探索性因素分析的原理与步骤
探索性因素分析的原理与步骤知识讲解
探索性因素分析的原理与步骤知识讲解探索性因素分析(Exploratory Factor Analysis,EFA)是一种多变量分析方法,旨在确定观察数据中潜在的结构或维度。
它可以帮助研究者发现数据中隐藏的模式和关联,进而减少数据的复杂性,并起到简化和理解数据的作用。
以下是探索性因素分析的原理与步骤的知识讲解。
原理:探索性因素分析基于统计原理,假设观察数据是由一组潜在变量(即因素)决定的。
每个因素代表一组具有内在关联的观察变量,它们共同解释了数据中的方差。
因此,探索性因素分析的目标是找出这些潜在因素的数量和结构,并确定它们与观察变量之间的关系。
步骤:1.确定分析目标:在进行探索性因素分析之前,需要明确分析的目标和研究问题。
明确问题有助于选择适当的分析方法和解释结果。
2.数据准备与预处理:将需要分析的数据整理为适合因素分析的格式。
常见的预处理包括数据标准化、缺失值处理和异常值处理等。
4.因素提取:在这一步骤中,通过计算特征值、特征向量或因子载荷来确定潜在因素的数量和结构。
特征值表示一个因素解释的方差比例,而特征向量是表示潜在因素之间关系的向量。
因子载荷是观察变量与潜在因素之间的相关系数。
5. 因子旋转:在因子提取之后,因子结构可能并不是直观和可解释的。
因此,需要进行因子旋转以改善因子解释性和解释因素的意义。
常见的因子旋转方法包括正交旋转(如Varimax)和斜交旋转(如Promax)等。
6.因子解释和命名:根据提取的因子载荷和因子旋转结果,解释每个因素所代表的观察变量的意义。
通过命名每个因素,以增加对潜在因素结构的理解和解释。
7.评估因子模型:对于确定的因子结构,需要进行信度和效度分析来评估模型的质量和适用性。
信度分析衡量因子和观察变量之间的内部一致性,而效度分析衡量因子与其他变量之间的关系。
8.结果解释与报告:根据分析结果进行解释和报告。
包括提取的因子数目、每个因子的载荷、因子间的关系、因子的解释以及模型的信度和效度指标。
使用SPSS进行探索式因素分析的教程
使用SPSS进行探索式因素分析的教程探索性因素分析是一种统计方法,用于确定一组变量之间的潜在结构。
SPSS是一种常用于数据分析的软件工具,它提供了强大的因素分析功能。
以下是一个使用SPSS进行探索性因素分析的简单教程,该教程可以帮助您了解如何使用SPSS来执行因素分析并对结果进行解释。
步骤1:导入数据步骤2:准备数据确保您的数据符合因素分析的前提条件。
确定您要进行因素分析的变量是否具有线性关系,并进行必要的数据转换(例如,对数转换)以满足这个条件。
步骤3:执行因素分析在SPSS的“分析”菜单下,选择“数据准备”和“因子”。
在弹出的对话框中,选择您要进行因素分析的变量并将其移动到“因子”框中。
选择“萃取方法”(如主成分分析或最大似然估计)并指定要提取的因素的数量。
您还可以选择执行因子旋转以获得更简单和解释性更强的因子结构。
步骤4:解读结果SPSS将生成一个因素分析的输出报告,其中包含多个表格和图形。
以下是一些常见的解读步骤:-总体解释:观察“总体解释”表,了解因子数量和提取方法的解释力度。
查看“因素”的特征值,了解提取的因子解释的总方差比例。
-因子负荷:查看“因子负荷”表,该表显示了原始变量与提取的因子之间的相关性。
较高的因子负荷表示原始变量与特定因子之间的较强关联。
-因子旋转:如果您选择了因子旋转,则查看“旋转因子载荷矩阵”表,该表显示了旋转后的因子负荷。
查看这些旋转后的因子负荷以确定是否存在更简单的因子结构。
-因子得分:根据选定的因子分析方法,可以生成每个观测值的因子得分。
这些得分表示了每个观测值在每个因子上的得分情况,可以用于后续的分析和解释。
步骤5:解释因子根据因子负荷和因子名称,解释每个因子代表的潜在结构。
结合领域知识和因子负荷,您可以确定每个因子是否与特定概念或潜在维度相关联。
步骤6:结果报告根据您的研究目的和需要,将因子分析的结果写入报告中。
确保清楚地描述因子数量、命名以及每个因子代表的结构或概念。
因素分析法
