余关系得出∥BCE=90°-∥B即可.【详解】解:∥四边形ABCD是平行四边形,∥AD∥BC,∥∥B=∥EAD=40°,∥CE∥AB,∥∥BCE=90°-∥B=50°;故答案为:50°.【点拨】本题考查了平行四边形的性质和三角形的内角和;熟练掌握平行四边形的性质,求出∥B的度数是解决问题的关键.19.5【详解】连接AC,FC,求出AC,利用三角形的中位线定理解决问题即可.【解答】解:连接AC,FC.由翻折的性质可知,BE垂直平分线段CF,∥FM∥BE,∥F.M,C共线,FM=MC,∥AN=FN,∥MN=AC,∥四边形ABCD是矩形,∥∥ABC=90°,∥AC===10(cm),∥MN=AC=5(cm),故答案为5.【点评】本题考查翻折变换,矩形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.20.20【分析】根据三角形中位线定理得到AC=2DE,AB=2EF,BC=2DF,根据三角形的周长公式计算,得到答案.【详解】解:∥∥DEF的周长为10,∥DE+EF+DF=4,∥D,E,F分别是AB,BC,CA的中点,∥AC=2DE,AB=2EF,BC=2DF,∥∥ABC的周长=AC+AB+BC=2(DE+EF+DF)=20,故答案为:20.【点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21.9【分析】根据中位线定理得到DE =12AB ,DE ∥AB ,从而证明∥DEF ∥∥ABF ,得到12DE EF AB BF ==,求出EF ,可得BE . 【详解】解:∥点D ,E 分别为BC 和AC 中点, ∥DE =12AB ,DE ∥AB ,∥∥DEF ∥∥ABF , ∥12DE EF AB BF ==, ∥BF =6, ∥EF =3, ∥BE =6+3=9, 故答案为:9.【点拨】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明∥DEF ∥∥ABF . 22.(4,-1) 【分析】根据平行四边形的性质得到点C 坐标,再根据平移的性质得到C 1坐标. 【详解】解:在平行四边形ABCD 中,∥对称中心是坐标原点,A (-1,1),B (2,1), ∥C (1,-1),将平行四边形ABCD 沿x 轴向右平移3个单位长度, ∥C 1(4,-1), 故答案为:(4,-1).【点拨】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 23.40° 【分析】如图,由折叠的性质可得1=20BAF ∠=∠︒,进而可得40CHB HAB HBA ∠=∠+∠=︒,然后易得四边形CHBD 是平行四边形,最后根据平行四边形的性质可求解. 【详解】 解:如图所示:∥1=20∠︒,由折叠的性质可得1=20BAF ∠=∠︒, ∥//CD BE ,∥20HBA BAF ∠=∠=︒, ∥40CHB HAB HBA ∠=∠+∠=︒, ∥//CH BD ,∥四边形CHBD 是平行四边形, ∥240CHB ∠=∠=︒; 故答案为40°.【点拨】本题主要考查平行四边形的性质与判定、平行线的性质及折叠的性质,熟练掌握平行四边形的性质与判定、平行线的性质及折叠的性质是解题的关键. 24.(1)证明见解析;(2)证明见解析. 【分析】(1)根据平行四边形的性质可得AB //CD ,根据平行线的性质即可得结论;(2)由(1)可知∥1=∥2,根据中点的性质可得OD =OB ,利用AAS 即可证明∥DOF ∥∥BOE . 【详解】(1)∥四边形ABCD 是平行四边形, ∥AB //CD , ∥∥1=∥2.(2)∥点O 是对角线BD 的中点,∥OD =OB ,在∥DOF 和∥BOE 中,12DOF BOE OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥∥DOF ∥∥BOE .【点拨】本题考查平行四边形的性质及全等三角形的判定,熟练掌握相关性质及判定定理是解题关键.25.(1)//AF CE (答案不唯一,符合题意即可);(2)见解析【分析】(1)由题意可知//AE CF ,要使得四边形AECF 为平行四边形,则使得//AF CE 即可,从而添加适当条件即可;(2)根据(1)的思路,利用平行四边形的定义证明即可.【详解】(1)显然,直接添加//AF CE ,可根据定义得到结果,故答案为://AF CE (答案不唯一,符合题意即可);(2)证明:∥AE BD ⊥,CF BD ⊥,∥//AE CF ,∥//AF CE ,∥四边形AECF 为平行四边形.【点拨】本题考查平行四边形的判定,掌握平行四边形的判定方法是解题关键. 26.(1)证明见解析(2)证明见解析【分析】(1)利用平行四边形的性质得出AD ∥BC ,AD =BC ,再证明∥EAD =∥FCB ,利用SAS 证明两三角形全等即可.(2)利用ADE CBF ≌,得出∥E =∥F ,再利用内错角相等两直线平行即可证明.【详解】(1)证明:∥四边形ABCD 为平行四边形∥AD ∥BC ,AD =BC∥∥DAC =∥ACB∥∥EAD =∥FCB在∥ADE 和∥CBF 中,AE CF EAD FCB AD BC =⎧⎪∠=∠⎨⎪=⎩∥ADE CBF ≌ (SAS )(2)∥ADE CBF ≌∥∥E =∥F∥ED ∥BF【点拨】本题考查全等三角形的证明、平行四边形的性质、平行线的判定及性质、灵活进行角的转换是关键.27.(1)见解析;(2)矩形,见解析【分析】(1)利用平行四边形的性质证明DFE CBE ∠=∠,利用中点的性质证明DE CE =,结合对顶角相等,从而可得结论;(2)先证明,AD DF = 结合,GD DE = 证明四边形AEFG 是平行四边形,再利用等腰三角形的性质证明,AE BF ⊥ 从而可得结论.【详解】(1)证明:∥四边形ABCD 是平行四边形,∥//AD BC ,∥DFE CBE ∠=∠又∥E 为CD 边的中点,∥DE CE =∥FED BEC ∠=∠,DFE CBE ∠=∠,DE CE =,∥BCE FDE ≅△△(2)答:四边形AEFG 是矩形,理由如下:∥四边形ABCD 是平行四边形,∥AD BC =,∥FDE BCE ≅△△,∥BC FD =,FE EB =,∥FD AD =,∥GD DE =,∥四边形AEFG是平行四边形.∥BF平分ABC∠,∥CBF ABF∠=∠.又∥AFB FBC∠=∠,∥ABF AFB∠=∠,∥AB AF=又∥FE EB=,∥AE FE⊥,∥90AEF∠=︒,∥AEFG是矩形【点拨】本题考查的是三角形全等的判定与性质,平行四边形的性质与判定,矩形的判定,等腰三角形的判定与性质,掌握“有一个角是直角的平行四边形是矩形”是证题的关键.28.(1)证明见解析;(2)4 3【分析】(1)利用一组对边平行且相等的四边形是平行四边形即可求证;(2)利用平行四边形的性质得到=F ABD∠∠,接着利用锐角三角函数值解直角三角形即可.【详解】解:(1)证明:因为四边形ABCD是矩形ABCD,∥//CD AB,又∥2DE BF==,∥四边形BFED是平行四边形;(2)由(1)知四边形BFED是平行四边形,∥//BD EF,∥=F ABD∠∠,∥2 tan=tan3F ABD∠∠=,∥23 BGBF=,∥43 BG=,∥线段BG的长度为43.【点拨】本题考查了矩形的性质、平行四边形的判定与性质、锐角三角函数解直角三角形等内容,解决本题的关键是牢记相关概念,能进行边和角之间关系的相互转化等,本题较基础,着重考查了学生的基础知识和对概念公式的运用.。
中考数学计算题专练
1、某班有40名学生,其中男生占60%,女生占多少?
A. 40%(答案)
B. 50%
C. 60%
D. 70%
2、一个正方形的边长是5cm,它的周长是多少cm?
A. 10cm
B. 15cm
C. 20cm(答案)
D. 25cm
3、如果小明每天步行上学需要30分钟,那么他一周步行上学总共需要多少分钟?
A. 150分钟
B. 210分钟
C. 300分钟
D. 2100分钟(答案)
4、一个三角形的内角和是多少度?
A. 90度
B. 180度(答案)
C. 270度
D. 360度
5、如果一个数的2倍等于6,那么这个数是多少?
A. 1
B. 2(答案)
C. 3
D. 4
6、一个圆的半径是4cm,它的面积大约是多少平方厘米?
A. 16
B. 25
C. 36
D. 50(答案)
7、如果5个苹果的重量是1千克,那么1个苹果的重量大约是多少克?
A. 100克(答案)
B. 200克
C. 300克
D. 400克
8、一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米?
