多边形面积知识点归纳总结1
五年级数学上册《多边形的面积》知识点总结
《多边形的面积》知识点总结一、图形的面积计算公式以及变式①长方形的面积=长×宽S=ab长方形的长=面积÷宽长方形的宽=面积÷长②正方形的面积=边长×边长S=a2正方形的边长=面积÷边长③平行四边形的面积=底×高S=a h平行四边形的底=面积÷高平行四边形的高=面积÷底④三角形的面积=底×高÷2S=a h÷2三角形的底=三角形的面积×2÷高三角形的高=三角形的面积×2÷底⑤梯形的面积=(上底+下底)×高÷2S=(a+b)× h ÷2梯形的高=梯形的面积×2÷(上底+下底)二、难点解析①两个完全一样的三角形可以拼成一个平行四边形。
原来三角形的底和拼成的平行四边形的底相等,原来三角形的底和拼成的平行四边形的高相等,三角形的面积是拼成的平行四边形面积的一半。
②两个完全一样的梯形可以拼成一个平行四边形,原来梯形的上底与下底之和等于拼成的平行四边形的底,原来梯形的高等于拼成的平行四边形的高,原来梯形的面积等于拼成的平行四边形面积的一半。
③同底等高的平行四边形面积相等。
三角形的面积是与它等底等高的平行四边形面积的一半。
三、三角形与平行四边形之间的一些联系。
①面积相等,底相等,三角形的高是平行四边形高的2倍。
②面积相等,高相等,三角形的底是平行四边形底的2倍。
③高相等,底相等,三角形的面积是平行四边形面积的一半。
五年级数学上册《多边形面积应用题》练习1、有一块平行四边形的钢板,底是4米,高是5米,如果每平方米重12千克,这块钢板重多少千克?2、有一座水电站的拦河坝的横截面是梯形,它的上底是24米,下底是上底的2倍,高是20米。
这个横截面的面积是多少平方米?3、一块三角形的小麦试验田,底长80米,高60米,一共收小麦24吨,平均每平方米收小麦多少千克?4、农场要划出1000平方米的三角形地种大豆,已知底是50米,高应该是多少米?5、“农夫”果园是一块平行四边形的园地,里面种植了360棵果树,如果平均每棵果树占地4平方米,量得平行四边形的底是90米,平行四边形的高是多少米?6、有一台播种机,作业宽度是4米。
多边形面积知识点归纳总结1
多边形面积知识点归纳总结1多边形面积知识点归纳总结11.三角形的面积计算方法三角形的面积可以使用海伦公式或两个向量的叉积来计算。
海伦公式是根据三角形的边长来计算其面积的公式,公式如下:面积 = sqrt(s(s-a)(s-b)(s-c))其中,s是半周长,a、b、c是三角形的三条边的长度。
如果已知三角形的两个向量,则可以使用叉积的模长来计算其面积,公式如下:面积=1/2*,AxB其中,A、B分别是两个向量。
2.四边形的面积计算方法四边形的面积计算方法取决于其形状和已知信息的不同。
如果已知四边形是矩形或正方形,则可以使用长度和宽度的乘积来计算面积。
如果已知四边形的对角线和夹角,则可以使用正弦定理来计算面积,公式如下:面积= 1/2 * d1 * d2 * sinθ其中,d1、d2是对角线的长度,θ是两条对角线的夹角。
3.多边形的面积计算方法对于任意的多边形,可以将其分解为若干个三角形,然后计算各个三角形的面积,再将其相加就是多边形的总面积。
可以通过连接多边形的一个顶点和其他顶点来将多边形分解为若干个三角形,然后计算每个三角形的面积,最后将其相加。
4.特殊多边形的面积计算公式对于一些特殊形状的多边形,有一些特殊的面积计算公式。
例如,正多边形的面积可以通过边长和中心角的正弦函数来计算,公式如下:面积= (n * s^2) / (4 * tan(π/n))其中,n是多边形的边数,s是边长。
另一个例子是等腰梯形的面积计算公式,公式如下:面积=1/2*(a+b)*h其中,a、b分别是上底和下底的长度,h是高的长度。
此外,还有一些其他类型的特殊多边形,每个类型的多边形都有相应的面积计算公式。
5.高斯公式高斯公式是用于计算任意简单多边形的面积的公式。
它通过将多边形分解为若干个三角形,并计算每个三角形的面积来得到总面积。
公式如下:面积=1/2*Σ(x[i]*y[i+1]-x[i+1]*y[i])其中,(x[i],y[i])是多边形的顶点的坐标。
