第3章整流电路(3波形图)

合集下载

整流电路3波形图

整流电路3波形图

ud1
ua
ub
uc
ua
ub
O
wt
ud2
ud
u ab
u ac
u bc
u ba
u ca
u cb
u ab
u acLeabharlann u bcu baO
wt
id
O
wt
i VT 1
O
wt
ia
O
wt
图3-22 三相桥式全控整流电路带电阻负载a=90时的波形
3.2.2 三相桥式全控整流电路
uud21 a = 0° u a
ub
uc
O wt1
ⅠⅡ Ⅲ Ⅳ Ⅴ Ⅵ
ud
u ab u ac
u bc u ba
u ca
u cb
u ab u ac
O
wt
id
O
wt
ia
O
wt
图3-24 三相桥式全控整流电路带阻感负载a=30时的波形
3.2.2 三相桥式全控整流电路
a = 90° u d1
ub
uc
ua
O
wt1
wt
u d2 ud
u ab
ⅠⅡ
u ac
u bc


u ba
u ca


u cb
u ab
u ac
O
uVT 1
u ac
wt u ac
O
wt
u ab
图3-25 三相桥式整流电路带阻感负载,a=90时的波形
3.3 变压器漏感对整流电路的影响
u2
ua
ub
uc
O wt1
wt
ⅠⅡ Ⅲ Ⅳ Ⅴ Ⅵ

电力电子技术课件-第3章 整流电路

电力电子技术课件-第3章 整流电路

Rid
2U2 sinwt
(3-2)
b)
图3-3 b) VT处于导通状态
在VT导通时刻,有wt=a,id=0,这是式(3-2)的初 始条件。求解式(3-2)并将初始条件代入可得
id
2U 2
sin(a
R (wta )
)e wL
Z
2U2 sin(wt ) (3-3)
Z
式中,Z
R2
(wL)2,
u
d
变且波形近似为一条水平线。
O i
d
iO
VT 1,4
I
d
wt
☞u2过零变负时,由于电感
I
d
的作用VT1、VT4仍有电流id,并
w t 不关断。
i
O
VT
2,3
I
d
wt
☞wt=p+a时刻,触发VT2和
O i
2
I
d
w t VT3,VT2和VT3导通,VT1和
O
I
u
d
VT 1,4
w t VT4承受反压关断,流过VT1和
二. 阻感负载
3、基本数量关系
√流过晶闸管的电流平均值IdT和有效值IT分别为:
I dT
p a 2p
Id
(3-5)
IT
1
2p
p a
I
2 d
d
(wt
)
p a 2p
Id
(3-6)
√续流二极管的电流平均p 值 aIdDR和有效值IDR分别为
I dDR 2p I d
(3-7)
I DR
1
2p
2p a p
pa R
R
1 sin 2a p a

第三章_电力电子技术—整流电路_li(第一次课)

第三章_电力电子技术—整流电路_li(第一次课)

变压器二次侧电流有效值i2与输出电流有效值i相等
I I2 1



(
2U 2 U sin t )2 d( t ) 2 R R
1 I 2
1 sin 2 2
I dVT
VT可能承受的最大正向电压为 VT可能承受的最大反向电压为
2 U2 2 2U 2
3.1单相可控整流电路
相控方式——通过控制触发脉冲的相位来控制直流输出 电压大小的方式
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
阻感负载的特点:
电感对电流变化有抗拒作用,使得流过 电感的电流不能发生突变,因此负载的电流 波形与电压波形不相同。
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
ud O i1 O

t
t
b)
3.1单相可控整流电路
3.1.3 单相全波可控整流电路
单相全波与单相桥式全控比较
单相全波只用2个VT,比单相全控桥少2个,相应地, 门极驱动电路也少2个 单相全波导电回路只含1个VT,比单相桥少1个,因而 管压降也少1个 VT承受最大正向电压 2U2,最大反向电压为 2 2U 2 , 是单相全控桥的2倍 单相全波中变压器结构较复杂,材料的消耗多
结构简单,但输出脉动大,变压器二次侧电
流中含直流分量,造成变压器铁芯直流磁化
实际上很少应用此种电路
分析该电路的主要目的在于利用其简单易学
的特点,建立起整流电路的基本概念
3.1单相可控整流电路
3.1.2 单相桥式全控整流电路——电阻负载
电路结构 VT1和VT4组成一对桥臂 VT2和VT3组成另一对桥臂