A. 12
B. 16
C. 32(答案)
D. 64。
江苏中考数学复习提分专练方程与不等式的实际应用
提分专练(四)方程与不等式的实际应用|类型1| 分配购买问题1.[2019·贵阳] 某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能购买多少本A款毕业纪念册.|类型2| 打折销售问题2.[2019·靖江外国语学校月考] 某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件,现采用提高商品售价,减少销售量的办法增加利润.若销售单价每涨5元,每天的销售量就减少100件.针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?3.[2019·赤峰] 某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:图T4-1(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?4.[2018·连云港]某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调查,获取信息如下:需付款99000元.(1)红色地砖与蓝色地砖的单价各是多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.|类型3| 行程问题5.[2018·襄阳]正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.|类型4| 图形面积问题6.一幅长20 cm、宽12 cm的图案,如图T4-2,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2.设竖彩条的宽度为x cm,图案中三条彩条所占面积为y cm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的2,求横、竖彩条的宽度.图T4-27.如图T4-3,有一块长20 cm、宽10 cm的长方形铁皮,如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为96 cm2的无盖的盒子,求这个盒子的容积.图T4-3|类型5| 增长率问题8.[2019·遵义] 新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销售量全球第一,2016年销售量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆,设年平均增长率为x,可列方程为()A.50.7(1+x)2=125.6B.125.6(1-x)2=50.7C.50.7(1+2x)=125.6D.50.7(1+x2)=125.6【参考答案】1.解:(1)设A 款毕业纪念册的销售单价为x 元,B 款毕业纪念册的销售单价为y 元,根据题意可得 1 10 2 020 10 280 解得 108答:A 款毕业纪念册的销售单价为10元,B 款毕业纪念册的销售单价为8元.(2)设能购买a 本A 款毕业纪念册,则购买B 款毕业纪念册(60-a )本,根据题意可得10a +8(60-a )≤ 29解得a ≤24.5.则最多能购买24本A 款毕业纪念册.2.解:设销售单价应定为x 元,根据题意,得:(x -8)200-100× -10=640,整理,得:x 2-28x +192=0,解得:x 1=12,x 2=16,∵要使顾客得到实惠,∴x=12.答:销售单价应定为12元.3.解:(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个.根据题意,得10(x +1)×0.85=10x -17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y 支,则购买签字笔(50-y )支,根据题意,得[8y +6(50-y )]×80%≤400-10×18×0.85.解得y ≤4.375.即y 最大值=4.答:小明最多可购买钢笔4支.4.解:(1)设红色地砖每块a 元,蓝色地砖每块b 元.由题意得4000 000 0 9 8 000 10000 0 8 00 99000 解得 810答:红色地砖每块8元,蓝色地砖每块10元.(2)设购置蓝色地砖x 块,则购置红色地砖(12000-x )块,所需的总费用为y 元.由题意知x ≥12(12000-x ),得x ≥4000又x ≤ 000所以蓝色地砖块数x 的取值范围为4000≤x ≤ 000.当4000≤x<5000时,y=10x +8×0.8(12000-x ),即y=76800+3.6x.所以x=4000时,y 有最小值91200.当 000≤x ≤ 000时,y=0.9×10x +8×0.8(12000-x )=2.6x +76800.所以x=5000时,y 有最小值89800.∵89800<91200,所以购买蓝色地砖5000块,红色地砖7000块,付款最少,最少费用为89800元.5.解:设高铁的速度为x 千米/时,则动车的速度为 2 =0.4x 千米/时.依题意得, 2 0 4 2 =1.5,解得x=325.经检验,x=325是原方程的根且符合题意,答:高铁的速度为325千米/时.6.解:(1)根据题意可知,横彩条的宽度为 2x cm,∴ 020-2 0 12- 2 0解得0<x<8,y=20× 2x +2×12·x -2× 2x ·x=-3x 2+54x ,即y 与x 之间的函数关系式为y=-3x 2+54x (0<x<8).(2)根据题意,得-3x 2+54x=2 ×20×12.整理,得x 2-18x +32=0.解得x 1=2,x 2=16(舍).∴x=2, 2x=3.答:横彩条的宽度为3 cm,竖彩条的宽度为2 cm .7.解:设截取的小正方形的边长为x cm .根据题意,得(20-2x )(10-2x )=96.解得x=13或x=2.∵20-2x>0,10-2x>0,∴x=13舍去,∴x=2.这个盒子的容积是9 ×2=192(cm 3).答:这个盒子的容积为192 cm 3.8.A [解析]由题意知在2016年50.7万的基础上,每年增长x ,则到2018年为50.7(1+x )2,所以选A .。
2023中考数学一轮复习专题4
专题4.11 勾股定理及其逆定理(基础篇)(真题专练)一、单选题1.(2021·山东滨州·中考真题)在Rt ABC 中,若90C ∠=︒,3AC =,4BC =,则点C 到直线AB 的距离为( )A .3B .4C .5D .2.42.(2021·四川雅安·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12D .6 3.(2021·湖北襄阳·中考真题)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(ji ǎ)生其中,出水一尺,引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈10=尺,)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度是多少?则水深为( )A .10尺B .11尺C .12尺D .13尺4.(2021·贵州遵义·中考真题)如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B D ''的长是( )A .52B .2C .32D .15.(2021·广西贵港·中考真题)如图,在ABC 中,∠ABC =90°,AB =8,BC =12,D 为AC边上的一个动点,连接BD ,E 为BD 上的一个动点,连接AE ,CE ,当∠ABD =∠BCE 时,线段AE 的最小值是( )A .3B .4C .5D .66.(2021·辽宁本溪·中考真题)如图,在ABC 中,AB BC =,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF ,若2BE AC ==,则CEF △的周长为( )A 1 B3 C 1 D .47.(2021·山东临沂·中考真题)如图,点A ,B 都在格点上,若B ,则AC 的长为( )A BC .D .8.(2021·云南·中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( )A .5003B .5035C .60D .809.(2020·广西河池·中考真题)在Rt∠ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是( )A .512 B .125 C .513 D .121310.(2020·广西贺州·中考真题)如图,将两个完全相同的Rt∠ACB和Rt∠A'C′B′拼在一起,其中点A′与点B重合,点C'在边AB上,连接B′C,若∠ABC=∠A′B′C′=30°,AC=A′C′=2,则B′C的长为()A.B.C.D.11.(2020·山东淄博·中考真题)如图,在∠ABC中,AD,BE分别是BC,AC边上的中线,且AD∠BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2 12.(2020·山东滨州·中考真题)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A 处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A B C D13.(2020·山东聊城·中考真题)如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ).A B C .35 D .45二、填空题 14.(2021·辽宁丹东·中考真题)如图,在ABC 中,45,B AB ∠=︒的垂直平分线交AB 于点D ,交BC 于点()E BE CE >,点F 是AC 的中点,连接AE 、EF ,若7,5BC AC ==,则CEF △的周长为_________.15.(2021·四川成都·中考真题)如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.16.(2020·辽宁阜新·中考真题)如图,在ABC 中,90ABC ∠=︒,2AB BC ==.将ABC 绕点B 逆时针旋转60°,得到11A BC ,则AC 边的中点D 与其对应点1D 的距离是____________.17.(2020·黑龙江绥化·中考真题)在Rt ABC 中,90C ∠=︒,若2,8AB AC BC -==,则AB 的长是________.18.(2021·辽宁阜新·中考真题)如图,已知每个小方格的边长均为1,则ABC 与CDE △的周长比为_________.19.(2021·广西玉林·中考真题)如图,某港口P 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A ,B 处,且相距20海里,如果知道甲船沿北偏西40︒方向航行,则乙船沿_____方向航行.20.(2021·湖南岳阳·中考真题)《九章算术》是我国古代数学名著,书中有下列问题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少?(1丈=10尺,1尺=10寸)如图, 设门高AB 为x 尺,根据题意,可列方程为________.21.(2021·湖南常德·中考真题)如图.在ABC 中,90C ∠=︒,AD 平分CAB ∠,DE AB ⊥于E ,若3,5CD BD ==,则BE 的长为________.22.(2021·黑龙江齐齐哈尔·中考真题)若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.23.(2019·西藏·中考真题)若实数m n 、满足|30|m﹣,且m n 、恰好是直角三角形的两条边,则该直角三角形的斜边长为_____.24.(2019·浙江杭州·中考真题)如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D 点,若90FPG ,A EP △的面积为4,D PH △的面积为1,则矩形ABCD 的面积等于_____.25.(2021·河南·中考真题)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt ABC △中,90ACB ∠=︒,30B ∠=︒,1AC =.第一步,在AB 边上找一点D ,将纸片沿CD 折叠,点A 落在A '处,如图2,第二步,将纸片沿CA '折叠,点D 落在D 处,如图3.当点D 恰好在原直角三角形纸片的边上时,线段A D ''的长为__________.三、解答题26.(2021·贵州安顺·中考真题)如图,在矩形ABCD 中,点M 在DC 上,AM AB =,且BN AM ⊥,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ==,求四边形BCMN 的面积.27.(2021·四川自贡·中考真题)如图,ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出ABC 的角平分线BD (不写作法,保留作图痕迹).28.(2020·湖南株洲·中考真题)某高速公路管理部门工作人员在对某段高速公路进行安全巡检过程中,发现该高速公路旁的一斜坡存在落石隐患.该斜坡横断面示意图如图所示,水平线12l l //,点A 、B 分别在1l 、2l 上,斜坡AB 的长为18米,过点B 作1BC l ⊥于点C ,且线段AC 的长为(1)求该斜坡的坡高BC ;(结果用最简根式表示)(2)为降低落石风险,该管理部门计划对该斜坡进行改造,改造后的斜坡坡脚α为60°,过点M 作1MN l ⊥于点N ,求改造后的斜坡长度比改造前的斜坡长度增加了多少米?参考答案1.D【分析】根据题意画出图形,然后作CD ∠AB 于点D ,根据勾股定理可以求得AB 的长,然后根据面积法,可以求得CD 的长.【详解】解:作CD ∠AB 于点D ,如右图所示,∠∠ACB =90°,AC =3,BC =4,∠AB , ∠22AC BC AB CD ⋅⋅=, ∠34522CD ⨯=, 解得CD =2.4,故选:D .【点拨】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.2.D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3,面积为12则该直角三角形的面积是6 故选:D . 【点拨】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.3.C【分析】根据勾股定理列出方程,解方程即可.【详解】设水池里的水深为x 尺,由题意得:()222x +5=x+1 解得:x=12故选:C.【点拨】本题主要考查勾股定理的运用,掌握勾股定理并能根据勾股定理正确的列出对应的方程式解题的关键.4.D【分析】先利用矩形的性质与勾股定理求解,AC 再利用轴对称的性质求解,AB CD '',从而可得答案.