钢铁及合金 硅含量的测定 测量仪器性能指标的方法、精密度试验附加资料
直读光谱仪分析钢中高含量硅

3 样品分析
3.1 精密度试验
选取三块有证标准物质,用本法加工后,选 好分析程序,在光谱仪上连续激发 11 点,试验结 果见表 1。
表 1 精密度试验 n=11,w/%
标样编号
测定值
平均值 RSD/%
3.106 3.112 3.095 3.125 LV-G8 3.086 3.122 3.113 3.101 3.107 0.45
1.4
1.2
1
0.8
0.6
0.4
ቤተ መጻሕፍቲ ባይዱ0.2
0 1 2 3 4 5 6 7 8 9 10 11 12 T,s
图 3 冲洗时间对硅元素分析精度影响
2.4 狭缝位置的影响
光谱仪的狭缝越小,在 CCD 上成像越小, 所覆盖区域越小,分辨率越高,杂散光越小。定 期描迹狭缝,获得最佳狭缝位置是保证精密度和 准确度的前提条件。我们利用专用标样 RN18/32 进行描迹,在狭缝位置低、合适和高时测试同一 样品的精度,见图 4。数据说明,狭缝位置不合 适时对分析结果影响很大。
·37·
2019 年第 5 期
LYS Science-Technology& Management
表 3 样品分析比对 w/%
试样号 化学法测定值 本法测定值 RSD/%
2019 年第 5 期
钢铁中硅的测定

钢铁中硅的测定方法---- 硅钼兰光度法测定钢中的硅一般使用光度法,测定硅的光度分析法有以形成硅钼黃为基础的钼黃法及将钼黃用还原剂还原生成的钼兰法。
钼黃法的灵敏度比钼兰法低。
钼兰最大吸收峰在815nm,在72型分光光度计上,一般于650---700nm波长范围进行测定。
酸度对形成硅钼酸络离子很重要,酸度过大或过小均使结果偏低,酸度过大,钼酸铵与硅酸不起反应,酸度过小,会生成大量的钼酸铁沉淀,使硅钼酸生成不完全,酸度的适用范围随溶液温度的增加而增加,但随硅含量的增高而缩小,在沸水浴上加热,其适用的酸度范围为0.08N--0.6N(硝酸),而在室温(200C左右)则为0.08--0.4N(硝酸),一般认为当加入钼酸铵后,如有适量的钼酸铁沉淀产生,表示溶液的酸度和温度较合适,如酸度大,温度太低,钼酸铁不易生成,也表示硅钼络离子形成不完全。
但在铁量很少的试样,很少或不生成钼酸铁沉淀,则不能断定酸度和温度不适合。
加入钼酸铵的数量,会影响钼兰色泽强度,由于它较多的消耗与铁生成钼酸铁沉淀,因而,加入过量的钼酸铵是必须的,但也不能加得太多,否则降低硅的色泽强度。
在温度较高时,钼酸铵的适用浓度为100ml含有0.5-1.9g,而在室温下则为1.5-1.9g左右。
增加温度能加速硅钼络离子的生成,在沸水浴上加热,只需30秒钟,在30℃左右,约2分钟,而在20℃以下,则需10分钟才能生成完全,当硅钼络离子完全形成后,应马上进行下一步操作,特别是在沸水浴上加热的溶液,必须立即冷却,否则结果偏低。
磷、砷也能与钼酸铵生成络合物,同时被还原成钼兰,故应消除其影响,否则使结果偏高。
加草酸、酒石酸、柠檬酸能破坏磷、砷和钼酸铵生成的络合物。
其中以草酸破坏最快。
草酸为有机酸,能破坏杂多酸络合物。
由于磷、砷和硅络合物中的磷、砷为五价,硅为四价,因此在络合物中磷砷比硅显示较强的负电性,所以同阴离子钼酸根结合的能力也比硅弱。
故草酸加入后先破坏五价磷、砷和铝的络合物,以此消除磷、砷的干扰。
钢铁中硅的不确定度的评定

钢铁中硅的不确定度的评定摘要:硅作为一种有益的钢元素可以提高钢的硬度、弹性和强度,提高钢的抗氧化性、耐酸性耐腐蚀性。
高硅含量降低了钢的塑性脆性。
硅直接影响钢的性能必须加以控制。
找出影响测定结果准确性的主要原因并加以改进。
对钢中的一种常见元素进行了不确定度分析,为其它化学元素的不确定度分析提供了一种方法。
关键词:钢铁中硅;不确定度;评定;前言:采用还原型硅钼酸盐光度法对钢铁中硅含量进行了实验测定,根据测定原理,介绍了试料分解和试液制备的方法,并对最低检出限进行了分析,指出实验测定值均在标准样品保证值范围内。
一、钢铁中硅概述硅是硅钢冶炼过程中的重要原料,也是硅钢生产过程中的重要磁体。
硅的绝大多数样品都是以冶金中使用的脱氧剂——硅铁的形式生产的。
在熔炼过程中,硅不能以渣的形式分离钢,而是溶解在钢中,最终留在钢中。
高硅钢具有较高的化学稳定性,能在一定程度上提高钢的性能。
钢及其所含硅完全溶于强酸,但稀释溶解液时会产生硅酸盐凝结,不利于钢样中硅的测定和分析。
为了准确测定钢样中的硅谱,在钢样溶解时只采用极酸性,整个溶解过程必须在封闭介质中进行,从而对钢样中硅的封闭分析。
二、钢铁中硅的不确定度的评定1.原理。
将试料以适宜比例的硫酸—硝酸或盐酸—硝酸溶解,用碳酸钠和硼酸混合熔剂熔融不溶残渣。
在弱酸性溶液中,硅酸与钼酸盐生成氧化型硅钼酸盐( 硅钼黄) 。
增加硫酸浓度,加入草酸消除磷、砷、钒的干扰,以抗坏血酸选择性还原,将硅钼酸盐还原成蓝色的还原型硅钼酸盐( 硅钼蓝) 。
2.试料分解。
这个实验的主要材料是微波解构系统、等离子体发射光谱仪、钢样品(钴合金、镍合金)、氯酸、硝酸和氟化氢。
取样不同的钢铁样品首先使用不同的酸溶于微波分解系统,然后使用不同的光谱学分析仪分析后的样品溶液,分析硅的成分,比较不同的钢铁样品的成分。
测试过程中硅会留在管路上,并且管路上的硅不容易清洗,清洗的过程相对较忙。
通常采用盐酸、硝酸、氢氟酸和水的混合溶液对其进行清洗能够取得较好的效果,并且清洗的速度相对来说也是最快的。
草酸—硫酸亚铁铵硅钼蓝光度法测钢铁及合金中硅含量的改进