电力电子技术第3章 三相可控整流电路

电力电子技术第3章 三相可控整流电路
19
第二节 时
三相全控桥式整流电路
整流电压为三相半波时的两倍,在大电感负载
20
图 3.9 三相桥式全控整流电路
21
图 3.10 三相全控桥大电感负载 α =0°时的波形
22
图 3.11 三相全控桥大电感负载 α =30°时的电压波形
23
图 3.12 三相全控桥大电感负载 α =60°时的电压波形
3
图 3.2是 α =30°时的波形。设 VT3 已导通, 当经过自然换流点 ωt0 时,因为 VT1的触发脉冲 ug1还没来到,因而不能导通,而 uc 仍大于零,所 以 VT3 不能关断,直到ωt1 所处时刻 ug1触发 VT1 导通,VT3 承受反压关断,负载电流从 c相换到 a 相。
4
图 3.2 三相半波电路电阻负载 α =30°时的波形
32
一、双反星形中点带平衡电抗器的可控整流电路 在低电压大电流直流供电系统中,如果要采用 三相半波可控整流电路,每相要多个晶闸管并联, 这就带来均流、保护等一系列问题。如前所述三相 半波电路还存在直流磁化和变压器利用率不高的问 题。
33
图 3.15 带平衡电抗器双反星形可控整流电路
34
图 3.16 带平衡电抗器双反星形可控整流 ud 和 uP 波形
26
图 3.14 三相桥式半控整流电路及波形 (a)电路图 (b)α =30° (c)α =120°
27
一、电阻性负载 控制角 α =0时,电路工作情况基本与三相全 控桥 α =0时一样,输出电压 ud波形完全一样。输 出直流平均电压最大为 2.34U2Φ。
28
由图 3.14( b),通过积分运算可得Ud 的计 算公式
12
当 α >30°时,晶闸管导通角 θV=150°- α。 因为在一个周期内有 3次续流,所以续流管的导通 角 θVD=3( α -30°)。晶闸管平均电流为

第3章 整流电路part1

第3章 整流电路part1

可得到 I S
PAC PAC VS PF VS cos1
8
《电力电子技术》
第3章 整流电路
3.1 单相可控整流电路
3.1.1单相半波可控整流电路 3.1.2单相桥式全控整流电路
3.1.3单相全波可控整流电路
3.1.4单相桥式半控整流电路
9
《电力电子技术》
第3章 整流电路
3.1.1 单相半波可控整流电路
《电力电子技术》
第3章 整流电路
第3章
整流电路
3.1 单相可控整流电路
3.2三相可控整流电路
3.3 变压器漏感对整流电路的影响
3.4 电容滤波的不可控整流电路
3.5 整流电路的谐波和功率因数
3.6大功率可控整流电路
3.7整流电路的有源逆变工作状态 3.8整流电路相位控制的实现
1
《电力电子技术》
第3章 整流电路
wt
wt
e)
晶闸管的电流有效值IVT
I VT 1 p 2 p a I a I d d (wt ) 2p 2p d
O i VD f) O u VT g) O
R
wt
wt
wt
20
《电力电子技术》
u2
第3章 整流电路
(3)续流二极管的电流平均值 IdVDR与续流二极管的 电流有效值IVDR w w
22
《电力电子技术》
第3章 整流电路
3.1.2 单相桥式全控整流电路
单相桥式全控整流电路(Single Phase
Bridge Contrelled Rectifier)
1) 带电阻负载的工作情况
电路结构
a)
晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对 桥臂。在实际的电路中,一般都采用这种标注方法,即 上面为1、3,下面为2、4。请同学们注意。

电力电子技术整流波形图

电力电子技术整流波形图

T的二次侧电流i2正负各180的矩形波,其 相位由a角决定,有效值I2=Id。
第三页,共14页。
3) 带反电动势(fǎn diàn dònɡ shì三)负相半波(bàn bō)可控