【详解】 解: 矩形纸片ABCD ,3,4,90,AD BC AB DC B D ∴====∠=∠=︒5,AC ∴由折叠可得:90,3,CB F B CB CB ''∠=∠=︒==2,AB AC CB ''∴=-=同理:2,CD '=5221,B D AC AB CD ''''∴=--=--=故选:.D【点拨】本题考查的是勾股定理的应用,轴对称的性质,矩形的性质,掌握以上知识是解题的关键.5.B【分析】如图,取BC 的中点T ,连接AT ,ET .首先证明90CEB ∠=︒,求出AT ,ET ,根据AE AT ET ≥-,可得结论.【详解】解:如图,取BC 的中点T ,连接AT ,ET .90ABC ∠=︒,90ABD CBD ∴∠+∠=︒,ABD BCE ∠=∠,90CBD BCE ∴∠+∠=︒,90CEB ∴∠=︒,6CT TB ==,162ET BC ∴==,10AT , AE AT ET ≥-,4AE ∴≥,AE ∴的最小值为4,故选:B .【点拨】本题考查直角三角形斜边中线的性质,勾股定理等知识,解题的关键是求出AT ,ET 的长,属于中考常考题型.6.C【分析】根据作图可知BD 平分ABC ∠,AB BC =,由三线合一,解Rt BEC △,即可求得.【详解】BD 平分ABC ∠,AB BC =,2BE AC ==BE AC ∴⊥,112AE EC AC ===∴BC 点F 为BC 的中点∴12EF BC FC === ∴CEF △的周长为:11CE EF FC ++=+= 故选C .【点拨】本题考查了角平分线的概念,等腰三角形性质,勾股定理,直角三角形性质,求出BC 边是解题的关键.7.B【分析】利用勾股定理求出AB ,再减去BC 可得AC 的长.【详解】解:由图可知:AB∠BC∠AC =AB -BC =故选B .【点拨】本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB 的长.8.D【分析】根据三角函数的定义得到BC 和AC 的比值,求出BC ,然后利用勾股定理即可求解.【详解】解:∠∠ABC =90°,sin ∠A =BC AC =35,AC =100, ∠BC =100×3÷5=60,∠AB ,故选D .【点拨】本题主要考查的是解直角三角形,掌握勾股定理和正弦函数的定义是解题的关键.9.D【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【详解】解:如图所示:∠∠C =90°,BC =5,AC =12,∠13AB , ∠12sin 13AC B AB ==. 故选:D .【点拨】本题考查勾股定理的应用和锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,解题的关键是理解三角函数的定义.10.A【分析】先根据直角三角形的性质可得4,4,60AB A B B A C '''=''=∠=︒,再根据勾股定理和角的和差可得90BC B BC '=∠=︒,最后在Rt B BC '中,利用勾股定理即可得.【详解】解:∠90,30,2ACB A C B ABC A B C AC A C ''''∠=∠''=︒∠=∠=︒=''=,∠4,4,60AB A B B A C '''=''=∠=︒,∠BC =90B BC ABC B A C ''''∠=∠+∠=︒,则在Rt B BC '中,B C '==故选:A .【点拨】本题考查了含30度角的直角三角形的性质、勾股定理等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.11.A【详解】设EF=x,DF=y,根据三角形重心的性质得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加减消元法消去x、y得到a、b、c的关系.【解答】解:设EF=x,DF=y,∠AD,BE分别是BC,AC边上的中线,∠点F为∠ABC的重心,AF=AC=b,BD=a,∠AF=2DF=2y,BF=2EF=2x,∠AD∠BE,∠∠AFB=∠AFE=∠BFD=90°,在Rt∠AFB中,4x2+4y2=c2,∠在Rt∠AEF中,4x2+y2=b2,∠在Rt∠BFD中,x2+4y2=a2,∠∠+∠得5x2+5y2=(a2+b2),∠4x2+4y2=(a2+b2),∠∠﹣∠得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.12.B【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M 点作MG∠EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【详解】解:∠EN=1,∠由中位线定理得AM=2,由折叠的性质可得A′M=2,∠AD∠EF,∠∠AMB=∠A′NM,∠∠AMB=∠A′MB,∠∠A′NM=∠A′MB,∠A′N=2,∠A′E=3,A′F=2过M点作MG∠EF于G,∠NG=EN=1,∠A′G=1,由勾股定理得=,,∠OF:BE=2:3,解得故选:B.【点拨】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E 的长.13.D【分析】△中,利用勾股定理求得线段AC的长,再按照正弦过点A作AD BC⊥于点D,在Rt ACD函数的定义计算即可.【详解】解:如图,过点A 作AD BC ⊥于点D ,则90ADC ∠=︒,∠5AC =, ∠4sin 5AD ACB AC ∠==, 故选:D .【点拨】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键. 14.8【分析】根据垂直平分线的性质求得∠BEA 的度数,然后根据勾股定理求出EC 长度,即可求出CEF △的周长.【详解】解:∠ DE 是AB 的垂直平分线,∠45BAE ABE ∠=∠=︒,BE =AE ,∠90BEA ∠=︒,∠7,BC =∠7,BE CE +=∠7,AE CE +=7,AE CE =-又∠AC =5,∠在AEC 中,222AE CE AC +=, ()22275CE CE -+=解得:CE =3,又∠点F 是AC 的中点,∠1522EF FC AC ===, ∠CEF △的周长=CF +CE +FE =553822++=. 故答案为:8.【点拨】此题考查了勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质,解题的关键是熟练掌握勾股定理,等腰直角三角形的性质,直角三角形斜边上的中线的性质.15.100.【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100.【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.故答案为:100.【点拨】本题考查了正方形的面积公式以及勾股定理.16【分析】先由旋转的旋转证明:1BDD 为等边三角形,利用直角三角形斜边上的中线等于斜边的一半求解BD ,从而可得答案.【详解】解:如图,连接1,,DB D BABC 绕点B 逆时针旋转60°,1,D D 分别为11,AC A C 的中点,11160,,CBC DBD BD BD ∴∠=∠=︒=1BDD ∴为等边三角形,1,DD BD ∴=90,ABC D ∠=︒为AC 中点,12AC BD AC ∴===1DD ∴【点拨】本题考查的是旋转的旋转,直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,掌握以上知识是解题的关键.17.17【分析】在Rt∠ABC 中,根据勾股定理列出方程即可求解.【详解】解:∠在Rt∠ABC 中,∠C=90°,AB -AC=2,BC=8,∠AC 2+BC 2=AB 2,即(AB -2)2+82=AB 2,解得AB=17.故答案为:17.【点拨】本题考查了勾股定理,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.18.2:1【分析】设AF 、DG 分别与BE 交于点F 、G ,则//AF DG ,可得到FAG CDG ∠=∠,在网格图中,利用锐角三角函数值得到BAF EDG ∠=∠,继而BAG CDE ∠=∠,可得到//AB DE ,证得ABC DEC △△,然后分别求出AB 、DE ,即可解答.【详解】如图,设AF 、DG 分别与BE 交于点F 、G ,则//AF DG ,∠FAG CDG ∠=∠ , ∠21tan 42BAF ∠== ,1tan 2EDG ∠= , ∠BAF EDG ∠=∠ ,∠BAG CDE ∠=∠ ,∠//AB DE ,ABC DEC △△ ,由图可知:AB =,DE =∠::2:1AB DE == ,即ABC 与CDE △的相似比为2:1 ,∠ABC 与CDE △的周长比为2:1故答案为:2:1【点拨】本题主要考查了网格图中的两个相似三角形周长之比,解题的关键是找到相似三角形的相似比.19.北偏东50°(或东偏北40°)【分析】由题意易得12AP =海里,PB =16海里,40APN ∠=︒,则有222AP BP AB +=,所以∠APB =90°,进而可得50BPN ∠=︒,然后问题可求解.【详解】解:由题意得:112=12AP =⨯海里,PB =1×16=16海里,40APN ∠=︒,20AB =海里, ∠222400AP BP AB +==,∠∠APB =90°,∠50BPN ∠=︒,∠乙船沿北偏东50°(或东偏北40°)方向航行;故答案为北偏东50°(或东偏北40°).【点拨】本题主要考查勾股定理的逆定理及方位角,熟练掌握勾股定理的逆定理及方位角是解题的关键.20.()2226.810x x +-=【分析】先表示出BC 的长,再利用勾股定理建立方程即可.【详解】解:由题可知,6尺8寸即为6.8尺,1丈即为10尺;∠高比宽多6尺8寸,门高 AB 为 x 尺,∠BC=()6.8x -尺,∠可列方程为:()2226.810x x +-=,故答案为:()2226.810x x +-=.【点拨】本题属于数学文化题,考查了勾股定理及其应用,解决本题的关键是读懂题意,能将文字语言转化为几何语言,能用含同一个未知数的式子表示出直角三角形的两条直角边,再利用勾股定理建立方程即可.21.4【分析】证明三角形全等,再利用勾股定理即可求出.【详解】解:由题意:AD 平分CAB ∠,DE AB ⊥于E , CAD EAD ∴∠=∠,90AED ∠=︒,又AD 为公共边,()ACD AED AAS ≌,3CD DE ∴==,在Rt DEB 中,5BD =,由勾股定理得:4BE =,故答案是:4.【点拨】本题考查了三角形全等及勾股定理,解题的关键是:通过全等找到边之间的关系,再利用勾股定理进行计算可得.22.2.4 【分析】分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【详解】若直角三角形的两直角边为3、45=,设直角三角形斜边上的高为h , 1134522h ⨯⨯=⨯ , ∠ 2.4h =.若直角三角形一条直角边为3,斜边为4设直角三角形斜边上的高为h , 1137422h ⨯⨯=⨯ ,∠h =故答案为:2.4. 【点拨】本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键. 23.5或4.【分析】 利用非负数的性质求出m n 、,再分情况求解即可.【详解】||30m +﹣,∠3040m n =-=﹣,,34m n ∴=,=, ∠当m n 、是直角边时,则该直角三角形的斜边5=,∠当4n =是斜边时,则斜边为4,故答案为5或4.【点拨】本题考查非负数的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24..【分析】根据相似三角形的判断得到∠A'EP ~∠D'PH ,由三角形的面积公式得到S ∠A'EP ,再由折叠的性质和勾股定理即可得到答案.【详解】∠A'E∠PF∠∠A'EP=∠D'PH又∠∠A=∠A'=90°,∠D=∠D'=90°∠∠A'=∠D'∠∠A'EP ~∠D'PH又∠AB=CD ,AB=A'P ,CD=D'P∠A'P= D'P设A'P=D'P=x∠S ∠A'EP :S ∠D'PH =4:1∠A'E=2D'P=2x∠S ∠A'EP =2112422A E A P x x x ''⨯⨯=⨯⨯== ∠0x >∠2x =∠A'P=D'P=2∠A'E=2D'P=4∠EP ==∠1=2PH EP =∠112DH D H A P ''===∠415AD AE EP PH DH =+++=+=+∠2AB A P '==∠25)10ABCD S AB AD =⨯=⨯=矩形【点拨】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质.25.12或2 【分析】因为点D 恰好在原直角三角形纸片的边上,所以分为当D 落在AB 边上和BC 边上两种情况分析,勾股定理求解即可.【详解】解:当D 落在AB 边上时,如图(1):设DD '交AB 于点E ,由折叠知:60EA D A '∠=∠=︒, AD A D A D '''==,DD A E ''⊥,A C AC '=90ACB ∠=︒,30B ∠=︒,1AC =2,AB BC ∴==设AD x =,则在Rt A ED '中,12A E x '=在Rt ECB 中,12EC BC =A C AC '=112x ∴=即2x =当D 落在BC 边上时,如图(2)因为折叠,30,ACD A CD A CD '''∠=∠=∠=︒∴ 11,122A D A C AB AC A B AC ''''''===== 12AD A D ''∴==.故答案为:12或2【点拨】本题考查了轴对称变换,勾股定理,直角三角形中30的性质,正确的作出图形是解题的关键.26.(1)见详解;(2)8【分析】(1)由矩形的性质可得∠D =90°,AB ∠CD ,从而得∠D =∠ANB ,∠BAN =∠AMD ,进而即可得到结论;(2)由ABN MAD≌以及勾股定理得AN=DM=4,AB=【详解】(1)证明:∠在矩形ABCD中,∠∠D=90°,AB∠CD,∠∠BAN=∠AMD,∠BN AM⊥,∠∠ANB=90°,即:∠D=∠ANB,又∠AM AB=,∠ABN MAD≌(AAS),(2)∠ABN MAD≌,∠AN=DM=4,∠2AD=,∠AM∠AB=∠矩形ABCD的面积=又∠12442ABN MADS S==⨯⨯=,∠四边形BCMN的面积4-8.【点拨】本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握AAS 证明三角形全等,是解题的关键.27.见解析【分析】取格点E,连接AE,作AE的中点D,根据等腰三角形三线合一的性质可知:BD即为ABC 的角平分线.【详解】解:如图,射线BD即为所求作..【点拨】本题考查作图-应用与设计作图,等腰三角形三线合一的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.28.(1) (2)2米【分析】(1)运用勾股定理解题即可;(2)根据勾股定理列出方程,求出AM ,问题得解.【详解】解:(1)在Rt ∠ABC 中,BC ==(2)∠60α∠=︒,∠30AMN ∠=︒,∠2AM MN =,∠在Rt ∠ABC 中,222AN MN AM +=,∠223004AN AN +=∠10AN =,∠20AM =,∠20182AM AB -=-=.综上所述,长度增加了2米.【点拨】本题考查了解直角三角形,题目难度不大,理解好题意运用勾股定理解题是关键.。