因素分析法因素分析法(factor analysis)是一种经典的多变量统计分析方法,旨在识别多个变量之间的潜在结构,从而简化数据分析的过程,减少数据维度。
因素分析法在社会科学、生物统计学、管理学等领域被广泛应用。
一、因素分析法的基本原理因素分析法的基本原理是将多个变量(如特征、指标等)转化为少数几个共同因素(factors)所解释。
这些共同因素可以解释原始数据的大部分方差。
在原始数据中,每个变量可以被看作是多个因素的线性组合。
共同因素是数据的潜在结构,可以更好地解释原始数据的本质。
因素分析法主要分为探索性因素分析(exploratory factor analysis)和确认性因素分析(confirmatory factor analysis)两种。
探索性因素分析是一种无监督学习的方法,可以帮助用户发现数据中的共同因素。
而确认性因素分析则需要进行假设检验来验证事先设定的共同因素是否合理。
探索性因素分析的具体步骤如下:1. 确定因子数。
通常可以通过选择每个因子所解释的方差百分比来确定因子数。
例如,当前三个因子可以解释总方差的60%时,我们可以选择三个因子来解释原始数据。
2. 确定因素旋转方法。
旋转方法可以保证因素间彼此独立,且每个因子更容易解释。
在因素旋转方法方面,比较经典的有正交旋转和斜交旋转。
正交旋转(例如varimax旋转)可以保证因子之间没有相关性,因此它更适合解释要素之间明确不相关的情况。
而斜交旋转(例如promax旋转)允许因子之间有相关性,因此对于与解释有关联的要素,它可能是更好的选择。
3. 计算因子得分。
因子得分是根据原始变量计算出的每个因子的数值。
得分可以通过因子负荷(factor loadings)计算得出,即每个变量与每个因子之间的关系。
因子负荷可以理解为一个指标表征变量与共同因素之间的相关性,即指标越高,变量与共同因素之间的相关性越大,这个指标越能代表这个共同因素。
二、因素分析法的应用因素分析法的应用非常广泛,在统计分析中占据很重要的地位。
探索性因素分析
4. 根据以上三方面的信息将可能的因素个数压 缩到一个比较小的范围内
5. 根据4 分别抽取不同个数的因素比较旋转后 因素负荷的可解释性以作出最终决定
这是一个相对比较全面的程序。研究者可以 批判性地采用总之因素个数的确定并不存在 着唯一 正确 客观的答案
最大似然法的模型拟合度
由因素个数从多到少考察最大似然法的 模型拟合度
当拟合度由不显著变为显著时,此时的 因素数目即合适的因素抽取个数
因素所能解释方差的百分比
所有因素所能解释方差的累计百分比应 超过40%。
Browne 提出了以下的程序
1. 考虑研究者在理论中是否事先假设了因素个 数
2. 考虑一些简单方法如Kaiser 法,Scree Test 所提供的信息
最大似然法 (maximum-likelihood method)
–相关系数经变项的残差 (uniqueness)加权后,利用参数 估计(paratemer estimation)原 理,估计出最可能出现的相关矩阵 的方法 。
主成分分析 (PCA) 与 主因素分析 (PFA) 的适用条件
目的方面:PCA用于分类; PFA用于探讨结构 PCA
PCA 特征值 > 1 的规则抽取 直交旋转 因素负载只显示>.40的,整齐结构
1.因素的抽取 2. 因素个数的确定 3. PCA结构矩阵所包含的信息 4. 因素的命名 5. 因素转轴 6. 因素分析的统计假定 7. 主成分分析和因素分析 8. 探索性因素分析和验证性因素分析
1.因素的抽取 (factor extraction)
解释一组变量的总方差 (独特方差+共同方差 ) 可用于对一组变量进行分类 是最常用的因素分析选择。
探索性因素分析讲解
二、探索性因素分析的原理
1、因素分析模型 K个观测变量,分别为x1,x2,…,xk, xi为具有零均值, 单位方差的标准化变量。 因子模型的一般表达式为:
因子负载(Factor loadings) 特殊因子 (Ufacotor)
xi ai1 f 1 ai 2 f 2 ... aimfm ui (i 1, 2,..., k )
因子之间彼此独立 特殊因子和公因子之间彼此独立
二、探索性因素分析的原理
a11 .