整流电路
1)电阻负载
ud E
Oa q d
wt
id Id
O
wt
b)
负载为直流电动机时,如果出现 电流断续,则电动机的机械特性 (tèxìng)将很软。为了克服此缺 点,在主电路中直流输出侧串联 一个平波电抗器。
时相同
u
u
a
ub
u c
d
O a
wt
ia
O
wt i
b
O
wt
i c
O
wt
id
O
wt
O
u
wt
ac
a =60
三相桥式全控整流电路
第六页,共14页。
三相桥式全控整流
(电zh阻ěn(gdilàinúz)ǔ电)负路载
a=0
uud21 a= 0°ua
ub
uc
O wt1
ud2
uu2dL
ⅠⅡ uab uac
Ⅲ ubc
发信号
uud21 a = 0°ua
ub
uc
uud21 a = 0°ua
ub
uc
O wt1
ud2 ⅠⅡ ⅢⅣ ⅤⅥ
uG1
1
1
wt
O wt1
wt
ud2 ⅠⅡ ⅢⅣ ⅤⅥ
uG1 1 1′
1 1′
o
uG2
2
ωt
o
ωt
2
uG2
2 2′
2 2′

第3章 整流电路3-1 单相全波可控整流电路

第3章 整流电路3-1 单相全波可控整流电路

o
ωt1 π

ωt
ug
– VT2导通,两端电压为0
o ud
ωt
• 负 载:ud = –u2,id = Id
o
ωt
• 变压器:i1 = –nId
αθ i1
• 电 感:电感放电,感应电压为负
o
ωt
uVT1
• 晶闸管:uVT1 = 2u2,iVT1 = 0
o
ωt
• 晶闸管:uVT2 = 0,iVT2 = Id
12:18
第3章 整流电路
3
3.1.3 单相全波可控整流电路
带阻性负载时的工作情况
电路分析:寻找α = 0的位置
• VT1和VT2都不导通:VT1承受电压u2,VT2承受电压–u2
• VT1导通,VT2承受反压–2u2 • VT2导通,VT1承受反压2u2 • VT1和VT2同时导通?
u2
o
ωt
12:18
第3章 整流电路
18
思考题
计算题
如图所示,单相全波半控整流电路,变压器二次侧电压有效值U2
• 画出ud、i1和VT1的工作波形
• 求Ud、Id和α关系
u2
• 求晶闸管的移相范围 • 求晶闸管的额定电压和额定电流
o
ωt1 π

ωt
α
ug
o
ωt
ud
i1 T
VT1
o
ωt
*
* u2
ωt1 π

ωt
ug
– VT2阻断,承受正向电压–2u2
o ud
ωt
• 负 载:ud = u2,id = Id • 变压器:i1 = nId
o

第3章三相可控整流电路

第3章三相可控整流电路

a>30时,负载电流断续,晶闸管导通角减小,此 时有:
U d

1
2
3
a 6
2U 2
sin
wtd (wt )

32
2
U2
1
cos(
6
a )

0.6751
cos(
6
a )
(3-2)
3.1 三相半波可控整流电路
Ud/U2随a变化的规律如图2-15中的曲线1所示。
1.2 1.17
0.8
Ud/U2
0.4
1
3
2
0 30 60 90 120 150 a/(°)
图3-4 三相半波可控整流电路Ud/U2随a变化的关系 1-电阻负载 2-电感负载 3-电阻电感负载
3.1 三相半波可控整流电路 负载电流平均值为
Id

Ud R
(3-3)
晶闸管承受的最大反向电压,为变压器二次线电压峰值,

URM 2 3U2 6U2 2.45U2 (3-4)
晶闸管阳极与阴极间的最大正向电压等于变压器二 次相电压的峰值,即
U FM 2U 2
(3-5)
3.1 三相半波可控整流电路
2)阻感负载
特点:阻感负载,L值很大, u
u
a
u
u
b
c
id波形基本平直。
d
a≤30时:整流电压波形与 O a
晶闸管电压、电流等的定量分析与三相半波时一致。
接反电势阻感负载时,在负载电流连续的情况下,电路 工作情况与电感性负载时相似,电路中各处电压、电流 波形均相同。
仅在计算Id时有所不同,接反电势阻感负载时的Id为:

