高中数学分布列数学期望练习题

合集下载

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析

高二数学随机变量的期望与方差试题答案及解析1.已知某一随机变量X的分布列如下:且,则a=__________;b=__________。

【答案】,【解析】由得,又由得。

【考点】随机变量的期望2.某市公租房房屋位于A、B、C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(1)若有2人申请A片区房屋的概率;(2)申请的房屋在片区的个数的X分布列与期望.【答案】(1)(2)X的分布列为:X123【解析】解:(1)所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式有C·22种,从而恰有2人申请A片区房源的概率为=.(2)X的所有可能值为1,2,3.又p(X=1)==,p(X=2)==,p(X=3)==,综上知,X的分布列为:从而有E(X)=1×+2×+3×=.3.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(1)求出甲、乙所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).【答案】(1) (2) 分布列X02468【解析】解:(1)所付费用相同即为0,2,4元.设付0元为P1=×=,付2元为P2=×=,付4元为P3=×=,则所付费用相同的概率为P=P1+P2+P3=.(2)设甲,乙两个所付的费用之和为X, X可为0,2,4,6,8.P(X=0)=P(X=2)=×+×=P(X=4)=×+×+×=P(X=6)=×+×=P(X=8)=×=.分布列E(X)=+++=.4.已知离散型随机变量X的分布列如表,若E(X)=0,D(X)=1,则a=________,b=________.【答案】【解析】由题意知解得5.设一随机试验的结果只有A和,且P(A)=p令随机变量X=,则X的方差V(X)等于________.【答案】p(1-p)【解析】X服从两点分布,∴V(X)=p(1-p).6.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)求乙至多击中目标2次的概率;(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.【答案】(1) (2) Z的分布列如下表:【解析】解:(1)甲、乙两人射击命中的次数服从二项分布,故乙至多击中目标2次的概率为1-33=.C303=;(2)P(Z=0)=C313=;P(Z=1)=C323=;P(Z=2)=C333=.P(Z=3)=C3Z的分布列如下表:Z0123E(Z)=0×+1×+2×+3×=,D(Z)=2×+2×+2×+2×=,∴=.7.样本4,2,1,0,-2的标准差是:()A.1B.2C.4D.【答案】D【解析】,样本4,2,1,0,-2的标准差是:=,选D。

高中数学-分布列10题解析

高中数学-分布列10题解析
分布列 10 题
1.(2022·全国·统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每 个项目胜方得 10 分,负方得 0 分,没有平局.三个项目比赛结束后,总得分高的学校 获得冠军.已知甲学校在三个项目中获胜的概率分别为 0.5,0.4,0.8,各项目的比赛结 果相互独立. (1)求甲学校获得冠军的概率; (2)用 X 表示乙学校的总得分,求 X 的分布列与期望. 【答案】(1) 0.6 ;
(2)分布列见解析, E X 13 .
【分析】(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,再根据甲获得冠军则至少 获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出; (2)依题可知, X 的可能取值为 0,10, 20,30 ,再分别计算出对应的概率,列出分布列, 即可求出期望. 【详解】(1)设甲在三个项目中获胜的事件依次记为 A, B,C ,所以甲学校获得冠军的概 率为
中抽取
6
人,则男生、女生分别抽到
2
人和
4
人,所以
P
C
2 4
C62
6 15
2 5
,所以选中的
2
人都是女生的概率为 2 . 5
4.(2023·黑龙江齐齐哈尔·统考一模)随着春季学期开学,某市市场监管局加强了对学
校食堂食品安全管理,助力推广校园文明餐桌行动,培养广大师生文明餐桌新理念,以
(1)完成列联表,并判断能否在犯错误的概率不超过 0.025 的前提下认为“运动达标”与“性 别”有关.
运动达标 运动不达标 总计
男生 女生
总计 (2)现从“不达标”的学生中按性别用分层随机抽样的方法抽取 6 人,再从这 6 人中任选 2 人进行体育运动指导,求选中的 2 人都是女生的概率. 参考数据: P( 2 k0) 0.25 0.10 0.05 0.025 0.010 0.001

高二数学随机变量的分布列试题答案及解析

高二数学随机变量的分布列试题答案及解析

高二数学随机变量的分布列试题答案及解析1.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.【答案】-1,0,1,2,3【解析】甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得-1分,故X的所有可能取值为-1,0,1,2,3.2.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.【答案】(1) 0.2 (2) X的分布列为【解析】解:(1)设任取一件产品是二等品的概率为p,依题意有P(A)=p2=0.04,解得p1=0.2,p2=-0.2(舍去).故从该批产品中任取1件是二等品的概率为0.2.(2)若该批产品共10件,由(1)知其二等品有10×0.2=2件,故X的可能取值为0,1,2.P(X=0)==.P(X=1)=.P(X=2)==.所以X的分布列为X0123.已知~,且,则等于( )A.B.C.D.【答案】A【解析】∵~,∴,∴,故选A【考点】本题考查了二项分布点评:熟练掌握二项分布列的期望、方差公式是解决此类问题的关键,属基础题4.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.【答案】(1)的分布列为:01 2 345(2)的分布列为:012345(3)【解析】(1)由于~,则,所以的分布列为:(2)也就是说{前个是绿灯,第个是红灯},也就是说(5个均为绿灯),则,;所以的分布列为:012345(3)所求概率【考点】本题考查了随机变量的分布列点评:分布列的求解分三步:确定随机变量的取值有那些,求出每种取值下的随机事件的的概率,列表对应即为分布列5.设随机变量~,又,则和的值分别是()A.和B.和C.和D.和【答案】C【解析】因为随机变量~,所以,,所以=,=。

高中数学分布列数学期望练习题

高中数学分布列数学期望练习题

(17)(本小题满分13 分)为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90 分,70 分,60 分,40 分,30 分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30 名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:成绩等级 A B C D E成绩(分)90 70 60 40 30人数(名) 4 6 10 7 3(Ⅰ)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“ A 或B”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3 人,记X 表示抽到成绩等级为“A或B”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30 名学生中,随机选取 2 人,求“这两个人的成绩之差大于20分”的概率.(16)(本小题共13 分)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,3)5岁的人数;(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.分组(单位:岁)频数频率频率组距20,255 0.05025,30 ①0.20030,35 35 ②35,40 30 0.30020 25 30 35 40 45 年龄岁40,45 10 0.100合计100 1.0016(本小题13 分)国家对空气质量的分级规定如下表:污染指数0~50 51~100 101~150 151~200 201~300 >300空气质量优良轻度污染中度污染重度污染严重污染某市去年 6 月份30 天的空气污染指数的监测数据如下:34 140 18 73 121 210 40 45 78 23 65 79 207 81 6042 101 38 163 154 22 27 36 151 49 103 135 20 16 48根据以上信息,解决下列问题:频率分布表(Ⅰ)写出下面频率分布表中a,b,x,y 的值;(Ⅱ)某人计划今年 6 月份到此城市观光 4 天,分组频数频率7 [0,50] 1415若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X 表示,求X 的分布列和均值EX.(50,100] a x16 (100,150] 5(150,200] b y (200,250] 2115合计30 1(16) (本小题满分13 分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现在可供选用的不同添加剂有6 种,其中芳香度为 1 的添加剂 1 种,芳香度为 2 的添加剂 2 种,芳香度为 3 的添加剂 3 种.根据试验设计原理,通常要随机选取两种不同的添加剂进行搭配试验.(Ⅰ)求所选用的两种不同的添加剂的芳香度之和为 3 的概率;(Ⅱ)求所选用的两种不同的添加剂的芳香度之和为偶数的概率;(Ⅲ)用表示所选用的两种不同的添加剂的芳香度之和,写出的分布列,并求的数学期望 E .。

分布列与数学期望

分布列与数学期望

离散型随机变量的分布列与数学期望班级 姓名1.已知随机变量ξ的分布列如右表:则x= 。

2.两封信随机投入A B C ,,三个空邮箱,则A 邮箱的信件数ξ的数学期望E ξ= .3.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率.4.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球. (1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ数学期望.5、为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛. (I )求决赛中甲、乙两支队伍恰好排在前两位的概率;(II )若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.6.(本题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情 况,将所得的数据整理后,画出了频率分布直方图(如图), 已知图中从左到右的前3个小组的频率之比为1:2:3,其中第 2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X 表示体重超过60公斤的学生人数,求X 的分布列和数学期望.7.某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。