人教版五年级数学上册 多边形的面积 知识点归纳
梯形
梯形周长=上底+下底+两条腰
C =a+b+c+d
5、当一个平行四边形与一个三角形等底等高,那么这个三角形的面积是平行四边形的面积的一半。
6、把长方形框架拉成平行四边形,周长不变,面积变小。
3、环绕一个图形的边缘走一周的长度叫做周长。不规则图形的周长也是按照这个定义来求的。
4、常用多边形周长公式:
周长公式
周长的字母公式
长方形
长方形周长=(长+宽)×2
C=2(a+b)
正方形
正方形周长=边长×4
C =4a
平行四边形
平行四边形周长=相邻两边之和×2
C =2Байду номын сангаасa+b)
三角形
三角形周长=三条边的和
多边形面积知识点归纳
1、在一个面上,物体所占空间的大小叫做面积。
2、常用多边形面积公式:
面积公式
面积的字母公式
长方形
长方形面积=长×宽
S=ab
正方形
正方形面积=边长×边长
S=a2
平行四边形
平行四边形面积=底×高
S=ah
三角形
三角形面积=底×高÷2
S=ah÷2
梯形
梯形面积=(上底+下底)×高÷2
S=(a+b)×h÷2
新人教版五年级上册数学多边形的面积知识点
多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
多边形的面积知识点梳理
多边形的面积知识点梳理多边形是几何学中一个基础的概念,它是一个由若干条线段组成的封闭图形。
在实际生活和学术研究中,计算多边形的面积是一个常见的问题。
本文将从数学定义、计算公式、测量方法等多个方面对多边形的面积知识点进行梳理。
一、数学定义多边形是一个由若干条线段组成的封闭图形,它的特点是边与边之间没有交点,每个定点上的内角均小于180度。
面积指多边形所占据的平面区域,是一个量化面积大小的指标。
二、计算公式计算多边形面积的公式通常有以下几种:1. 面积 = 周长 x 高 ÷ 2在此公式中,周长指多边形的所有边长之和,高指到多边形某一个顶点的垂线长度。
此公式适用于一些规则多边形。
2. 面积 = 1/2 x ab x sinC其中a、b分别为两边长,C为它们夹角的度数。
此公式适用于求解平面上任意三角形的面积,而多边形可以看作由多个三角形组成。
3. 面积= 1/2 x ((x1y2 + x2y3 + … + xn-1yn + xny1)-(y1x2 + y2x3 + … + yn-1xn + ynx1))此公式是利用多边形顶点坐标计算面积的通用公式,也叫做格林公式。
其中x、y分别代表多边形中各定点的坐标。
三、测量方法在实际生活中,我们需要精确测量多边形的面积大小。
以下是几种测量方法:1. 直接测量对于一些规则的多边形,可以直接测量边长和高,并使用第一种公式进行计算。
2. 拆分法将多边形拆分成多个三角形,使用第二种公式进行计算。
在实际应用中,可以通过手绘、计算机CAD等方式拆分。
3. 集成法对于曲线边界的多边形,可以使用集成法求解。
其中,将多边形面积视作一个定积分,通过分割成若干狭长的区域,将求解面积的问题转化为求解曲线的弧长公式。
四、其他应用多边形面积的计算并不仅仅局限于学术领域,它也具有一定的应用场景。
例如:1. 建筑工程领域中,建筑师需要准确测量建筑物的面积大小,以便拟定建筑方案。
2. 农业领域中,农民需要计算农田面积,以便确定种植面积和作物产量。
多边形面积知识点归纳
多边形面积知识点归纳一、基本概念1.多边形:由若干条边和相应数量的顶点组成的图形。
通常以n边形或多边形表示,其中n为边的数量。
2.顶点:多边形的尖角点。
3.边:多边形两个顶点之间的线段。
4.内角:多边形内部的角度。
5.外角:从多边形的一条边上延伸出的角度。
二、常见多边形面积公式1.三角形面积:三角形的面积可以用底长和对应的高来计算,公式为:S=1/2*b*h,其中S表示面积,b表示底长,h表示对应的高。