电力电子技术——三相半波可控整流电路

电力电子技术——三相半波可控整流电路
ud=uab;后30o从负半周自然换相点开始, uc变为 最低,由于VT2尚未触发,使VT6不能关断,故 后30o仍有ud=uab。 ➢每周仍6个波头但脉动加深,为线电压峰点右侧 的60o片段。
➢SCR电压波形uVT1(三段分析法):与三相半波相同。 ➢副边电流ia波形:正半周为iVT1,负半周为iVT4;阻感负
➢t3~t4 期 间 : VD3 导 通 , 迫 使 VD2 关 断 , ud=uc。
Goback
➢VD1,2,3轮换导通各120° ,ud为三相电压在正半 周的包络线,三脉波整流。
➢t1,t2,t3时刻均发生二极管换流,电流由一只 向另一只转移。
• 自然换相点:各相晶闸管能触发导通的最早时刻。
以此作为控制角的起点。单相整流的自然换相
➢导通30o时, ua= ub , uab过零变负。电阻负载时, VT1,6关断,ud=0;而在大L-R负载时VT1,6继续导通, ud等于uab负半周的起始片段,直到VT1,2触发导通为 止。
➢在C相负半周=90o处,VT1,2同时触通,ud为uac片段。
➢ud每周含有6个线压片段。电阻负载时,ud断续间隔
• >30°(=60°) 时 : ua 过 零 时 , 由 于 L 很 大 , 延 续 VT1导通,直到b相VT2触通,发生换流,ud=ub, 同时使VT1关断。
• 随增大,ud中的负面积增大,直到=90° ,正负
面积相等,Ud=0。
• 的移相范围:0~90° 。
转波形
• 每只SCR导通角=120°,电流近似为120°方波。
u
u
u
u
u
a
b
c
a
2
t
u G
1
3

课件4----整流电路

课件4----整流电路
整流电路是电源电路中的核心部分,它的作用是将交流电压通过 整流二极管转换成单向脉动性的直流电压,整流是将交流电压转换成 直流电压过程中的关键一步。 无论什么类型的电源电路,都需要整流电路来完成交流电至直流 电的转换。整流电路的类型比较少,但具体电路的变化比较多,电子 电路中基本的整流电路有半波整流电路、全波整流电路和桥式整流电 路。
上一页 下一页 返回
上一页 下一页 返回
3.图解单相桥式整流电路
电 路 名 称
单相桥式整 流电路
电路原理图
波 形 图
单相桥式整流电路的变压器次级绕组不用设中心抽头,但要 用四只整流二极管。从整流电路的输出电压波形中可以看出,通 过桥式整流电路,可以将交流电压转换成单向脉动性的直流电压 ,这一电路作用同全波整流电路一样,也是将交流电压的负半周 转到正半周来。
工作原理
上一页 下一页 返回
图1-2-7 单相桥式整流电路波形图
上一页 下一页 返回
课题2
整流电路的应用
图1-2-8 单相桥式整流电路的电流通路
上一页 下一页 返回
(2)负载RL上直流电压和电流的计算
在单相桥式整流电路中,交流电在一个周期内的两个半波都有 同方向的电流流过负载,因此在同样的U2时,该电路输出的电流和电 压均比半波整流大一倍。 输出电压为:UL≈0.9U2 依据负载RL上的电压UL求得整流变压器副边电压:
流过负载RL的直流电流平均值:
上一页 下一页 返回
(3)整流二极管上的电流和最大反向电压
在桥式整流电路中,由于每只二极管只有半周是导 通的,所以流过每只二极管的平均电流只有负载电流的一 半,即
在单相桥式整流电路中,每只二极管承受的最大反向电 压也是u2的峰值,即

第三章三相整流电路

第三章三相整流电路

第三章三相可控整流电路[ 机电工程系]单相可控整流电路具有线路简单,维护、调试方便等优点,但输出整流电压脉动大,又会影响三相交流电网的平衡。

因此,当负载容量较大(一般指4KW以上),要求的直流电压脉动较小时,通常采用三相可控整流电路。

三相可控整流电路有多种形式,其中最基本的是三相半波可控整流电路,而其他常用的如三相桥式全控整流电路、双反星形可控整流电路、十二脉波可控整流电路等,均可看作是三相半波可控整流电路的串联或并联,可在分析三相半波可控整流电路的基础上进行分析。