二、探索性因素分析的原理
2、因素分析中的有关概念 (1)因子负载(loading):当公因子之 间完全不相关时,aij等于第i个变量和第j个 因子之间的相关系数。 反映了因子和变量之间的相关程度 大多数情况下,人们往往假设公因子之间 时彼此正交的(Orthogonal),即不相关。
三、探索性因素分析的步骤
判断是否适合做因素分析的方法:
(2)巴特利特球体检验(Bartlett test of sphericity) 差异显著——适合做因素分析
三、探索性因素分析的步骤
(3)KMO(Kaiser-Meyer-Olkin Measure of Sampling Adequacy)测度 比较观测变量之间的简单相关系数和偏相 关系数的相对大小出发,其值的变化范围 从0到1 KMO<0.5肯定不适合做因素分析,最好大 于0.8
四、求解初始因子
2、公因子分析法 公因子方差的估计
用主成分分析的结果作为公因子方差的初始估计值 把每个变量和其余变量的相关系数中绝对值最大的, 作为该变量的公因子方差的初始估计值 用每个变量和剩下的其他变量的复相关系数的平方, 即R2作为该变量的公因子方差的初始估计值。
探索性因素分析的原理与步骤
(五)、因子的解释
经验性&主观色彩 合理即可接受
分析 过程
1
操作 演示
结果 展示
2 3
目录
*
数据
数据符合相应假设 从数据得到的信息 进行EFA的必要性
SPSS操作演示
基于EFA对量表进行初步修订
判断:判断该数据是否适合采用因子分析 删除:删除那些负载小和重复负载的变量 提取:根据新的旋转成份矩阵和碎石图 方案:提出量表进一步修订的建议和方案
(三)、因子提取
三种方法:
1. 以特征跟是否>1为标准 2. 参考特征跟的碎石图 3. 方差贡献率
(三)、因子提取
唯一 正确 客观
综合判断
(四)、因素的旋转
目的:更易解释的负荷结构 方法:正交旋转VS斜交旋转
(四)、因素旋转
因素间可以相关 事实上的相关被强制限制 导致较差的拟合度 斜交旋转能提供更多的信息
分析 过程
1
操作 演示
结果 展示
2 3
目录
*
分析 过程
1
操作 演示
结果 展示
2 3
目录
*
探索性因素分析的基本过程
(一)、确定变量及样本
1. 高质量的数据产生高质量的信息 2.否则就是garbage in,garbage out
(二)、判断是否适合做EFA
1. 观察相关矩阵 2.KMO值检验和球形检验的结果
因子累计方差贡献率为55.866%,各个项目在相应因素上 具有较大的负荷,处于.553-.821之间。各因子内部一致性 系数在.803-.826, 问卷总的内部一致性系为.875。
。结果表示如下:
(四)、最终结果呈现
探索性因素分析-淡江大学
13
理論架構1 --數學模式
Zjn=aj1F1n+aj2F2n+…+ajqFqn+djUjn, j=1,2,…,p, n=1,2,…,N
其中
Zjn:第n個樣本單位在第j個觀察變數的分數 Fin:第n個樣本單位在第i個共同因素之分數 Ujn:第n單位在第j個觀察變數的獨特因素之分數 aji:為因素權重(factor weight) ,用以表示第i個共同因 素對第j個觀察變數之權重,又稱為組型(or因素)負荷量 (pattern loading) dj:第j個觀察變數之獨特因素的權重 且假設 Z、F、U均為已標準化之分數 ~N(0,1)
驗証性因素分析(Confirmatory factor analysis)
8
探索性因素分析 v.s.驗証性因素分析
由三個變數x1, x2, x3找到2個共同因素f1, f2,則其路徑圖如下
其中表可觀測的, 表不可觀測的。 Note: 在驗證性因素分析路徑圖中並非每個因素 fi 皆與變數 xi 間有連線(即路徑) 一般使用LISREL分析方法
正面肯定
負面評價
9.我常會覺得自己是一個失敗者
6
潛伏結構
自尊因素 組型負荷量 自尊變數
我覺得自己和別人一樣有價值,I57
獨特性 0.368 0.395 0.429 0.501 0.467 0.582 0.266 0.364 0.555 0.45
獨特因素 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
27
未轉軸因素分析報表範例
19
(二) 共同因素之萃取方法
主軸法(method of principal) 是以共同因素對總共同性之貢獻極大化為萃取原則 重心法(centroid method of factoring) 在電腦普及以前,常以重心法估計組型負荷量 重心法是根據觀察變數之相關係數矩陣計算組型負 荷量 最大概似法(maximum likelihood analysis) 需先假設共同因素之個數及服從常態分配,然後依 此假定推導因素及共同性 缺點計算過程相當繁複且不一定得到收斂的結果 較適用於驗證性因素分析
