《分式方程的应用》PPT课件 人教版
合集下载
《分式方程的应用》PPT教学课件
第二年每间房屋的租金为 101220008500 ﹙元﹚
答:这两年每间房屋的租金各是8000元,8500元.
方法二:
设第一年每间房屋的租金为x元, 则第二年每间房 屋的租金为(x+500)元.根据题意,得
解得 x=8000, 则 x+500=8500. 经检验: x=8000 是原方程的解,也符合题意.
答:这两年每间房屋的租金各是8000元,8500元.
典例精析
例 某市从今年1月1日起调整居民用水价格,每吨水费上涨 1 ,
3
小丽家去年12月的水费是15元,今年7月的水费是30元.已知今 年7月的用水量比去年12月的用水量多5m3, 求该市今年居民用水的价格?
提示 主要等量关系: ①今年7月份用水量-去年12月份用水量=5m3; ②水费=用水量×单价.
第十二章 分式和分式方程
分式方程的应用
学习目标
1.会列分式方程解决实际问题,学会建立数学模型.(难点) 2.掌握列分式方程解决实际问题的一般方法.(重点)
导入新课
问题引入
某单位将沿街的一部分房屋出租,每间房屋的租金第二年 比第一年多500元,所有房屋的租金第一年为9.6万元,第二年 为10. 2万元. 想一想 你能找出这一情境中的等量关系吗?
解: 设该市去年用水的价格为x元/m3.
则今年水的价格为 ( 1 1 ) x元/m3.
3
根据题意,得
30 (1 1)x
பைடு நூலகம்
15 x
5,
3
解得 x=1.5.
经检验x=1.5是原方程的根.
1.5×(1+
1 3
)=2(元)
答:该市今年居民用水的价格为2元/m3.
当堂练习
答:这两年每间房屋的租金各是8000元,8500元.
方法二:
设第一年每间房屋的租金为x元, 则第二年每间房 屋的租金为(x+500)元.根据题意,得
解得 x=8000, 则 x+500=8500. 经检验: x=8000 是原方程的解,也符合题意.
答:这两年每间房屋的租金各是8000元,8500元.
典例精析
例 某市从今年1月1日起调整居民用水价格,每吨水费上涨 1 ,
3
小丽家去年12月的水费是15元,今年7月的水费是30元.已知今 年7月的用水量比去年12月的用水量多5m3, 求该市今年居民用水的价格?
提示 主要等量关系: ①今年7月份用水量-去年12月份用水量=5m3; ②水费=用水量×单价.
第十二章 分式和分式方程
分式方程的应用
学习目标
1.会列分式方程解决实际问题,学会建立数学模型.(难点) 2.掌握列分式方程解决实际问题的一般方法.(重点)
导入新课
问题引入
某单位将沿街的一部分房屋出租,每间房屋的租金第二年 比第一年多500元,所有房屋的租金第一年为9.6万元,第二年 为10. 2万元. 想一想 你能找出这一情境中的等量关系吗?
解: 设该市去年用水的价格为x元/m3.
则今年水的价格为 ( 1 1 ) x元/m3.
3
根据题意,得
30 (1 1)x
பைடு நூலகம்
15 x
5,
3
解得 x=1.5.
经检验x=1.5是原方程的根.
1.5×(1+
1 3
)=2(元)
答:该市今年居民用水的价格为2元/m3.
当堂练习
《分式方程的应用》PPT课件
售额为10 000元; 若按八五折销售,则每月多卖出
20件,且月销售额还增加1 900元. 每件服装的原
价为多少元?
分析:本题中的主要等量关系为:按八五折销售这种服
装的数量一按原价销售这种服装的数量=20件.
解:设每件服装原价为x元.根据题意,得
10 000 1 900 10 000 20.
85%x
第十二章 分式和分式方程
分式方程的应用
-.
1 课堂讲解 建立分式方程的模型
列分式方程解应用题的步骤 列分式方程解应用题的常见类型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
小红和小丽分别将9 000字和7 500字的两篇文稿 录入计算机,所用时间相同. 已知两人每分钟录入计 算机字数的和是220字.两人每分钟各录入多少字?