本章重点:(1)介绍三相半波可控整流电路不同负载时的组成、工作原理、波形分析、电路各电量的计算等,(2)三相桥式全控整流电路及双反星形可控整流电路。

最后,将介绍几个应用实例。

第一节第二节第三节第四节三相半波可控整流电路三相桥式全控整流电路带平衡电抗器的双反星形可控整流电路带平衡电抗器的双反星形可控整流电路U V W TuvwVD1VD3VD5Ku d R d一、三相半波不可控整流电路➢电路的特点:变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网。

三个二极管分别接入a、b、c三相电源,其阴极连接在一起——共阴极接法。

二极管开通情况:三个二极管对应的相电压中哪一个的值最大,则该相所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。

b) c)d) e)u2R iduaubucO w t1w t2w t3uGudOOuabuacOiVD1uVD1w tw tw tw tw t自然换相点:在相电压的交点ωt1、ωt2、ωt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。

b) c)d) e)u2R iduaubucO w t1w t2w t3uGudOOuabuacOiVD1uVD1w tw tw tw tw t在一个周期中,器件工作情况如下:在ωt1~ωt2期间,a相电压最高,VD1导通,ud= u a。

电力电子技术-第三章--单相整流讲解

电力电子技术-第三章--单相整流讲解

3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)

a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a

三相半波、桥式(全波)整流及六脉冲整流电路

三相半波、桥式(全波)整流及六脉冲整流电路

三相半波、桥式(全波)整流及六脉冲整流电路1.三相半波整流滤波当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。

图1所示就是三相半波整流电路原理图。

在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120º叠加,并且整流输出波形不过0点,其最低点电压——是交流输入电压幅值。

式中Up并且在一个周期中有三个宽度为120º的整流半波。

因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。

图1 三相半波整流电路原理图2.三相桥式(全波)整流滤波图2所示是三相桥式全波整流电路原理图。

图3是它们的整流波形图。

图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。

在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。

(1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管;(2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。

由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。

图3 三相整流的波形图①三相半波整流波形的脉动周期是120º而三相全波整流波形的脉动周期是60º;②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是:(1)式中 U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压,其半波幅值电压为:(2)那么其脉动幅度电压就是:输出电压平均值Ud是从30º~150º积分得,(3)式中 Ud——输出电压平均值;UA——相电压有效值。

电力电子技术之第2-3章 三相半波整流

电力电子技术之第2-3章 三相半波整流
2012-2-22 电力电子技术 6
Ud 负载电流平均值为 负载电流平均值为 Id = R 1 晶闸管电流平均值为 晶闸管电流平均值为 I Id dT = 3
晶闸管电流有效值, 晶闸管电流有效值,当 α ≤ 30°时 °
(3 - 3) )
IT =
1 2π

5π +α 6 π +α 6
2U 2 Sin ωt 2 ( ) d (ωt ) R
(3 - 4) )
U2 = R
2012-2-22
1 2π 3 ( + cos 2α ) 2π 3 2
电力电子技术
7
晶闸管电流有效值, 晶闸管电流有效值,当 α > 30°时 °
IT =
1 2π
2U 2 Sin ω t 2 ) d (ω t ) ∫π6 +α ( R
π
U2 = R
1 5π 3 1 ( −α + cos 2α + sin 2α ) 2π 6 4 4
u2 过零时 , VT1 不关断 , 直到 2 的脉冲到 过零时, 不关断, 直到VT 才换流, 导通向负载供电, 来, 才换流 , 由VT2导通向负载供电,同时 施加反压使其关断——ud 波形中出现 向 VT1 施加反压使其关断 负的部分 晶闸管仍导通120° 晶闸管仍导通 ° 动画 阻感负载时的移相范围 移相范围为 ° 阻感负载时的移相范围为90°
(3 - 5) )
2012-2-22
电力电子技术
8
晶闸管承受的最大反向电压, 晶闸管承受的最大反向电压,为变压器二次线电压峰 最大反向电压 值,即 (3 - 6) )
U RM = 2 × 3U 2 = 6U 2 = 2.45U 2