第四章 因素分析
rij i1 j1 i 2 j 2 ... im jm
如果以因素分析模型可以推导出变量之间的相关系数与从观测数据 计
3、公因子方差
公因子方差(communality)也叫共同度、公共方差,指观测变量中 由公因子决定的比例。变量xi的公因子方差记做hi2。当公因子之间
(1)正交旋转(orthogonal rotation)
四次方最大法(quartimax) 方差最大法(varimax) 等量最大法(equimax) (2)斜交旋转(oblique rotation) Oblimin的方法
4、因子值(factor score) 因子值是观测变量的加权平均数。权数即因子值系数在主成分分析
1、因素分析模型
xi i1 f1 i 2 f 2 ... im f m i
公因子(common factor):是各个观测变量所共有的因子 特殊因子(unique factor):每个观测变量所特有的因子 因子载荷(factor loading):观测变量与公因子关系,相当于多元 回归中的标准偏回归系数。
(2)公因子分析的方法
每个观测变量的初始方差不再为1,而是公因子的方差。 主轴因子分析的方法(Principal axis factoring) 最小二乘法(Least squares): 普最小二乘法和广义最小二乘法 最大似然法(Maximum likelihood): a因子提取法(Alpha factoring): 映象分析法(image analysis)
和公因子方法中估计的方法不一样。
4、因子的贡献 每个公因子对于数据的解释能力,可以用该因子所解释的总方差来
探索性因素分析之具体步骤探讨
探索性因素分析之具体步骤探讨探索性因素分析之具体步骤探讨文/哈工程大学应用心理学系曹国兴这主要针对的是预试问卷而言,也就是说在初试问卷经过了语义分析,专家讨论论证之后最终得出的问卷。
以下的经验是根据我编制职业承诺问卷的基础上总结而来,错误之处希望同行指教。
首先要说的是关于样本数量的问题。
按照统计学标准而言,一般样本数应为题目数的5-10倍。
由于我的题目为50,故样本至少为250个。
前期我计划发放样本数为6倍也就是300份,由于样本流失及废卷的原因,最终回收到有效问卷为256份,有效率为85.33%。
当然这是无法避免的。
下面我主要谈一下进行探索性分析的具体步骤:第一:比较明确的一步就是做一下关于各个项目的鉴别度(区分度)的分析。
在这个条件下会删除一部分不适合的题目。
删除程序为SPSS下的Analyze→Scale→Reliability Analysis。
比较保险的的是从比较小的鉴别度一步一步删除,每次删一些较低的题目就看一下科隆巴赫系数的大小,直到满意为止。
当然也可以直接将低于0.3的题目删除。
注意的是删除的应为那些删除后科隆巴赫系数值提高的题目,如果删除后科隆巴赫系数值降低,这就需要重新考虑了。
结合语义分析取舍。
第二:在这种情况下一般而言,进行问卷设计之前所有的题目究竟是属于哪一个维度或者有几个维度应该有一定的假设,此时应该如下操作:(1)首先是反向题目的更改。
这方面需要注意的就是每次关闭文件的时候注意不要保存或者你将反向题目更改后的文件保存下来,一定要注明,因为如果你忘记了,就会混淆到底反向题目有没有修改过。
(2)也就是重点阶段。
顾名思义探索性因子分析就好比你是一个探险家在探索一块未知的领域,你不知道去哪一个方向才是正确的,也许你走了很长的路却与你所期望的目的地相反。
为避免在进行探索性因子分析的时候做无用功,我采用了如下的方法:在最大变异法和极大相等法两种正交旋转下分别对题目进行讨论。
比如在最大变异下有四种情况:A:最大变异下不控制因素个数。
16【已修改】讲稿-探索性因素分析的原理-20181122
问卷效度
素分析。在因素分析这个大家庭中,探索性因素分析是一个非常重要
的成员,它能够有效检验各量表的建构效度。探索性因素分析中的“探
索”表示使用者在因素分析过程中可能要经由多次的因素分析程序,
才能得出最佳的问卷结构。
说到这里,大家肯定会觉得探索性因素分析非常神奇,明明通过专家
法都不一定能够解决的问题,为什么它就能够完成呢?它又是怎么样
判断问卷维度划分合不合理的呢?
这里我们就来了解下探索性因素分析的基本原理。
导入
大家都知道,在设计问卷时,需要先参考相关文献资料或理论假设出
问卷的基本维度,并根据维度编制相应的题目。比如这里,每一种图
形代表一种题目维度,正方形是第一个维度的题项,三角形是第二个
维度的题项,圆形是第三个维度的题项,那探索性因素分析是怎么样
验证这些维度划分合不合理的呢?