假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为21,32,32,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练新高考数学复习分层训练(新高考通用)1.(2023·广东广州·高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间0,20,20,40,40,60,60,80,80,100分组,绘制频后测量小白鼠的某项指标值,按[)[)[)[)[]率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.指标值抗体合计小于60不小于60有抗体没有抗体合计a=的独立性检验,判断能否认为注射(1)填写下面的2×2列联表,并根据列联表及0.05疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X.试验后统计数据显示,当X=99时,P(X)取最大值,求参加人体接种试验的人数n.参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.708 1.323 2.072 2.706 3.841 5.0242.(2023春·广东惠州·高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望.3.(2023·广东广州·统考一模)为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为34,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i 次答题所得分数)N (i X i *∈的数学期望为()i E x .①写出()1i E X -与()i E x 满足的等量关系式(直接写出结果,不必证明):②若()100i E x >,求i 的最小值.4.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:cm ),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数x 和方差2s .(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布()2,N μσ,用直方图的平均数估计值x 作为μ的估计值 μ,用直方图的标准差估计值s 作为σ估计值 σ.(i )为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了()3,3μσμσ-+之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:0.8 1.20.95 1.01 1.23 1.12 1.330.97 1.210.83利用 μ和 σ判断该生产周期是否需停止生产并检查设备.(ii )若设备状态正常,记X 表示一个生产周期内抽取的10个零件关键指标在()3,3μσμσ-+之外的零件个数,求()1P X ≥及X 的数学期望.参考公式:直方图的方差()221n i i i s x x p ==-∑,其中i x 为各区间的中点,i p 为各组的频率.参考数据:若随机变量X 服从正态分布()2,N μσ,则()330.9973P X μσμσ-≤≤+≈,0.105≈0.110≈,90.99730.9760≈,100.99730.9733≈.5.(2023·江苏·统考一模)某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a %,若逐个化验需化验2000次.为减轻化验工作量,随机按n 人一组进行分组,将各组n 个人的血液混合在一起化验,若混合血样呈阴性,则这n 个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.(1)若0.2a =,20n =,试估算该小区化验的总次数;(2)若0.9a =,每人单独化验一次花费10元,n 个人混合化验一次花费9n +元.求n 为何值时,每位居民化验费用的数学期望最小.(注:当0.01p <时,()11np np -≈-)6.(2023·江苏·统考一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.7.(2023·辽宁沈阳·统考一模)2022年12月初某省青少年乒乓球培训基地举行了混双选拔赛,其决赛在韩菲/陈宇和黄政/孙艺两对组合间进行,每场比赛均能分出胜负.已知本次比赛的赞助商提供了10000元奖金,并规定:①若其中一对赢的场数先达到4场,则比赛终止,同时这对组合获得全部奖金;②若比赛意外终止时无组合先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给两对组合分配奖金.已知每场比赛韩菲/陈宇组合赢的概率为()01p p <<,黄政/孙艺赢的概率为1p -,且每场比赛相互独立.(1)若在已进行的5场比赛中韩菲/陈宇组合赢3场、黄政/孙艺组合赢2场,求比赛继续进行且韩菲/陈宇组合赢得全部奖金的概率()f p ;(2)若比赛进行了5场时终止(含自然终止与意外终止),则这5场比赛中两对组合之间的比赛结果共有多少不同的情况?(3)若比赛进行了5场时终止(含自然终止与意外终止),设12p =,若赞助商按规定颁发奖金,求韩菲/陈宇组合获得奖金数X 的分布列.8.(2023·江苏·二模)为促进经济发展,某地要求各商场采取多种举措鼓励消费.A 商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取2个球.具体规则如下:摸出3个红球记为一等奖,没有红球记为二等奖,2个红球记为三等奖,1个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为5折、7折、8折和9折.记随机变量ξ为获得各奖次的折扣率,求随机变量ξ的分布列及期望()Eξ;(2)某一时段内有3人参加该促销活动,记随机变量η为获得7折及以下资格的人数,求()2Pη=.9.(2023·辽宁·哈尔滨三中校联考一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:天数[0,5](5,10](10,15](15,20](20,25](25,30]人数4153331116(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布()2,Nμσ,其中μ近似为样本的平均数(每组数据取区间的中间值),且 6.1σ=,若全校有3000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,天数在[0,15]的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:性别活动天数合计[0,15](15,30]男生女生合计并依据小概率值0.05α=的独立性检验,能否认为学生性别与获得“运动达人”称号有关联.如果结论是有关联,请解释它们之间如何相互影响.附:参考数据:()0.6827P X μσμσ-≤≤+=;()220.9545P X μσμσ-≤≤+=;()330.9973P X μσμσ-≤≤+=.()()()()()()22n ad bc n a b c d a b c d a c b d χ-==+++++++α0.10.050.010.0050.001x α 2.706 3.841 6.6357.87910.82810.(2023·河北邢台·校联考模拟预测)为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛.规定:先累计胜两场者为冠军,一场比赛中犯规4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛.在规则允许的情况下,甲队中球员M 都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为35和25,且每场比赛中犯规4次以上的概率为14.(1)求甲队第二场比赛获胜的概率;(2)用X 表示比赛结束时比赛场数,求X 的期望;(3)已知球员M 在第一场比赛中犯规4次以上,求甲队比赛获胜的概率.11.(2023·河北衡水·河北衡水中学校考三模)某社区对55位居民是否患有新冠肺炎疾病进行筛查,已知随机一人其口拭子核酸检测结果呈阳性的概率为2%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是0.3%,且患病者口拭子核酸呈阳性的概率为98%,设这55位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人,试分析哪一个方案的工作量更少?参考数据:50.980.904≈,110.980.801≈.12.(2023·福建福州·统考二模)脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P(μ-2σ≤X ≤μ+2σ)≈0.9545≈4.7,0.158653≈0.004.13.(2023·山东青岛·统考一模)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照[)60,70,[)70,80,[)80,90,[]90,100分组,得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计该校学生测试成绩的中位数;(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用()P X k =表示这10名学生中恰有k 名学生的成绩在[]90,100上的概率,求()P X k =取最大值时对应的k 的值;(3)从测试成绩在[]90,100的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为ξ,求ξ的分布列及期望.14.(2023·山东潍坊·统考模拟预测)某校举行“强基计划”数学核心素养测评,要求以班级为单位参赛,最终高三一班(45人)和高三二班(30人)进入决赛.决赛规则如下:现有甲、乙两个纸箱,甲箱中有4个选择题和2个填空题,乙箱中有3个选择题和3个填空题,决赛由两个环节组成,环节一:要求两班级每位同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱.并分别统计两班级学生测评成绩的相关数据;环节二:由一班班长王刚和二班班长李明进行比赛,并分别统计两人的测评成绩的相关数据,两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定班级的名次.(1)环节一结束后,按照分层抽样的方法从两个班级抽取20名同学,并统计每位同学答对题目的数量,统计数据为:一班抽取同学答对题目的平均数为1,方差为1;二班抽取同学答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,王刚先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后李明再抽取题目,已知李明从乙箱中抽取的第一题是选择题,求王刚从甲箱中取出的是两道选择题的概率.15.(2023·山东聊城·统考一模)某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理、化学、生物这四个科目中任选两个科目.选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:思想政治地理化学生物物理类100120200180历史类1201406080(1)利用上述样本数据填写以下22⨯列联表,并依据小概率值0.001α=的独立性检验,分析以上两类学生对生物学科的选法是否存在差异.科类生物学科选法选不选合计物理类历史类合计(2)假设该校高一所有学生中有35的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为15,而在历史类的学生中其余两科选择的是地理和化学的概率为110.若从该校高一所有学生中随机抽取100名学生,用X表示这100名学生中同时选择了地理和化学的人数,求随机变量X的均值()E X.附:()()()()()22n ad bca b c d a c b d χ-=++++α0.10.050.0010.0050.001xα 2.706 3.841 6.6357.87910.82816.(2023·湖北武汉·统考模拟预测)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X,求E(X);(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.17.(2023·湖北·统考模拟预测)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布()2,Nμσ,其中μ为样本平均数的估计值,13σ≈,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为34,后两题答对的概率均为35,且每道题回答正确与否互不影响.记该考生的复试成绩为Y ,求Y 的分布列及均值.附:若随机变量X 服从正态分布()2,N μσ,则:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.18.(2023·湖北武汉·华中师大一附中校联考模拟预测)某地区区域发展指数评价指标体系基于五大发展理念构建,包括创新发展、协调发展、绿色发展、开放发展和共享发展5个一级指标.该地区区域发展指数测算方法以2015年作为基期并设指数值为100,通过时序变化,观察创新发展、协调发展、绿色发展、开放发展和共享发展5个分领域指数值的变动趋势.分别计算创新发展、协调发展、绿色发展、开放发展和共享发展5个分指数,然后合成为该地区区域发展总指数,如下图所示.若年份x (2015年记为1x =,2016年记为2x =,以此类推)与发展总指数y 存在线性关系.(1)求年份x 与发展总指数y 的回归方程;(2)若规定发展总指数大于115的年份为和谐发展年,和谐发展年中发展总指数低于130的视为良好,记1分,发展总指数大于130的视为优秀,记2分,从和谐发展年中任取三年,用X 表示赋分之和,求X 的分布列和数学期望.参考公式:回归方程y bx a =+$$$,其中a y bx =-$$,()()()121n ii i ni i x x y y b x x ==--=-∑∑ ,()()81228.9i i i x x y y =--=∑,119.05y =.19.(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)某学校为了了解高一学生安全知识水平,对高一年级学生进行“消防安全知识测试”,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”.若该校“不合格”的人数不超过总人数的5%,则该年级知识达标为“合格”;否则该年级知识达标为“不合格”,需要重新对该年级学生进行消防安全培训.现从全体高一学生中随机抽取10名,并将这10名学生随机分为甲、乙两个组,其中甲组有6名学生,乙组有4名学生.甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数).(1)求这10名学生测试成绩的平均分x 和标准差s ;(2)假设高一学生的知识测试成绩服从正态分布2(,)N μσ.将上述10名学生的成绩作为样品,用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值.利用估计值估计:高一学生知识达标是否“合格”?(3)已知知识测试中的多项选择题中,有4个选项.小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X 表示小明做完该道多项选择题后所得的分数.求X 的分布列及数学期望.附:①n 个数的方差2211()n i i s x x n ==-∑;②若随机变量Z 服从正态分布2(,)N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.20.(2023春·湖南长沙·高三长沙一中校考阶段练习)某学校为了弘扬中华传统文化,组织开展中华传统文化活动周,活动周期间举办中华传统文化知识竞赛活动,以班级为单位参加比赛,每班通过中华传统文化知识竞答活动,择优选拔5人代表班级参加年级比赛.年级比赛分为预赛与决赛二阶段进行,预赛阶段的赛制为:将两组中华传统文化的们答题放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个班级代表队在甲或乙两个纸箱中随机抽取两题作答.每个班级代表队先抽取一题作答,答完后试题不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个试题放回原纸箱中.(1)若1班代表队从甲箱中抽取了2个试题,答题结束后错将题目放入了乙箱中,接着2班代表队答题,2班代表队抽取第一题时,从乙箱中抽取试题.已知2班代表队从乙箱中取出的是选择题,求1班代表队从甲箱中取出的是2个选择题的概率;(2)经过预赛,成绩最好的6班代表队和18班代表队进入决赛,决赛采用成语接龙的形式进行,采用五局三胜制,即两班代表队中先胜三局的代表队赢得这场比赛,比赛结束.已知第一局比赛6班代表队获胜的概率为35,18班代表队胜的概率为25,且每一局的胜者在接下来一局获胜的概率为25,每局必分胜负.记比赛结束时比赛局数为随机变量X ,求随机变量X 的数学期望()E X .21.(2023春·湖南·高三校联考阶段练习)某学校食堂中午和晩上都会提供,A B 两种套餐(每人每次只能选择其中一种),经过统计分析发现:学生中午选择A 类套餐的概率为23,选择B 类套餐的概率为13;在中午选择A 类套餐的前提下,晩上还选择A 类套餐的概率为14,选择B 类套餐的概率为34;在中午选择B 类套餐的前提下,晩上选择A 类套餐的概率为12,选择B 类套餐的概率为12.(1)若同学甲晩上选择A 类套餐,求同学甲中午也选择A 类套餐的概率;(2)记某宿舍的4名同学在晩上选择B 类套餐的人数为X ,假设每名同学选择何种套餐是相互独立的,求X 的分布列及数学期望.22.(2023·湖南·校联考模拟预测)基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x )和物理成绩(y ),绘制成如图散点图:根据散点图可以看出y 与x 之间有线性相关关系,但图中有两个异常点A ,B .经调查得知,A 考生由于重感冒导致物理考试发挥失常,B 考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:5015800i i x==∑,5013900i i y ==∑,501462770i i i x y ==∑,()502128540i i x x =-=∑,()502118930i i y y =-=∑,其中,i i x y 分别表示这50名考生的数学成绩、物理成绩,1i =,2,…,50,y 与x 的相关系数0.45r ≈.(1)若不剔除A ,B 两名考生的数据,用52组数据作回归分析,设此时y 与x 的相关系数为0r .试判断0r 与r 的大小关系(不必说明理由);(2)求y 关于x 的线性回归方程(系数精确到0.01),并估计如果B 考生加了这次物理考。

高考数学分布列专题及答案

高考数学分布列专题及答案

分布列1.(本小题满分14分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。

(1)试求选出的3种商品中至少有一种日用商品的概率;(2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。

在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望..(本小题满分14分)分布列参考答案1.(本小题满分14分)解:(1) 列联表补充如下:----------------------------------------3分(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯------------------------6分 ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------9分其概率分别为021*******(0)20C C P C ξ===,1110152251(1)2C C P C ξ===,2010152253(2)20C C P C ξ===--------------------------12分故ξ的分布列为:--------------------------13分ξ的期望值为:7134012202205E ξ=⨯+⨯+⨯= 2.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分其分布列为5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分3.解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有39C 种不同的选法,选出的3种商品中,没有日用商品的选法有35C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3539537114242C P C =-=-=……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。

概率统计与期望方差分布列大题基础练-高考数学重点专题冲刺演练(解析版)

概率统计与期望方差分布列大题基础练-高考数学重点专题冲刺演练(解析版)