2. 正多边形面积:正多边形是所有边和内角相等的多边形,其面积可以用边长来计算,公式为:S = 1/4 * n * a² * cot(π/n),其中S表示面积,n表示边的数量,a表示边长,cot表示余切函数。
3.不规则多边形面积:不规则多边形是指边和内角都不相等的多边形,其面积可以通过将多边形分割为多个三角形,并分别计算每个三角形的面积,然后求和得到整个多边形的面积。
三、推导方法1.面积推导的方法:靠近初中等阶段的学生可以使用切切割割法,即将多边形切割成若干个与坐标轴平行的三角形或梯形,然后分别计算每个三角形或梯形的面积,最后将它们加起来得到整个多边形的面积。
2.面积推导的公式:面积推导的公式有很多不同的表达方式,例如通过高和底长计算三角形的面积公式,通过边长和正弦公式计算梯形的面积公式等。
四、性质和定理1.高度定理:三角形的高是顶点到底边的垂线段,而高等于底边乘以对应顶点到底边距离的正弦值。
2.面积定理:如果两个多边形的面积相等,那么它们的底和高也相等,换句话说,如果两个多边形的底和高相等,那么它们的面积也相等。
五、应用1.地理学:用于计算国家、城市等地理范围的面积。
2.建筑学:用于计算房屋、空地等的面积。
3.农业学:用于计算农田、农作物等的面积。
4.经济学:用于计算土地、产业等的面积。
5.生态学:用于计算湖泊、森林等的面积。
总之,多边形面积是几何学中的一个重要概念,我们需要掌握基本的概念和公式,能够运用推导方法和定理来计算多边形的面积。
多边形的面积知识点整理
多边形的面积知识点整理一、平行四边形的面积。
1. 公式推导。
- 把平行四边形通过割补法转化为长方形。
沿着平行四边形的高剪下一个三角形,平移后可以拼成一个长方形。
这个长方形的长等于平行四边形的底,宽等于平行四边形的高。
- 因为长方形的面积 = 长×宽,所以平行四边形的面积 = 底×高,用字母表示为S = ah(其中S表示面积,a表示底,h表示高)。
2. 计算应用。
- 已知平行四边形的底和高,直接代入公式计算面积。
例如,一个平行四边形的底是5厘米,高是3厘米,它的面积S = 5×3 = 15平方厘米。
- 已知平行四边形的面积和底(或高),求高(或底)。
例如,平行四边形面积是24平方米,底是6米,根据h = S÷a,可得高h = 24÷6 = 4米。
二、三角形的面积。
1. 公式推导。
- 用两个完全一样的三角形可以拼成一个平行四边形。
这个平行四边形的底等于三角形的底,高等于三角形的高。
因为平行四边形的面积 = 底×高,所以三角形的面积是平行四边形面积的一半。
- 三角形的面积 = 底×高÷2,用字母表示为S=(1)/(2)ah(其中S表示面积,a表示底,h表示高)。
2. 计算应用。
- 已知三角形的底和高,求面积。
如三角形的底是8分米,高是5分米,面积S=(1)/(2)×8×5 = 20平方分米。
- 已知三角形的面积和底(或高),求高(或底)。
例如,三角形面积是15平方厘米,底是6厘米,根据h = 2S÷a,可得高h = 2×15÷6 = 5厘米。
三、梯形的面积。
1. 公式推导。
- 用两个完全一样的梯形可以拼成一个平行四边形。
这个平行四边形的底等于梯形的上底与下底之和,高等于梯形的高。
因为平行四边形的面积=(上底 + 下底)×高,所以梯形的面积是平行四边形面积的一半。
- 梯形的面积=(上底 + 下底)×高÷2,用字母表示为S=((a + b)h)/(2)(其中S 表示面积,a表示上底,b表示下底,h表示高)。
多边形的面积知识点梳理
多边形的面积知识点梳理一、引言多边形是几何学中的重要概念之一,它由多个直线段连接而成。
计算多边形的面积是几何学中的基础知识,本文将围绕多边形的面积计算方法展开论述。
二、正多边形的面积正多边形是指所有边长相等、所有内角相等的多边形。
计算正多边形的面积需要掌握以下公式:1. 正n边形的面积公式:S = (n * a^2) / (4 * tan(π/n))其中,S为面积,n为正多边形的边数,a为边长,π为圆周率。
2. 正三角形的面积公式:S = (a^2 * √3) / 4在正三角形中,边长为a。