中考数学计算练习题带答案
中考数学计算练习题带答案1. 有理数的加减法:- 计算:\( 3 - 5 + 2 - 7 \)- 答案:\( -7 \)2. 有理数的乘除法:- 计算:\( (-2) \times 3 \div (-1) \)- 答案:\( 6 \)3. 绝对值的计算:- 计算:\( |-8| + |-3| \)- 答案:\( 11 \)4. 幂的运算:- 计算:\( 2^3 \div 2^2 \)- 答案:\( 2 \)5. 多项式乘法:- 计算:\( (x + 3)(x - 2) \)- 答案:\( x^2 + x - 6 \)6. 分数的加减法:- 计算:\( \frac{3}{4} - \frac{1}{2} \)- 答案:\( \frac{1}{4} \)7. 分数的乘除法:- 计算:\( \frac{2}{3} \times \frac{3}{4} \) - 答案:\( \frac{1}{2} \)8. 解一元一次方程:- 解方程:\( 2x + 5 = 11 \)- 答案:\( x = 3 \)9. 解一元二次方程:- 解方程:\( x^2 - 4x + 4 = 0 \)- 答案:\( x = 2 \)(重根)10. 代数式的求值:- 计算:\( 3a + 2b - 5a - b \) 当 \( a = 2, b = 3 \)- 答案:\( -2a + b = -2 \times 2 + 3 = -1 \)练习题答案解析:1. 先进行加法运算,再进行减法运算。
2. 先进行乘法运算,再进行除法运算。
3. 计算绝对值,然后进行加法运算。
4. 根据幂的除法法则,同底数幂相除,指数相减。
5. 根据多项式乘法法则,先进行乘法,再合并同类项。
6. 先通分,再进行分数的加减运算。
7. 根据分数的乘法法则,分子乘分子,分母乘分母。
8. 移项,合并同类项,然后求解。
9. 利用完全平方公式分解因式,然后求解。
10. 先化简代数式,然后代入给定的值求解。
2024年全国各省市数学中考真题汇编 专题4分式与分式方程(34题)含详解
专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程512x =+的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为.12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+⎝⎭,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:221412x x x x x+-⎛⎫-÷ ⎪+⎝⎭,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -⎛⎫+÷ --+⎝⎭,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +⎛⎫-÷ ⎪⎝⎭.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a aa a -+⎛⎫-÷⎪-⎝⎭,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.32.(2024·四川达州·中考真题)先化简:22224xx x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a-⎛⎫+÷ ⎪+⎝⎭.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xx x x -⎛⎫+-÷+⎪+-⎝⎭,其中72x =-.专题04分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=【答案】A【分析】本题考查通过去分母将分式方程转化为整式方程,方程两边同乘各分母的最简公分母,即可去分母.【详解】解:方程两边同乘26x -,得()()152626263126x x x x x---⨯=-⨯---,整理可得:2625x -+=-故选:A .2.(2024·四川雅安·中考真题)计算()013-的结果是()A .2-B .0C .1D .4【答案】C【分析】本题考查零指数幂,掌握“任何不为零的零次幂等于1”是正确解答的关键.根据零指数幂的运算性质进行计算即可.【详解】解:原式0(2)1=-=.故选:C .3.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为()A .60601202x x -=+B .60601202x x -=-C .60601202x x -=D .60601202x x -=【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.【详解】解:设慢车的速度为km /h x ,则快车的速度为()20km /h x +,根据题意可得:60601202x x -=+.故选:A .4.(2024·四川雅安·中考真题)已知()2110a b a b+=+≠.则a ab a b +=+()A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是.6.(2024·辽宁·中考真题)方程12x =的解为.7.(2024·重庆·中考真题)计算:011(3)()2π--+=.8.(2024·重庆·中考真题)计算:023-+=.【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是.11.(2024·四川甘孜·中考真题)分式方程1x 2=-的解为.【答案】x 3=【分析】首先去掉分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.12.(2024·内蒙古通辽·中考真题)分式方程2x x=-的解为.13.(2024·重庆·中考真题)若关于x 的不等式组()1321x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为.14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭.15.(2024·江苏盐城·中考真题)使分式1x -有意义的x 的取值范围是.【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1.故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是.17.(2024·四川自贡·中考真题)计算:11a a +-=++.【答案】118.(2024·江苏常州·中考真题)计算:11x x +=.19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +的值为.三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a a a a ++⎛⎫+÷⎪+,其中4a =.21.(2024·四川资阳·中考真题)先化简,再求值:212x x x+-⎛⎫-÷ ⎪+,其中3x =.22.(2024·黑龙江大庆·中考真题)先化简,再求值:21369x x x -⎛⎫+÷ ,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.【答案】该市谷时电价0.3元/度【分析】本题考查了分式方程的应用,设该市谷时电价为x 元/度,则峰时电价()0.2x +元/度,根据题意列出分式方24.(2024·四川遂宁·中考真题)先化简:21121x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:22x x -,其中x =26.(2024·青海·中考真题)先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x ⎛⎫-÷ ⎪.28.(2024·四川雅安·中考真题)(1()111525-⎛⎫-+-⨯- ⎪⎝⎭;(2)先化简,再求值:2221211a a a a a -+⎛⎫-÷ ⎪-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ⨯,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,∵AB 与AD 的比是16:10,∴1.24160.8210a a +=+,解得:0.1a =,经检验0.1a =是原方程的解.∴上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、.32.(2024·四川达州·中考真题)先化简:2224x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪.34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22324x x x -⎛⎫+-÷+ ⎪,其中2x =-.。
2019年中考数学专题4四边形证明及计算压轴题
2019年中考数学专题4:四边形证明及计算压轴题1.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG。
(1)求证:△BHE04DGF;(2)若 AB = 6cm, BC=8cm,求线段 FG 的长。
(23题2.以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设NADC= a (0。
<a <90°),① 试用含a的代数式表示NHAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.(第23题图1)(第23题图2)(第23题图3)3.如图7,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC04DEC:(2)延长BE交AD于点F,若NDEB=140°.求NAFE的度数.... 一厘>一、_ .4.直角梯形 ABCD 中,AD〃BC,NA=90。
,AB = AD = 6 , DE± DC交 AB 于 E, DF 平分ZEDC交BC于F,连结EF.(1)证明:EF = CF;(2)当tan Z ADE = 3 时,求 EF 的长.5.两个大小相同且含30。
角的三角板ABC和DEC如图①摆放,使直角顶点重合.将图①中△DEC绕点C逆时针旋转30。
得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点.(1)不添加辅助线,写出图②中所有与4BCF全等的三角形;(2)将图②中的4DEC绕点C逆时针旋转45。
得△0旦。
点F、G、H的对应点分别为F1、G1、H1 ,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I图②=CI.D6.如图,在平行四边形ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F. (1)证明:NDFA=NFAB; (2)证明:△ABE04FCE.7、如图,在口ABCD中,E,F分别是BC,AD中点。
初三数学计算题训练
初三数学计算题训练
1. 四则运算,加减乘除是数学的基本运算,通过大量的练习可以帮助学生熟练掌握加减乘除的运算技巧,提高他们的计算速度和准确性。
2. 分数、百分数和小数的运算,这些是初中阶段的重要内容,学生需要掌握分数、百分数和小数的相互转化,以及它们之间的加减乘除运算规则。
3. 代数式的计算,学生需要学会对代数式进行加减乘除、合并同类项、因式分解等操作,这可以培养学生的抽象思维能力和逻辑推理能力。
4. 方程与不等式的计算,学生需要学会解一元一次方程、一元一次不等式以及简单的二元一次方程,这对于培养学生的问题解决能力和数学建模能力非常重要。
5. 几何图形的计算,学生需要学会计算各种几何图形的周长、面积、体积等,这可以帮助他们理解几何图形的性质和运用数学知识解决实际问题。
在进行数学计算题训练时,可以通过课堂练习、作业布置、小组讨论等方式进行,同时可以结合实际问题进行综合训练,提高学生的数学运用能力。
另外,老师还可以根据学生的实际情况进行个性化指导,帮助他们克服困难,提高学习效果。
总之,通过系统的数学计算题训练,可以帮助学生建立扎实的数学基础,为他们将来的学习打下坚实的基础。
2020年中考数学十大题型专练04二次函数的实际应用题(含解析)