基本过程
基本原理 结束语
探索性因素分析首先模糊问卷的维度这个概念,认为问卷的各个题项 是彼此独立而毫无关联的。 探索性因素分析的过程其实是先对问卷初稿收集到的数据进行分析, 根据每一个题项数据的相似性和差异性对它们重新进行分门别类,从 而形成了一份新的问卷。形成的新问卷一个明显的特征就是题项变少 了。例如正方形这个维度里,六个题项变成了五个题项;三角形这里, 四个题项变成了三个题项;但是也有可能像圆这个维度,没有要删除 的题项。而那些被删除的题项往往都是那些解释度不高,不能够说明 问题的题项。通过对比分析新旧问卷,如果分析之前和分析之后它的 维度划分基本是一致的,就可以说原来的这个维度划分就是合理的。 讲到这里相信大家差不多明白探索性因素分析的原理了吧。 那么探索性因素分析到底是什么呢?它是因为题项不一定能纳入因 素解释的范围,因而要不断增删题项进行分析,要进行多次的因素分 析,不断探索最合理的因素效度,建构最优的因素结构。可见,之所 以叫作探索性因素分析不仅仅是因为它的目的是探索新的理论,更重 要的是,它的过程没有既定的程序,需要不断地探寻和摸索。 当然,在进行探索性因素分析时,我们首先需要建立一个假设性的理 论框架,然后根据理论框架编制出量表或者问卷,选择对象进行调查, 根据对收集到的数据进行一个分析统计从而判断这个问卷的建构效 度。 以上就是探索性因素分析基本原理的全部内容了,下节课即将学习具 体操作,大家敬请期待。
探索性因素分析与验证性因素分析
探索性因子分析与验证性因子分析比较研究湖北 武汉 杨 丹摘要:探索性因子分析与验证性因子分析是因子分析的两种不同形式。
它们都是以普通因子模型为基础,但它们之间也存在着较大差异。
本文通过对它们进行比较分析,找出其异同,并对实证分析提供一定的指导依据。
关键词:探索性因子分析、验证性因子分析、结构方程模型现实生活中的事物是错综复杂的,在现实的数据中,我们经常遇到的是多元的情况,而不仅仅是单一的自变量和单一的因变量。
因此要用到多元的分析方法,而因子分析就是其中一种非常重要的处理降维的方法。
它是将具有错综复杂关系的变量(或样品)综合为少数几个因子,以再现原始变量与因子之间的相互关系,同时根据不同因子还可以对变量进行分类。
它实际上就是一种用来检验潜在结构是怎样影响观测变量的方法。
因子分析主要有两种基本形式:探索性因子分析(Exploratory Factor Analysis )和验证性因子分析(Confirmatory Factor Analysis )。
探索性因子分析(EFA )致力于找出事物内在的本质结构;而验证性因子分析(CFA )是用来检验已知的特定结构是否按照预期的方式产生作用。
两者之间是既有联系也有区别的,下面我们就从不同的方面进行分析比较。
一、 两种因子分析的相同之处两种因子分析都是以普通因子模型为基础的。
因子分析的基本思想是通过变量的相关系数矩阵内部结构的研究,找出能控制所有变量的少数几个随机变量去描述多个变量之间的相关关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。
然后根据相关性的大小把变量分组,使得同组内的变量之间相关性较高,但不同组的变量相关性较低。
如图1所示,我们假定一个模型,它表明所有的观测变量(变量1到变量5)是一部分受到潜在公共因子(因子1和因子2)影响,一部分受到潜在特殊因子(E1到E5)影响的。
而每个因子和每个变量之间的相关程度是不一样的,可能某给定因子对于某些变量的影响要比对其他变量的影响大一些。
第十章探索性因素分析
• Correlation Matrix框几种检验变量是否适宜做因素分析 Matrix框几种检验变量是否适宜做因素分析 的方法: 的方法 • Coefficients 计算相关系数矩阵 • Significance levels 显著性水平 • Determinant 相关系数的行列式 • Inverse 相关系数矩阵的逆矩阵 • Reproduced 再生相关矩阵 • Anti-image 反映像相关矩阵检验 • KMO and Bartlett’s test of sphericity检验变量的偏相关是 否很小,相关矩阵是否单位阵。
四、解释因子
