牛顿对经典力学的贡献
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿对经典力学的贡献
一、认识牛顿
艾萨克·牛顿
艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687
年7月5日发表的不朽著作《自然哲学的数学原理》里用数学
方法阐明了宇宙中最基本的法则——万有引力定律和三大运
动定律。这四条定律构成了一个统一的体系,被认为是“人类
智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物
理界的科学观点,并成为现代工程学的基础。牛顿为人类建立
起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被安
葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。
二、牛顿力学
1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。
《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。
三、牛顿对经典力学的贡献
所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。
牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。
牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。
牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。
经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。
因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。
牛顿三大定律
力学三大定律和万有引力定律,它是研究经典力学的基础。
牛顿第一定律:一切物体没有受外力作用时,总保持匀速直线状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度与所受外力成正比,与物体的质量成反比,加速度的方向与外力的方向相同。公式:F(合)=ma
牛顿第三定律:两个物体之间的作用力与反作用力大小相等,方向相反,并且在同一条直线上。
万有引力定律:自然界中任何两个物体都相互吸引,引力的大小与物体(质点)的质量乘积成正比,与它们之间距离的平方正反比。
现代力学推翻了绝对空间的概念:即在不同空间发生的事件是绝然不同的。例如,静挂在移动的火车车厢内的时钟,对于站在车厢外的观察者来说是呈移动状态的。但是,经典力学仍然确认时间是绝对不变的。
由伽利略和牛顿等人发展出来的力学,着重于分析位移、速度、加速度、力等等矢量间的关系,又称为矢量力学。它是工程和日常生活中最常用的表述方式,但并不是唯一的表述方式:拉格朗日、哈密顿、卡尔·雅可比等发展了经典力学的新的表述形式,即所谓分析力学。分析力学所建立的框架是现代物理的基础,如量子场论、广义相对论、量子引力等。
微分几何的发展为经典力学注入了蒸蒸日盛的生命力,是研究现代经典力学的主要数学工具。在日常经验范围中,采用经典力学可以计算出精确的结果。但是,在接近光速的高速度或强大引力场的系统中,经典力学已被相对论力学取代;在小距离尺度系统中又被量子力学取代;在同时具有上述两种特性的系统中则被相对论性量子场论取代。虽然如此,经典力学仍旧是非常有用的。因为:
它比上述理论简单且易于应用。
它在许多场合非常准确。经典力学可用于描述人体尺寸物体的运动(例如陀螺和棒球),许多天体(如行星和星系)的运动,以及一些微尺度物体(如有机分子)。
虽然经典力学和其他“经典”理论(如经典电磁学和热力学)大致相容,在十九世纪末,还是发现出有些只有现代物理才能解释的不一致性。特别是,经典非相对论电动力学预言光速在以太内是常数,经典力学无法解释这预测,并导致了狭义相对论的发展。经典力学和经典热力学的结合又导出吉布斯佯谬(熵无定义)和紫外灾难(黑体发射无穷能量)。为解决这些问题的努力造成了量子力学的发展。