概率统计与期望方差分布列大题基础练新高考数学复习分层训练(新高考通用)1.(2023·安徽宿州·统考一模)宿州号称“中国云都”,拥有华东最大的云计算数据中心、CG动画集群渲染基地,是继北京、上海、合肥、济南之后的全国第5家量子通信节点城市.为了统计智算中心的算力,现从全市n个大型机房和6个小型机房中随机抽取若干机房进行算力分析,若一次抽取2个机房,全是小型机房的概率为1 3 .(1)求n的值;(2)若一次抽取3个机房,假设抽取的小型机房的个数为X,求X的分布列和数学期望.E X=⨯+⨯+⨯+⨯=.则X的数学期望()012330102652.(2023秋·浙江湖州·高三安吉县高级中学校考期末)某运动品牌旗舰店在双十一线下促销期间,统计了5个城市的专卖店销售数据如下:款式/专卖店甲乙丙丁戊男装606013080110女装120901306050(1)若分别从甲、乙两家店的销售数据记录中各抽一条进行追踪调查,求抽中的两条记录中至少有一次购买的是男装的概率;(2)现从这5家店中任选3家进行抽奖活动,用X表示其中男装销量超过女装销量的专E X.卖店个数,求随机变量X的分布列和数学期望()∴()1336 012 105105E X=⨯+⨯+⨯=.3.(2023·广东深圳·深圳中学校联考模拟预测)为提高学生的数学应用能力和创造力,学校打算开设“数学建模”选修课,为了解学生对“数学建模”的兴趣度是否与性别有关,学校随机抽取该校30名高中学生进行问卷调查,其中认为感兴趣的人数占70%. (1)根据所给数据,完成下面的22⨯列联表,并根据列联表判断是否有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关?感兴趣不感兴趣合计男生12女生5合计30(2)若感兴趣的女生中恰有4名是高三学生,现从感兴趣的女生中随机选出3名进行二次访谈,记选出高三女生的人数为X,求X的分布列与数学期望.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.0050.001 0k 2.072 2.706 3.841 5.024 6.6357.87910.82820.4082 2.0721614219K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关;(2)由题意可知X 的取值可能为0,1,2,3,则3539C 5(0)C 42P X ===,124539C C 10(1)C 21P X ===,214539C C 5(2)C 14P X ===,3439C 1(3)C 21P X ===,故X 的分布列为X 0123P5421021514121510514()0123422114213E X =⨯+⨯+⨯+⨯=.4.(2023秋·江苏·高三统考期末)为深入贯彻党的教䏍方针,全面落实《中共中央国务院关于全面加强新时代大中小学劳动教育的意见》,某校从2022年起积极推进劳动课程改革,先后开发开设了具有地方特色的家政、烹饪、手工、园艺、非物质文化遗产等劳动实践类校本课程.为调研学生对新开设劳动课程的满意度并不断改进劳动教育,该校从2022年1月到10月每两个月从全校3000名学生中随机抽取150名学生进行问卷调查,统计数据如下表:月份x 246810满意人数y8095100105120(1)由表中看出,可用线性回归模型拟合满意人数y 与月份x 之间的关系,求y 关于x 的回归直线方程ˆˆˆybx a =+,并预测12月份该校全体学生中对劳动课程的满意人数;(2)10月份时,该校为进一步深化劳动教育改革,了解不同性别的学生对劳动课程是否满意,经调研得如下统计表:满意不满意合计男生651075女生552075合计12030150请根据上表判断是否有95%的把握认为该校的学生性别与对劳动课程是否满意有关?参考公式:()()()1122211ˆˆˆ,nni i i ii i nn iii i x y nxyx x yy bay bx xnx x x ====---===--∑∑∑∑.()20P K k ≥0.100.050.0250.0100.005k 2.7063.8415.0246.6357.879()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X,求X的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.()101612412E X=-⨯+⨯+⨯=.(2)经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464 P⎛⎫==⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C41264 P⎛⎫=⨯=⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C4632 P⎛⎫=⨯=⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C412192 P⎛⎫=⨯⨯=⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192 P=+++=.6.(2023·浙江·校联考模拟预测)某地区2016至2022年生活垃圾无害化处理量(单位:万吨)如下表:年份2016201720182019202020212022年份代号x1234567生活垃圾无害化处理量y 3.9 4.3 4.6 5.4 5.8 6.2 6.9(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,分析过去七年该地区生活垃圾无害化处理的变化情况,并预测该地区2024年生活垃圾无害化处理量.附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy bx x ==--=-∑∑,ˆˆay bx =-.参考数据7162.4i i x y =∑7.(2023秋·浙江嘉兴·高三统考期末)为积极响应“反诈”宣传教育活动的要求,某企业特举办了一次“反诈”知识竞赛,规定:满分为100分,60分及以上为合格.该企业从甲、乙两个车间中各抽取了100位职工的竞赛成绩作为样本.对甲车间100位职工的成绩进行统计后,得到了如图所示的成绩频率分布直方图.(1)估算甲车间职工此次“反诈”知识竞赛的合格率;(2)若将频率视为概率,以样本估计总体.从甲车间职工中,采用有放回的随机抽样方法抽取3次,每次抽1人,每次抽取的结果相互独立,记被抽取的3人次中成绩合格的人数为X .求随机变量X 的分布列;(3)若乙车间参加此次知识竞赛的合格率为60%,请根据所给数据,完成下面的22⨯列联表,并根据列联表判断是否有99%的把握认为此次职工“反计”知识竞赛的成绩与其所在车间有关?2×2列联表甲车间乙车间合计合格人数不合格人数合计附参考公式:①()()()()22()n ad bc a c b d a b c d χ-=++++,其中n a b c d =+++.②独立性检验临界值表【答案】(1)80%(2)分布列见解析(3)表格见解析,有【分析】(1)根据频率分布直方图的性质,可得答案;(2)根据二项分布的分布列的解题步骤,可得答案;(3)由题意,补全列联表,利用独立性检验的解题步骤,可得答案.【详解】(1)根据频率分布直方图可求得甲车间此次参加“反诈”知识竞赛的合格率0.02100.03100.02100.01100.8=⨯+⨯+⨯+⨯=,即80%.(3)根据题中统计数据可填写22⨯列联表如下,甲车间乙车间合计合格人数8060140不合格人数204060合计10010020022200(80402060)9.524 6.635,10010014060χ⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为“此次职工‘反计’知识竞赛的成绩与职工所在车间有关系”.8.(2023春·江苏扬州·高三统考开学考试)云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.从中国信息通信研究院发布的《云计算白皮书(2022年)》可知,我国2017年至2021年云计算市场规模数据统计表如下:年份2017年2018年2019年2020年2021年年份代码x12345云计算市场规模y /亿元692962133420913229经计算得:51ln i i y =∑=36.33,51(ln )i i i x y =∑=112.85.(1)根据以上数据,建立y 关于x 的回归方程ˆˆˆebxa y +=(e 为自然对数的底数).(2)云计算为企业降低生产成本、提升产品质量提供了强大助推力.某企业未引入云计算前,单件产品尺寸与标准品尺寸的误差4~(0,N mε,其中m 为单件产品的成本(单位:元),且(11)P ε-<<=0.6827;引入云计算后,单件产品尺寸与标准品尺寸的误差1~(0,)N mε.若保持单件产品的成本不变,则(11)P ε-<<将会变成多少?若保持产品质量不变(即误差的概率分布不变),则单件产品的成本将会下降多少?附:对于一组数据1122(,),(,),,(,),n n x y x y x y ⋯其回归直线ˆˆˆyx βα=+的斜率和截距的最小二乘估计分别为ˆβ=1221niii nii x ynx y xnx ==--∑∑,ˆˆy x αβ=-.若2~(,)XN μσ,则(||)0.6827P X μσ-<=,(|2)0.9545P X μσ-<=,(||3)0.9973.P X μσ-<=9.(2023春·重庆永川·高三重庆市永川北山中学校校考开学考试)近年来,各平台短视频、网络直播等以其视听化自我表达、群圈化分享推送、随时随地传播、碎片化时间观看等特点深受人们喜爱,吸引了眼球赚足了流量,与此同时,也存在功能失范、网红乱象、打赏过度、违规营利、恶意营销等问题.为促使短视频、网络直播等文明、健康,有序发展,依据《网络短视频平台管理规范》、《网络短视频内容审核标准细则》等法律法规,某市网信办、税务局、市场监督管理局联合对属地内短视频制作、网络直播进行审查与监管.(1)对短视频、网络直播的整体审查包括总体规范、账户管理、内容管理等三个环节,三个环节均通过审查才能通过整体审查.设某短视频制作团队在这三个环节是否通过审查互不影响,且各环节不能通过审查的概率分别为4131,,25485.①求该团不.能通过整体审查的概率:②设该团队通过整体审查后,还要进入技术技能检测环节,若已知该团队最终通过整体审查和技术技能检测的概率为35%,求该团队在已经通过整体审查的条件下通过技术技能检测的概率;(2)某团队为提高观众点击其视频的流量,通过观众对其视频的评论分析来优化自己的创作质量,现有100条评论数据如下表:试问是否有99.9%的把握可以认为观众对该视频的满意度与该视频改拍相关程度有关联?参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,n a b c d=+++()20P x χα≥=0.10.050.010.0050.001nx 2.7063.8416.6357.87910.82810.(2023·重庆沙坪坝·高三重庆八中校考阶段练习)2023年3月的体坛属于“冰上运动”,速滑世锦赛、短道速滑世锦赛、花滑世锦赛将在荷兰、韩国、日本相继举行.中国队的“冰上飞将”们将在北京冬奥会后再度出击,向奖牌和金牌发起冲击.据了解,甲、乙、丙三支队伍将会参加2023年3月10日~12日在首尔举行的短道速滑世锦赛5000米短道速滑男子5000米接力的角逐.接力赛分为预赛、半决赛和决赛,只有预赛、半决赛都获胜才能进入决赛.已知甲队在预赛和半决赛中获胜的概率分别为23和34;乙队在预赛和半决赛中获胜的概率分别为34和45;丙队在预赛和半决赛中获胜的概率分别为p和3 2p-,其中34p<<.(1)甲、乙、丙三队中,谁进入决赛的可能性最大;(2)若甲、乙、丙三队中恰有两对进入决赛的概率为3790,求p的值;(3)在(2)的条件下,设甲、乙、丙三队中进入决赛的队伍数为ξ,求ξ的分布列・11.(2023·重庆酉阳·重庆市酉阳第一中学校校考一模)某市从2020年5月1日开始,若电子警察抓拍到机动车不礼让行人的情况后,交警部门将会对不礼让行人的驾驶员进行扣3分,罚款200元的处罚,并在媒体上曝光.但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患和机动车通畅率降低点情况.交警部门在某十字路口根据以往的监测数据,得到行人闯红灯的概率为0.2,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:45岁以下45岁以上合计闯红灯人数25未闯红灯数85合计200近期,为了整顿“行人闯红灯”这一不文明的违法行为,交警部门在该十字路口试行了对闯红灯的行人进行5元以上,50元以下的经济处罚.在试行经济处罚一段时间后,交警部门再次对穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:45岁以下45岁以上合计闯红灯人数51520未闯红灯人9585180数合计100100200将统计数据所得频率视为概率,完成下列问题:(1)将2×2列联表填写完整(不需要写出填写过程),并根据表中数据分析,在试行对闯红灯的行人进行经济处罚前,是否有90%的把握认为闯红灯行为与年龄有关;(2)在试行对闯红灯的行人进行经济处罚后,闯红灯现象是否有明显改善,请说明理由;(3)结合调查结果,请你对“如何治理行人闯红灯现象”提出合理的建议(至少提出两条建议).【答案】(1)列联表见解析,有(2)有明显改善,理由见解析(3)答案见解析K的值,结合附表,即可【分析】(1)根据题意,填写出2×2列联表,利用公式求得2得到结论;(2)求得试行对闯红灯的行人进行经济处罚后,行人闯红灯的概率,结合试行对闯红灯的行人进行经济处罚前的概率,可得出结论;(3)结合表格中的数据,可针对45岁以上人群开展“道路安全”宣传教育;也可进行适因为()2220015752585253.125 2.706100100401608K⨯⨯-⨯===>⨯⨯⨯,所以有90%的把握认为闯红灯行为与年龄有关.(2)在试行对闯红灯的行人进行经济处罚后,行人闯红灯的概率为20=0.1 200,而在试行对闯红灯的行人进行经济处罚前,行人闯红灯的概率为0.2,因为0.10.2<,故在试行对闯红灯的行人进行经济处罚后,闯红灯现象有明显改善.(3)①根据调查数据显示,行人闯红灯与年龄有明显关系,故可以针对45岁以上人群开展“道路安全”宣传教育;②由于经济处罚可以明显降低行人闯红灯的概率,故可以在法律允许范围内进行适当的经济处罚.12.(2023·辽宁·新民市第一高级中学校联考一模)为了了解男、女学生对航天知识的了解情况,某调查机构进行了一个随机问卷调查(总分100分),调查的结果如下表所示.若本次问卷调查的得分不低于90分,则认为该学生非常了解航天知识.男学生女学生不低于90分82低于90分2228(1)判断是否有95%的把握认为性别与是否非常了解航天知识有关;(2)现将3个航天器模型纪念品随机分配给参与本次调查且非常了解航天知识的学生,设获得纪念品的女生人数为X,求X的分布列以及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.()2P k αχ=≥0.050.010.0050.001k3.8416.6357.87910.828所以()012.1515155E X =⨯+⨯+⨯=13.(2023春·辽宁朝阳·高三校联考开学考试)千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛应用;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则使得“千里眼”、“顺风耳”变为现实.现在,5G 的到来给人们的生活带来了颠覆性的变革.某科技创新公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该创新公司在1月份至5月份的5G 经济收入y (单位:百万元)关于月份x 的数据如表:时间(月份)12345收入(百万元)1015192328(1)根据上表中的数据,求出y 关于x 的线性回归方程,并预测该公司6月份的5G 经济收入;(2)从前5个月的收入中随机抽取3个月,记月收入超过15百万元的个数为X ,求X 的分布列和数学期望.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.所以()123105105E X=⨯+⨯+⨯=.14.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)一般来说,市场上产品的宣传费用与产品的销量存在一定关系.已知产品甲的年宣传费用(x百万元)和年销量(y万箱)的统计数据如下:年宣传费用(x百万元)35610131518年销量y(万箱)1.522.533.544.5(1)求y与x的相关系数(r精确到0.01),并判断y与x的关系是否可用线性回归方程模型拟合?(规定:0.75r≥);(2)从年销量不少于3万箱中任取两个数据作为样本,求恰有1个数据不少于4万箱的概率.附:①相关系数ni ix y nxyr-=∑;71246i iix y==∑②,721888iix==∑,72170iiy==∑,36.28≈36.41≈15.(2023春·河北·高三统考阶段练习)某电影院对观众按照性别进行了分层抽样调查,一共调查了900名观众对A影片和B影片的喜爱度,获得了以下数据:(1)哪个影片更受学生欢迎?(不用说明理由)(2)分别估计该电影院男观众和女观众对B影片表示“非常喜爱”的概率;(3)该电影院为了进一步调查观众对B影片的看法,对样本中的女观众用分层抽样抽取了6人,再从这6人中随机抽取2人参加座谈,求这两人均来自“一般喜爱”群体的概率.16.(2023秋·福建厦门·高三厦门外国语学校校考期末)冬奥会的成功举办极大鼓舞了人们体育强国的热情,掀起了青少年锻炼身体的热潮.某校为了解全校学生“体能达标”的情况,从高三年级1000名学生中随机选出40名学生参加“体能达标”测试,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为合格.若高三年级“不合格”的人数不超过总人数的5%,则该年级体能达标为“合格”;否则该年级体能达标为“不合格”,.现将这40名学生随机分成甲、乙两个组,其中甲组有24名学生,乙组有16名学生.经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6.(数据的最后结果都精确到整数)(1)求这40名学生测试成绩的平均分x和标准差s;(2)假设高三学生的体能达标预测成绩服从正态分布N(μ,2σ),用样本平均数x作为μ的估计值μ,用样本标准差s作为σ的估计值σ.利用估计值估计,高二学生体能达标预测是否“合格”;(3)为增强趣味性,在体能达标的跳绳测试项目中,同学们可以向体育特长班的强手发起挑战.每场挑战赛都采取七局四胜制.积分规则如下:以4:0或4:1获胜队员积4分,落败队员积0分;以4:2或4:3获胜队员积3分,落败队员积1分.假设体育生王强每局比赛获胜的概率均为23,求王强在这轮比赛中所得积分为3分的条件下,他前3局比赛都获胜的概率.附:①n 个数的方差2211()n i i s x x n ==-∑;②若随机变量Z ~N (μ,2σ),则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=,()330.9974P Z μσμσ-<<+=.17.(2023·山东淄博·统考一模)某电商平台统计了近七年小家电的年度广告费支出i x (万元)与年度销售量i y (万台)的数据,如表所示:年份2016201720182019202020212022广告费支出x 1246111319销售量y1.93.24.04.45.25.35.4其中71279.4i i i x y ==∑,721708i i x ==∑(1)若用线性回归模型拟合y 与x 的关系,求出y 关于x 的线性回归方程;(2)若用y c =+模型拟合得到的回归方程为1.63y =+,经计算线性回归模型及该模型的2R 分别为0.75和0.88,请根据2R 的数值选择更好的回归模型拟合y 与x 的关系,进而计算出年度广告费x 为何值时,利润200zy x =- 的预报值最大?参考公式:()()()1122211nniiiii i nniii i x ynx y xxy y bxnxxx====---==--∑∑∑∑ ,a y bx =-$$;18.(2023·山东济南·一模)为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该较10名学生进行体质测试,得到如下表格:记这10名学生体质测试成绩的平均分与方差分别为x ,2s ,经计算()102111690i x x =-=∑,102133050ii x==∑.(1)求x ;(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩不合格的人数为X ,求X 的分布列;(3)经统计,高中生体质测试成绩近似服从正态分布()2,N μσ,用x ,2s 的值分别作为μ,2σ的近似值,若监测中心计划从全市抽查100名高中生进行体质测试,记这100名高中生的体质测试成绩恰好落在区间[]30,82的人数为Y ,求Y 的数学期望()E Y .附:若()2,N ξμσ ,则()0.6827P μσξμσ-≤≤+≈,(22)0.9545P μσξμσ-≤≤+≈,330.9()973P μσξμσ-≤≤+≈.(3)因为()22111156,16901691010i x s x x===-=⨯=∑,所以56,13μσ==.因为(3082)(22)0.9545P X P μσξμσ≤≤=-≤≤+≈,所以学生的体质测试成绩恰好落在区间[30,82]得概率约为0.9545,故(100,0.9545)Y B ~,所以()1000.954595.45E Y =⨯=.19.(2023·江苏泰州·泰州中学校考一模)某公司对40名试用员工进行业务水平测试,根据测试成绩评定是否正式录用以及正式录用后的岗位等级,测试分笔试和面试两个环节.笔试环节所有40名试用员工全部参加;参加面试环节的员工由公司按规则确定.公司对40名试用员工的笔试得分(笔试得分都在[75,100]内)进行了统计分析,得到如下的频率分步直方图和22⨯列联表.男女合计优(得分不低于90分)8良(得分低于90分)12合计40(1)请完成上面的22⨯列联表,并判断是否有90%的把握认为“试用员工的业务水平优良与否”与性别有关;(2)公司决定:85分的员工直接淘汰,得分不低于85分的员工都正式录用.笔试得分在[95,100]内的岗位等级直接定为一级(无需参加面试环节);笔试得分在[90,95)内的岗位等级初定为二级,但有25的概率通过面试环节将二级晋升为一级;笔试分数在[85,90)内的岗位等级初定为三级,但有35的概率通过面试环节将三级晋升为二级.若所有被正式录用且岗位等级初定为二级和三级的员工都需参加面试.已知甲、乙为该公司的两名试用员工,以频率视为概率.①若甲已被公司正式录用,求甲的最终岗位等级为一级的概率;②若乙在笔试环节等级初定为二级,求甲的最终岗位等级不低于乙的最终岗位等级的概率.参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,.n a b c d =+++()20P k χ0.150.100.050.0100k 2.0722.7063.8416.635所以20.317 2.706(84)(1612)(816)(412)χ=<++++,因此没有90%的把握认为“试用员工的业务水平优良与否”与性别有关;(2)不低于85分的员工的人数为:40(0.060.040.02)524⨯++⨯=,直接定为一级的概率为0.025401246⨯⨯=,岗位等级初定为二级的概率为:0.045401243⨯⨯=,岗位等级初定为三级的概率为:0.065401242⨯⨯=.①甲的最终岗位等级为一级的概率为:112363510+⨯=;②甲的最终岗位等级不低于乙的最终岗位等级的概率为:2333390.0250.0450.0450.0655555525⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯=.20.(2023·山东·沂水县第一中学校联考模拟预测)为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k2.7063.8416.63510.828【答案】(1)补全的22⨯列联表见解析;有关;(2)①分布列见解析;() 2.7E X =;②0.271【分析】(1)由题意,抽取的100人年龄在50周岁及以下的有60人,则年龄在50周岁以上的有40人,即可补全22⨯列联表,再根据公式计算212.76χ=,即可判断;(2)①由题意可知(3,0.9)X B ,根据二项分布即可求解分布列及数学期望;②根据则2100(5251555)12.7610.82820806040χ⨯⨯-⨯==>⨯⨯⨯.所以在犯错误的概率不超过0.001的情况下认为对全省实施景区门票减免活动是否满意与年龄有关联.(2)①由题意可得,游客至少去过两个及以上景区的概率为0.9,则(3,0.9)X B ,X 的所有可能取值为0,1,2,3,033(0)C 0.10.001P X ==⨯=,123(1)C 0.90.10.027P X ==⨯⨯=,223(2)C 0.90.10.243P X ==⨯⨯=,333(3)C 0.90.729X ==⨯=,所以X 的分布列如下:因为(3,0.9)X B ,所以数学期望()30.9 2.7E X =⨯=.②()(11)(0)(1)(2)13P X P X P X P X P X -≤==+=+==-=10.7290.271=-=.21.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)皮影戏是一种民间艺术,是我国民间工艺美术与戏曲巧妙结合而成的独特艺术品种,已有千余年的历史.而皮影制作是一项复杂的制作技艺,要求制作者必须具备扎实的绘画功底和高超的雕刻技巧,以及持之以恒的毅力和韧劲.每次制作分为画图与剪裁,雕刻与着色,刷清与装备三道主要工序,经过以上工序处理之后,一幅幅形态各异,富有神韵的皮影在能工巧匠的手里浑然天成,成为可供人们欣赏和操纵的富有灵气的影人.小李对学习皮影制作产生极大兴趣,师从名师勒学苦练,目前水平突飞猛进,三道主要工序中每道工序制作合格的概率依次为323,534,,三道序彼此独立,只有当每道工序制作都合格才为一次成功的皮影制作,该皮影视为合格作品.(1)求小李进行3次皮影制作,恰有一次合格作品的概率;(2)若小李制作15次,其中合格作品数为X ,求X 的数学期望与方差;(3)随着制作技术的不断提高,小李制作的皮影作品被某皮影戏剧团看中,聘其为单位制作演出作品,决定试用一段时间,每天制作皮影作品,其中前7天制作合格作品数y 与时间:如下表:(第1天用数字1表示)时间(t )1234567合格作品数(y )3434768其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第15天能制作多少个合格作品(四舍五入取整)?(参考公式()()()11222ˆnni i i ii i nn iix ynxyx x yybxnxx x ==---==--∑∑∑∑,ˆˆa y bx =-,参考数据:71163i i i t y ==∑).。