三、任意多边形的面积对于一般的任意多边形,计算其面积有以下方法:1. 分割为三角形:将任意多边形划分为多个三角形,计算每个三角形的面积,再将各个三角形的面积相加,即可得到多边形的面积。
2. 高度乘底边长:选择一条边作为底边,从该底边引出一条垂线作为高,计算高与底边长度的乘积,再将各个三角形的面积相加,即可得到多边形的面积。
3. 海伦公式:对于已知边长的多边形,可以使用海伦公式计算面积。
海伦公式的表达式为:S = √(s(s-a)(s-b)(s-c))其中,S为面积,a、b、c为多边形的边长,s为半周长,s = (a +b + c) / 2.四、特殊多边形的面积在几何学中,有一些特殊的多边形形状,其面积计算公式与一般多边形的计算方法略有不同。
1. 矩形的面积公式:S = 长 * 宽2. 正方形的面积公式:S = 边长^23. 梯形的面积公式:S = (上底 + 下底) * 高 / 24. 圆形的面积公式:S = π * 半径^2五、应用举例1. 例题一:计算一个边长为5的正六边形的面积。
解答:根据正六边形的面积公式,S = (6 * 5^2) / (4 * tan(π/6)),代入数值计算即可。
2. 例题二:计算一个五边形的面积,已知其边长分别为3、4、5、6、7。
解答:根据海伦公式,计算五边形各个三角形的面积,再将面积相加即可。
《多边形的面积》知识点汇总
《多边形的面积》知识点汇总多边形是由多条直线边界围成的平面图形,它的面积是计算多边形所包围的区域的大小。
计算多边形的面积是几何学中的基本问题之一、本文将汇总多边形的面积的相关知识点。
1.常见多边形的面积公式:- 三角形的面积公式:设三角形的底为b,高为h,则三角形的面积S = (1/2)bh。
-正方形的面积公式:设正方形的边长为a,则正方形的面积S=a^2 - 长方形的面积公式:设长方形的长为a,宽为b,则长方形的面积S = ab。
- 平行四边形的面积公式:设平行四边形的底为b,高为h,则平行四边形的面积S = bh。
2.多边形的面积计算方法:-多边形的面积可以通过将其分割成多个三角形或梯形等已知形状的图形,然后计算每个图形的面积,最后将其求和来计算得到。
这种方法被称为分割法。
-另一种计算多边形面积的方法是使用矢量叉积。
将多边形的顶点按照一定的顺序连接起来,形成一个封闭的环。
然后通过顶点的坐标计算矢量叉积,并求和,最后取绝对值得到多边形的面积。
3.正多边形的面积公式:- 正n边形(n-gon)是指边数为n,所有边的长度和内角都相等的多边形。
正n边形的面积可以用公式S = (n * a^2) / (4 * tan(π/n))来计算,其中a为边长。
- 特殊地,正三角形的面积公式为S = (a^2 * sqrt(3)) / 4,其中a为边长;正六边形的面积公式为S = (3 * a^2 * sqrt(3)) / 24.不规则多边形的面积计算方法:-对于不规则多边形,可以将其分割成多个三角形或梯形等已知形状的图形,然后计算每个图形的面积,最后将其求和来计算得到多边形的面积。
-另一种方法是使用格林公式(也称为叉积公式),通过计算多边形顶点的坐标来计算面积。
5.使用数学软件计算多边形的面积:- 使用数学软件如MATLAB、Python的NumPy库等可以更方便地计算多边形的面积。
这些软件提供了各种几何计算的函数和库,可以直接调用相应函数计算多边形的面积。
多边形面积计算知识点及重难点简析
多边形面积计算知识点及重难点简析一、简单多边形的面积计算1.三角形的面积计算:三角形面积计算方法有两种,一种是通过已知底和高来计算,公式为:面积=底×高÷2、另一种是通过已知三条边的长度,利用海伦公式计算,公式为:面积=√[p(p-a)(p-b)(p-c)],其中p为三角形周长的一半,a、b、c为三角形的三条边的长度。
2.矩形和正方形的面积计算:矩形和正方形的面积计算都是通过已知长和宽来计算,公式为:面积=长×宽。