题型04 二次函数的实际应用题一、单选题1.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣ x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是( )A.2m B.4m C. m D. m【答案】D【分析】根据长方形的长OA是12m,宽OC是4m,可得顶点的横坐标和点C的坐标,即可求出抛物线解析式,再把y=8代入解析式即可得结论.【详解】根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即﹣ = =6,∴b=2.∵C(0,4),∴c=4,所以抛物线解析式为:y=﹣ x2+2x+4=﹣(x﹣6)2+10当y=8时,8=﹣(x﹣6)2+10,解得:x1=6+2 ,x2=6﹣2 .则x1﹣x2=4 .所以两排灯的水平距离最小是4 .故选:D.【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决.2.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33° B.36° C.42° D.49°【答案】C【分析】据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【详解】解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.【答案】A【详解】S△AEF= AE×AF= ,S△DEG= DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG= = ,则y=4×()= ,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.4.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面 m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m【答案】B【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+ ,把点A(0,10)代入a(x﹣1)2+ ,得a(0﹣1)2+ =10,解得a=﹣,因此抛物线解析式为y=﹣ (x﹣1)2+ ,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.5.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长不计重合部分,两个果冻之间没有挤压至少为A. B. C. D.【答案】A【分析】设:左侧抛物线的方程为:,点A的坐标为,将点A坐标代入上式并解得:,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将代入抛物线表达式,即可求解.【详解】解:设左侧抛物线的方程为:,点A的坐标为,将点A坐标代入上式并解得:,则抛物线的表达式为:,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将代入抛物线表达式得:,解得: (负值已舍去),则,故选:A.【点睛】本题考查了二次函数的性质在实际生活中的应用首先要吃透题意,确定变量,建立函数模型,然后求解.6.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是()x(分)… 13.5 14.7 16.0 …y(米)… 156.25 159.85 158.33 …A.32分 B.30分 C.15分 D.13分【答案】B【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案.【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟.故选:B.【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x ﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定【答案】C【分析】(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.【详解】根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.【点睛】考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.8.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A. B. C. D.【答案】B【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a= ,∴此抛物线钢拱的函数表达式为,故选B.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米【答案】B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴ ,解得:,所以解析式为:y= x2+ x+ ,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【答案】D【详解】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选D.二、填空题11.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该运动员此次实心球训练的成绩为____米.【答案】10【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【详解】当y=0时,解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.12.汽车刹车后行驶的距离 (单位: )关于行驶的时间 (单位: )的函数解析式是.汽车刹车后到停下来前进了 ______.【答案】6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式 =-6(t²-2t+1-1)=-6(t-1) ²+6可知,汽车的刹车时间为t=1s,当t=1时, =12×1-6×1²=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.13.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.【答案】1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4 将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.14.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=_____m时,矩形土地ABCD的面积最大.【答案】150【分析】根据题意可以用相应的代数式表示出矩形绿地的面积,利用函数的性质即可解答本题.【详解】解:设AB=xm,则BC= (900﹣3x),由题意可得,S=AB×BC= (900﹣3x)x=﹣(x2﹣300x)=﹣(x﹣150)2+33750,∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为150.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质求出最值.15.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5×2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.【答案】1s或3s【分析】根据题意可以得到15=﹣5×2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5×2+20x,∴当y=15时,15=﹣5×2+20x,得x1=1,x2=3,故答案为1s或3s.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.【答案】25试题分析:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.17.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-1/40 x^2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)【答案】8√5由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有-1/40 x^2+10=8,即x^2=80,x_1=4√5,x_2=-4√5.所以两盏警示灯之间的水平距离为:|x_1-x_2 |=|4√5-(-4√5)|=8√5≈18(”m”)18.小明制作了一张如图所示的贺卡. 贺卡的宽为,长为,左侧图片的长比宽多 . 若,则右侧留言部分的最大面积为_________ .【答案】320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积又14≤x≤16∴当x=16时,面积最大 (故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.19.甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为,羽毛球飞行的水平距离(米)与其距地面高度(米)之间的关系式为,如图,已知球网距原点米,乙(用线段表示)扣球的最大高度为米,设乙的起跳点的横坐标为,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则的取值范围是__________.【答案】当时,,解得;∵扣球点必须在球网右边,即,∴ .点睛:本题主要考查了二次函数的应用题,求范围的问题,可以选取h等于最大高度,求自变量的值,再根据题意确定范围.20.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.【答案】﹣<a<【分析】根据题意可以知道抛物线与线段AB有一个交点,根据抛物线对称轴及其与y轴的交点即可求解.【详解】解:由题意可知:∵点A、B坐标分别为(0,4),(6,4),∴线段AB的解析式为y=4.机器人沿抛物线y=ax2﹣4ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=4只有一个交点.所以抛物线经过点A下方.∴﹣5a<4解得a>﹣.4=ax2﹣4ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=4时,36a﹣24a﹣5a=4,解得a=综上:a的取值范围是﹣<a<【点睛】本题考查二次函数的应用,关键在于熟悉二次函数的性质,结合图形灵活运用.三、解答题21.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售.笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?【答案】(1)钢笔、笔记本的单价分别为10元,6元;(2)当一等奖人数为50时花费最少,最少为700元.【分析】(1)钢笔、笔记本的单价分别为x、y元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,求得w=-0.1(b-35)2+722.5,于是得到700≤w≤722.5;②当50<b≤60时,求得w=8b+6(100-b)=2b+600,700<w≤720,于是得到当30≤b≤60时,w的最小值为700元,于是得到结论.【详解】(1)设钢笔、笔记本的单价分别为、元.根据题意可得解得: .答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为元,购买数量为b支,支付钢笔和笔记本总金额为W元.①当30≤b≤50时,w=b(-0.1b+13)+6(100-b)∵当时,W=720,当b=50时,W=700∴当30≤b≤50时,700≤W≤722.5②当50<b≤60时,a=8,∵∴当30≤b≤60时,W的最小值为700元∴当一等奖人数为50时花费最少,最少为700元.【点睛】本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.22.某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.(1)求与的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【答案】(1);(2)当天销售单价所在的范围为;(3)每件文具售价为9元时,最大利润为280元.【分析】(1)根据总利润=每件利润×销售量,列出函数关系式,(2)由(1)的关系式,即,结合二次函数的性质即可求的取值范围(3)由题意可知,利润不超过即为利润率=(售价-进价)÷售价,即可求得售价的范围.再结合二次函数的性质,即可求.【详解】解:由题意(1)故与的函数关系式为:(2)要使当天利润不低于240元,则,∴解得,∵ ,抛物线的开口向下,∴当天销售单价所在的范围为(3)∵每件文具利润不超过∴ ,得∴文具的销售单价为,由(1)得∵对称轴为∴ 在对称轴的左侧,且随着的增大而增大∴当时,取得最大值,此时即每件文具售价为9元时,最大利润为280元【点睛】考核知识点:二次函数的应用.把实际问题转化为函数问题解决是关键.23.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【分析】(1)当6 x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200 +1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6 x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6 x≤10时, y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6 x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200 +1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【答案】(1)y=﹣x+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.25.某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【答案】(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.26.随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.(1)求与之间的关系式;(2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【答案】(1)与之间的关系式为;(2)第个销售周期的销售收入最大,此时该产品每台的销售价格是元.【分析】(1)根据两点坐标即可求出一次函数的解析式;(2)根据题意令销售收入W=py,再根据二次函数的性质即可求解.【详解】(1)设与之间的关系式为y=kx+b,把(1,7000),(5,5000)代入y=kx+b,得,解得∴ 与之间的关系式为;(2)令销售收入W=py= =∴当x=7时,W有最大值为16000,此时y=-500×7+7500=4000故第个销售周期的销售收入最大,此时该产品每台的销售价格是元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是熟知待定系数法确定函数关系式与二次函数的图像与性质.27.某超市拟于中秋节前天里销售某品牌月饼,其进价为元/ .设第天的销售价格为(元/ ),销售量为.该超市根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.② 与的关系为.(1)当时,与的关系式为;(2)为多少时,当天的销售利润(元)最大?最大利润为多少?(3)若超市希望第天到第天的日销售利润(元)随的增大而增大,则需要在当天销售价格的基础上涨元/ ,求的最小值.【答案】(1);(2)为时,当天的销售利润(元)最大,最大利润为元;(3)3【分析】(1)依据题意利用待定系数法,易得出当时,与的关系式为:,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润(元)与销售价(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第天到第天的日销售利润(元)随的增大而增大,则对称轴,求得即可【详解】(1)依题意,当时,时,,。