207高考复习---概率、随机变量分布列、期望方差

207高考复习---概率、随机变量分布列、期望方差

2017高考复习---概率、随机变量分布列、期望方差1.某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为分.2.随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.3.设随机变量X~B(6,),则P(X=3)=.4.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是.其中a,b,c成等差数列,若.则Dξ的值是.6.已知某随机变量ξ的概率分布列如表,其中x>0,y>0,随机变量ξ的方差Dξ=,则4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤7)=.8.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是.9.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望Eξ=.10.有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分.小张摸一次得分的期望是分.11.为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了a,b,c,d四条旅游线路,每个旅游团可任选其中一条线路,则选择a线路旅游团数ξ的数学期望Eξ=.12.随机变量X的分布列如下:若,则DX的值是.每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=.15.从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.16.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)17.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为.18.盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.19.从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.20.从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于4的概率是.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.22.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量=(m,n),=(3,6),则向量与共线的概率为.23.某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.24.在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为.2017年03月25日茅盾中学09的高中数学组卷参考答案与试题解析一.填空题(共24小题)1.(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生在面试时得分的期望值为15分.【分析】设该生在面试时的得分为X,由题设条件知X的可能取值为﹣15,0,15,30,分别求出P(X=﹣15),P(X=0),P(X=15),P(X=30),由此能求出该学生在面试时得分的期望值.【解答】解:设该生在面试时的得分为X,由题设条件知X的可能取值为﹣15,0,15,30,P(X=﹣15)==,P(X=0)==,P(X=15)==,P(X=30)==,∴EX=﹣15×+0×+15×+30×=15.∴该学生在面试时得分的期望值为15分.故答案为:15.【点评】本题考查离散型随机变量的数学期望的求法,解题时要认真审题,注意n次独立重复试验中事件恰好发生k次的概率计算公式的灵活运用.2.(2016春•松桃县校级期末)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于.【分析】根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p.【解答】解:∵ξ服从二项分布B~(n,p)Eξ=300,Dξ=200∴Eξ=300=np,①;Dξ=200=np(1﹣p),②.可得1﹣p==,∴p=1﹣=.故答案为:.【点评】本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.3.(2013春•渭滨区校级期末)设随机变量X~B(6,),则P(X=3)=.【分析】根据条件中所给的变量符合二项分布,写出变量取值不同时对应的概率公式,本题x=3,代入公式得到要求的概率.【解答】解:∵随机变量X服从二项分布B(6,),∴P(X=3)=C36()3×(1﹣)3=.故答案为:.【点评】本题考查二项分布的概率计算公式,是基础题.解题时要认真审题,仔细解答.4.(2015•中山二模)口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X,则随机变量X的数学期望是.【分析】确定X的可能取值为1,2,3,4,5,求出相应的概率,可求随机变量X的数学期望【解答】解:由题设知X的可能取值为1,2,3,4,5.随机地取出两个球,共有:=15种,∴P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=,P(X=5)=,故EX=1×+2×+3×+4×+5×=.故答案为:.【点评】本题考查离散型随机变量的数学期望的求法,确定X的可能取值,求出相应的概率是关键.其中a,b,c成等差数列,若.则Dξ的值是.【分析】要求这组数据的方差,需要先求出分布列中变量的概率,这里有三个条件,一个是三个数成等差数列,一个是概率之和是1,一个是这组数据的期望,联立方程解出结果.【解答】解:∵a,b,c成等差数列,∴2b=a+c,∵a+b+c=1,Eξ=﹣1×a+1×c=c﹣a=.联立三式得,∴.故答案为:【点评】这是一个综合题目,包括等差数列,离散型随机变量的期望和方差,主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望的公式.6.(2014•余杭区校级模拟)已知某随机变量ξ的概率分布列如表,其中x>0,y>0,随机变量ξ的方差Dξ=,则x+y=.【解答】解:由题意可得:2x+y=1,Eξ=x+2y+3x=4x+2y=4x+2(1﹣2x)=2.∴方差Dξ==(1﹣2)2x+(2﹣2)2(1﹣2x)+(3﹣2)2x.化为,解得,∴=.∴=.故答案为.【点评】熟练掌握离散型随机变量的期望与方差是解题的关键.7.(2015春•淮安校级期末)袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤7)=.【分析】取出的4只球中红球个数的可能为4,3,2,1个,黑球相应个数为0,1,2,3个,得分的随机变量ξ=4,6,8,10,由经能求出P(ξ≤7)的值.【解答】解:取出的4只球中红球个数的可能为4,3,2,1个,黑球相应个数为0,1,2,3个,∴得分的随机变量ξ=4,6,8,10,∴P(ξ≤7)=P(ξ=4)+P(ξ=6)==.故答案为:.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.8.(2001•江西)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是 1.2.【分析】由题意知ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,这三种情况根据古典概型概率公式得到结果,求出期望.【解答】解:设含红球个数为ξ,ξ的可能取值是0、1、2,当ξ=0时,表示从中取出2个球,其中不含红球,当ξ=1时,表示从中取出2个球,其中1个红球,1个黄球,当ξ=2时,表示从中取出2个球,其中2个红球,∴P(ξ=0)==0.1,P(ξ=1)==0.6P(ξ=2)==0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故答案为:1.2.【点评】本题这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.不过大多数题目是以解答题的形式出现的.9.(2012•浙江校级模拟)甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望Eξ=.【分析】由题中ξ的取值可能是0,1,2,由等可能事件的概率计算出概率,得出分布列再有公式求出期望即可【解答】解:由题ξ的取值可能是0,1,2,从丙个袋中各一个球,总的取法有6×6=36 故P(ξ=0)=,P(ξ=1)=,P(ξ=2)=所以ξ的分布列为=故答案为【点评】本题考查离散型随机变量的期望与方差,解题的关键是根据相应的概率计算公式求出变量取每一个可能值的概率,列出分布列,求出期望.10.(2013•浙江模拟)有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分.小张摸一次得分的期望是分.【分析】由题意知小张摸一次得分X的可能取值是0,,50,100,当得分为100时,表示从十个球中取五个球,取到的都是颜色相同的球,当得分50时,表示取到的球有四个颜色相同,结合变量对应的事件,做出分布列和期望.【解答】解:由题意知小张摸一次得分X的可能取值是0,,50,100,当得分为100时,表示从十个球中取五个球,取到的都是颜色相同的球,从10个球中取5个共有C105种结果,而球的颜色都相同包括两种情况,∴P(X=100)==,当得分50时,表示取到的球有四个颜色相同,P(X=50)==,P(X=0)=1﹣=,∴EX=100×==,故答案为:.【点评】本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.11.(2013•西湖区校级模拟)为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了a,b,c,d四条旅游线路,每个旅游团可任选其中一条线路,则选择a线路旅游团数ξ的数学期望Eξ=.【分析】确定ξ的可能取值,计算相应的概率,可得分布列,进而可求ξ的数学期望.【解答】解:由题意,ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==ξ 0 1 2 3P∴期望Eξ=0×+1×+2×+3×=故答案为:【点评】本题考查离散型随机变量的分布列和期望,考查学生的计算能力,属于中档题.12.(2011•海珠区一模)随机变量X的分布列如下:若,则DX的值是.X ﹣1 0 1P a ca和c,再利用方差公式求方差即可.【解答】解:由题意:,解得:所以DX=故答案为:【点评】本题考查分布列的性质、期望和方差的计算,考查基础知识和基本运算.13.(2012•浙江模拟)已知随机变量ξ的分布列如下表所示,ξ的期望Eξ=1.5,则a的值等于0.5.ξ0 1 2 3P 0.1 a b 0.2分布列的性质建立方程求解即可.【解答】解:由题意可得:⇒.故答案为:0.5.【点评】此题属于基本题型,重点考查了随机变量的分布列的性质,期望定义及学生利用方程的思想求解问题.14.(2011•宁波模拟)一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=1.【分析】由于ξ表示匹对的个数,由题意则ξ可能取:0,1,2,4,并利用古典概型随机事件的概率公式及排列数与组合数,求出其分布列,根据期望公式求出所求.【解答】解:由题意ξ可能取:0,1,2,4,则,,,Eξ==1.故答案为:1【点评】此题考查了离散型随机变量的定义及其分布列,并且利用分布列求出期望,还考查了考虑问题时的严谨的逻辑思维及计算能力.15.(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.【分析】由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.【解答】解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=.故答案为:.【点评】本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.16.(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)【分析】从7个球中任取2个球共有=21种,两球编号之积为偶数包括均为偶数、一奇一偶两种情况,有=15种取法,利用古典概型的概率计算公式即可求得答案.【解答】解:从7个球中任取2个球共有=21种,所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有=15种取法,所以两球编号之积为偶数的概率为:=.故答案为:.【点评】本题考查古典概型的概率计算公式,属基础题,其计算公式为:P(A)=,其中n(A)为事件A所包含的基本事件数,m为基本事件总数.17.(2015•江苏模拟)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为.【分析】由组合知识求出从4个球中随机抽取两个球的所有方法种数,由题意得到两球编号之和大于5的方法种数,然后直接利用古典概型概率计算公式求解.【解答】解:从5个球中随机抽取两个球,共有种抽法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为.故答案为.【点评】本题考查了古典概型及其概率计算公式,考查了组合及组合数公式,是基础题.18.(2010•江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【分析】算出基本事件的总个数n=C42=6,再算出事件A中包含的基本事件的个数m=C31=3,算出事件A的概率,即P(A)=即可.【解答】解:考查古典概型知识.∵总个数n=C42=6,∵事件A中包含的基本事件的个数m=C31=3∴故填:.【点评】本题考查古典概型及其概率计算公式,其算法是:(1)算出基本事件的总个数n;(2)算出事件A中包含的基本事件的个数m;(3)算出事件A的概率,即P(A)=.19.(2009•安徽)从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是.【分析】本题是一个古典概率试验发生包含的基本事件可以列举出共4种;而满足条件的事件是可以构成三角形的事件可以列举出共3种;根据古典概型概率公式得到结果.【解答】解:由题意知,本题是一个古典概率∵试验发生包含的基本事件为2,3,4;2,3,5;2,4,5;3,4,5共4种;而满足条件的事件是可以构成三角形的事件为2,3,4;2,4,5;3,4,5共3种;∴以这三条线段为边可以构成三角形的概率是.故答案为:【点评】本题考查古典概型,考查三角形成立的条件,是一个综合题,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.20.(2011•鼓楼区校级模拟)从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字之和恰好等于4的概率是.【分析】由题意抽两次且属于有放回的抽样,利用计数原理及古典概型随机事件的概率公式即可求出.【解答】解:由题意属于有放回的抽样,因为从分别写有0,1,2,3,4五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片,即抽两次,所以利用分步计数原理可得总数为:5×5=25,即:“取出的两张卡片的数字之和恰好的等于4为事件A”:事件A的个数为:(4,0),(0,4),(2,2),(1,3),(3,1)共5个,利用古典概型随机事件的概率公式及得:P(A)=.故答案为:【点评】此题考查了有放回的抽样,古典概型随机事件的概率公式及分步计数原理.21.(2011•江西校级模拟)甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【分析】本题是一个古典概型,试验发生包含的事件是两个人分别从4个数字中各选一个数字,共有4×4种结果,满足条件的事件是|a﹣b|≤1,可以列举出所有的满足条件的事件,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件是两个人分别从4个数字中各选一个数字,共有4×4=16种结果,满足条件的事件是|a﹣b|≤1,可以列举出所有的满足条件的事件,当a=1时,b=1,2,当a=2时,b=1,2,3当a=3时,b=2,3,4当a=4时,b=3,4总上可知共有2+3+3+2=10种结果,∴他们“心有灵犀”的概率为=故答案为:【点评】本题考查古典概型及其概率公式.考查利用分类计数原理表示事件数,考查理解能力和运算能力,注意列举出的事件数做到不重不漏.22.(2012•东莞二模)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量=(m,n),=(3,6),则向量与共线的概率为.【分析】本题是一个古典概型,试验发生包含的事件是一颗骰子掷两次,共有6×6种结果,满足条件事件是向量共线,根据向量共线的条件得到6m﹣3n=0即n=2m,列举出所有的结果数,得到概率.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是一颗骰子掷两次,共有6×6=36种结果,满足条件事件是向量=(m,n)与=(3,6)共线,即6m﹣3n=0,∴n=2m,满足这种条件的有(1,2)(2,4)(3,6),共有3种结果,∴向量与共线的概率P=,故答案为:【点评】本题考查古典概型及其概率公式,考查向量共线的充要条件,考查利用列举法得到所有的满足条件的事件数,本题是一个比较简单的综合题目.23.(2013•西湖区校级模拟)某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.【分析】先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出.【解答】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙也有两种选法,根据乘法原理可知:共有22=4中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,因此他们在同一个食堂用餐的概率P=.故答案为.【点评】熟练掌握分步乘法原理和古典概型的概率计算公式是解题的关键.24.(2011•卢湾区一模)在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为.【分析】根据这位考生只会答5道题中的3道题,可先计算出所有的基本事件个数,及该考生不及格的事件个数,进行求出该生不能及格的概率,然后根据对立事件减法公式,得到答案.【解答】解:从5道备选试题中随机抽出3道题共有:C53==10种情况其中从该考生考试不及格,即正好抽中该生不会的两道题有:C31=3种情况即这位考生不及格的概率为故这位考生能够及格的概率P=1﹣=故答案为:【点评】本题考查的知识点是古典概型及其概率计算公式,其中根据正繁则反的原则,先求对立事件的概率,是解答本题的关键.。