二、复杂多边形的面积计算1.梯形的面积计算:梯形的面积计算需要已知上底、下底和高,公式为:面积=(上底+下底)×高÷22.菱形的面积计算:菱形的面积计算需要已知对角线的长度,公式为:面积=(对角线1×对角线2)÷23.四边形的面积计算:四边形常见的计算方法有两种:直接计算和分割成三角形计算。
通过直接计算时,需要已知四边形的一些特定信息,例如边长和对角线的长度。
分割成三角形计算时,可以将四边形分割成两个三角形或四个三角形,然后使用三角形面积计算的方法来计算。
三、重难点分析1.海伦公式的应用:海伦公式是计算三角形面积的重要方法,但在使用时需要注意计算过程中的运算符号,如开平方号的运用以及计算中是否使用正确的边长。
2.分割复杂图形的计算:对于复杂多边形,我们可以将其分割成若干个简单多边形,然后计算每个简单多边形的面积并相加,得到最终的结果。
但分割的方法可能存在多个选择,需要灵活运用分割方法,并注意计算过程中的边界条件。
3.对角线的计算:在计算菱形和四边形的面积时,需要已知对角线的长度。
对角线的长度可以通过使用勾股定理或余弦定理来计算,但在计算过程中需要谨慎选择合适的定理和计算式,并注意对角线的长度是否与其他已知条件相符。
总之,多边形面积计算是基础的几何学知识,掌握了多边形面积的计算方法,就能够计算出各种形状多边形的面积。
在学习过程中,需要理解每个公式的推导过程和应用场景,并灵活运用。
五年级数学上册《多边形的面积》知识点汇总
五年级数学上册《多边形的面积》知识点汇总五年级数学上册《多边形的面积》知识点汇总(精选2篇)五年级数学上册《多边形的面积》知识点汇总篇11、公式:长方形:周长=(长+宽)×2 字母公式:c=(a+b)×2面积=长×宽字母公式:s=ab正方形:周长=边长×4 字母公式:c=4a面积=边长×边长字母公式:s=a平行四边形的面积=底×高字母公式: s=ah底=面积÷高高=面积÷底三角形的面积=底×高÷2 字母公式:s=ah÷2(底=面积×2÷高;高=面积×2÷底)梯形的面积=(上底+下底)×高÷2 字母公式: s=(a+b)h÷2 上底=面积×2÷高-下底下底=面积×2÷高-上底高=面积×2÷(上底+下底)2、单位换算的方法:大化小,乘进率;小化大,除以进率。
3、常用的单位间的进率长度单位:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米4、图形之间的关系:两个完全相同的三角形可以拼成一个平行四边形。
两个完全相同的梯形可以拼成一个平行四边形。
等底等高的平行四边形面积相等;等底等高的三角形面积相等。
等底等高的平行四边形面积是三角形面积的2倍。
如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。
如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
5、把长方形框架拉成平行四边形,周长不变,面积变小了。
6、求组合图形面积的方法:(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
多边形的面积知识点梳理
多边形的面积知识点梳理关键信息项1、多边形的定义及分类三角形四边形(包括平行四边形、矩形、菱形、正方形、梯形)五边形及以上多边形2、常见多边形面积计算公式三角形面积公式平行四边形面积公式矩形面积公式菱形面积公式正方形面积公式梯形面积公式3、多边形面积计算的推导过程三角形面积的推导平行四边形面积的推导梯形面积的推导4、多边形面积计算的应用实例实际生活中的应用数学问题中的应用11 多边形的定义多边形是由三条或三条以上的线段首尾顺次连接所组成的封闭图形。
111 三角形由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
112 四边形由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。
113 平行四边形两组对边分别平行的四边形叫做平行四边形。
114 矩形有一个角是直角的平行四边形叫做矩形。
115 菱形有一组邻边相等的平行四边形叫做菱形。