草酸—硫酸亚铁铵硅钼蓝光度法测钢铁及合金中硅含量的改进作者:张玉丽白英华来源:《中国科技博览》2016年第06期[摘要]通过减少草酸—硫酸亚铁铵硅钼蓝光度法测定硅含量时还原剂硫酸亚铁铵的加入量,使反应体系稳定,生成的硅钼蓝不再有褪色现象,从而得到准确、稳定、可靠的结果。
同时在溶样时,根据不同的试样选用不同的溶样酸,节省了大量的时间,使分析速度加快。
[关键词]硅;钢铁及合金;草酸—硫酸亚铁硅钼蓝中图分类号:O657.3 文献标识码:A 文章编号:1009-914X(2016)06-0117-011 引言硅是钢铁中常见元素之一,主要以固溶体FeSi、Fe2Si、FeMnSi等形式存在,有时也会有少量的硅酸盐夹杂物。
除高碳硅钢外,一般不存在碳化硅。
由于硅和氧的亲和力仅次于铝和钛,因此在炼钢过程中常用作脱氧剂。
硅固溶于铁素体和奥氏体中,能显著提高钢的强度、硬度和弹性极限,对冶炼弹簧钢十分有利。
另外,硅还能提高钢的脆性转变温度,因而低温用钢中应控制它的含量,硅量增加会降低钢的焊接性能。
鉴于硅含量对钢铁质量和性能的重要作用,因此检测钢铁中的硅的含量具有重要意义。
对于硅铁中硅含量的测定,常用的有重量法及氟硅酸滴定法。
重量法的分析结果准确度高,测试时间较长。
氟硅酸滴定法的测定过程稍快,但其准确度较差。
近年有研究用 ICP-AES测定金属材料中硅元素的含量,此方法的检测限、精密度和准确度均令人满意,但此方法仅适用于可溶性硅的测试。
因此,到目前为止,钼蓝光度法仍然是测定材料中硅含量的一种有效方法。
国家标准草酸—硫酸亚铁铵硅钼蓝光度法测定钢铁及合金中的硅时,发现由于还原剂硫酸亚铁铵加入量过多(60g/L的加5.0mL),使体系不稳定,生成的硅钼蓝有腿褪色现象,从而很难得到准确的结果。
改进后的钼蓝光度法(硫酸亚铁铵溶液45g/L加5.0mL),不再出现褪色现象,不但测定结果准确、稳定、可靠,而且测定范围扩大,灵敏度提高。
钢铁中硅含量测定方法的研究

钢 铁 中 硅 含 量 测 定 方 法 的 研 究
张 晓 华
( 山西博奥建筑科研检 测有 限公 司, 山西 太原 0 3 0 0 2 5 )
摘
要: 采 用还原 型硅钼酸盐光度 法对钢铁 中硅含量进行 了实验 测定 , 根据测定原理 , 介绍 了试料分解和试 液制备 的方法 , 并 对最
低 检出限、 精 密度 、 准确度 进行了分析 , 指 出实验测定值均在标准 样品保 证值范围 内。 关键 词 : 钢铁 , 实验 , 精密度 , 准确度
而且在很大程度上 , 较全面的反映了一个环境检测室及其分析人员的
极差 R=最大值 一最小值 = 0 . 7 7 9 %一 0 . 7 3 4 %: 0 . 0 4 5 %。
表 3 精密度检验
序号
l 2
水平。其测定方法如下 : 以纯水为参 比, 每天平行测定两个全程序空 白值, 共测五次, 然后根据测得的值计算出最低检出限( 见表 2 ) 。
ZHA0 Xu n
( C h a n g s h a U n i v e r s i t y o fS c i e n c e a n d T e c h n o l o g y , C h a n g s h a 4 1 0 0 7 6 ,C h i n a )
Ab s t r a c t :I n o r d e r t o s t u d y t h e i n f l u e n c e o f d i f f e r e n t f a c t o r s o n t h e s h e a in r g p r o p e r t i e s o f a s p h a l t mi x t u r e e f f e c t ,b a s e d o n t h e s i n g l e p e n e t r a t i o n t e s t a n d u n c o n i f n e d c o mp r e s s i o n t e s t ,r e s p e c t i v e l y o n t h e a s p h lt a t y p e ,a g g r e g a t e g r a d a t i o n,a s p h lt a c o n t e n t o n a s p h lt a mi x t u r e s h e a r p r o p e r t i e s ・ T h e r e s u l t s s h o w t h a t :t h e t y p e o f a s p h a l t w i l l d i r e c t l y a f e c t he t s h e a r i n g p r o p e t r i e s o f a s p h a l t mi x t u r e h a v e ,a s p h lt a mi x t u r e o f d i f f e r e n t a s p h lt a
铁矿——硅含量的测定——动物胶重量法