离散型随机变量的分布列及期望(超几何分布类) -2019年高考理科数学解答题训练解析版

离散型随机变量的分布列及期望(超几何分布类) -2019年高考理科数学解答题训练解析版

离散型随机变量的分布列及期望(超几何分布类)-2019年高考理科数学解答题训练解析版一、解答题1.从某校高三的学生中随机抽取了100名学生,统计了某次数学模考考试成绩如表:(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这100名学生的平均成绩;(2)从这100名学生中,采用分层抽样的方法已抽取了 20名同学参加“希望杯数学竞赛”,现需要选取其中3名同学代表高三年级到外校交流,记这3名学生中“期中考试成绩低于120分”的人数为,求的分布列和数学期望.【答案】(1)见解析;(2)见解析详解:(1),.频率分布表为:频率分布直方图为:平均成绩为分.∴的分布列为:∴.点睛:根据频率分布表绘制频率分布直方图时,注意小矩形的高是频率除以组距,各小矩形的面积和为.计算随机变量的分布列时,注意利用常见模型计算概率,如二项分布、超几何分布等.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【答案】(1)0.3(2)见解析(3)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.试题解析:(Ⅰ)由图知,在服药的50名患者中,指标的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标的值小于60的概率为.(Ⅱ)由图知,A,B,C,D四人中,指标的值大于1.7的有2人:A和C.所以的所有可能取值为0,1,2..所以的分布列为故的期望.(Ⅲ)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.【名师点睛】求分布列的三种方法:(1)由统计数据得到离散型随机变量的分布列;(2)由古典概型求出离散型随机变量的分布列;(3)由互斥事件的概率、相互独立事件同时发生的概率及n次独立重复试验有k次发生的概率求离散型随机变量的分布列.3.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.参考数据:,其中【答案】(1)能(2)①②见解析详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充列联表如下:因为的观测值,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.故随机变量的分布列为:所以.点睛:本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了古典概型的概率计算问题,是中档题.4.质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.【答案】(1)(2)见解析【解析】分析:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.通过,P(E)=P(B)+P(C),.求解概率即可.(2)由题意知,的所有可能取值为0,1,2,求出概率得到分布列,然后求解期望即可.分布列为所以,.点睛:本题考查条件概率的应用,离散型随机变量的分布列以及期望的求法,考查分析问题解决问题的能力.5.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如下表所示:(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X 的分布列和数学期望. 参考公式: ()()()()()()22n ad bc K n a b c d a c b d a b c d -==+++++++【答案】(1)见解析;(2)()1E X =所以X 的分布列为E (X)=0×+1×+2×+3×=1.6.“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: [)20,30, [)30,40, [)40,50,[)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在[)40,70的人数; (2)求40名读书者年龄的平均数和中位数;(3)若从年龄在[)20,40的读书者中任取2名,求这两名读书者年龄在[)30,40的人数X 的分布列及数学期望.【答案】(1)30;(2)54,55;(3) X 的分布列如下:数学期望43EX =试题解析:(3)年龄在[)20,30的读书者有0.00510402⨯⨯=人, 年龄在[)30,40的读书者有0.0110404⨯⨯=人, 所以X 的所有可能取值是0,1,2,()2024241015C C P X C ===, ()1124248115C C P X C ===,()0224246215C C P X C ===, X 的分布列如下:数学期望18640121515153EX =⨯+⨯+⨯=.。

数学(选修23)练习8.2.6离散型随机变量的数学期望

数学(选修23)练习8.2.6离散型随机变量的数学期望

第8章 8.21.已知随机变量ξ的分布列如下,则E (ξ)等于( )A .1B .13C .4.5D .2.4解析:E (ξ)=1×0.5+3×0.3+5×0.2=2.4. 答案:D2.有10件产品,其中3件是次品,从中任取2件,若X 表示取到的次品的个数,则E (X )等于( )A .35B .815C .1415D .1解析:离散型随机变量X 服从N =10,M =3,n =2的超几何分布. ∴E (X )=nM N =2×310=35.答案:A3.一名射手每次射击中靶的概率均为0.8,则他独立射击3次时中靶次数X 的均值为( )A .0.8B .0.83C .3D .2.4解析:射手独立射击3次中靶次数X 服从二项分布,即X ~B (3,0.8),故E (X )=3×0.8=2.4.答案:D4.口袋中有5个球,编号分别为1,2,3,4,5,从中任取3个球,以ξ表示取出球的最大号码,则E (ξ)=________.解析:由题意知,ξ的分布列为所以E (ξ)=3×110+4×310+5×610=4.5.答案:4.55.某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门,首次到达此门,系统会随机 (即等可能)为你打开一个通道.若是1号通道,则需要1 h 走出迷宫;若是2号通道、3号通道,则分别需要2 h,3 h 返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需时间.(1)求ξ的分布列. (2)求ξ的均值.解:(1)ξ的所有可能取值为1,3,4,6. P (ξ=1)=13,P (ξ=3)=16,P (ξ=4)=16,P (ξ=6)=13.所以ξ的分布列为(2)E (ξ)=1×13+3×16+4×16+6×13=72(h).。

分布列76题(带答案)

分布列76题(带答案)

1.甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核材料过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.(1)求甲,乙,丙三人中只有一人通过审核材料的概率;(2)求甲,乙,丙三人中至少有两人获得自主招生入选资格的概率.2.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.3.某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需要参加下次考核.若小李参加每次考核合格的概率依次组成一个公差为18的等差数列,他参加第一次考核合格的概率超过12,且他直到参加第二次考核才合格的概率为9 32.(1)求小李第一次参加考核就合格的概率P1;(2)求小李参加考核的次数X的分布列和数学期望E(X).1.解(1)分别记甲,乙,丙通过审核材料为事件A1,A2,A3记甲,乙,丙三人中只有一人通过审核为事件B,则P(B)=P(A1A2A3)+P(A1A2A3)+P(A1A2A3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2)分别记甲,乙,丙三人中获得自主招生入选资格为事件C,D,E,记甲,乙,丙三人中至少有两人获得自主招生入选资格为事件F,则P(C)=P(D)=P(E)=0.3,∴P(F)=C23×0.32×0.7+C33×0.33=0.189+0.027=0.216.2.解记A i表示事件:第1次和第2次这2次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球时,甲、乙的比分为1比2.(1)B=A0·A+A1·A,P(A)=0.4,P(A0)=0.42=0.16,P(A1)=2×0.6×0.4=0.48,P(B)=P(A0·A+A1·A)=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2)P(A2)=0.62=0.36.ξ的可能取值为0,1,2,3.P(ξ=0)=P(A2·A)=P(A2)P(A)=0.36×0.4=0.144,P(ξ=2)=P(B)=0.352,P(ξ=3)=P(A0·A)=P(A0)P(A)=0.16×0.6=0.096,P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=1-0.144-0.352-0.096=0.408.E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3) =0.408+2×0.352+3×0.096 =1.400.3.解 (1)由题意得(1-P 1)·()P 1+18=932,∴P 1=14或58.∵P 1>12,∴P 1=58.(2)由(1)知小李4次考核每次合格的概率依次为58,34,78,1,所以P (X =1)=58,P (X =2)=932,P (X =3)=()1-58()1-34×78=21256, P (X =4)=()1-58()1-34()1-78×1=3256,所以X 的分布列为∴E (X )=1×58+2×932+3×21256+4×3256=379256.5.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p . (1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E (ξ). (1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110·p =4950,解得p =15.(4分)(2)由题意,P (ξ=0)=C 03⎝⎛⎭⎫1103=11 000, P (ξ=1)=C 13⎝⎛⎭⎫1102·⎝⎛⎭⎫1-110=271 000, P (ξ=2)=C 23110·⎝⎛⎭⎫1-1102=2431 000, P (ξ=3)=C 33⎝⎛⎭⎫1-1103=7291 000.(8分) 所以,随机变量ξ的概率分布列为故随机变量ξ的数学期望:E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710.6.某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (1)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望.(2)求这名同学总得分不为负分(即ξ≥0)的概率.解(1)ξ的可能取值为-300,-100,100,300.P(ξ=-300)=0.23=0.008,P(ξ=-100)=3×0.22×0.8=0.096,P(ξ=100)=3×0.2×0.82=0.384,P(ξ=300)=0.83=0.512.所以ξ的概率分布为根据ξ的概率分布,可得ξEξ=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180.(2)这名同学总得分不为负分的概率为P(ξ≥0)=0.384+0.512=0.896.7.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.解设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:(1)A需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)法一X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为E(X)=0×0.5+1×0.49+2×0.01=0.51.法二X的所有可能取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49;所以X的分布列为E(X)=0×0.5+1×0.49+2×0.01=0.51.2.(2011·浙江高考,理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的分布列及数学期望E(X)解析由P(X=0)=112,所以13×(1-p)×(1-p)=112,得p=12,所以X的分布列如下:所以E(X)=0×112+1×13+2×512+3×16=53.2、袋子A、B中均装有若干个大小相同的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止。