整流电路图解

整流电路图解

通用的整流电路是利用了二极管或可控硅晶闸管的单相导电性进行交流到直流的整流的。

单相整流电路
1:单相半波可控整流电路
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

VT的a 移相范围为180
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示
通过控制触发脉冲的相位来控制输出电压大小的方式称为相位控制方式,简称相控方式。

单相半波可控整流电路原理图单相半波可控整流电路波形图2:单相桥式整流电路
单相桥式整流电路原理图单相桥式整流电路等效原理图
单相桥式整流电路运行分析示意图
单相桥式整流电路输出波形图
三相桥式整流电路
三相全控桥式整流电路原理图
三相全控桥式整流电路波形图。

第三章 整流电路

第三章 整流电路

c) 0 i2 d) 0
ωt
ωt
2-19
3.1.2 单相桥式全控整流电路
2)带阻感负载的工作情况 ) 假设电路已工作于稳态,id 的平 均值不变。 假设负载电感很大,负载电流id 连续且波形近似为一水平线。
u2过零变负时,晶闸管VT1和VT4 并不关断。 至 ωt=π+α 时 刻 , 晶 闸 管 VT1 和 VT4关断,VT2和VT3两管导通。 VT2 和VT3 导通后,VT1 和VT4 承 受反压关断,流过VT1和VT4的电 流迅速转移到VT2和VT3上,此过 程称换相 换相,亦称换流 换流。 换相 换流
第3章 章
3.1 3.2 3.3 3.4 3.5 3.6 3.7
整流电路
单相可控整流电路 三相可控整流电路 变压器漏感对整流电路的影响 电容滤波的不可控整流电路 整流电路的谐波和功率因数 大功率可控整流电路 整流电路的有源逆变工作状态
3.8 晶闸管直流电动机系统 3.9 相控电路的驱动控制 本章小结
2U2 sinωtd(ωt) =
2 2
π
U2 cosα = 0.9U2 cosα (3-15)
2
晶闸管移相范围为0~90°。 ° 晶闸管承受的最大正反向电压均为 电流的平均值和有 id i VT O
1,4
ωt
ωt
Id Id Id Id Id
晶闸管导通角θ与a无关,均为180°。
2-1
第3章 章
整流电路:
整流电路·引言 整流电路 引言
出现最早的电力电子电路,将交流电变为直流电。
整流电路的分类: 整流电路的分类
按组成的器件可分为不可控 半控 全控 不可控、半控 全控三种。 不可控 半控、全控 按电路结构可分为桥式电路 零式电路。 桥式电路和零式电路 桥式电路 零式电路。 按交流输入相数分为单相电路 多相电路。 单相电路和多相电路 单相电路 多相电路。 按变压器二次侧电流的方向是单向或双向,又分为 单拍电路和双拍电路 单拍电路 双拍电路。 双拍电路

第三章交流-直流(ACDC)变换

第三章交流-直流(ACDC)变换

第三章交流-直流(AC-DC)变换3.1 单相可控整流电路3.1.1 单相半波可控整流电路1.电阻性负载图3-1表示了一个带电阻性负载的单相半波可控整流电路及电路波形。

图中T为整流变压器,用来变换电压。

引入整流变压器后将能使整流电路输入、输出电压间获得合理的匹配,以提高整流电路的力能指标,尤其是整流电路的功率因数。

在生产实际中属于电阻性的负载有如电解、电镀、电焊、电阻加热炉等。

电阻性负载情况下的最大特点是负载上的电压、电流同相位,波形相同。

图3-1 单相半波可控整流电路(电阻性负载)晶闸管从开始承受正向阳极电压起至开始导通时刻为止的电角度度称为控制角,以α表示;晶闸管导通时间按交流电源角频率折算出的电角度称为导通角,以θ表示。