1.19g/mL)
盐酸(5+95)
硝酸银 10 g/L
动物胶 10 g/L
4 操作步聚
称取约 0.5 g 试样
试样的处理与称量
将试样置于预先熔有 4~6 g 氢氧化钠的镍坩埚中,加
入 1~2 g 过氧化钠,于电炉上逐渐升高温度至 500~600℃
熔融,摇动坩埚至熔融物红色透明并保持 1min,取下冷
却,将坩埚放入 250mL 塑料烧杯中,加入 50mL 沸水,
浸取熔融物,并用少量盐酸和热水洗净坩埚。在不断搅拌
下缓慢加入盐酸至全部氢氧化物溶解,并过量 10mL,转
入 400mL 烧杯中。将烧杯置于低温电炉上加热至盐类析
出。并蒸发至湿盐状,取下,加入 15~20mL 盐酸,搅拌, 并加热至 60~70℃,加入 10 mL 动物胶(10 g/L)溶液, 滤纸过滤,用热盐酸(5+95)溶液洗涤烧杯及沉淀至无铁 (Ⅲ)黄色,再用热水洗涤至无氯离子[用硝酸银(10 g/L) 溶液检查],滤液收集于 250mL 容量瓶中(留作测定钙、 镁、铝用)。
红色
兰绿色
二、
试剂:
1、 EDTA 标准溶液:C(EDTA)=0.005 mol/L 2、乙醇胺:30%
3、钙试剂:1g、与 100g 氯化钠混合
4、K—B 指示剂:酸性铬兰 K:0.5 g,萘酚绿 B0.5 g,与 100gK2SO4 混合。
5、氯化镁 1%
6、氢氧化钾 20%
7、氨性缓冲溶液(PH=10):67.5 克 NH4CI 溶于水中,加入 NH4OH570 ml,稀至 1 升,摇匀。
配合物,防止其干扰。
2、20%KOH 是为调整 PH 值,使其溶液 PH 为 12.5 以上。用 KOH
分光光度法联合测定钢铁及合金中硅、磷、锰含量

摘 要: 本文介绍了分光光度法联合测定钢铁及其合金中硅、 锰含量的改进方法, 磷、 与国标方法进行 比较 , 本方法具有灵敏度高、 选择性好、 操作简便、 试剂及样品用量少、 分析快速、 结果稳定、 准确度高等优
点。
关键词 : ; ; ; ; 钢铁 硅 磷 锰 分光光度法
中图分 类号 : 文献标识 码 : A
尤其是 P 还需高温将 c 氧化为六价后 , r 多次加酸使 其形成氧酰挥发除去 , 操作处理流程繁琐 , 各种酸 试剂消耗量大 , 同合金钢材操作条件要 求各异 , 不
往往会造成处理不当, 引进 C 干扰, r 使测定结果与
先经 15o 0 C烘干至恒重 , 用适量蒸馏水溶解 , 定量 转移至 l0 m O0 L容量瓶 中, 5 L 1+ ) 2O , 加 m ( 1 H S 4用
的标准溶液 。
10 1 m M 00 g・ L n标 准溶 液 ( x 国家钢 铁研 究
1 实验部分
11 仪器和试 剂 .
T 新世纪型分光光度计。 6
6 o L H S 4 液 ;0 g・ ~N 2O 溶 o t L・ 2O 溶 10 L aS 3 液 ;s A 隐蔽剂 : 0 L 1 m 水中含有 0 5 aS0 ; 0 .gN 22 钼酸 铵溶液 : 分别将 1g03 g 3 、.5 钼酸铵及酒石酸锑钾溶
此次公布的工业生物技术新产品及新工艺课题将针对生物能源生物基化学品等重要工业生物技术领域开发以工业或生活废水为原料生产生物柴油的高效清洁技术用于获得可发酵糖类丁酸等生物基化学品生产的新型纤维素处理技术基于非粮生物质为原料的生物基化学品或单体生产技术以及工业残渣的高值化利用技术等具有自主知识产权成本低可工业化生产的新产品或新工艺并开展中试规模工艺技术研究或生产性试验
钢铁中硅的测定—测定方案(精)

制定测定方案一、资料查阅1)GB/T223.5-2008 酸溶硅和全硅含量的测定 还原型硅钼酸盐分光光度法 2)《工业分析技术》中钢铁中硅测定二、确定钢铁中硅测定方法(还原型硅钼酸盐光度法) (一)方法提要试样用稀酸溶解后,使硅转化为可溶性硅酸,加高锰酸钾氧化碳化物,再加亚硝酸钠还原过量的高锰酸钾,在弱酸性溶液中,加入钼酸,使其与H 4SiO 4反应生成氧化型的黄色硅钼杂多酸(硅钼黄),在草酸的作用下,用硫酸亚铁铵将其还原为硅钼蓝,于波长约810nm 处测量吸光度。
反应方程式是如下:3FeSi+l6HNO 3 = 3Fe(NO 3)3+3H 4SiO 4+7NO ↑+2H 2O FeSi+H 2SO 4+4H 2O = FeSO 4+H 4SiO 4+3H 2↑ H 4SiO 4 + 12H 2MoO 4 = H 8[Si(Mo 2O 7)6]+10H 2O本法适用于铁、碳钢、低合金钢中0.030%~l.00%酸溶硅含量的测定。
三、确定测定步骤 1.试样的分解称取试样0.1g 左右,置于150mL 烧杯中。
加入 30mL 硫酸(1+17),低温缓慢加热(不要煮沸)至试样完全溶解(并不断补充蒸发失去的水分)。
煮沸,滴加高锰酸钾溶液(40g/L)至析出二氧化锰水合物沉淀。
再煮沸约lmin ,滴加亚硝酸钠溶液(100g/L)至试验溶液清亮,继续煮沸lmin ~2min(如有沉淀或不溶残渣,趁热用中速滤纸过滤,用热水洗涤)。
冷却至室温,将试验溶液移入100mL 容量瓶中,用水稀释至刻度,混匀。
2.测定移取10.00mL 上述试验溶液二份,分别置于50mL 容量瓶中(一份作显色溶液用,一份作参比溶液用)显色溶液 小心加入5.0mL 钼酸铵溶液,混匀。
放置15min 或沸水浴中加热30s ,加入l0mL 的草酸溶液,混匀。
待沉淀溶解后30s 内,加入5.0mL 的硫酸亚铁铵溶液,用水稀释至刻度,混匀。
参比溶液 加入10.0mL 草酸溶液、5.0mL 钼酸铵溶液、5.0mL 硫酸亚铁铵溶液,用水稀释至刻度,混匀。
钼蓝光度法测定钢铁中的硅含量