高二数学周末测试空间向量在立体几何中的应用、计数原理、分布列与期望

高二数学周末测试空间向量在立体几何中的应用、计数原理、分布列与期望

高二数学周末测试(范围:空间向量在立体几何中的应用、计数原理、分布列与期望)一、选择题1.已知P (B |A )=12,P (A )=35,P (AB )等于( )A.56B.910C.310D.1102.二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中的常数项是( )A .20B .-20C .160D .-1603.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为( )A.49B.29C.427D.2274.盒中有1个黑球,9个白球,它们除颜色不同外,其他方面没什么差别,现由10人依次摸出1个球后放回,设第1个人摸出黑球的概率是P 1,第10个人摸出黑球的概率是P 10,则( )A .P 10=110P 1B .P 10=19P 1 C .P 10=0 D .P 10=P 15.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ).A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能6.若二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中第5项是常数项,则正整数n 的值可能为( ).A .6B .10C .12D .157.位于西部地区的A 、B 两地,据多年的资料记载:A 、B 两地一年中下雨天仅占6%和8%,而同时下雨的比例为2%,则A 地为雨天时,B 地也为雨天的概率为 ( )A.17B.14C.13D.348.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A.15B.12C.34D.310 9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1的夹角是 ( ) A .45° B .60° C .90° D .120°10.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为13,12,23,则汽车在这三处因遇红灯而停车一次的概率为( )A.19B.16C.13D.718 二、填空题11.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).12.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.14.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 5,4种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的实验方案有________种.15.如图所示,已知二面角α—l —β的平面角为θ (θ∈⎝⎛⎭⎪⎫0,π2),AB ⊥BC ,BC ⊥CD ,AB 在平面N 内,BC 在l 上,CD 在平面M 内,若AB =BC =CD =1,则AD 的长为________.三、解答题16.已知⎝ ⎛⎭⎪⎫41x+3x 2n展开式中的倒数第三项的系数为45,求: (1)含x 3的项;(2)系数最大的项.17.一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?18.如图,在四棱锥P-ABCD中,底面是边长为23的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=26,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.19.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,(ⅰ)摸出3个白球的概率;(ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).20.如图所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f(x)=x3+ξ为R上的奇函数”为事件A,求事件A的概率;(2)求ξ的分布列和数学期望.参考答案CDADB CCBBD11. 72 12.47 13.0.128 14.14 15.3-2cos θ16.解 (1)由题意可知C n -2n =45,即C 2n =45,∴n =10,T r +1=C r 10⎝ ⎛⎭⎪⎫x -1410-r ⎝ ⎛⎭⎪⎫x 23r =C r 10x 11r -3012,令11r -3012=3,得r =6,所以含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项即T 6=C 510x 55-3012=252x 2512.17.解 (1)将取出4个球分成三类情况:①取4个红球,没有白球,有C 44种; ②取3个红球1个白球,有C 34C 16种; ③取2个红球2个白球,有C 24C 26种, 故有C 44+C 34C 16+C 24C 26=115种. (2)设取x 个红球,y 个白球,则⎩⎪⎨⎪⎧x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6, 故⎩⎪⎨⎪⎧x =2y =3或⎩⎪⎨⎪⎧x =3y =2或⎩⎪⎨⎪⎧x =4,y =1.因此,符合题意的取法种数有C 24C 36+C 34C 26+C 44C 16=186(种).18.(1)证明 连接BD ,因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD . 又因为MN ⊄平面ABCD ,BD ⊂平面ABCD , 所以MN ∥平面ABCD . (2)解 方法一连接AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系Oxyz ,如图所示.在菱形ABCD 中,∠BAD =120°, 得AC =AB =23,BD =3AB =6. 又因为PA ⊥平面ABCD ,所以PA ⊥AC .在直角△PAC 中,AC =23,PA =26,AQ ⊥PC ,得QC =2,PQ =4.由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0), P (-3,0,26),M ⎝ ⎛⎭⎪⎫-32,-32,6,N ⎝ ⎛⎭⎪⎫-32,32,6, Q ⎝⎛⎭⎪⎫33,0,263.设m =(x ,y ,z )为平面AMN 的法向量, 由AM →=⎝ ⎛⎭⎪⎫32,-32,6,AN →=⎝ ⎛⎭⎪⎫32,32,6知⎩⎪⎨⎪⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1). 设n =(x ,y ,z )为平面QMN 的法向量,由QM →=⎝ ⎛⎭⎪⎫-536,-32,63,QN →=⎝ ⎛⎭⎪⎫-536,32,63知⎩⎪⎨⎪⎧-536x -32y +63z =0,-536x +32y +63z =0.取z =5,得n =(22,0,5).于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333.方法二 如图所示, 在菱形ABCD 中, ∠BAD =120°,得AC =AB =BC =CD =DA ,BD =3AB .又因为PA ⊥平面ABCD , 所以PA ⊥AB ,PA ⊥AC ,PA ⊥AD .所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点, 所以MQ =NQ ,且AM =12PB =12PD =AN .取线段MN 的中点E ,连接AE ,EQ , 则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角. 由AB =23,PA =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332.在Rt△PAC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4.在△PBC 中,cos∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得MQ =PM 2+PQ 2-2PM ·PQ cos∠BPC = 5. 在等腰△MQN 中,MQ =NQ =5,MN =3, 得QE =MQ 2-ME 2=112. 在△AEQ 中,AE =332,QE =112,AQ =22,得cos∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333.所以二面角A -MN -Q 的平面角的余弦值为3333. 19.解析 (1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3), 则P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3. 又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12,且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2. 由于X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,710. ∴P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100, P (X =1)=C 12710×⎝⎛⎭⎪⎫1-710=2150, P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是X 0 1 2 P9100215049100X 的数学期望E (X )=0×9100+1×2150+2×49100=75. 20.解 设正方体的棱长为1.如图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系Oxyz . (1)依题意,得B (1,0,0),E ⎝⎛⎭⎪⎫0,1,12,A (0,0,0),D (0,1,0),所以BE →=⎝ ⎛⎭⎪⎫-1,1,12,AD →=(0,1,0).在正方体ABCD —A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量. 设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.故直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE . 证明如下:依题意,得A 1(0,0,1),BA 1→=(-1,0,1), BE →=⎝⎛⎭⎪⎫-1,1,12.设n =(x ,y ,z )是平面A 1BE 的一个法向量, 则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0.所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1) (0≤t ≤1). 又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为棱C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .21.解 设该学生选修甲、乙、丙的概率分别为x 、y 、z .依题意得⎩⎪⎨⎪⎧x 1-y 1-z =0.08,xy 1-z =0.12,1-1-x 1-y 1-z =0.88,解得⎩⎪⎨⎪⎧x =0.4,y =0.6,z =0.5.(1)若函数f (x )=x 3+ξ为R 上的奇函数,则ξ=0. 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z )=0.4×0.5×0.6+(1-0.4)(1-0.5)·(1-0.6)=0.24.∴事件A的概率为0.24.(2)依题意知ξ=0或2,则ξ的分布列为ξ0 2P 0.240.76 ∴ξ的数学期望为E(ξ)=0×0.24+2×0.76=1.52.。

高中数学数学期望分布列

高中数学数学期望分布列

排列组合二项式定理10.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A 14B 24C 28D 4811.若1()2n x x +的展开式中前三项的系数成等差数列,则展开式中4x 项的系数为( ) A .6 B . 7 C . 8 D .912.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有 ( ) (A)20种 (B)30种 (C)40种 (D)60种13.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种.(用数字作答)14.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成。

如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方式共有__________种.(用数字作答)15..从甲,乙等10名同学中选4名去参加某项公益活动,要求甲、乙至少有1人参加,则不同的挑选方式共有16. 55432543210(2),x a x a x a x a x a x a -=+++++12345a a a a a ++++= 17若231()n x x+的展开式的各项系数之和为32,则n= , 其展开式中的常数项为 。

18. 623)1)(1(x x x ++展开式中的常数项为__________. 19. 某班级要从4明男生、2明女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 _________,统计16.(本小题共13分)根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求上图中a 的值;(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数X 的分布列及数学期望(频率当作概率使用);(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)16.(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.0.010.190.290.45O 甲击中环数频率0.050.150.100.350.300.250.20O 频率乙击中环数导数(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x 练习:设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0).(Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1.练习:已知 (Ⅰ)求函数的单调区间;(Ⅱ)求函数在上的最小值;(Ⅲ)对一切的,恒成立,求实数的取值范围. 练习:设函数(Ⅰ)当曲线处的切线斜率(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数有三个互不相同的零点0,,且。

【习题集含详解】高中数学题库高考专点专练之186分布列期望与方差

【习题集含详解】高中数学题库高考专点专练之186分布列期望与方差
则 的值为
A. B. C. D.
9.已知某口袋中有 个白球和 个黑球( ).现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球).记换好球后袋中白球的个数是 ,若 ,则
A. B. C. D.
10.如果某射射手每次射击击中目标的概率为 ,每次射击的结果相互独立,那么他在 次射击中,最有可能击中目标的次数是
32.一个口袋里装有大小相同的 个小球,其中红色、黄色、绿色的球各 个,现从中任意取出 个小球,其中恰有 个小球同颜色的概率是.若取到红球得 分,取到黄球得 分,取到绿球得 分,记变量 为取出的三个小球得分之和,则 的期望为.
33.如图所示, , 两点间有 条连线并联,它们在单位时间内能通过的最大信息量依次为 , , , , .现记从中任取三条线且在单位时间内通过的最大信息总量为 ,则 .
A. B. C. 或 D.
11.口袋中有 个形状和大小完全相同的小球,编号分别为 , , , , ,从中任取 个球,以 表示取出球的最小号码,则
A. B. C. D.
12.设 是一个离散型随机变量,其分布列为
则 等于
A. B. C. D.
13.已知随机变量 满足 , , .若 ,则
A. ,
B. ,
C. ,
A. B. C. D.
二、填空题(共20小题;共100分)
21.一个机床有 的时间加工零件A,其余时间加工零件B,加工零件A时,停机的概率是 ,加工零件B时,停机的概率是 ,则这个机床停机的概率为.
22.在 , , , , 这 个数字中任取 个,则这 个数字之积的数学期望是.
23.设盒中有 个球,其中 个是白球, 个是黑球,从中任取 个球,则取到的白球数 的数学期望 .

35 高中数学分布列与期望及决策专题训练

35 高中数学分布列与期望及决策专题训练

专题35高中数学分布列与期望及决策专题训练【知识总结】离散型随机变量X 的分布列为则,(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )= i =1n[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).【高考真题】1.(2022·全国甲理) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.2.(2022·北京) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证)【题型突破】1.某校计划举行以“唱支山歌给党听”为主题的红歌合唱比赛活动,现有高一1,2,3,4班准备从《唱支山歌给党听》《没有共产党就没有新中国》《映山红》《十送红军》《歌唱祖国》5首红歌中选取一首作为比赛歌曲,设每班只选择其中一首红歌,且选择任一首红歌是等可能的.(1)求“恰有2个班级选择《唱支山歌给党听》”的概率;(2)记随机变量X 表示这4个班级共选择红歌的个数(相同的红歌记为1个),求X 的分布列与均值.2.有编号为1,2,3的三个小球和编号为1,2,3,4的四个盒子,将三个小球逐个随机地放入四个盒子中,每个小球的放置相互独立.(1)求三个小球恰在同一个盒子中的概率;(2)求三个小球在三个不同盒子且每个小球编号与所在盒子编号不同的概率;(3)记录所有至少有一个小球的盒子,以X 表示这些盒子编号的最小值,求E (X ).3.某公司年会有幸运抽奖环节,一个箱子里有相同的十个乒乓球,球上分别标0,1,2,…,9这十个自然数,每位员工有放回依次取出三个球.规定:每次取出的球所标数字不小于后面取出的球所标数字即中奖.中奖项:三个数字全部相同中一等奖,奖励10 000元现金;三个数字中有两个数字相同中二等奖,奖励5 000元现金;三个数字各不相同中三等奖,奖励2 000元现金.其他不中奖,没有奖金.(1)求员工A 中二等奖的概率;(2)设员工A 中奖奖金为X ,求X 的分布列;(3)员工B 是优秀员工,有两次抽奖机会,求员工B 中奖奖金的期望.4.目前,新能源汽车尚未全面普及,原因在于技术水平有待提高,国内几家大型汽车生产商的科研团队已经独立开展研究工作.吉利研究所、北汽科研中心、长城攻坚站三个团队两年内各自出成果的概率分别为12,m ,14.若三个团队中只有长城攻坚站出成果的概率为112. (1)求吉利研究所、北汽科研中心两个团队两年内至少有一个出成果的概率及m 的值;(2)三个团队有X 个在两年内出成果,求X 的分布列和均值.5.随着社会的发展,一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业M 的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业M 的线上招聘,并均已通过了资料初审环节.假设甲通过笔试、面试的概率分别为12,13;乙通过笔试、面试的概率分别为23,12;丙通过笔试、面试的概率与乙相同. (1)求甲、乙、丙三人中至少有一人被企业M 正式录取的概率;(2)为鼓励优秀大学生积极参与企业的招聘工作,企业M 决定给报名参加应聘且通过资料初审的大学生一定的补贴,补贴标准如下表:记甲、乙、丙三人获得的所有补贴之和为X 元,求X 的分布列和均值.6.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望.7.下象棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息.现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛(规则采用“中国数目法”,没有和棋),即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛.积分规则如下(每轮比赛采取5局3胜制,比赛结束时,取胜者可能会出现3∶0,3∶1,3∶2三种赛式).9轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为23,丙获胜的概率为13,各局比赛结果相互独立.(1)①在第10轮比赛中,甲所得积分为X ,求X 的分布列;②求第10轮结束后,甲的累计积分Y 的均值;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛(“提前一轮”即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由.8.一款小游戏的规则如下:每轮游戏都要进行3次,每次游戏都需要从装有大小相同的2个红球、3个白球的袋中随机摸出2个球,若“摸出的两个都是红球”出现3次,则获得200分;若“摸出的两个都是红球”出现1次或2次,则获得20分;若“摸出的两个都是红球”出现0次,则扣除10分(即获得-10分).(1)求一轮游戏中获得20分的概率;(2)很多玩过这款小游戏的人发现,很多轮游戏后,所得的分数与最初的分数相比,不是增加而是减少了,请运用概率统计的相关知识解释这种现象.9.“T2钻石联赛”是世界乒联推出的一种新型乒乓球赛事,其赛制如下:采用七局四胜制,比赛过程中可能出现两种模式:“常规模式”和“FAST5模式”.在前24分钟内进行的常规模式中,每小局比赛均为11分制,率先拿满11分的选手赢得该局;如果两名球员在24分钟内都没有人赢得4局比赛,那么将进入“FAST5”模式,“FAST5”模式为5分制的小局比赛,率先拿满5分的选手赢得该局.24分钟计时后开始的所有小局均采用“FAST5”模式.某位选手率先在7局比赛中拿下4局,比赛结束.现有甲、乙两位选手进行比赛,经统计分析甲、乙之间以往比赛数据发现,24分钟内甲、乙可以完整打满2局或3局,且在11分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立. (1)求4局比赛决出胜负的概率;(2)设在24分钟内,甲、乙比赛了3局,比赛结束时,甲、乙总共进行的局数记为X ,求X 的分布列及数学期望.10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2021·新高考全国℃)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,P (X =i )=p i (i =0,1,2,3).(1)已知p 0=0.4,p 1=0.3,p 2=0.2,p 3=0.1,求E (X );(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:p 0+p 1x +p 2x 2+p 3x 3=x 的一个最小正实根,求证:当E (X )≤1时,p =1,当E (X )>1时,p <1;(3)根据你的理解说明(2)问结论的实际含义.12.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两组白鼠对药效进行对比试验.对于两组白鼠,当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①求证:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.13.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.14.已知某高中高三年级共有20个班,共1 000人,其中男生600人,女生400人.现在从该校高三学生中抽取10%的学生进行玩游戏时间的调查.设置方案如下:一个罐子中放置了大小、质地相同的20个红球,20个白球,被抽查的同学首先从该罐子中随机抽取一个球,看过颜色后放回,若抽到红球回答问题1,若抽到白球回答问题2,学生只需要对一个问题回答“是”或者“否”即可.问题1:你的性别是否为男生?问题2:你周末打游戏的时长是否在3小时及以上?(1)应该抽取多少学生?若用分层抽样的抽样方法,如何抽取这10%的学生?(2)最终有40张答卷回答“是”,请估计该高中高三年级有多大占比的学生周末打游戏的时长在3小时及以上.15.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)16.某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲、乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:已知甲品牌使用7个月或8个月的概率均为12,乙品牌使用3个月或4个月的概率均为12. (1)若从4件甲品牌和2件乙品牌共6件轴承中,任选2件装入电动机内,求电动机可工作时间不少于4个月的概率;(2)现有两种购置方案,方案一:购置2件甲品牌;方案二:购置1件甲品牌和2件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?17.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.18.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m 人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m 次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k 个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)19.某工厂购进一批加工设备,由于该设备自动模式运行不稳定,因此一个工作时段内会有14的概率出现自动运行故障.此时需要1名维护人员立刻将设备切换至手动操控模式,并持续人工操作至此工作时段结束,期间该维护人员无法对其他设备进行维护.工厂在每个工作时段开始时将所有设备调至自动模式,若设备的自动模式出现故障而得不到维护人员的维护,则该设备将停止运行,且每台设备运行的状态相互独立.(1)若安排1名维护人员负责维护3台设备,求这3台设备能顺利运行至工作时段结束的概率;(2)设该工厂有甲、乙两个车间.甲车间有6台设备和2名维护人员,将6台设备平均分配给2名维护人员,每名维护人员只负责维护分配给自己的3台设备;乙车间有7台设备和2名维护人员,7台设备由这2名维护人员共同负责维护.若用车间所有设备顺利运行至工作时段结束的概率来衡量生产的稳定性,试比较甲、乙两个车间生产稳定性的高低.20.在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度.为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r (0<r <1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r 的最小值;(2)当r =0.9时,求能正常工作的设备数X 的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1,更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更换设备硬件的总费用为8万元;方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护的总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策.。