• 因子旋转 因子旋转是实现因子解释的方法,其目的是通过改变坐标 轴的位置,重新分配各个因子所解释的方差比例,是因子 结构更简单更易于解释。 • 因子旋转的方法 因子旋转的方法: • 正交旋转(因子轴的夹角为90度)和斜交旋转(因子轴之 间的夹角小于90度)。 • 旋转方法选择的原则:依据研究问题的需要。如果只关心 旋转方法选择的原则 是几个因子则用正交旋转;如果要得到几个有理论和实际 意义的因子需采用斜交旋转。
• 因子分析有两个核心问题:构造因子变量;对因子变量进 行命名解释。 • 有四个步骤: • (1)确定原始变量是否适于因素分析 • (2)构造因子变量 • (3)利用旋转使得因子变量具有可解释性 • (4)计算因子变量得分
• 确定原始变量是否适于因素分析 • (1)计算相关系数矩阵,如果大部分相关系数均小于0.3, 说明不适合做因素分析; • (2)Bartlett test of sphericity(巴特利特球形检验),如果 P值小于0.05表明适合做因子分析 • (3)Anti-image correlation matrix(反映像相关矩阵检验), 如果反映像相关矩阵中有些元素的绝对值较大,说明这些 变量不适合做因子分析。 • (4)KMO(Kaiser-Meyer-Olkin)检验 • KMO取值范围在0—1之间,越接近于1越适合做因素分析。 • 其标准为: • 0.9<KMO非常适合; • 0.8<KMO<0.9适合; • 0.7<KMO<0.8一般;
探索性因素分析最近10年的评述
探索性因素分析最近10年的评述一、本文概述探索性因素分析(Exploratory Factor Analysis, EFA)是一种广泛应用于社会科学、心理学、生物医学等多个领域的统计技术。
它通过提取和识别数据中的潜在结构,帮助研究者理解和解释复杂的多变量数据。
近年来,随着大数据时代的来临和统计方法的不断创新,探索性因素分析在理论和实践层面都取得了显著的进展。
本文旨在评述最近十年探索性因素分析的研究现状和发展趋势,包括其方法论的创新、应用领域的拓展以及面临的挑战和争议。
通过对这些内容的梳理和评价,本文旨在为研究者提供一个全面而深入的视角,以更好地理解和应用探索性因素分析这一重要的统计工具。
二、EFA的理论基础与核心方法探索性因素分析(Exploratory Factor Analysis,EFA)是一种在社会科学、心理学、市场研究等领域广泛应用的统计方法,旨在从一组变量中识别和提取潜在的、未知的结构或因素。
EFA的理论基础主要建立在因素分析理论之上,该理论假设观察到的多个变量之间存在一定的相关性,这些相关性可能源于某些潜在的、未观察到的变量或因素。
数据准备与检验:需要对数据进行预处理,包括缺失值处理、异常值检测等。
接着,进行数据的适用性检验,如KMO检验和Bartlett 球形检验,以确定数据是否适合进行因素分析。
因素提取:在数据通过适用性检验后,通过特定的算法(如主成分分析、主轴因子分析等)提取出潜在的因素。
这些因素是原始变量的线性组合,能够最大程度地解释原始变量之间的方差。
因素旋转:为了使得提取出的因素更具解释性,通常会对因素载荷矩阵进行旋转。
旋转后的矩阵使得每个因素在尽可能少的变量上有高载荷,而在其他变量上载荷较低。
这有助于识别每个因素所代表的具体含义。
因素解释与命名:根据旋转后的因素载荷矩阵,对每个因素进行解释和命名。
这通常依赖于研究者的专业知识和对研究领域的理解。
因素得分计算:可以计算每个观察值在各个因素上的得分,这些得分可以用于后续的统计分析或作为新的变量进行进一步的研究。
05.探索性因素分析
2015-2016学年第二学期
高级心理统计
6
基本原理 (2/5)
• 因子载荷 (factor loading)
– 反映了观测变量是如何由公因子线性表示的 – 也反映了因子和变量之间的相关程度。
• 变量相关
– 任何两个观测变量之间的相关系数等于对应因子载荷 乘积之和