116 正方形四条边都相等,四个角都是直角的四边形是正方形。
117 梯形只有一组对边平行的四边形叫做梯形。
12 常见多边形面积计算公式121 三角形面积公式三角形的面积=底×高÷2,用字母表示为:S = ah÷2 (其中 a 表示三角形的底,h 表示三角形的高)122 平行四边形面积公式平行四边形的面积=底×高,用字母表示为:S = ah (其中 a 表示平行四边形的底,h 表示平行四边形的高)123 矩形面积公式矩形的面积=长×宽,用字母表示为:S = ab (其中 a 表示矩形的长,b 表示矩形的宽)124 菱形面积公式菱形的面积=底×高或对角线乘积的一半。
125 正方形面积公式正方形的面积=边长×边长,用字母表示为:S = a²(其中 a 表示正方形的边长)126 梯形面积公式梯形的面积=(上底+下底)×高÷2,用字母表示为:S =(a + b)h÷2 (其中 a 表示梯形的上底,b 表示梯形的下底,h 表示梯形的高)13 多边形面积计算的推导过程131 三角形面积的推导通过两个完全一样的三角形可以拼成一个平行四边形,这个平行四边形的面积是原来三角形面积的 2 倍,所以三角形的面积=平行四边形的面积÷2 =底×高÷2。
五年级上册数学第五单元多边形的面积知识点
五年级上册数学第五单元多边形的面积知识点多边形是平面上多条线段首尾相接形成的图形,它们的面积可以用不同的方法计算。
在五年级上册数学第五单元中,我们将学习以下与多边形面积相关的知识点:一、面积的概念1. 什么是面积?面积是平面内一个图形所占据的空间大小的量度,通常用平方单位表示,例如平方厘米(cm²)、平方米(m²)等。
2. 如何计算多边形的面积?不同类型的多边形有不同的计算方法,但我们可以用以下公式来计算正多边形的面积:S = a²×n/4×cot(π/n)其中,a表示正多边形的边长,n表示正多边形的边数,cot表示余切。
对于其他类型的多边形,我们将在后面的知识点中进行详细讲解。
二、计算矩形的面积矩形是一种拥有四个直角的四边形,它的面积可以用以下公式计算:S = 长×宽其中,长和宽分别表示矩形的长和宽。
三、计算平行四边形的面积平行四边形是拥有两组平行线段的四边形,它的面积可以用以下公式计算:S = 底×高其中,底为平行四边形的长度,高为垂直于底的线段的长度。
如果不知道高的长度,可以使用底边长和平行四边形的内角度数来计算,具体方法可以参考五年级上册数学第五单元的教材。
四、计算三角形的面积三角形是拥有三个顶点和三条边的图形,它的面积可以用以下公式计算:S = 底×高/2其中,底可以是三角形的任意一条边,高为垂直于底的线段的长度。
如果不知道高的长度,可以使用底边长和三角形的内角度数来计算,具体方法可以参考五年级上册数学第五单元的教材。
五、计算梯形的面积梯形是拥有一组平行边和另一组不平行边的四边形,它的面积可以用以下公式计算:S = (上底+下底)×高/2其中,上底和下底分别为梯形上下平行边的长度,高为梯形两底之间的距离。
以上就是五年级上册数学第五单元多边形的面积相关的知识点,学好这些知识点,相信你就可以轻松计算不同类型多边形的面积啦!。
知识点总结:多边形面积
多边形面积知识点总结一、平行四边形面积。
1、平行四边形面积的计算公式。
沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形。
通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。
通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h。
2、平行四边形面积公式的应用。
平行四边形的面积公式:S=a×h,经过变形得到:a=S÷h,h=S÷a。
在已知平行四边形的底、高和面积中任意两个量时,可求出第三个量。
二、三角形面积。
1、三角形面积的计算公式。
用两个完全相同的三角形,可以拼成一个平行四边形。
三角形的面积等于拼成的平行四边形的一半。
观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。