Serial N o.430A pril.2005 矿 业 快 报EXP RESS IN F ORM AT IO N O F M IN IN G I ND U ST RY 总第430期2005年4月第4期钼蓝光度法测定钢铁中的硅含量张先才 胡郑毛(国家冶金工业铁精矿质量监督检测中心) 摘 要:采用1-氨基-2-萘酚-4-磺酸为还原剂,对钢铁中的硅含量分析方法进行了实验,提出了钼蓝光度法测定钢铁中硅的新方法,并且确定了最佳实验条件,通过标样验证,结果满意。
关键词:光度法;钢铁;硅中图分类号:O 657.3 文献标识码:A 文章编号:1009-5683(2005)04-0011-02Measurement of Silicon Content in Iron and Steel by the Molybdenum Blue Photometric MethodZhang Xiancai Hu Zhengm ao (T he National Quality Superv ision and T est Center of Iron Concentr ate o f Metallur gical Industry )Abstract :T he tests w ere car ried out on the analysis m ethod of silicon content in iron andsteel by using the 1-am ino -g roup-2-naphthol-4-sulphoacid as reductant.A new m ethod was putfo rw ard ,i .e .the molybdenum blue photometric m ethod w as used to measure silicon content in iron and steel.T he optimum test conditions w ere deter mined.The sample test results w ere satisfactory.Keywords :Photom etric method ;Ir on and steel ;Silicon 钢铁中硅的测定,低含量的一般采用钼蓝光度法[1],高含量则用高氯酸脱水重量法[2]。
硅铁合金中硅含量化学分析检测方法比较

*1I",7 *"I",, *7I"*7",J *,I"*I",1 ","0* !1"0J
,"I"0I ,0I"7" *JI""I
*1I",J **I",1 71I",1
*0I"** *II"*I ,KI"*!"*0
压
勺
*"I"0" *II"7I
单开提勾
7*I"," 7II",I
秋
叶
,!I"*I"7* ,1""*I"*0
*)*+ 氟硅酸钾容量法 *$$, 年 国 家 检 疫 检 验 总 局 批 准 颁 发 了 行 业 标 准 《 氟硅酸钾容量法测定硅量》 ,这一 &-./+,$,0),—*$$,
方法简便、快捷、准确,而且能同时进行 大 批 量 样 品 测定,达到了重量法难以达到的目的。 氟硅酸钾容量法主要分为溶样、过 滤 洗 涤 、中 和 游离酸、最终滴定四个操作步骤,其注意事项如下。 ( ,)溶样时,氢氟酸应逐滴加入,边摇边加,使 产生的反应热迅速扩散;严禁将氢氟酸滴得 集 中 ,否 则局部温度上升,超过 1$+!时2+ 将产生浓的黄烟 ( 产 生 &’30) ,使硅损失。
( *)过滤洗涤操作中,要求洗涤次数和洗液用量 尽 量 一 致 ; 洗 液 中 虽 因 456 的 同 离 子 效 应 防 止 水 解 , 但如果洗液量不 一 致 ,仍 不 可 避 免 地 使 4*&’31 沉 淀 水 解量不等而造成测定误差。 ( 7)中和游离酸操作中,要求中和速度一致,中 和终点颜色深度一致,防止过滴和游离酸因 滤 纸 包 容 而中和不彻底。 ( 0)沸水水解时所用中性沸水量应一致,最终滴 定颜色深度要一致。 上述四个步骤都将对测定结果带 来 影 响 ,但 操 作 熟练的化验人员其测定值重现性好;因此 ,作 为 化 验 人员认真掌握每个步骤的操作要点是提高测定 准 确 性 的关键。 在各种方法中还有其他细节也将对 测 定 结 果 有 影 响,但影响程度较小。 分析化学追求的目标就是快速、准确、操作方便。 在条件许可情况下,应提高优质分析仪器的 使 用 普 及 率,尽量减少人为影响因素,提高检测水平。
钢铁及合金 硅含量的测定 测量仪器性能指标的方法、精密度试验附加资料