(来自《点拨》)
知3-练
2 【中考·安顺】“母亲节”前夕,某商店根据市场 调查,用3 000元购进第一批盒装花,上市后很 快售完,接着又用5 000元购进第二批这种盒装 花.已知第二批所购花的盒数是第一批所购花 盒数的2倍,且每盒花的进价比第一批的进价少 5元.求第一批盒装花每盒的进价是多少元?
(来自《典中点》)
2.补充: 请完成《典中点》剩余部分习题
(1)利润问题:利润=售价-进价,利润率=
利润 进价
×100%;
(2)工程问题:工作量=工作效率×工作时间;
(3)行程问题:路程=速度×时间.
注意:列分式方程解应用题,往往与实数的运算或不等
式联合应用.
易错警示:列分式方程时易出现单位不统一的错误.
(来自《点拨》)
知3-讲
例3 某服装店销售一种服装.若按原价销售,则每月销
人教版数学八年级上册 15.3分式方程的应用 课件(共20张PPT)
积极探索
例4—行程问题
某次列车平均提速 v km/h,用相同的时间,列车提速前 行驶s km,提速后比提速前多行驶50km,提速前列车的平均 速度为多少?
分 (1)小组合作:找出已知量和未知量并填写表格
析
时间 ( h ) 速度 ( km/h ) 路程 ( km )
提速前
s
x
x
提速后
s+50 x+v
【解一解】
某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个 项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲乙两 队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天 的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应 选择哪个工程队、应付工程队费用多少元?
我能【选一选】
我能【解一解】
品味成功
【填一填】
甲、乙两个小组进行植树活动,已知甲小组每小时比乙 小组多种6棵树,甲小组种90棵树所用的时间和乙小组种60棵 树所用时间相等,求甲、乙小组每小时各种多少棵树?如果 设乙小组每小时 种x棵树,根据题意可得方程为
60 90 x x+6
——————————————
B、 100 60
x + 30 x 30
D、
100 60 x 30 x + 30
品味成功
【解一解】
八年级学生去距学校10km的博物馆参观,一部分学生 骑自行车先走,过了20min后,其余学生乘汽车出发,结 果他们同时到达。已知汽车的速度是骑车学生速度的2倍, 求骑车学生的速度。
解:设骑车学生的速度为 x km∕h,则汽车的速度为2x km∕h,
教师寄语
北三家中学 张凤伟
《分式方程的应用》课件
《分式方程的应用》PPT 课件
欢迎来到本节课件,我们将一起探索分式方程的应用和解法。在实际生活中, 分式方程是一个非常重要的数学工具,具有广泛的应用。
什么是分式程
分式方程是含有未知量的有理式相等的方程。标准形式为 $ rac{a}{x} + b = rac{c}{x} + d$。
分式方程的解法
掌握分式方程的应用技巧,解决与时间、速度和距离相关的问题。
4
工程问题解法演示
了解如何运用分式方程解决实际工程问题,提高问题解决能力。
总结
通过本课件的学习,我们希望学生们能够掌握分式方程的解法和应用。分式方程是一个重要的数学工具,并在 实际生活中有广泛的应用。
• 消去分母法 • 通分法 • 变量代换法
分式方程的应用
• 比例问题 • 混合问题 • 时间、速度、距离问题 • 工程问题
实例演练
1
比例问题解法演示
通过实例演练,我们将展示如何运用分式方程解决比例问题。
2
混合问题解法演示
让我们一起解决一些涉及混合问题的分式方程,加深理解。
3
时间、速度、距离问题解法演示
欢迎来到本节课件,我们将一起探索分式方程的应用和解法。在实际生活中, 分式方程是一个非常重要的数学工具,具有广泛的应用。
什么是分式程
分式方程是含有未知量的有理式相等的方程。标准形式为 $ rac{a}{x} + b = rac{c}{x} + d$。
分式方程的解法
掌握分式方程的应用技巧,解决与时间、速度和距离相关的问题。
4
工程问题解法演示
了解如何运用分式方程解决实际工程问题,提高问题解决能力。
总结
通过本课件的学习,我们希望学生们能够掌握分式方程的解法和应用。分式方程是一个重要的数学工具,并在 实际生活中有广泛的应用。
• 消去分母法 • 通分法 • 变量代换法
分式方程的应用
• 比例问题 • 混合问题 • 时间、速度、距离问题 • 工程问题
实例演练
1
比例问题解法演示
通过实例演练,我们将展示如何运用分式方程解决比例问题。
2
混合问题解法演示
让我们一起解决一些涉及混合问题的分式方程,加深理解。
3
时间、速度、距离问题解法演示
人教版八年级数学《分式方程的应用》课件
2024/1/25
分式方程的定义
分母中含有未知数的方程叫做分 式方程。
分式方程的重要性
分式方程是初中数学的重要内容 之一,它不仅是学生后续学习的 基础,而且在解决实际问题中有 着广泛的应用。
4
教学目标与要求
01
知识与技能
掌握分式方程的基本解法,理 解分式方程的应用背景,能够 运用分式方程解决简单的实际
2024/1/25
错题二
某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产 量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验
估计,每多种一棵树,平均每棵树就会少结5个橙子。
24
错题剖析及纠正方法
(1) 增种多少棵橙子树,可以使果园橙子 的总产量达到60375个?