改变控制角α的大小,即改变门极触发脉冲出现的时刻,也即改变门极电压相对正向阳极电压出现时刻的相位,称为移相。

整流电路输出直流电压u d为(3-1) 可以看出,U d是控制角α的函数。

当α=0时,晶闸管全导通,U d=U d0=0.45U2,直流平均电压最大。

当α=π时,晶闸管全关断,U d=0,直流平均电压最小。

输出直流电压总的变化规律是α由小变大时,U d由大变小。

可以看出,单相半波可控整流电路的最大移相范围为180°。

由于可控整流是通过触发脉冲的移相控制来实现的,故亦称相控整流。

2.电感性负载当负载的感抗ωL d与电阻R d相比不可忽略时,这种负载称电感性负载。

属于电感性负载的常有各类电机的激磁绕组、串接平波电抗器的负载等等。

电感性负载时电路原理图及波形如图3-2所示。

在分析电感性负载的可控整流电路工作过程中,必须充分注意电感对电流变化的阻碍作用。

这种阻碍作用表现在电流变化时电感自感电势的产生及其对晶闸管导通的作用。

图3-2 单相半波可控整电流电路(电感性负载)大电感负载下造成输出直流平均电压下降的原因是u d波形中出现了负面积的区域。

如果设法将负面积的区域消除掉而只剩正面积的区域,就可提高输出直流电压的平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d
O
w t
图3-38 双反星形电路,a =0时两组整流电压、电流波形
a = 30° ua
ub
uc
O u d2 ud
wt1
Ⅰ u ab Ⅱ u ac Ⅲ u bc Ⅳ u ba Ⅴ u ca Ⅵ u cb u ab u ac
wt
O
wt
id O ia O
wt wt
图3-24 三相桥式全控整流电路带阻感负载a=30时的波形
3.2.2 三相桥式全控整流电路
u d1
a = 90°
wt
ud
uab
uac
O
wt
iVD1 O i2a O
Id
wt
Id
wt
图3-27 ud、iVD1和i2a的波形
3.6.1 带平衡电抗器的双反星形可控整流电路
ud1 u
a
u
b
u
c
O ia 1 I 2
d
w t
1 I 6 u
' c
d
O ud2
u
' a
u
' b
u
' c
w t
O i a' 1 I 2
d
w t
1 I 6
a = 0° u a wt 1
Ⅰ u ab Ⅱ u ac Ⅲ u bc
ub
uc
O
u d2 u 2L ud
wt
Ⅳ u ba Ⅴ u ca
Ⅵ u cb u ab u ac
O
wt
id O i VT
1
wt wt
图3-23 三相桥式全控整流电路带阻感负载a=0时的波形
O
3.2.2 三相桥式全控整流电路
u d1
ub
uc
ua
O u d2 ud
wt1
u Ⅰ u ac Ⅱ u bc Ⅲ u ba Ⅳ u ca Ⅴ u cb Ⅵ u ab u
wt
ab
ac
O
wt
u VT
1
u
ac
u
ac
O u
ab
wt
图3-25 三相桥式整流电路带阻感负载,a=90时的波形
3.3 变压器漏感对整流电路的影响
u2 ua ub uc O wt1 Ⅰ uab Ⅱ uac Ⅲ ubc Ⅳ uba Ⅴ uca Ⅵ ucb
3.2.2 三相桥式全控整流电路
ud1 ua ub uc ua ub
O
ud2
wt
u
ab
ud
u
ac
u
bc
u
ba
u
ca
u
cb
u
ab
u
ac
u
bc
u
ba
O
wt
id O
1
i VT
wt
O ia O
wt
wt
图3-22 三相桥式全控整流电路带电阻负载a=90时的波形
3.2.2 三相桥式全控整流电路
u2 u d1
3.2.2 三相桥式全控整流电路
u
d1
a = 30° u a
ub
uc
O u
d2
wt1
Ⅰ u ab Ⅱ u ac Ⅲ u bc u Ⅳ
ba
wt
Ⅴ u ca Ⅵ u cb u uudBiblioteka abacO
wt
u
VT
1
u
ab
u
ac
u
bc
u
ba
u
ca
u
cb
u
ab
u
ac
O
wt
ia O
u
ab
u
ac
wt
图3-20 三相桥式全控整流电路带电阻负载a=30时的波形
3.2.2 三相桥式全控整流电路
u d1
a = 60° u w t1
a
ub
uc
O u d2 ud u ab Ⅰ u ac Ⅱ u bc Ⅲ u ba Ⅳ u ca Ⅴ u cb Ⅵ u ab u ac
wt
O
wt
uVT
1
u ac
u ac
O
wt
u ab
图3-21 三相桥式全控整流电路带电阻负载a=60时的波形
相关文档
最新文档