附录 A(规范性附录)测量仪器性能指标的方法A.1 光谱仪的实际分辨率分辨率的实际评估通常通过扫描选定谱线的波长,划出轮廓,测量半峰高处的峰宽,然后计算出分辨率,用纳米表示。
如图A.1所示。
分辨率= (213.92 - 213.80)×2/15 = 0.016(nm)图中:X 锌的波长,nmY 强度(任意单位)a半峰宽= 2 cm.b 峰宽度= 15 cm.图A.1 计算实际分辨率实例A.2 最小短期精密度对于特定的测量,评价仪器适用性的一个重要参数是发射信号的短期精密度,即快速连续地对同一试液进行重复测量,所得结果的接近程度。
用测量信号的相对标准偏差(RSD)表示。
对同一溶液连续测量10次,计算RSD。
A.3 检出限(LOD)和定量下限(LOQ)检出限和定量限代表一个分析方法的两个参数。
二者源于重复性标准偏差。
制备两份溶液,所含分析物浓度为0和10倍预估检出限浓度,同时,溶液中应含有与被分析样品中相似的酸浓度和基体元素。
将0试液喷入仪器约10s ,在预设积分时间下读取10个读数。
然后,对所含分析物浓度为10倍检出限的试液同样操作。
通过强度读数,计算强度平均值X 10, X 0和0试液的标准偏差s 0。
用公式(A.1)计算10倍检出限浓度溶液的净平均强度(X n10):01010X X X n -= ………………………….(A.1)用公式(A.2)计算检出限:LOD 1010065.4n X s ρ⨯⨯= ………………………(A.2)式中:10ρ——浓度为10倍检出限试液的浓度,单位为mg/L 。
用公式(A.3)计算定量限:LOQ 101001.14n X s ρ⨯⨯= …………………………(A.3)附录 B(资料性附录)精密度试验附加资料精密度试验所用试样列于表B.1。
精密度试验结果的原始数据和获得的硅的详细结果,见表B.2和B.3。
表B.3是2020年由16个实验室对10个钢铁样品进行共同试验的结果经统计分析得到的。
钢中硅的测定

钢中硅的测定(硅钼蓝光度法)一、方法提要试样用稀酸溶解,使硅转化为可溶性硅酸,然后在适当酸度下,加入钼酸铵与硅酸反应生成硅钼黄,加入草酸破坏磷、砷等元素干扰,用硫酸亚铁铵还原为硅钼蓝后进行光度测定,直读百分含量。
二、主要反应3FeSi+16HNO3=3Fe(NO3)3+3H4SiO4+7NO↑H4SiO4+12(NH4)2MoO4+24HNO3+2H2O=H8[Si(Mo2O7)6]+24NH4NO3+10H2O2 H8[Si(Mo2O7)6]+4(NH4)2Fe(SO4)2+2H2SO4=H8[Si<Mo2O5(Mo2O7)5]+2Fe2(SO4)3+4(NH4)2SO4+ 2H2O三、试剂与仪器1、硝酸(1+3):量取水300ml,于试剂瓶中,加尿素40g,溶解后,加硝酸1000ml,用水稀释至4000ml 摇匀备用。
2、钼酸铵溶液(5%):量取600ml水于1000ml 三角瓶中,于电热板上加热至60~70℃,加钼酸铵250g 摇动溶解,冷却后倒入试剂瓶中,用水稀释至5000ml。
3、草酸—硫酸混合溶液:量取水4000ml,于试剂杯中,加草酸160g,缓缓加浓硫酸220ml,待草酸溶解后,用水稀释至5000ml。
4、硫酸亚铁铵溶液(3%):量取水4000ml于试剂杯中,加浓硫酸25ml,加硫酸亚铁铵150g,溶解后用水稀释至5000ml。
5、MSC—1A微机高速分析仪。
四、分析步骤1、仪器准备:a、检查电源电压,将仪器电缆正确联接,打开稳压电源。
b、将比色皿中注入蒸馏水,打开比色器及主机电源。
c、仪器稳定10分钟后,进行一次自校满度和零点。
d、选用相应的工作曲线。
2、试液的制备:准确称取试样0.1500g置于100ml 烧杯中,加硝酸(1+3)30ml,于沸水浴中溶解3分钟。
待试样全部溶解后,取下用脱脂棉过滤于100ml 容量瓶中,冷却至室温用水稀释至刻度,摇匀,供测定Si用。
3、分析:准确吸取试液5ml(含硅量>2%时取试样液3.5ml加补充酸1.5ml)置于100ml烧杯中,加钼酸铵(5%)5ml于沸水浴中摇匀加热30秒,取下冷却30秒,立即加入草酸—硫酸混合液(3.2~4.4%)15ml硫酸亚铁铵(3%)10ml,摇匀比色,比色时用比色液清洗比色器2~3次后,再注入比色液,直读百分含量。
钢铁中硅的测定—硅钼酸盐分光光度法(精)

H 8 [Si(Mo 2 O 7 ) 6 ]+4FeSO 4 +2H 2 SO 4
H8 Si Mo 2 O 5
+2Fe 2 (SO 4 ) 3 +2H 2 O
《典型工业原料与产品分析》课程组
技能训练 二、主要仪器及试剂: 1.试剂 1.1 纯铁(硅的含量小于0.002%); 1.2 钼酸铵溶液(50g/L); 1.3 草酸溶液(50g/L) 1.4 硫酸亚铁铵溶液(60g/L); 1.5 硅标准溶液(20 g/mL) 2. 仪器 721等类型的光度计。
《典型工业原料与产品分析》课程组
五、数据处理
硅的质量分数按下式计算:
式中
m1—从工作曲线上查得的硅量, V1—移取试验溶液的体积,mL; V—试验溶液的总体积,mL m—称样量,g。
g;
《典型工业原料与产品分析》课程组
钢铁中硅的测定——还原型硅钼酸盐分训练 一、方法原理 1、试样用稀酸溶解后,使硅转化为可溶性硅酸,加高锰酸钾氧 化碳化物,再加亚硝酸钠还原过量的高锰酸钾,在弱酸性溶液 中,加入钼酸,使其与H4SiO4反应生成氧化型的黄色硅钼杂多 酸(硅钼黄),在草酸的作用下,用硫酸亚铁铵将其还原为硅钼 蓝,于波长约810nm处测量吸光度。 本法适用于铁、碳钢、低合金钢中0.030%~l.00%酸溶硅含量 的测定。
《典型工业原料与产品分析》课程组
技能训练 2、反应方程式是如下:
• 3FeSi+l6HNO3 = 3Fe(NO3)3+3H4SiO4+7NO+2H2O
• FeSi+H2SO4+4H2O = FeSO4+H4SiO4+3H2 • H4SiO4 + 12H2MoO4 = H8[Si(Mo2O7)6]+10H2O
合金钢中的硅、锰、磷的测定