2021年重庆市九龙坡区中考数学模拟试卷(四)(含解析)
2021年重庆市九龙坡区中考数学模拟试卷(四)一、选择题(共12小题).1.已知实数a,b在数轴上的对应点的位置如图所示,则下列判断正确的是()A.a<0B.a>b C.b>0D.b>12.如图是()的展开图.A.棱柱B.棱锥C.圆柱D.圆锥3.计算(ab3)2的结果是()A.2ab3B.ab6C.a2b5D.a2b64.下列命题是真命题的是()A.三角形的外角大于它的任何一个内角B.n(n≥3)边形的外角和为360°C.矩形的对角线互相垂直且平分D.一组对边平行,另一组对边相等的四边形是平行四边形5.下列整数中,与4+2的值最接近的是()A.7B.8C.9D.106.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A,点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长是()A.1.5B.2C.2.4D.2.57.如图,弦CD与直径AB相交,连接BC、BD,若∠ABC=50°,则∠BDC=()A.20°B.30°C.40°D.50°8.如图,已知△AOB和△A′OB′是以点O为位似中心的位似图形,且△AOB和△A′OB′的面积之比为1:4,点B的坐标为(﹣1,2),则点B′的坐标为()A.(﹣1,4)B.(1,﹣4)C.(2,﹣4)D.(﹣4,2)9.如图,我校本部教学楼AD上有“育才中学”四个字的展示牌DE,某数学兴趣小组的同学准备利用所学的三角函数知识估测该教学楼的高度.由于场地有限,不便测量,所以小明沿坡度i=:1的阶梯从看台前的B处前行50米到达C处,测得展示牌底部D 的仰角为45°,展示牌顶部E的仰角为53°(小明的身高忽略不计),已知展示牌DE =15米,则该教学楼AD的高度约为()米.(精确到整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3,≈1.7)A.95B.93C.91D.8910.如果数m使关于x的不等式组有且只有四个整数解,且关于x的分式方程﹣=3有整数解,那么符合条件的所有整数m的和是()A.8B.9C.﹣8D.﹣911.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为()A.4B.2C.4D.212.如图所示,四边形ABCD的顶点都在坐标轴上,若AD∥BC,△ACD与△BCD的面积分别为20和40,若双曲线y=(k<0,x<0)恰好经过边AB的四等分点E(BE<AE),则k的值为()A.﹣5B.﹣10C.﹣15D.﹣20二、填空题:(本大题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上。
2021年广西百色中考数学专题训练:专题4 三角形、四边形的证明与计算
专题四 三角形、四边形的证明与计算【题型一】 三角形的证明与计算【例1】(2020·上海中考)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上, BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .【解析】(1)想办法证明∠H =∠BCE 即可解决问题;(2)利用相似三角形的判定和性质结合已知条件解决问题即可.【针对训练】1.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:△ABD ≌△ACE ; (2)求证:∠M =∠N .题型二 四边形的证明与计算【例2】(2020·云南中考)如图,四边形ABCD 是菱形,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE ⊥AB ,垂足为点E ,点F 在AD 的延长线上,CF ⊥AD ,垂足为点F ,(1)若∠BAD =60°,求证:四边形CEHF 是菱形;(2)若CE =4,△ACE 的面积为16,求菱形ABCD 的面积.【解析】(1)根据菱形的性质得到∠EAC =∠F AC =30°,根据角平分线的性质得到CE =CF ,根据直角三角形的性质得到EH =FH =12AC ,于是得到结论;(2)根据三角形的面积公式得到AE 的长,根据勾股定理得到AC =CE 2+AE 2 ,连接BD ,则BD ⊥AC ,AH =12AC ,根据相似三角形的性质得到BD =2BH ,由菱形的面积公式即可得到结果.【针对训练】2.(2020·重庆中考A 卷)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F .AC 平分∠DAE .(1)若∠AOE =50°,求∠ACB 的度数; (2)求证:AE =CF .3.(2020·乐山中考)如图,点E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.题型三 三角形、四边形的几何探究【例3】(2020·湘潭中考)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心. (1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积;(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA ,S △OBCS △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由;(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积.【解析】(1)连接DE ,利用相似三角形证明OD AO =12,运用勾股定理求出AD 的长,运用三角形面积公式求解;(2)根据(1)的解题思路可求解;(3)①连接BD 交AC 于点O ,可知点O 为BD 的中点,点E 为CD 的中点,从而可以得到点M 是△BCD 的重心,即可得到EM 和BE 的关系,再根据勾股定理求出BE 的长;②分别求出S △BMC 和S △ABM 即可求得正方形ABCD 的面积.【针对训练】4.(2020·德州中考)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到点E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED ≌△CAD 的判定定理是__________; (2)AD 的取值范围是____________; 方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC ;(4)如图3,在矩形ABCD 中,AB BC =12 ,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且EF BE =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .图1图2图3【专题过关】1.(2020·苏州中考)问题1:如图①,在四边形ABCD 中,∠B =∠C =90°,点P 是BC 上一点,P A =PD ,∠APD =90°.求证:AB +CD =BC ;问题2:如图②,在四边形ABCD 中,∠B =∠C =45°,点P 是BC 上一点,P A =PD ,∠APD =90°.求AB +CDBC的值.图①图②2.如图,在四边形ABCD 中,点E ,F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形;(2)若tan ∠CAB =25,∠CBG =45°,BC =42 ,则▱ABCD 的面积是__________.3.如图,在▱ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,且∠AFE =∠D . (1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,sin D =45,求AF 的长.4.(2020·成都中考)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF ·FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求ABBC的值.5.(2020·玉林中考)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,且OA =OB =OC =OD =22AB . (1)求证:四边形ABCD 是正方形;(2)若点H 是边AB 上一点(点H 与点A ,B 不重合),连接DH ,将线段DH 绕点H 顺时针旋转90°,得到线段HE ,过点E 分别作BC 及AB 延长线的垂线,垂足分别为点F ,G .设四边形BGEF 的面积为s 1,以HB ,BC 为邻边的矩形的面积为s 2,且s 1=s 2.当AB =2时,求AH 的长.6.(2020·贵港中考)已知:在矩形ABCD 中,AB =6,AD =23 ,点P 是BC 边上的一个动点,将矩形ABCD 折叠,使点A 与点P 重合,点D 落在点G 处,折痕为EF .(1)如图1,当点P 与点C 重合时,则线段EB =________,EF =________;(2)如图2,当点P 与点B ,C 均不重合时,取EF 的中点O ,连接并延长PO 与GF 的延长线交于点M ,连接PF ,ME ,MA .①求证:四边形MEPF 是平行四边形;②当tan ∠MAD =13时,求四边形 MEPF 的面积.,)).7.(2020·武汉中考)问题背景 如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图2,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F .点D 在BC 边上,AD BD =3 ,求DFCF的值;拓展创新 如图3,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23 ,直接写出AD 的长.8.(2020·扬州中考)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD ,OD 交于点E ,F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AEAF的值;(3)当四边形ABCD 的周长取最大值时,求DEDF的值.图1图2. 答案专题四 三角形、四边形的证明与计算【题型一】 三角形的证明与计算【例1】(2020·上海中考)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上, BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .【解析】(1)想办法证明∠H =∠BCE 即可解决问题;(2)利用相似三角形的判定和性质结合已知条件解决问题即可. 【解答】证明:(1)∵四边形ABCD是菱形,∴CD =CB ,∠D =∠B ,CD ∥AB . ∵DF =BE ,∴△CDF ≌△CBE (SAS ). ∴∠DCF =∠BCE .∵CD ∥BH ,∴∠H =∠DCF . ∴∠BCE =∠H . 又∵∠B =∠B , ∴△BEC ∽△BCH ;(2)∵BE 2=AB ·AE ,∴BE AB =AEBE.∵AG ∥BC ,∴△AEG ∽△BEC . ∴AE BE =AG BC .∴BE AB =AG BC . ∵DF =BE ,BC =AB ,∴BE =AG =DF ,即AG =DF . 【针对训练】1.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:△ABD ≌△ACE ; (2)求证:∠M =∠N .证明:(1)在△ABD 和△ACE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS );(2)∵∠1=∠2,∴∠BAN =∠CAM . 由(1)知△ABD ≌△ACE ,∴∠B =∠C . 又∵AB =AC ,∴△ABN ≌△ACM (ASA ). ∴∠M =∠N .题型二 四边形的证明与计算【例2】(2020·云南中考)如图,四边形ABCD 是菱形,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE ⊥AB ,垂足为点E ,点F 在AD 的延长线上,CF ⊥AD ,垂足为点F ,(1)若∠BAD =60°,求证:四边形CEHF 是菱形;(2)若CE =4,△ACE 的面积为16,求菱形ABCD 的面积.【解析】(1)根据菱形的性质得到∠EAC =∠F AC =30°,根据角平分线的性质得到CE =CF ,根据直角三角形的性质得到EH =FH =12AC ,于是得到结论;(2)根据三角形的面积公式得到AE 的长,根据勾股定理得到AC =CE 2+AE 2 ,连接BD ,则BD ⊥AC ,AH =12AC ,根据相似三角形的性质得到BD =2BH ,由菱形的面积公式即可得到结果. 【解答】(1)证明:∵四边形ABCD 是菱形,∠BAD =60°,∴∠EAC =∠F AC =30°.又∵CE ⊥AB ,CF ⊥AD ,∴CE =CF =12AC .∵点H 为对角线AC 的中点,∴EH =FH =12AC .∴CE =CF =EH =FH .∴四边形CEHF 是菱形;(2)解:∵CE ⊥AB ,CE =4,△ACE 的面积为16, ∴AE =8.∴AC =CE 2+AE 2 =45 .连接BD ,则BD ⊥AC ,BD 过点H ,AH =12AC =25 .∵∠AHB =∠AEC =90°,∠BAH =∠CAE ,∴△ABH ∽△ACE .∴BH CE =AH AE ,即BH 4 =258.∴BH =5 .∴BD =2BH =25 .∴S 菱形ABCD =12 AC ·BD =12×25 ×45 =20.【针对训练】2.(2020·重庆中考A 卷)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F .AC 平分∠DAE .(1)若∠AOE =50°,求∠ACB 的度数; (2)求证:AE =CF .(1)解:∵AE ⊥BD , ∴∠AEO =90°. ∵∠AOE =50°, ∴∠EAO =40°.∵AC 平分∠DAE ,∴∠DAC =∠EAO =40°. ∵四边形ABCD 是平行四边形,∴AD ∥BC . ∴∠ACB =∠DAC =40°;(2)证明:∵四边形ABCD 是平行四边形, ∴OA =OC .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°. ∵∠AOE =∠COF , ∴△AEO ≌△CFO (AAS ). ∴AE =CF .3.(2020·乐山中考)如图,点E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.解:∵四边形ABCD 是矩形,∴DC =AB =3,∠ADC =∠C =90°. ∵CE =1,∴DE =DC 2+CE 2 =32+12 =10 . ∵AF ⊥DE ,∴∠AFD =90°=∠C . ∴∠ADF +∠DAF =90°. 