通过平行四边形的面积公式,可以推导出三角形的面积公式。
如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2。
2、三角形面积公式的应用。
三角形的面积公式:S=a×h÷2,经过变形得到:a=2S÷h,h=2S÷a。
在已知三角形的底、高和面积三个量中任意两个量,都可以求出第三个量。
三、梯形面积。
1、梯形面积的计算公式。
两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半。
通过观察可以发现,拼成的平行四边形的底等于梯形的上底、下底之和,平行四边形的高等于梯形的高。
根据平行四边形面积公式,可以推导出梯形的面积公式。
用S表示梯形的面积,a、b 和h分别表示梯形的上底、下底和高,梯形的面积公式为:S=(a+b)×h÷2。
2、梯形面积公式的应用。
梯形的面积公式:S=(a+b)×h÷2,经过变形得到:h=2S÷(a+b),a=2S÷h -b,b=2S÷h-a。
多边形的面积知识点归纳
多边形的面积1、长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母表示:C=(a+b)×2面积=长×宽字母表示:S=ab2、正方形:周长=边长×4字母表示:C=4a面积=边长×边长字母表示:S=a23、平行四边形:面积=底×高字母表示: S=ah4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母表示: S=ah÷25、梯形的面积=(上底+下底)×高÷2字母表示: S=(a+b)h÷2上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)一、平行四边形面积公式与推导:S = ah衍生公式:a = S÷h h = S÷a注意:在求平行四边形面积时,底和高必须对应。
★平行四边形面积公式的推导过程:剪拼、平移。
沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=ah。
二、三角形面积公式与推导(1)(2)S = 底×高的一半S = ah÷2衍生公式: a = 2S÷h h = 2S÷a注意:1.在求三角形面积时,底和高也必须对应。
在求三角形的高或底时,要先还原成平行四边形,所以×2。
★三角形面积公式的推导过程:旋转、平移将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
多边形的面积知识点梳理
多边形的面积知识点梳理在几何学中,多边形是由线段组成的封闭图形。
研究多边形的面积是几何学的一个重要内容。
本文将对多边形面积的相关知识点进行梳理,并提供几种常见多边形的面积计算公式。
一、多边形的面积定义与计算方法多边形的面积定义为多边形内部所包围的面积。
计算多边形面积的方法主要有以下两种:1. 连线法:对于任意的n边形,可以通过从多边形的一个顶点引出一条线段,将多边形分成n-2个三角形,然后计算这些三角形的面积之和来求得多边形的面积。
2. 多边形分解法:将多边形分解成若干个已知面积的简单图形,如三角形、矩形等,然后计算这些简单图形的面积之和来求得多边形的面积。
二、常见多边形的面积计算公式1. 三角形的面积计算公式:对于已知底和高的三角形,其面积可以通过底乘以高再除以2来计算,即:面积 = 底 ×高 ÷ 22. 矩形的面积计算公式:矩形的面积计算公式非常简单,即矩形的面积等于长乘以宽,即:面积 = 长 ×宽3. 正方形的面积计算公式:正方形是一种特殊的矩形,其四边相等且四个角均为直角。
正方形的面积计算公式为:面积 = 边长 ×边长或面积 = 边长^24. 多边形的面积计算公式:对于一般的多边形,如五边形、六边形等,其面积计算公式相对复杂。
一种常见的计算方法是使用海伦公式,该公式适用于任意三角形的面积计算。
根据海伦公式,已知多边形的边长和各顶点的坐标可以计算出多边形的面积。