合金钢中硅、锰、磷的测定硅的测定(草酸——硫酸亚铁硅钼蓝光度法)一、方法要点根据样品材料牌号不同,以不同的酸将试样溶解,在微酸性介质中,硅酸与钼酸铵生成氧化型的硅钼酸络合物,在草酸存在下,用硫酸亚铁铵,将其还原为硅钼蓝,测量其吸光度。
测定范围:0.03%-3.00%本法适用于碳钢、低、中合金钢、弹簧钢、合金结构钢、工具钢中酸溶硅的测定。
二、试剂1、硫酸—硝酸混合液:硫酸50ml ,硝酸8ml加入水中,并以水稀至1000ml。
2、硝酸(1+3)3、稀王水:将盐酸200ml,硝酸65ml加入水中,并以水稀至1000ml。
4、过硫酸铵溶液15%(150g/L)。
5、过氧化氢6、钼酸铵溶液 5%(50g./L)。
7、草酸50g/L8、硫酸亚铁铵(60g/L),每1000ml溶液中含六水合硫酸亚铁铵60g,硫酸(1+1)10ml。
9、补充酸:硝酸(1+3)10ml ,加水320ml。
三、操作步骤称取试样0.5g于20ml锥形瓶中,加硝酸(1+3)25ml,加热溶解,煮沸驱除氮氧化物,加过硫酸铵溶液10ml,继续煮沸至过量过硫酸铵分解,约60秒,取下冷却,移入50ml量瓶中,以水稀至刻度,摇匀,干滤。
于100ml锥形瓶中预置补充酸30ml,钼酸铵溶液5ml,加试样溶液2ml,放置5-20分钟后,(室温15-30度),加草酸溶液10ml ,摇动至黄色沉淀溶解,立即加入硫酸亚铁铵溶液5ml,摇匀,30秒后测量,用1cm比色皿660nm测量吸光度。
磷的测定(抗坏血酸铋磷钼蓝光度法)一、方法要点试样用氧化性酸溶解,磷在酸性介质中与铋,钼酸铵生成络合物,用抗坏血酸还原为磷铋钼蓝,测量其吸光度。
测量范围:0.005%-0.05%本方法适用于低、中合金钢中磷的测定。
二、试剂1、盐酸2、硝酸3、高氯酸4、亚硫酸钠(100g/L)5、过氧化氢6、过硫酸铵(150g/L)7、钼酸铵(10g/L)8、硝酸铋溶液(5g/L):称取硝酸铋5g溶于硝酸溶液(1+9)1000ml中(可大量配制)。
硅铁合金中硅含量检测方法比较

硅铁合金中硅含量检测方法比较发布时间:2011.06.11新闻来源:目前,我国已成为世界铁合金第一生产大国,但在硅铁合金中硅含量的检测方法上,国内除少数大型铁合金企业购有先进的分析仪器外,大多数中小型铁合金企业仍采用化学分析方法,有的企业还停留在用过比重分析测定硅含量的水平,其测定结果难免会偏离硅的实际含量,导致铁合金生产厂家和用户企业之间的质量异议不断发生。
本文重点介绍了几种不同的化学分析测硅方法、操作中应注意的事项,及其对硅测定值的影响,希望能对钢铁企业的铁合金验质工作起到一些帮助。
硅的测定方法有多种。
用以测定硅铁合金中硅测定的化学分析方法主要有重量法和氟硅酸钾容量法。
现代仪器分析中,用以准确测定硅铁中硅的含量的仪器有X-荧光光度仪和能谱仪。
电感耦合等离子光度分析仪也可用以间接测得硅的含量。
重量法测定硅铁中硅含量在重量法测定硅含量中,又具体分为三种方法,即:1、现在国家标准GB4333?1-1984,《高氯酸脱水重量法测定硅量》;2、盐酸脱水重量法测定硅量,见《工厂分析化验手册》第139页所列“质量法”;3、挥硅减量重量法。
高氯酸脱水重量法和盐酸脱水重量法。
前者是现行国家标准,后者是经典测硅方法。
操作偏离方法规定,特别是脱水程度掌握尺度不一时,硅的测定值就会相差较大。
挥硅减量重量法适用于杂质含量低的高含硅物质测定,例如石英、高纯硅石、结晶硅等物料中硅的测定,或者是重量法中灼烧后的二氧化硅中的杂质含量较多,再采用挥硅以其减量计算物料中硅的含量。
这一测定方法相对较容易,测定值相对较稳定。
在使用挥硅减量法测定硅铁中硅的过程中,因挥硅后的残留物中90%为Fe2O3,其次是Al2O3、CaO等,计算过程中一般按Fe2O3中含Fe70%折算成金属元素,而Al2O3的折算系数为0.529,因此试样中每含1%的铝,则实际多则算成金属元素的量为(1÷0.529×0.70)-1.0=0.32,即最后计算出硅的含量就比实际低0.32%。
钢铁中磷、硅含量的测定——潍职化工系09工业分析LL