用数目较少且更有意义的潜在构念来解释一组观测变量在一组变量中选择少数几个最有代表性即与所有其他因素相关最高的变量建立少数几个独立的因素代替多数变量进行多元回归以解决多元共线性的问题量表的结构效度分析高级心理统计20152016学年第二学期基本目标考察被试在各个条目上的反应具有多大程度的变异并试图用较少的因子结构来解释这些变异即每个条目变量在多大程度上能用几个相同的因子来解释类似回归分析高级心理统计20152016学年第二学期基本原理15是公因子commonfactors是特殊因子uniquefactorsij是第i个观测变量在第j个公因子上的载荷因素分析模型假定k个特殊因子之间彼此独立特殊因子和公因子之间也彼此独立
rij ai1a j1 ai 2 a j 2 aim a jm
• 公因子模型是从解释变量相关关系的角度出发的
2015-2016学年第二学期 高级心理统计 7
2015-2016学年第二学期
高级心理统计
8
基本原理 (3/5)
• 共同度 (communality)
– 即公因子方差,观测变量方差由公因子解释的比例。 当公因子彼此独立 (正交)时,等于该变量有关的因子载 荷的平方和
高级心理统计
3
基本目标
• 考察被试在各个条目上的反应具有多大程度的变 异,并试图用较少的因子结构来解释这些变异
探索性因素分析
探索性因素分析探索性因素分析(ExploratoryFactorAnalysis)是一种常用的数据分析方法,用于研究大量数据背后隐藏的关系和模式。
它是一种运用统计技术,对大量的观测数据进行凝练和分析的过程,帮助研究者理解数据背后的结构和模式。
探索性因素分析的目的是通过提取可以从原始观测数据中获取的未知因素,识别数据中的结构特征。
它利用这些因素构建一个模型,以更好地解释数据背后的模式,以解释被考虑变量间的差异。
与其他统计方法相比,探索性因素分析有着独特的优势:它可以从未经处理的原始数据中提取出潜在的因素,并以更加简洁的方式解释数据。
探索性因素分析的主要步骤包括:(1)数据收集;(2)特征抽取;(3)因素析出;(4)因素解释。
第一步是数据收集,探索性因素分析是建立在有充分数据的基础上的,因此,研究者必须准备充分的数据,以便有效地进行分析。
为了收集有价值的数据,研究者可以使用诸如问卷调查、实验测量、数据库档案等数据收集方式。
第二步是特征抽取,研究者可以通过使用诸如旋转、标准化等技术,从观测数据中提取出可以表达其表征的特征,以便进一步的分析。
第三步是因素析出,研究者可以通过使用像主成分分析、因子分解等因素析出技术,从观测数据中提取出潜在的因素。
最后一步是因素解释,研究者可以将提取出的因素用于解释观测数据中的变量,通过观察每个因素的因素负荷度,以便理解原始数据背后的模式。
探索性因素分析在很多诸如心理学、市场营销、社会学、经济学等领域都得到了广泛的应用,它在这些研究领域中都有着重要的作用。
它提供了一种简便易行的方法,帮助研究者从大量观测数据中提取出模式以及更有意义的结果。
总之,探索性因素分析是一种有用的数据分析方法,它可以帮助研究者从数据中获取有价值的信息,为后续的研究和应用提供支持和依据。
探索性因素分析的原理与应用
(4)Equamax:平方最大正交旋转。
(5)Promax:在方差极大正交旋转的基础上进
行斜交旋转。
33
根据旋转后的因素载荷矩阵可以清晰
地确定因素中的变量:将对同一因素
上不同载荷的变量进行大小排序,因
素载荷小的变量将从该因素中删除。 一般是以载荷量=0.3为临界值标准。
34
含义:指确定不同公共因素在对某一原始变
29
Scree Plot
4
3
Eigenvalue
2
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
C omponent Number
30
统计学含义:指对初始抽取的因素载荷矩 阵实施旋转变换,使得因素载荷矩阵中的 相关系数更加显著,相关系数向0和1两极 转化,从而使各个因素的意义更加明显。 旋转的目的:当初始载荷不易解释时,常 对载荷做旋转,以使各变量在各因素上的 载荷或者变大或者变小,以便得到一个更 简单而易于解释的结构。
累积贡献率:是所有主要因素贡献率的和。
21
计算
相关
矩阵
因素
因素
计算
解释
提取
旋转
因素
分数
因素
含义
22
作用:检验因素分析的适用性。若大部分变 量之间的相关很小,表明它们之间共享因素
的可能性很小;变量之间应该有较大的相关,
且绝对值较大并显著时,才可进行因素分析。
方法:计算所有变量之间的相关系数,涉及
9
要提取几个因素?