又∵∠ADF +∠EDC =90°,∴∠EDC =∠DAF .∴△EDC ∽△DAF . ∴DE AD =EC DF ,即102 =1DF. ∴DF =105.题型三 三角形、四边形的几何探究【例3】(2020·湘潭中考)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积;(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA ,S △OBCS △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由;(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积.【解析】(1)连接DE ,利用相似三角形证明OD AO =12,运用勾股定理求出AD 的长,运用三角形面积公式求解;(2)根据(1)的解题思路可求解;(3)①连接BD 交AC 于点O ,可知点O 为BD 的中点,点E 为CD 的中点,从而可以得到点M 是△BCD 的重心,即可得到EM 和BE 的关系,再根据勾股定理求出BE 的长;②分别求出S △BMC 和S △ABM 即可求得正方形ABCD 的面积.【解答】解:(1)图(一)中,连接DE . ∵点O 为△ABC 的重心,∴点D ,E 分别为BC ,AC 边上的中点. ∴DE 为△ABC 的中位线.∴DE ∥AB ,DE =12AB .∴△ODE ∽△OAB .∴OD OA =DE AB =12.∵在等边三角形ABC 中,AB =2,BD =1,AD ⊥BC ,∠ABD =60°,∴AD =3 ,OD =33.∴S △OBC =12 BC ·OD =12 ×2×33 =33 ,S △ABC =12 BC ·AD =12 ×2×3 =3 ;(2)OD OA ,S △OBC S △ABC都为定值. 由(1)同理可得,OD OA =12;由此得点O 到BC 的距离和点A 到BC 的距离之比为1∶3,则△OBC 和△ABC 的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比.∴S △OBC S △ABC =13; (3)①图(三)中,连接BD 交AC 于点O .∵点O 为BD 的中点,点E 为CD 的中点, ∴点M 是△BCD 的重心.由(2)可得EM BE =13.∵点E 为CD 的中点,∴CE =12CD =2.∴BE =BC 2+CE 2 =25 .∴EM =235 ;②∵S △CME =1,且EM BM =12,∴S △BMC =2,S △CME S △AMB =⎝⎛⎭⎫EM BM 2 =14 .∴S △AMB =4.∴S △ABC =S △BMC +S △ABM =2+4=6. 又∵S △ADC =S △ABC ,∴正方形ABCD 的面积为2S △ABC =12. 【针对训练】4.(2020·德州中考)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到点E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED ≌△CAD 的判定定理是__________; (2)AD 的取值范围是____________; 方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC ;(4)如图3,在矩形ABCD 中,AB BC =12 ,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且EF BE =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .图1图2图3解:(1)SAS ;(2)1<AD <5;(3)证明:图2中,延长AD 至点H ,使DH =DA ,连接BH .∵AD 是△ABC 的中线,∴CD =BD . 又∵∠ADC =∠HDB ,∴△ADC ≌△HDB (SAS ). ∴∠CAD =∠H ,AC =BH . ∵AE =EF ,∴∠EAF =∠AFE .∵∠BFH =∠AFE ,∴∠H =∠BFH . ∴BF =BH . ∴BF =AC ;(4)证明:图3中,延长CG 至点N ,使NG =CG ,连接EN ,CE ,FN . ∵点G 是DF 的中点,∴GF =GD . 又∵∠NGF =∠CGD , ∴△NGF ≌△CGD (SAS ).∴NF =CD ,∠NFG =∠CDG . ∵AB BC =CD BC =12 ,EF BE =12, ∴tan ∠DBC =tan ∠EBF =12.∴∠EBF =∠DBC .∴∠EBC =2∠DBC .∵∠EBF +∠EFB =90°,∠DBC +∠BDC =90°,∴∠EFB =∠BDC =∠NFG ,∠EBF +∠EFB +∠DBC +∠BDC =180°. ∴2∠DBC +∠EFB +∠NFG =180°. 又∵∠NFG +∠EFB +∠EFN =180°, ∴∠EFN =2∠DBC .∴∠EBC =∠EFN . ∵CD BC =12 =EF BE ,且CD =NF ,∴BE EF =BC NF . ∴△BEC ∽△FEN .∴∠BEC =∠FEN . ∴∠BEF =∠NEC =90°.又∵CG =NG ,∴EG =12NC .∴EG =GC【专题过关】1.(2020·苏州中考)问题1:如图①,在四边形ABCD 中,∠B =∠C =90°,点P 是BC 上一点,P A =PD ,∠APD =90°.求证:AB +CD =BC ;问题2:如图②,在四边形ABCD 中,∠B =∠C =45°,点P 是BC 上一点,P A =PD ,∠APD =90°.求AB +CDBC的值.图① 图②问题1:证明:∵∠B =∠APD =90°,∴∠APB +∠BAP =90°,∠APB +∠CPD =90°.∴∠BAP =∠CPD . 在△ABP 和△PCD 中, ∵⎩⎪⎨⎪⎧∠B =∠C ,∠BAP =∠CPD ,AP =PD ,∴△ABP ≌△PCD (AAS ). ∴AB =PC ,BP =CD .∴AB +CD =PC +BP =BC ;问题2:解:图②中,分别过点A ,D 作BC 的垂线,垂足为点E ,F . 由问题1可得,AE +DF =EF .在Rt △ABE 和Rt △DFC 中,∠B =∠C =45°, ∴AE =BE ,DF =CF ,AB =2 AE ,CD =2 DF . ∴BC =BE +EF +CF =2(AE +DF ), AB +CD =2 (AE +DF ). ∴AB +CD BC =2(AE +DF )2(AE +DF )=22 .2.如图,在四边形ABCD 中,点E ,F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形;(2)若tan ∠CAB =25,∠CBG =45°,BC =42 ,则▱ABCD 的面积是__________.(1)证明:∵AE =CF , ∴AE +EF =CF +EF , 即AF =CE . ∵DF ∥BE ,∴∠DF A =∠BEC .又∵DF =BE ,∴△ADF ≌△CBE (SAS ). ∴AD =CB ,∠DAF =∠BCE .∴AD ∥CB . ∴四边形ABCD 是平行四边形; (2)243.如图,在▱ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,且∠AFE =∠D . (1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,sin D =45,求AF 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD =BC .∴∠D +∠C =180°,∠ABF =∠BEC .∵∠AFB +∠AFE =180°,∠AFE =∠D ,∴∠C =∠AFB .∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD ·sin D =5×45=4. 在Rt △ABE 中,根据勾股定理,得BE =AE 2+AB 2 =42+82 =45 .∵BC =AD =5,△ABF ∽△BEC ,∴AF BC =AB BE ,即AF 5 =845. ∴AF =25 .4.(2020·成都中考)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF ·FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.解:(1)由题意,得∠A =90°,AD ∥BC .由折叠可知BF =BC =2BA ,∠CBE =12∠CBF .∴∠AFB =30°.∴∠FBC =∠AFB =30°. ∴∠CBE =15°;(2)由题意,得∠A =∠D =90°,∠AFB +∠DFE =90°,∠DEF +∠DFE =90°.∴∠AFB =∠DEF .∴△F AB ∽△EDF .∴AF DE =AB DF .∴DE =AF ·DF AB =105=2. ∴EF =CE =CD -DE =3.由勾股定理,得FD =EF 2-DE 2 =5 .∴AF =10FD=25 . ∴BC =AD =AF +DF =35 ;(3)过点N 作NG ⊥BF 于点G ,则∠NGF =∠A =90°.又∵∠NFG =∠BF A ,∴△NFG ∽△BF A .∴GN AB =FG F A =NF BF. ∵NF =AN +FD ,即NF =12 AD =12 BC =12 BF ,∴GN AB =FG F A =NF BF =12. 又∵BM 平分∠ABF ,NG ⊥BF ,∠A =90°,∴AN =GN =12AB .易得BG =AB . ∴FG F A =BF -BG AN +NF =BC -AB 12AB +12BC =12 . ∴AB BC =35. 5.(2020·玉林中考)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,且OA =OB =OC =OD =22AB . (1)求证:四边形ABCD 是正方形;(2)若点H 是边AB 上一点(点H 与点A ,B 不重合),连接DH ,将线段DH 绕点H 顺时针旋转90°,得到线段HE ,过点E 分别作BC 及AB 延长线的垂线,垂足分别为点F ,G .设四边形BGEF 的面积为s 1,以HB ,BC 为邻边的矩形的面积为s 2,且s 1=s 2.当AB =2时,求AH 的长.(1)证明:∵OA =OB =OC =OD ,∴AC =BD .∴四边形ABCD 是矩形.∵OA =OB =22AB , ∴OA 2+OB 2=AB 2.∴∠AOB =90°,即AC ⊥BD .∴四边形ABCD 是正方形;(2)解:∵EF ⊥BC ,EG ⊥AG ,∴∠G =∠EFB =∠FBG =90°.∴四边形BGEF 是矩形.∵将线段DH 绕点H 顺时针旋转90°,得到线段HE ,∴∠DHE =90°,DH =HE .∴∠ADH +∠AHD =∠AHD +∠GHE =90°.∴∠ADH =∠GHE .又∵∠DAH =∠G =90°,∴△ADH ≌△GHE (AAS ).∴AD =GH ,AH =GE .∵AB =AD ,∴AB =GH .∴AB -BH =GH -BH ,即AH =BG .∴BG =GE .∴矩形BGEF 是正方形.设AH =x ,则BG =EG =x ,BH =2-x .∵s 1=s 2,∴x 2=2(2-x ).解得x 1=5 -1,x 2=-5 -1(舍去).∴AH =5 -1.6.(2020·贵港中考)已知:在矩形ABCD 中,AB =6,AD =23 ,点P 是BC 边上的一个动点,将矩形ABCD 折叠,使点A 与点P 重合,点D 落在点G 处,折痕为EF .(1)如图1,当点P 与点C 重合时,则线段EB =________,EF =________;(2)如图2,当点P 与点B ,C 均不重合时,取EF 的中点O ,连接并延长PO 与GF 的延长线交于点M ,连接PF ,ME ,MA .①求证:四边形MEPF 是平行四边形;②当tan ∠MAD =13时,求四边形 MEPF 的面积. ,))(1)2;4;(2)①证明:在矩形ABCD 中,CD ∥AB .∴折叠后MG ∥PE .∴∠MFO =∠PEO .∵点O 是EF 的中点,∴OF =OE .又∵∠FOM =∠EOP ,∴△FOM ≌△EOP (ASA ).∴MF =PE .∴四边形MEPF 是平行四边形;②解:连接P A ,交EF 于点H ,则EF ⊥P A 且PH =AH .由折叠性质得AE =EP .又由①知PO =MO ,∴MA ∥EF .∴MA ⊥P A .∵DA ⊥AB ,∴∠MAD =∠BAP .∴tan ∠MAD =tan ∠BAP =13 =PB AB. ∵AB =6,∴PB =2.在Rt △PEB 中,设AE =PE =x ,则BE =6-x .由勾股定理,得22+(6-x )2=x 2.解得x =103. 又∵PG ⊥MG ,且PG =AD =23 ,∴S 四边形MEPF =PE ·PG =103 ×23 =2033.7.(2020·武汉中考)问题背景 如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图2,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F .点D 在BC 边上,AD BD =3 ,求DF CF的值; 拓展创新 如图3,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23 ,直接写出AD 的长.问题背景 证明:∵△ABC ∽△ADE ,∴AB AD =AC AE,∠BAC =∠DAE . ∴AB AC =AD AE,∠BAD =∠CAE . ∴△ABD ∽△ACE ;尝试应用 解:连接EC .由已知可得△ABC ∽△ADE .由(1)知,△ABD ∽△ACE .∴AE EC =AD BD=3 ,∠ADE =∠B =∠ACE . ∵∠AFD =∠EFC ,∴△ADF ∽△ECF .∴DF CF =AD EC. 在Rt △ADE 中,∠ADE =30°,∴AD AE =3 .∴AD EC =AD AE ·AE CE=3 ×3 =3. ∴DF CF=3. 拓展创新 AD =5 .8.(2020·扬州中考)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD ,OD 交于点E ,F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AE AF的值; (3)当四边形ABCD 的周长取最大值时,求DE DF 的值.图1 图2(1)证明:∵OA =OD ,∴∠OAD =∠ODA .∵OC 平分∠BOD ,∴∠DOC =∠BOC .又∵∠DOC +∠BOC =∠OAD +∠ODA ,∴∠ODA =∠DOC .∴OC ∥AD ;(2)解:如图①,过点E 作EM ∥FD 交AD 的延长线于点M .设∠DAC =α.由(1)知OC ∥AD ,∴∠ACO =∠DAC =α.∵OA =OC ,∴∠OAC =∠OCA =α.∴∠OAD =2α.∵OA =OD ,∴∠ODA =∠OAD =2α.∵DE =DF ,∴∠DFE =∠DEF =3α.∵OA =OB =OD ,∴∠ADB =90°.∴∠DAE +∠AED =90°,即4α=90°.∴∠ADF =2α=45°.∵EM ∥DF ,∴∠M =∠ADF =45°,△AME ∽△ADF .∴EM =2 DE =2 DF .∴AE AF =EM DF=2 ;图①图②(3)解:如图②,∵OC 平分∠BOD ,∴∠BOC =∠DOC .∵OB =OD ,OC =OC ,∴△BOC ≌△DOC (SAS ).∴BC =DC .设BC =CD =x ,CG =m ,则OG =2-m .∵OD =OB ,∠DOG =∠BOG ,∴OG ⊥BD ,GB =GD . ∴BG 2=OB 2-OG 2=BC 2-CG 2,即22-(2-m )2=x 2-m 2.解得m =14 x 2.∴OG =2-14x 2. 又∵OA =OB ,∴AD =2OG =4-12x 2. ∴四边形ABCD 的周长为2BC +AD +AB =2x +4-12 x 2+4=-12 x 2+2x +8=-12(x -2)2+10.∵-12 <0,∴当x =2时,四边形ABCD 的周长取最大值10. ∴CD =BC =2.∴△COD ,△BCO 均为等边三角形.∴∠DOC =∠BOC =60°. ∵OC ∥AD ,∴∠ADF =∠DOC =60°,∠DAO =∠BOC =60°.∵OA =OC ,∴∠CAO =∠ACO =30°. ∴∠DAF =30°.∴∠AFD =90°. ∴DE DA =33 ,DF =12 DA .∴DE DF =233 .。