钢铁中硅含量的测定 质量法——高氯酸脱水法
• 硅是钢中有益元素,能增强钢的抗张力、 弹性、耐酸性和耐热性、耐腐蚀性,并能 使钢的电阻系数增大,同时它又是钢的有 效脱氧剂。硅在钢中主要是以硅化铁形式 存在。 普通钢中硅的含量为0.1%~0.4%, 低合金钢中硅的含量为0.5%~2.0%,硅钢 片中硅的含量可达4%.生铁中硅的含量一 般在0.3%~1.5%,铸铁中硅含量为3%左 右。
《 钢铁及合金化学分析方法二安替比林甲烷磷铂酸 重量法测定磷量》GB 223.3-88
• • • • • 4 分析结果的计算 按式 ( 1) 计算磷的百分含量: 式中m1— 沉淀加增祸质量(g); m2 - 增 A 加 残渣质量(g); m3 — 随 同 试 样所做空白沉淀 加增祸质量(g); • m4 — 随 同 试 样所做空白柑锅 加残渣质量(S); • m0 — 试 样 量 (g); • 0.0 1023— 二安替比林甲烷磷 钥酸换算成磷的换算系数。
钢铁中硅含量的测定 质量法——高氯酸脱水法
• 国家标准分析方法有:(GB/T 223.5—1997《钢铁及合 金化学分析方法 还原型硅钼酸盐光度法测定酸溶硅含 量》、GB/T223.60—1997《钢铁及合金化学分析方法 高 氯酸脱水重量法测定硅含量》。 工厂实用分析方法有: 质量法,分光光度法。 质量法是将试样溶解后生成硅酸 胶体溶液,经硫酸或高氯酸在较高温度下脱水形成二氧化 硅,经过滤、洗涤、灰化、灼烧,以二氧化硅的形式பைடு நூலகம்量。 再加入HF,使硅形成SiF4挥发除去,根据HF处理前后的 质量差换算出硅量。此法准确可靠,适于一些特殊要求试 样和标准样品的分析。 分光光度法是在弱酸性介质中, 硅酸与钼酸铵形成硅钼杂多酸的钼黄法和硅钼黄还原成硅 钼蓝的光度法。钼黄法由于灵敏度低.选择性差,实际应 用较少:钼蓝法的灵敏度和选择性较好,是测定钢中硅的 最常用方法。
钢铁中硅的测定—测定方案(精)

制定测定方案一、资料查阅1)GB/T223.5-2008 酸溶硅和全硅含量的测定 还原型硅钼酸盐分光光度法 2)《工业分析技术》中钢铁中硅测定二、确定钢铁中硅测定方法(还原型硅钼酸盐光度法) (一)方法提要试样用稀酸溶解后,使硅转化为可溶性硅酸,加高锰酸钾氧化碳化物,再加亚硝酸钠还原过量的高锰酸钾,在弱酸性溶液中,加入钼酸,使其与H 4SiO 4反应生成氧化型的黄色硅钼杂多酸(硅钼黄),在草酸的作用下,用硫酸亚铁铵将其还原为硅钼蓝,于波长约810nm 处测量吸光度。
反应方程式是如下:3FeSi+l6HNO 3 = 3Fe(NO 3)3+3H 4SiO 4+7NO ↑+2H 2O FeSi+H 2SO 4+4H 2O = FeSO 4+H 4SiO 4+3H 2↑ H 4SiO 4 + 12H 2MoO 4 = H 8[Si(Mo 2O 7)6]+10H 2O本法适用于铁、碳钢、低合金钢中0.030%~l.00%酸溶硅含量的测定。
三、确定测定步骤 1.试样的分解称取试样0.1g 左右,置于150mL 烧杯中。
加入 30mL 硫酸(1+17),低温缓慢加热(不要煮沸)至试样完全溶解(并不断补充蒸发失去的水分)。
煮沸,滴加高锰酸钾溶液(40g/L)至析出二氧化锰水合物沉淀。
再煮沸约lmin ,滴加亚硝酸钠溶液(100g/L)至试验溶液清亮,继续煮沸lmin ~2min(如有沉淀或不溶残渣,趁热用中速滤纸过滤,用热水洗涤)。
冷却至室温,将试验溶液移入100mL 容量瓶中,用水稀释至刻度,混匀。
2.测定移取10.00mL 上述试验溶液二份,分别置于50mL 容量瓶中(一份作显色溶液用,一份作参比溶液用)显色溶液 小心加入5.0mL 钼酸铵溶液,混匀。
放置15min 或沸水浴中加热30s ,加入l0mL 的草酸溶液,混匀。
待沉淀溶解后30s 内,加入5.0mL 的硫酸亚铁铵溶液,用水稀释至刻度,混匀。
参比溶液 加入10.0mL 草酸溶液、5.0mL 钼酸铵溶液、5.0mL 硫酸亚铁铵溶液,用水稀释至刻度,混匀。
钢铁中硅的测定

加高锰酸钾氧化碳化物,再加亚硝酸钠还原过量的高锰酸钾,在弱酸 性溶液中,加入钼酸,使其与H4SiO4反应生成氧化型的黄色硅钼杂多 酸(硅钼黄),在草酸的作用下,用硫酸亚铁铵将其还原为硅钼蓝:
干酪素、乳糖与乳清粉生产技术
②过去凝乳酶所用胃蛋白酶一般从猪胃和牛、羊皱胃 黏膜中提取的,它由胃蛋白酶元形成。它的最适pH为1.5~ 2.0,最适温度为33~40℃。现有凝乳酶已从微生物中提取。
酶法生产干酪素的工艺要点:脱脂乳加热至35℃,添 加凝乳酶,使酪蛋白凝结。凝乳酶的添加量以能使全部脱 脂乳在15~20min内凝固即可。
(3)凝乳的分离、洗涤和脱水 点制好的干酪素经沉 淀后排出乳清,排出乳清应通过离心脱水机,以防止细小 颗粒干酪素流失。干酪素和乳清分离后,为减少干酪素的 灰分和降低成品酸度,要以15~20℃的清水洗涤,干酪素 的洗涤和脱水是在离心脱水机中进行的。洗涤水温度应根 据点制中颗粒的硬度而决定。洗涤水必须澄清、无色、无 味、无臭、没有微小杂质悬浮,水的pH值为中性。
干酪素、乳糖与乳清粉生产技术
2.酶法干酪素 酶法生产干酪素所用的酶有凝乳酶和皱胃酶两种,具 体要求如下: ①皱胃酶是从犊牛或羔羊的第四胃(皱胃)的胃壁提 取的。皱胃酶在弱酸、中性或弱碱性环境中将酪蛋白水解, 这种酶的最适pH为5.2~6.3。当pH高于7.5时,皱胃酶即不 起 作 用 , 当 pH 为 8 时 酶 失 去 活 力 。 皱 胃 酶 的 最 适 温 度 为 39~42℃,低温能强烈抑制皱胃酶的作用。
任务六 钢铁中硅的测定
课程:工业分析 项目六:钢铁分析
一、钢铁中硅的作用
➢ 钢铁中硅以固溶体、FeSi、FeMnSi等形式存在 ➢ 固溶于铁中可提高铁素体的硬度和强度 ➢ 能提高钢的抗氧性、腐蚀性 ➢ 含量过高使钢的塑性、韧性降低
钢中硅的测定