每个因素包含哪些变量? 为确定的因素命名并解释其含义。
探索性因子分析
探索性因子分析探索性因子分析(Exploratory Factor Analysis, EFA)是一种常用的统计方法,用于发现数据集中潜在的因子结构。
本文将探讨探索性因子分析的基本原理、应用领域以及分析步骤。
一、探索性因子分析的基本原理探索性因子分析的主要目标是通过对一组观测变量的统计分析,找出其中存在的共同的因素或维度,从而解释变量之间的相关关系。
其基本原理是将原始观测数据转化为较少数量的因子,以便更好地理解和解释数据。
探索性因子分析的核心假设是,一组观测变量可能是由一组隐含的共同因子所决定的。
每个共同因子代表一种概念或特征,而每个观测变量则表现出这些共同因子的不同强度。
通过探索性因子分析,我们可以识别出这些共同因子,从而更好地理解观测变量之间的关系。
二、探索性因子分析的应用领域探索性因子分析在各个学科和领域中都有广泛的应用。
以下列举几个常见的应用领域:1. 心理学:探索性因子分析在心理学中常用于测量和评估心理特质、人格特征和心理健康等方面。
通过分析心理测量问卷的数据,可以识别出隐藏在问卷题目背后的共同因子,进而得到更全面和准确的评估结果。
2. 教育研究:探索性因子分析可以用于分析教育测试成绩的数据,帮助研究人员了解学生的学习特征和学科能力,并发现不同因素对学生学业成绩的影响。
3. 市场调研:在市场调研中,探索性因子分析可以用于分析产品或服务的评价数据,帮助企业了解顾客需求和偏好,并提供科学依据为产品改进和市场策略制定。
4. 医学研究:在医学研究中,探索性因子分析可以用于分析疾病风险因素、病人症状和临床变量等数据,从而帮助医生和研究人员更好地了解和解释疾病发展的机制。
三、探索性因子分析的步骤进行探索性因子分析通常需要以下步骤:1. 收集数据:首先,需要收集与研究目的相关的数据。
这些数据可以是问卷调查、观察记录、实验结果或其他形式的数据。
2. 数据预处理:在进行因子分析之前,通常需要对数据进行预处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇报人: 高璐、崔文龙、王金阳
1
分析 过程
操作 演示
结果 展示
2
1
目录
*
3
2
分析 过程
操作 演示
结果 展示
2
1
目录
*
3
3
探索性因素分析的基本过程
4
(一)、确定变量及样本
1. 高质量的数据产生高质量的信息 2. 否则就是garbage in,garbage out
5
19
(二)、提取因子的方法 需报告的核心要素:
1
2
抽取因子的方法 因子旋转的方法
选择因子的方法
3
20
(二)、提取因子的方法
运用主成分分析法,并通过方差最大法进行正交旋转。 提取特征根大于1,并参照碎石图(见图1)来确定因子 的有效数目。
21
(三)、删除条目的标准
在探索性因素分析过程中,主要参照各个项目的共同度和 因素负荷值,对部分项目进行了筛选。项目保留的标准: 该项目在某一因素上的负荷超过 .32; 即不在两个因素上都有超过 该项目不存在交叉负荷; .35 的负荷; 保证每个维度上最后保留的项目至少为三个; 项目的一致性系数。
22
(四)、最终结果呈现
需报告的核心要素:
1
因子数、各个因子所包含的条目数、
2
因子负荷、方差贡献率、内部一致性系数
23
(四)、最终结果
经过上述步骤,最终抽取的有效因子数为3个,形成的问卷 项目为17个。结合各项目所表达的含义,依据各维度项目由少 到多依次命名为: “领导程序公平”、“领导成员关系”、“领 导真实性”。 因子累计方差贡献率为 55.866%,各个项目在相应因素上 具有较大的负荷,处于.553-.821之间。各因子内部一致性 系数在.803-.826, 问卷总的内部一致性系为.875。 。结果表示如下:
(二)、判断是否适合做EFA
1. 观察相关矩阵
2. KMO值检验和球形检验的结果
6
(三)、因子提取
三种方法:
1.
以特征跟是否>1为标准
2. 参考特征跟的碎石图
3. 方差贡献率
7
(三)、因子提取
唯一
正确
客观 综合判断
8
(四)、因素的旋转
目的:更易解释的负荷结构 方法:正交旋转VS斜交旋转
判断:判断该数据是否适合采用因子分析 删除:删除那些负载小和重复负载的变量
提取:根据新的旋转成份矩阵和碎石图
方案:提出量表进一步修订的建议和方案
15
16
分析 过程
操作 演示
结果 展示
2
1
目录
*
3
17
如何在论文中报告探索性因素分析的结果
因子分析的适宜性检验; 提取因子的方法;
删除条目的标准;
24
(四)、最终结果呈现
25
(四)、最终结果呈现
26
疑问?
127
最终结果的呈现。
18
(一)、 原始变量因子分析的适宜性检验
在进行探索性因素分析之前,需对数据的适宜性进行检验,通常 检验的方法为KMO值以及Bartlett球形检验。本研究通过对回收的数 据进行分析,最终得出结果:KMO值为.805,且Bartlett球形检验结 果显著(<0.05)。两个指标都说明数据是适合做因素分析的。具体 结果如表1所示:
9
(四)、因素旋转
因素间可以相关 事实上的相关被强制限制 导致较差的拟合度 斜交旋转能提供更多的信息
10
(五)、因子的解释
经验性&主观色彩 合理即可接受
11
分析 过程
操作 演示
结果 展示ຫໍສະໝຸດ 21目录*
3
12
数据
数据符合相应假设 从数据得到的信息
进行EFA的必要性
13
SPSS操作演示
14
基于EFA对量表进行初步修订