高中数学专题强化训练2离散型随机变量的分布列期望与方差含解析新人教A版选修2

高中数学专题强化训练2离散型随机变量的分布列期望与方差含解析新人教A版选修2

专题强化训练(二) 离散型随机变量的分布列、期望与方差(建议用时:40分钟)一、选择题1.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为( ) A .1 B.913 C.2713 D.1113C [由分布列的性质可知:a ⎝⎛⎭⎫13+19+127=1,解得a =2713.] 2.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m )D [随机变量ξ的分布列为:ξ 0 1 P1-mm∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).]3.周老师上数学课时,给班里同学出了两道选择题,她预估做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估做对第二道题的概率是( )A .0.80B .0.75C .0.60D .0.48 B [设“做对第一道题”为事件A ,“做对第二道题”为事件B ,则P (AB )=P (A )·P (B )=0.80·P (B )=0.60,故P (B )=0.75,故选B.]4.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为 ( )A.110B.15C.25D.12C [设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合出现红灯”为事件B ,由题意可知,P (A )=12,P (AB )=15,∴P (B |A )=P (AB )P (A )=1512=25,故选C.]5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且a ,b ,c ∈(0,1).已知他投篮一次得分的均值为2,则2a +13b的最小值为( )A.323B.283C.143D.163D [由题意,得3a +2b +0×c =2,即3a +2b =2,其中0<a <23,0<b <1.又2a +13b =3a +2b2⎝⎛⎭⎫2a +13b =3+13+2b a +a 2b ≥103+22b a ·a 2b =163,当且仅当2b a =a2b,即a =2b 时取等号.又3a +2b =2,故当a =12,b =14时,2a +13b 取得最小值,为163.故选D.]二、填空题6.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.1335 [P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335.] 7.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于________.12[由题意可知,n (B )=C 1322=12,n (AB )=A 33=6. 所以P (A |B )=n (AB )n (B )=612=12.] 8.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.1927 [因为X ~B (2,p ),所以P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13. 又Y ~B (3,p ),所以P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.] 三、解答题9.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,求E (ξ)和D (ξ).[解] ξ的所有可能取值为0,1,3,ξ=0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,则P (ξ=0)=2A 33=13;ξ=1表示三位同学只有1位同学坐对了, 则P (ξ=1)=C 13A 33=12;ξ=3表示三位学生全坐对了,即对号入座, 则P (ξ=3)=1A 33=16.所以,ξ的分布列为E (ξ)=0×13+1×12+3×16=1;D (ξ)=13×(0-1)2+12×(1-1)2+16×(3-1)2=1.10.红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P (ξ≤1).[解] (1)设“甲胜A ”为事件D ,“乙胜B ”为事件E ,“丙胜C ”为事件F ,则D -,E -,F -分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式,知P (D -)=0.4,P (E -)=0.5,P (F -)=0.5.红队至少两人获胜的事件有DE F -,D E -F ,D -EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F -)+P (D E -F )+P (D -EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3. P (ξ=0)=P (D -E -F -)=0.4×0.5×0.5=0.1,P (ξ=1)=P (D -E -F )+P (D -E F -)+P (D E -F -)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P (ξ≤1)=P (ξ=0)+P (ξ=1)=0.45.1.随机变量ξ的分布列如下表,且E (ξ)=1.1,则D (ξ)=( )ξ 0 1 x P15p 310A.0.36 C .0.49D .0.68C [先由随机变量分布列的性质求得p =12.由E (ξ)=0×15+1×12+310x =1.1,得x =2.所以D (ξ)=(0-1.1)2×15+(1-1.1)2×12+(2-1.1)2×310=0.49.]2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为 ( )A.6581 B.2527 C.827D.79C [已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝⎛⎭⎫232×⎝⎛⎭⎫132=827.]3.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.其中甲、乙2名学生选做同一道题的概率是________.12[设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“AB +A B ”,且事件A ,B 相互独立.所以P (AB +A -B -)=P (A )P (B )+P (A )P (B )=12×12+⎝⎛⎭⎫1-12⎝⎛⎭⎫1-12=12.] 4.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p .若此人未能通过的科目数ξ的均值是2,则p =________.23[因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知ξ~B (6,1-p ),所以E (ξ)=6(1-p )=2,解得p =23.]5.根据以往的经验,某工程施工期间的降水量X (单位: mm)对工期的影响如下表:求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.[解] (1)由已知条件和概率的加法公式有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )=0×0.3+2×0.4+6×0.2+10×0.1=3,D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67. 故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.。

高中数学专题28_离散型随机变量的分布列_、期望与方差、正态分布(有答案)

高中数学专题28_离散型随机变量的分布列_、期望与方差、正态分布(有答案)

专题28 离散型随机变量的分布列、期望与方差、正态分布一、解答题。

1. (哈尔滨第九中学二模)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如图频率分布直方图.求直方图中a的值;由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(200,12.22),试计算数据落在(187.8,212.2)上的概率;参考数据:Z∼N(μ,δ2),则P(μ−δ<Z<μ+δ)=0.6826,P(μ−2δ<Z<μ+2δ)=0.9544.设生产成本为y,质量指标为x,生产成本与质量指标之间满足函数关系y={0.4x, x≤205,0.8x−80,x>205,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.2. (陕西宝鸡质检三)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.3. (乌鲁木齐三诊)小明和他的一些同学住在同一小区,他们上学、放学坐公交在路上所用的时间X(分钟)只与路况畅通情况有关(上学、放学时的路况是一样的),小明在一年当中随机地记录了200次上学(或放学)在路上所用的时间,其频数统计如表所示.求他上学(或放学)在路上所用时间的数学期望E(X);小明和他的另外两名同学4月23日彼此独立地从小区到学校去,设他们3人中所用时间不超过E(X)的人数为Y,求Y的分布列及数学期望;小明在某天上学和放学总共所花的时间不超过40分钟的概率是多少?4. (郑州一次质测)为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行,某甲、乙两个单位各有200名员工,为了了解员工低碳出行的情况,统计了12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如图所示.若甲单位数据的平均数是122,求x;现从如图所示的数据中任取4天的数据(甲、乙两单位中各取2天),记其中甲、乙两单位员工低碳出行人数不低于130人的天数为ξ1,ξ2,令η=ξ1+ξ2,求η的分布列和数学期望.5. (山东青岛统一质检)某校高三年级的500名学生参加了一次数学测试,已知这500名学生的成绩全部介于60分到140分之间(满分150分),为统计学生的这次考试情况,从这500名学生中随机抽取50名学生的考试成绩作为样本进行统计.将这50名学生的测试成绩的统计结果按如下方式分成八组:第一组[60, 70),第二组[70, 80),第三组[80, 90),⋯,第八组[130, 140].如图是按上述分组方法得到的频率分布直方图的一部分.求第七组的频率,并完成频率分布直方图;估计该校高三年级的这500名学生的这次考试成绩的中位数;若从样本成绩属于第一组和第六组的所有学生中随机抽取2人,记这2名学生中属于第一组的人数为ξ,令η=2ξ+1,求ξ的分布列及E(η).6. (江西赣州摸底)由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.在(Ⅰ)的条件下,(ⅰ)求该团队能进入下一关的概率;(ⅱ)该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.7. (福州质检)从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:公司规定:当Z≥95时,产品为正品;当Z<95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;由频率分布直方图可以认为,Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x¯,σ2近似为样本方差s2(同一组中的数据用该区间的中点值作代表).(ⅰ)利用该正态分布,求P(87.8<Z<112.2);(ⅱ)某客户从该公司购买了500件这种产品,记X表示这500件产品中该项质量指标值位于(87.8,112.2)的产品件数,利用(ⅰ)的结果,求E(X).附:√150≈12.2.若Z∼N(μ,σ2),则P(μ−σ<Z<μ+σ)=0.6826,P(μ−2σ<Z<μ+2σ)=0.9544.8. (河北衡水中学九模)某仪器经过检验合格才能出厂,初检合格率为3:若初检不合4格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再.每台仪器各项费用如表:检合格率为45求每台仪器能出厂的概率;求生产一台仪器所获得的利润为1600元的概率(注:利润=出厂价−生产成本−检验费−调试费);假设每台仪器是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列和数学期望.专题28 离散型随机变量的分布列 、期望与方差、正态分布一、解答题。

概率论分布列期望方差习题及答案

概率论分布列期望方差习题及答案

圆梦教育离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,,,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望;(3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为,出现“×”的概率为.若第次出现“○”,则a=1;出现“×”,则a=.令S=a+a+…+a.(1)当时,求S2的概率;(2)当,时,求S=2且S≥0(i=1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答的概率分别为,正确回答一个问题后,选择继续回答下一个问题的概率均为,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为,求的分布列与数学期望.5.某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。