钢中硅的测定(硅钼蓝光度法)一、方法提要试样用稀酸溶解,使硅转化为可溶性硅酸,然后在适当酸度下,加入钼酸铵与硅酸反应生成硅钼黄,加入草酸破坏磷、砷等元素干扰,用硫酸亚铁铵还原为硅钼蓝后进行光度测定,直读百分含量。
二、主要反应3FeSi+16HNO3=3Fe(NO3)3+3H4SiO4+7NO↑H4SiO4+12(NH4)2MoO4+24HNO3+2H2O=H8[Si(Mo2O7)6]+24NH4NO3+10H2O2 H8[Si(Mo2O7)6]+4(NH4)2Fe(SO4)2+2H2SO4=H8[Si<Mo2O5(Mo2O7)5]+2Fe2(SO4)3+4(NH4)2SO4+ 2H2O三、试剂与仪器1、硝酸(1+3):量取水300ml,于试剂瓶中,加尿素40g,溶解后,加硝酸1000ml,用水稀释至4000ml 摇匀备用。
2、钼酸铵溶液(5%):量取600ml水于1000ml 三角瓶中,于电热板上加热至60~70℃,加钼酸铵250g 摇动溶解,冷却后倒入试剂瓶中,用水稀释至5000ml。
3、草酸—硫酸混合溶液:量取水4000ml,于试剂杯中,加草酸160g,缓缓加浓硫酸220ml,待草酸溶解后,用水稀释至5000ml。
4、硫酸亚铁铵溶液(3%):量取水4000ml于试剂杯中,加浓硫酸25ml,加硫酸亚铁铵150g,溶解后用水稀释至5000ml。
5、MSC—1A微机高速分析仪。
四、分析步骤1、仪器准备:a、检查电源电压,将仪器电缆正确联接,打开稳压电源。
b、将比色皿中注入蒸馏水,打开比色器及主机电源。
c、仪器稳定10分钟后,进行一次自校满度和零点。
d、选用相应的工作曲线。
2、试液的制备:准确称取试样0.1500g置于100ml 烧杯中,加硝酸(1+3)30ml,于沸水浴中溶解3分钟。
待试样全部溶解后,取下用脱脂棉过滤于100ml 容量瓶中,冷却至室温用水稀释至刻度,摇匀,供测定Si用。
3、分析:准确吸取试液5ml(含硅量>2%时取试样液3.5ml加补充酸1.5ml)置于100ml烧杯中,加钼酸铵(5%)5ml于沸水浴中摇匀加热30秒,取下冷却30秒,立即加入草酸—硫酸混合液(3.2~4.4%)15ml硫酸亚铁铵(3%)10ml,摇匀比色,比色时用比色液清洗比色器2~3次后,再注入比色液,直读百分含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录 A
(规范性附录)
测量仪器性能指标的方法
A.1 光谱仪的实际分辨率
分辨率的实际评估通常通过扫描选定谱线的波长,划出轮廓,测量半峰高处的峰宽,然后计算出分辨率,用纳米表示。
如图A.1所示。
分辨率= (213.92 - 213.80)×2/15 = 0.016(nm)
图中:
X 锌的波长,nm
Y 强度(任意单位)
a半峰宽= 2 cm.
b 峰宽度= 15 cm.
图A.1 计算实际分辨率实例
A.2 最小短期精密度
对于特定的测量,评价仪器适用性的一个重要参数是发射信号的短期精密度,即快速连续地对同一试液进行重复测量,所得结果的接近程度。
用测量信号的相对标准偏差(RSD)表示。
对同一溶液连续测量10次,计算RSD。
A.3 检出限(LOD)和定量下限(LOQ)
检出限和定量限代表一个分析方法的两个参数。
二者源于重复性标准偏差。
制备两份溶液,所含分析物浓度为0和10倍预估检出限浓度,同时,溶液中应含有与被分析样品中相似的酸浓度和基体元素。
将0试液喷入仪器约10s ,在预设积分时间下读取10个读数。
然后,对所含分析物浓度为10倍检出限的试液同样操作。
通过强度读数,计算强度平均值X 10, X 0和0试液的标准偏差s 0。
用公式(A.1)计算10倍检出限浓度溶液的净平均强度(X n10):
01010X X X n -= ………………………….(A.1)
用公式(A.2)计算检出限:
LOD 10
10
065.4n X s ρ⨯
⨯= ………………………(A.2)
式中:
10ρ——浓度为10倍检出限试液的浓度,单位为mg/L 。
用公式(A.3)计算定量限:
LOQ 10
10
01.14n X s ρ⨯
⨯= …………………………(A.3)
附录 B
(资料性附录)
精密度试验附加资料
精密度试验所用试样列于表B.1。
精密度试验结果的原始数据和获得的硅的详细结果,见表B.2和B.3。
表B.3是2020年由16个实验室对10个钢铁样品进行共同试验的结果经统计分析得到的。
表B.1 精密度试验样品信息
表B.2 精密度试验原始数据
表B.3 精密度试验统计结果
_________________________________。