2020中考数学计算题专题训练(内部材料)
2020中考数学计算题专题训练(内部材料) 2020年中考数学计算题专项训练亲爱的同学们,没有一个冬天不会过去,没有一个春天不会来临。
如果这试卷是蔚蓝的天空,你就是那展翅翱翔的雄鹰;如果这试卷是碧绿的草原,你就是那驰骋万里的骏马。
只要你自信、沉着、放松、细心,相信你一定比雄鹰飞得更高,比骏马跑得更快!一、集训一(代数计算)1.计算:1)$\sin45^\circ-\frac{1}{2}+38$2)$2\times(-5)+23-3\div\frac{1}{2}$3)$22+(-1)^4+(5-2)-|{-3}|$4)$\frac{1}{3}-\frac{2}{1}-\tan45^\circ$5)$\frac{1}{2}-\frac{2}{1}+\tan45^\circ$2.计算:frac{-1}{2}+\frac{1}{3}\times\frac{2}{3}-\tan45^\circ-\frac{3}{-2}$3.计算:frac{1}{3}+\frac{2010-2012}{1}+(-1)^{1001}+\frac{12-33}{\tan30^\circ}$4.计算:18-\frac{\cos60^\circ}{2}-1-4\sin30^\circ+\frac{2-2}{3}$5.计算:32^{\frac{3}{2}}-8-(2\sin45^\circ-2005)+(\tan60^\circ-2)$6.计算:frac{1}{\cos60^\circ}-1\div(-1)^{2010}+|2-8|-2\sqrt{2}-\frac{\tan30^\circ-1}{2}$二、集训二(分式化简)1.$\frac{2x+1}{x^2-4}-\frac{1}{x-2}$2.$\frac{1-a^2}{a(a+1)}$3.$\frac{3-a}{2a-4}\div\frac{a+2-5}{a-2}$4.$\frac{a-1}{a}\div\frac{2a-1}{a}$,其中$a=-1$5.$\frac{x-1}{x+1}+\frac{1}{x^2-1}$,然后选取一个使原式有意义的$x$的值代入6.求$\frac{x^2-2x+11}{x^2-1}-\frac{x-1}{x-1}$的值,其中$x=\tan60^\circ-\tan45^\circ$7.化简:$\frac{x+2x-(x^2-2x)}{x^2-16}\div\frac{1}{x^2-4x+4}$,然后选取一个使原式有意义的$x$的值代入1.解方程$x^2-4x+1=0$,可以使用配方法或者求根公式。
中考数学计算题专项训练(全)
中考专项训练——计算题集训一(计算)1.计算:3082145+-Sin 2.计算:∣﹣5∣+22﹣(3+1)3.计算:2×(-5)+23-3÷.124.计算:22+(-1)4+(-2)0-|-3|;55.计算:22+|﹣1|﹣.96.计算:.︒+-+-30sin 2)2(207.计算,(﹣1)0+∣2﹣3∣+2sin60°8.计算:(1)()()022161-+--(2)a(a-3)+(2-a)(2+a)9. 计算:()0-( )-2 +tan45°31210. 计算: ()()0332011422---+÷-集训二(分式化简)1.(2011.南京)计算.aa 2﹣b2﹣1a +b ÷bb﹣a2. (2011.常州)化简:21422---x x x 3.(2011.淮安)化简:(a+b )2+b (a﹣b).4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.5. (2011.苏州)先化简,再求值:(a﹣1+)÷(a 2+1),其中2a +1a=﹣1.26.(2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.7. (2011.泰州)化简.(a﹣b +b 2a +b )•a +ba 8.(2011.无锡)a(a-3)+(2-a)(2+a)9.(2011.徐州)化简:;11()a a a a--÷10.(2011.扬州)化简2111x x x -⎛⎫+÷⎪⎝⎭集训三(解方程)1.(2011•南京)解方程x 2﹣4x+1=0.2. (2011.常州)解分式方程2322-=+x x 3.(2011.连云港)解方程:= .3x 2x -14. (2011.苏州)已知|a﹣1|+=0,求方裎+bx=1的解.b +2ax 5. (2011.无锡)解方程:x 2+4x -2=06.(2011.盐城)解方程: - = 2.xx -131-x 7.(2011.泰州)解方程组,并求的值.{3x +6y =106x +3y =8xy 集训四(解不等式)1.(2011.南京)解不等式组,并写出不等式组的整数解.{5+2x ≥3x +13>x22.(2011.常州)解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x p3.(2011.连云港)解不等式组:{2x +3<9-x ,2x -5>3x .)4.(2011.南通)求不等式组的解集,并写出它的整数{3x -6≥x -42x +1>3(x -1))解.5.(2011.苏州)解不等式:3﹣2(x﹣1)<1.6. (2011.宿迁)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x 8.解不等式组:102(2)3x x x-≥⎧⎨+>⎩9. 解不等式组并把解集在数轴上表示出来。
中考 数学专练04(填空题-基础)(50题)(学生版)
2022中考数学考点必杀500题专练04(填空题-基础)(50道)1.(2022·山东济南·一模)分解因式:34a a-=______.2.(2021·湖南永州·模拟预测)0.000502用科学记数法表示为:__________.3.(2022·安徽·_______.4.(2022·陕西安康·一模)要使分式34xx++有意义,则字母x的取值范围是_________.5.(2022·广东佛山·一模)已知|x+2y|+(x﹣4)2=0,则xy=_____.6.(2022·江苏无锡·一模)函数y=2x+12x+的自变量x的取值范围是_____.7.(2022·河南·模拟预测)要使分式121xx+-的值为零,则x的值为______.8.(2021·四川成都·二模)关于x的一元二次方程x2+4x﹣3a=0有实数根,则a的取值范围是_________.9.(2022·山东济南·一模)使分式21x-与33x+的值相等的x的值为______.10.(2021·四川内江·一模)已知456a b+=,543a b+=,则a b-=__.11.(2022·山东济南·一模)某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.12.(2022·山东济南·一模)在一个不透明的袋子中装有3个红球和若干个白球,每个球除颜色外都相同,任意摸出一个球,摸出红球的概率是14,则白球的个数是______.13.(2022·山西吕梁·一模)不等式组212320xx+⎧≥-⎪⎨⎪->⎩①②的解集是__________.14.(2022·湖北·崇阳县桃溪中学一模)方程x2-4=2(x+2)的解为__________15.(2022·河南周口·一模)如图所示,点C位于A,B两点之间(不与A,B重合),且点C对应的实数为1-2x,则x的取值范围是______.16.(2022·四川泸州·一模)设a、b是方程2730x x+-=的两个实数根.则(a-1)(b-1)的值为______.17.(2019·河南·漯河市郾城区第二初级实验中学一模)二次函数2y ax bx=+的图象如图,若一元二次方程20ax bx m++=有实数根,则m的范围为________.18.(2022·陕西安康·一模)已知点(),P a b 为直线7y x =-与双曲线5y x =-的交点,则11b a-的值等于_________.19.(2022·陕西·西安铁一中分校一模)若一个反比例函数的图象与直线26y x =-的一个交点为(),2A m m -,则这个反比例函数的表达式是______.20.(2022·四川成都·二模)二次函数y =x 2-2x +4的图像与x 轴有__________ 个交点.21.(2022·河南安阳·一模)已知反比例函数22022k y x +=的图象分布在第二、四象限,则k 的取值范围是______.22.(2022·陕西渭南·一模)用总长为80米的篱笆围成一个面积为S 平方米的矩形场地,设矩形场地的一边长为x 米,则当x =______米时,矩形场地的面积S 最大.23.(2022·山东菏泽·一模)抛物线2y ax bx c =++经过点()2,0A 、()4,0B 两点,则关于x 的一元二次方程20ax bx c ++=的解是______.24.(2022·北京朝阳·模拟预测)将直线y =2x 向下平移3个单位长度后,得到的直线经过点(m +2,﹣5),则m 的值为 _____.25.(2022·湖北随州·一模)把抛物线y =﹣2x 2先向右平移3个单位长度,再向上平移2个单位长度后,所得函数的表达式为 _____.26.(2022·陕西宝鸡·模拟预测)如图,过y 轴正半轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =k x 与y =2x的图象交于点A ,B ,若C 为x 轴上任意一点,连接AC ,BC ,若S △ABC =4,则k 的值为____.27.(2022·安徽·合肥寿春中学一模)如图,菱形OABC 的边长为4,且点A 、B 、C 在⊙O 上,则劣弧BC 的长度为_____.28.(2022·江苏·常州市武进区前黄实验学校一模)如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.29.(2022·江苏·常州市武进区前黄实验学校一模)用圆心角为150︒,半径为3cm 的扇形作圆锥的侧面,则这个圆锥的底面半径为____cm .30.(2022·河南·柘城县实验中学一模)如图,在扇形ABC 中,60,2ABC BA ∠=︒=,点D 为弧AC 的中点,过点D 作DE AB ∥交BC 于点E ,则阴影部分的面积为_________.31.(2022·湖北孝感·一模)如图,a b ∥,160∠=︒,则2∠=______.32.(2022·安徽·模拟预测)如图,在菱形ABCD 中,∠A =60°,如果菱形边长为2a ,那么菱形的面积是______.33.(2021·山东济南·一模)若多边形的内角和是外角和的2倍,则该多边形是_____边形.34.(2021·江苏省锡山高级中学实验学校三模)一个多边的内角和为720︒,则这个多边形的边数为_________. 35.(2022·江苏·南通市海门区东洲国际学校一模)在平面直角坐标系中,以原点为中心,把点A (3,﹣5)逆时针旋转180°,得到的点B 的坐标为 _________.36.(2022·江苏·无锡市天一实验学校一模)一个斜坡的坡角为30,则这个斜坡的坡度为__________,沿着斜坡前进50米则上升了________米.37.(2022·山西吕梁·一模)在平面直角坐标系中,∠ABC 和∠DEF 是以原点O 为位似中心的位似图形,其位似比为1:3,那么点A (1,3)的对应点D 的坐标为_______.38.(2022·江苏宿迁·一模)在锐角ABC 中,8AB =,60B ∠=︒,7AC =,C α∠=,则cos α=___________.39.(2022·山东滨州·一模)计算:101()2sin302-+-︒=_____.40.(2022·广东·珠海市第十一中学一模)在⊙ABC 中,22cos 1tan 0A B +-=(,则⊙ABC 的形状是___________.41.(2022·陕西·模拟预测)如图,在菱形ABCD 中,DE AB ⊥于点E ,3cos 5A =,6AE =,则AB 的长为______.42.(2022·广东佛山·一模)如图,小树AB 在路灯O 的照射下形成树影BC . 若树高AB =2m ,树影BC =3m ,树与路灯的水平距离BP =5m ,则路灯的高度OP 为 _____m .43.(2022·四川攀枝花·模拟预测)若(3﹣2x ):2=(3+2x ):5,则x =_____.44.(2022·广东·模拟预测)若34yx=,则x yy+的值为_____.45.(2022·山东聊城·一模)从标有数字1,2,3,4,5的五张卡片中,无放回地随机抽取两张,将抽取的卡片上的数字组成一个两位数,所组成的两位数的数字中为偶数的概率为______.46.(2022·浙江金华·一模)已知一组数据5,4,x,3,9众数为3,则这组数据的中位数是______.47.(2022·陕西西安·一模)若数列7、9、11、a、13的平均数为10.5,则a的值为______.48.(2022·广西·3.14,0,12中,无理数出现的频率为________49.(2022·河南驻马店·一模)一个不透明的袋子里装着2个红球,3个白球,它们除了颜色不同以外,其他完全相同.若从袋子里随机摸出一个球,不放回,再从袋子里摸出一个球,两次摸到的球恰好颜色相同的概率为______.50.(2022·浙江温州·一模)若2022年杭州亚运会志愿者招聘分笔试和面试,成绩分别占总分的40%和60%,小明的笔试和面试成绩如表所示,则小明的总分为_______分.小明的笔方和面试成绩统计表。