概率统计与期望方差分布列大题压轴练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题压轴练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题压轴练新高考数学复习分层训练(新高考通用)1.(2023秋·浙江·高三校联考期末)抽屉中装有5双规格相同的筷子,其中2双是一次性筷子,3双是非一次性筷子,每次使用筷子时,从抽屉中随机取出1双,若取出的是一次性筷子,则使用后直接丢弃,若取出的是非一次性筷子,则使用后经过清洗再次放入抽屉中,求:(1)在第2次取出的是非一次性筷子的条件下,第1次取出的是一次性筷子的概率;(2)取了3次后,取出的一次性筷子的个数(双)的分布列及数学期望;(3)取了(2,3,4n n =,…)次后,所有一次性筷子刚好全部取出的概率.2.(2022·江苏南京·南京市江宁高级中学校考模拟预测)2022年2月6日,中国女足在两球落后的情况下,以3比2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战6:5惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X 的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为n p ,易知121,0==p p .①试证明14n p ⎧⎫-⎨⎬⎩⎭为等比数列;②设第n 次传球之前球在乙脚下的概率为n q ,比较10p 与10q 的大小.3.(2023春·浙江杭州·高三浙江省杭州第二中学校考开学考试)中国在第75届联合国大会上承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车、电动汽车是重要的战略新兴产业,对于实现“双碳目标”具有重要的作用.为了解某一地区电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量y (单位:万台)关于x (年份)的线性回归方程为4.79459.2y x =-,且销量y 的方差为22545y s =,年份x 的方差为22x s =.(1)求y 与x 的相关系数r ,并据此判断电动汽车销量y 与年份x 的相关性强弱;(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值0.05α=的独立性检验,能否认为购买电动汽车与车主性别有关;(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中,男性的人数为X ,求X 的分布列和数学期望.25≈;②参考公式:(i )线性回归方程:ˆy bxa =+,其中()()()121ˆˆ,ni ii n i i x x yy b a y bxx x ==--==--∑∑;(ii )相关系数:()()niix x y y r --=∑0.9r >,则可判断y 与x 线性相关较强.(iii )()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.附表:α0.100.050.0100.001x α2.7063.8416.63510.8284.(2023·浙江·模拟预测)2022年卡塔尔世界杯决赛圈共有32队参加,其中欧洲球队有13支,分别是德国、丹麦、法国、西班牙、英格兰、克罗地亚、比利时、荷兰、塞尔维亚、瑞士、葡萄牙、波兰、威尔士.世界杯决赛圈赛程分为小组赛和淘汰赛,当进入淘汰赛阶段时,比赛必须要分出胜负.淘汰赛规则如下:在比赛常规时间90分钟内分出胜负,比赛结束,若比分相同,则进入30分钟的加时赛.在加时赛分出胜负,比赛结束,若加时赛比分依然相同,就要通过点球大战来分出最后的胜负.点球大战分为2个阶段.第一阶段:前5轮双方各派5名球员,依次踢点球,以5轮的总进球数作为标准(非必要无需踢满5轮),前5轮合计踢进点球数更多的球队获得比赛的胜利.第二阶段:如果前5轮还是平局,进入“突然死亡”阶段,双方依次轮流踢点球,如果在该阶段一轮里,双方都进球或者双方都不进球,则继续下一轮,直到某一轮里,一方罚进点球,另一方没罚进,比赛结束,罚进点球的一方获得最终的胜利.下表是2022年卡塔尔世界杯淘汰赛阶段的比赛结果:():()法国”表示阿根廷与法国在常规比赛及加时赛的比分为33:,在点注:“阿根廷4332:战胜法国.球大战中阿根廷42(1)请根据上表估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率.(2)根据题意填写下面的22 列联表,并通过计算判断是否能在犯错的概率不超过0.01的前提下认为“32支决赛圈球队闯入8强”与是否为欧洲球队有关.欧洲球队其他球队合计闯入8强未闯入8强合计(3)若甲、乙两队在淘汰赛相遇,经过120分钟比赛未分出胜负,双方进入点球大战.已知甲队球员每轮踢进点球的概率为p,乙队球员每轮踢进点球的概率为23,求在点球大战中,两队前2轮比分为2:2的条件下,甲队在第一阶段获得比赛胜利的概率(用p表示).参考公式:22(),.()()()()n ad bc n a b c da b c d a c b dχ-==+++ ++++()2Pχα≥0.10.050.010.0050.001α 2.706 3.841 6.6357.87910.8285.(2022秋·江苏常州·高三校联考阶段练习)汽车尾气排放超标是全球变暖、海平面上升的重要因素.我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到下面的统计表:年份t20172018201920202021年份代码()2016x x t=-12345销量/y万辆1012172026(1)统计表明销量y与年份代码x有较强的线性相关关系,求y关于x的线性回归方程,并预测该地区新能源汽车的销量最早在哪一年能突破50万辆;(2)为了解购车车主的性别与购车种类(分为新能源汽车与传统燃油汽车)的情况,该企业心随机调查了该地区200位购车车主的购车情况作为样本其中男性车主中购置传统燃油汽车的有w名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车.①若95w=,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数(假设每位车主只购买一辆汽车,结果精确到千人);②设男性车主中购置新能源汽车的概率为p ,将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为()f p ,求当w 为何值时,()f p 最大.附:ˆˆy bxa =+为回归方程,1221ˆniii nii x ynxy b xnx ==-=-∑∑,ˆˆay bx =-.6.(2022秋·江苏南通·高三校考期中)核酸检测也就是病毒DNA 和RNA 的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状乙肝、丙肝和艾滋病的病毒检测.通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n 份分为一组,将样本分成若干组,从每一组的标本中各取部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.以此类推,直到确定所有样本的结果.若每次检测费用为a 元,记检测的总费用为X 元.(1)当n =3时,求X 的分布列和数学期望.(2)比较n =3与n =4两种方案哪一个更好,说明理由.7.(2023秋·辽宁·高三校联考期末)2022年冬奥会由北京和张家口联合举办,其中冰壶比赛在改造一新的水立方进行.中国女子冰壶队作为东道主对奥运冠军发起冲击.奥运会冰壶比赛将分为循环赛、淘汰赛和决赛三部分,其中循环赛前三名晋级淘汰赛.在淘汰赛中,循环赛第一和第二的两支队伍先进行一场比赛,胜者晋级最后的决赛,负者与循环赛第三名再进行一场比赛,胜者晋级决赛,败者即为本届比赛的第三名.决赛决出比赛的第一名与第二名.(1)循环赛进行九轮比赛,每支队伍都需要与其余九支队伍各进行一场比赛.中国队的主要对手包括加拿大队、瑞士队、瑞典队、英国队.若循环赛的赛程完全随机排列,则中国队在前六轮之内完成与主要对手交锋的概率是多少?(2)若中国队以循环赛第二名的成绩进入淘汰赛,同时进入淘汰赛的还有排名第一的加拿大队和排名第三的瑞士队.过往战绩表明,中国队与加拿大队对战获胜的概率为40%,与瑞士队对战获胜的概率为60%,加拿大队战胜瑞士队的概率为70%.假定每场比赛胜负的概率独立.若以随机变量X 表示中国队最终获得的名次,求其分布列和数学期望.8.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[70,100)内,在以组距为5画分数的频率分布直方图(设“=Y 频率组距”)时,发现Y 满足*8109,16300,N ,55(1)11,161520n n Y n n X n k n n -⎧⎪⎪=∈<+⎨⎪-⋅>⎪-⎩.(1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[)95,100的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段评为二等奖.(i )求学生B 最终获奖等级不低于学生A 的最终获奖等级的概率;(ii )已知学生A 和B 都获奖,记A B ,两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.9.(2023·河北衡水·衡水市第二中学校考模拟预测)某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有12的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有12的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立:(1)当“突击者”发动一轮攻击时,记事件A 为“技能一和技能二的触发次数之和为2”,事件B 为“技能一和技能二各触发1次”,求条件概率()P B A (2)设n 是正整数,“突击者”一轮攻击造成的伤害为2n 的概率记为n P ,求n P .10.(2023春·福建南平·高三校联考阶段练习)在上海举办的第五届中国国际进口博览会中,硬币大小的无导线心脏起搏器引起广大参会者的关注.这种起搏器体积只有传统起搏器的110,其无线充电器的使用更是避免了传统起搏器囊袋及导线引发的相关并发症.在起搏器研发后期,某企业快速启动无线充电器主控芯片试生产,试产期同步进行产品检测,检测包括智能检测与人工抽检.智能检测在生产线上自动完成,包含安全检测、电池检测、性能检测等三项指标,人工抽检仅对智能检测三项指标均达标的产品进行抽样检测,且仅设置一个综合指标,四项指标均达标的产品才能视为合格品.已知试产期的产品,智能检测三项指标的达标率约为99100,9899,9798,设人工抽检的综合指标不达标率为p (01p <<).(1)求每个芯片智能检测不达标的概率;(2)人工抽检30个芯片,记恰有1个不达标的概率为()p ϕ,求()p ϕ的极大值点0p ;(3)若芯片的合格率不超过96%,则需对生产工序进行改良.以(2)中确定的0p 作为p 的值,判断该企业是否需对生产工序进行改良.11.(2023·福建莆田·统考二模)互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量12m =,样本平均数18x =,样本方差2119s =;乙镇的样本容量18n =,样本平均数36y =,样本方差2270s =.(1)求由两镇样本组成的总样本的平均数z 及其方差2S ;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为35,当比赛在乙镇举行时,甲镇代表队获胜的概率为12.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X ,求()E X .参考数据:2222212183888,183623328,28.8829.44,1210.81399.68,187.2933.12⨯=⨯==⨯=⨯=.12.(2023·福建厦门·统考二模)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W 与年份代码t 的散点图,其中年份2018-2022对应的t 分别为1~5.(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;(2)(i)假设变量x 与变量Y 的n 对观测数据为(x 1,y 1),(x 2,y 2),…,(xn ,yn ),两个变量满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩(随机误差ii i e y bx =-).请推导:当随机误差平方和Q =21ni i e =∑取得最小值时,参数b 的最小二乘估计.(ii)令变量,x t t y w w =-=-,则变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩利用(i)中结论求y 关于x 的经验回归方程,并预测2024年移动物联网连接数.附:样本相关系数()()niit t r w w -=-∑,()25176.9i i w w=-=∑,()()5127.2iii t t w w =--=∑,5160.8ii w ==∑27.7≈13.(2022秋·山东潍坊·高三统考阶段练习)学校篮球队30名同学按照1,2,…,30号站成一列做传球投篮练习,篮球首先由1号传出,训练规则要求:第()128,m m m ≤≤∈N 号同学得到球后传给1m +号同学的概率为23,传给2m +号同学的概率为13,直到传到第29号(投篮练习)或第30号(投篮练习)时,认定一轮训练结束,已知29号同学投篮命中的概率为13,30号同学投篮命中的概率为67,设传球传到第()230,n n n ≤≤∈N 号的概率为n P .(1)求4P 的值;(2)证明:{}()1228n n P P n +-≤≤是等比数列;(3)比较29号和30号投篮命中的概率大小.14.(2022秋·山东·高三校联考阶段练习)某公司在一种传染病毒的检测试剂品上加大了研发投入,其研发的检验试剂品α分为两类不同剂型1α和2α.现对其进行两次检测,第一次检测时两类试剂1α和2α合格的概率分别为34和35,第二次检测时两类试剂1α和2α合格的概率分别为45和23.已知两次检测过程相互独立,两次检测均合格,试剂品α才算合格.(1)设经过两次检测后两类试剂1α和2α合格的种类数为X ,求X 的分布列和数学期望;(2)若地区排查期间,一户4口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员逐一使用试剂品α进行检测,如果有一人检测呈阳性,则检测结束,并确定该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为(01)p p <<且相互独立,该家庭至少检测了3个人才确定为“感染高危户”的概率为()f p ,若当0p p =时,()f p 最大,求0p 的值.15.(2022秋·山东青岛·高三统考期末)由mn 个小正方形构成长方形网格有m 行和n 列.每次将一个小球放到一个小正方形内,放满为止,记为一轮.每次放白球的频率为p ,放红球的概率为q ,1p q +=.(1)若2m =,12p q ==,记y 表示100轮放球试验中“每一列至少一个红球”的轮数,统计数据如表:n 12345y7656423026求y 关于n 的回归方程 ln y bna =+ ,并预测10n =时,y 的值;(精确到1)(2)若2m =,2n =,13p =,23q =,记在每列都有白球的条件下,含红球的行数为随机变量X ,求X 的分布列和数学期望;(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:()()111nmm n p q -+-≥.附:经验回归方程系数:1221ˆki ii kii x y kx ybxkx ==-⋅=-∑∑,ˆˆay bx =-,51ln 53i i i n y =⋅=∑,ln 3.8y =.16.(2023·山东枣庄·统考二模)某市正在创建全国文明城市,学校号召师生利用周末从事创城志愿活动.高三(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宜传员、文明监督员三项可供选择.每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12.每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不彩响,求(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.17.(2022·湖北省直辖县级单位·湖北省仙桃中学校考模拟预测)治疗慢性乙肝在医学上一直都是一个难题,因为基本不能治愈,只是可以让肝功能正常,不可以清除病毒,而且发展严重后还具有传染性,所以在各种体检中肝功能的检查是必不可少的.在对某学校初中一个班上64名学生进行体检后,不小心将2份携带乙肝的血液样本和62份正常样本(都用试管独立装好的)混在了一起,现在要将它们找出来,试管上都有标签,采用将共64份样品采用混检的方式,先将其平均分成两组,每组32份,将每组的32份进行混检,若携带病毒的在同一组,则将这一组继续取两份平均分组的混合样本进行检验,若携带病毒的样本不在同一组,则将两组都继续平均分组混检下去,直到最后将两份携带病毒的样本找出为止(样品检验时可以很快出结果,每次含病毒的那一组进行平均分组时,每个含病毒的样本被分到任意一组的概率都是12,且互不影响),设共需检验的次数为X.(1)求随机变量X的分布列和期望;(2)若5岁以上的乙肝患者急性和慢性的比例约为91:,急性乙肝炎症治愈率可达9 10,没有治愈的会转为慢性乙肝,慢性乙肝炎症治愈率只有3100,在找出两个乙肝样本后通知其进行治疗,求两人最后至少有一人痊愈的概率o P.(结果保留两位有效数字)18.(2023春·江苏南京·高三南京市第一中学校考开学考试)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:性别锻炼不经常经常女生4060男生2080(1)依据0.01α=的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求第n 次传球后球在甲手中的概率.附:()()()()()22n ad bc a b c d a c b d χ-=++++α0.0100.0050.001x α 6.6357.87910.82819.(2022秋·湖北·高三黄冈中学校联考阶段练习)随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设X 为离散型随机变量,则()()()2P X E X λλ-λ为任意大于0的实数.切比雪夫不等式可以使人们在随机变量X 的分布未知的情况下,对事件X λλ-的概率作出估计.(1)证明离散型切比雪夫不等式;(2)应用以上结论,回答下面问题:已知正整数5n .在一次抽奖游戏中,有n 个不透明的箱子依次编号为1,2,,n ,编号为()1i i n 的箱子中装有编号为0,1,,i 的1i +个大小、质地均相同的小球.主持人邀请n 位嘉宾从每个箱子中随机抽取一个球,记从编号为i 的箱子中抽取的小球号码为i X ,并记1n i i X X i==∑.对任意的n ,是否总能保证()0.10.01P X n (假设嘉宾和箱子数能任意多)?并证明你的结论.附:可能用到的公式(数学期望的线性性质):对于离散型随机变量12,,,,n X X X X 满足1n i i X X ==∑,则有()1()ni i E X E X ==∑.20.(2022秋·湖北十堰·高三校联考阶段练习)为了丰富孩子们的校园生活,某校团委牵头,发起同一年级两个级部A 、B 进行体育运动和文化项目比赛,由A 部、B 部争夺最后的综合冠军.决赛先进行两天,每天实行三局两胜制,即先赢两局的级部获得该天胜利,此时该天比赛结束.若A 部、B 部中的一方能连续两天胜利,则其为最终冠军;若前两天A 部、B 部各赢一天,则第三天只进行一局附加赛,该附加赛的获胜方为最终冠军.设每局比赛A 部获胜的概率为()01p p <<,每局比赛的结果没有平局且结果互相独立.(1)记第一天需要进行的比赛局数为X ,求()E X ,并求当()E X 取最大值时p 的值;(2)当12p =时,记一共进行的比赛局数为Y ,求()5P Y ≤.21.(2022秋·广东广州·高三广州市真光中学校考开学考试)某企业研发了一种新药,为评估药物对目标适应症患者的治疗作用和安全性,需要开展临床用药试验,检测显示临床疗效评价指标A 的数量y 与连续用药天数x 具有相关关系.随机征集了一部分志愿者作为样本参加临床用药试验,并得到了一组数据(),i i x y ,1,2,3,4,5i =,其中i x 表示连续用药i 天,i y 表示相应的临床疗效评价指标A 的数值.根据临床经验,刚开始用药时,指标A 的数量y 变化明显,随着天数增加,y 的变化趋缓.经计算得到如下一些统计量的值:5162i i y ==∑,()()5147i i i x xy y =--=∑,51 4.79i i u =≈∑,()251 1.615i i u u =-≈∑,()()5119.38i i i u u y y =--≈∑,其中ln i i u x =.(1)试判断y a bx =+与ln y a b x =+哪一个适宜作为y 关于x 的回归方程类型?并建立y 关于x 的回归方程;(2)新药经过临床试验后,企业决定通过两条不同的生产线每天8小时批量生产该商品,其中第1条生产线的生产效率是第2条生产线的两倍.若第1条生产线出现不合格药品的概率为0.012,第2条生产线出现不合格药品约概率为0.009,两条生产线是否出现不合格药品相互独立.(i )随机抽取一件该企业生产的药品,求该药品不合格的概率;(ii )若在抽查中发现不合格药品,求该药品来自第1条生产线的概率.参考公式:对于一组数据()()()1122,,,,,n n x y x y x y ⋅⋅⋅,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为()()()121n i i in i ix x y y b x x ==--=-∑∑ ,a y bx =-$$.22.(2022·广东深圳·统考二模)2022年北京冬奥会后,由一名高山滑雪运动员甲组成的专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊赛.约定赛制如下:业余队中的两名队员轮流与甲进行比赛............,若甲连续赢两场.....则专业队获胜;若甲连续输两场.....则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率组距

(17)(本小题满分13分)
为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:
成绩等级 A B C D E 成绩(分) 90 70 60 40 30 人数(名)
4
6
10
7
3
其成绩等级为“A 或B ”的概率;
(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选
3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ; (Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.
(16)(本小题共13分)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如
图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)
岁的人数; (Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望.
分组 (单位:岁)
频数
频率
[)20,25 5
050.0
[)25,30 ①
200.0
[)30,35 35 ②
[)35,40 30
300.0
[]40,45
10 100.0 合计
100
00.1
16(本小题13分)国家对空气质量的分级规定如下表:
某市去年6月份30天的空气污染指数的监测数据如下:
3414018731212104045782365792078160
421013816315422273615149103135201648
根据以上信息,解决下列问题:
(Ⅱ)某人计划今年6月份到此城市观光4天,
若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或
良的天数用X表示,求X的分布列和均值EX.
(16) (本小题满分13分)
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比
较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现在可供选用的不同添加剂有
6种,其中芳香度为1的添加剂1种,芳香度为2的添加剂2种,芳香度为3的添加剂3种.根
据试验设计原理,通常要随机选取两种不同的添加剂进行搭配试验.
(Ⅰ)求所选用的两种不同的添加剂的芳香度之和为3的概率;
(Ⅱ)求所选用的两种不同的添加剂的芳香度之和为偶数的概率;
(Ⅲ)用ξ表示所选用的两种不同的添加剂的芳香度之和,写出ξ的分布列,并求ξ的数学期望Eξ.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档