三、应用举例1. 计算三角形的面积假设我们有一个底边长为6cm,高为4cm的三角形,可以根据三角形的面积计算公式计算出其面积为:面积 = 6cm × 4cm ÷ 2 = 12cm²2. 计算矩形的面积假设我们有一个长为8cm,宽为5cm的矩形,可以根据矩形的面积计算公式计算出其面积为:面积 = 8cm × 5cm = 40cm²3. 计算正方形的面积假设我们有一个边长为10cm的正方形,可以根据正方形的面积计算公式计算出其面积为:面积 = 10cm × 10cm = 100cm²4. 计算五边形的面积对于一般的多边形,计算其面积需要借助于特定的公式或几何方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学上册多边形面积知识点归纳总结
1、长方形面积=长×宽字母公式:s=ab
长方形周长=(长+宽)×2字母公式:c=(a+b)×2(长=周长÷2-宽;宽=周长÷2-长)
★长方形中面积、周长与长和宽之间的变化关系:
(1)长方形的长加宽等于长方形周长的一半。
即 a + b = c ÷ 2
(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。
(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。
(4)长方形框架拉成平行四边形,周长不变,面积变小。
2、正方形面积=边长×边长字母公式:s= a²或者s=a×a
正方形周长=边长×4 字母公式:c=4a或者c= a×4
3、平行四边形面积=底×高字母公式:s=ah
★平行四边形面积公式的推导过程:剪拼、平移
沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
★等底等高的平行四边形面积相等。
4、三角形面积=底×高÷2 字母公式:s=ah÷2
(底=面积×2÷高;高=面积×2÷底)
★三角形面积公式的推导过程:旋转、平移
将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形的面积是这个平行四边形的面积一半。
因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。
用字母表示S=a×h÷2。
★等底等高的三角形面积相等。
★等底等高的三角形和平行四边形面积关系:等底等高的平行四边形面积是三角形面积的2倍;等底等高的三角形面积是平行四边形面积的一半。
5、梯形面积=(上底+下底)×高÷2 字母公式:s=(a+
b)×h÷2
(上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底))
梯形面积公式的推导过程:旋转、平移
将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。
因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2 用字母表示S=(a+b)×h÷2.
6、计算圆木、钢管等的根数: (顶层根数+底层根数)×层数÷2
7、组合图形:转化成已学的简单图形,通过加、减进行计算。
8、有关规律:
★在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
★用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。
★1三角形和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。
★2三角形和平行四边形的面积相等时,若底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。
★3三角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。
★在直角三角形中,斜边最长。