的解决方案。
构造新模型
02
根据问题的特点,构造新的数学模型或方程,使问题更容易解
决。
转化与化归
03
将复杂问题转化为简单问题,或将陌生问题转化为熟悉问题,
利用已知方法求解。
18
05
巩固练习与提高训练
2024/1/25
19
基础练习题选讲
01
题目一:某工厂生产A、B两种 配套产品,其中每天生产x吨A 产品,需生产x+2吨B产品。已 知生产A产品的成本与产量的 平方成正比。经测算,生产1 吨A产品需要4万元,而B产品 的成本为每吨8万元。求生产A 、B两种配套产品的平均成本
02
解析
首先观察方程,发现最简公分 母是 x-2。然后去分母,将方 程转化为整式方程 x+1-3=x-2 。解得 x=2,经检验,x=2 是
原方程的解。
2024/1/25
分式方程的定义
分母中含有未知数的方程叫做分 式方程。
分式方程的重要性
分式方程是初中数学的重要内容 之一,它不仅是学生后续学习的 基础,而且在解决实际问题中有 着广泛的应用。
4
教学目标与要求
01
知识与技能
掌握分式方程的基本解法,理 解分式方程的应用背景,能够 运用分式方程解决简单的实际
2024/1/25
错题二
某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产 量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验
估计,每多种一棵树,平均每棵树就会少结5个橙子。
24
错题剖析及纠正方法
(1) 增种多少棵橙子树,可以使果园橙子 的总产量达到60375个?
的解决方案。
构造新模型
02
根据问题的特点,构造新的数学模型或方程,使问题更容易解
决。
转化与化归
03
将复杂问题转化为简单问题,或将陌生问题转化为熟悉问题,
利用已知方法求解。
18
05
巩固练习与提高训练
2024/1/25
19
基础练习题选讲
01
题目一:某工厂生产A、B两种 配套产品,其中每天生产x吨A 产品,需生产x+2吨B产品。已 知生产A产品的成本与产量的 平方成正比。经测算,生产1 吨A产品需要4万元,而B产品 的成本为每吨8万元。求生产A 、B两种配套产品的平均成本
02
解析
首先观察方程,发现最简公分 母是 x-2。然后去分母,将方 程转化为整式方程 x+1-3=x-2 。解得 x=2,经检验,x=2 是
原方程的解。
2024/1/25
人教版八年级上册 15.3 分式方程的应用 课件(共57张PPT)
综合运用
3.甲、乙两人分别从据目的地6km和10km的两地同时出发,甲 、乙的速度比是3:4,结果甲比乙提前20min到达目的地. 求甲 、乙的速度.
综合用
4.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机 器人每小时多搬运30kg,A型机器人搬运900Kg所用时间比B型 机器人搬运600kg所用时间相等,两种机器人每小时分别搬运 多少化工原料?
提速前后所用时间相同
你能列出方程了吗?
接下来解出这个方程即可.
例题 解:设提速前列车的平均速度为 x km/h, 根据行驶时间的等量关系,得
解得 检验:由v,s都是正数,得 所以,原分式方程的解为
行程问题 行程问题的基本关系是什么? 如何列分式方程解决行程问题?
练习
八年级学生去距学校 10 km的博物馆参观,一部分学生骑自行车 先走,过了 20 min后,其余学生乘汽车出发,结果他们同时到 达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度 . 解:设学生骑车的速度是x km/h,由题意得,
设提速前列车的平均速度为 x km/h, 那么提速前列车行驶 s km所用时间为_______h,
提速后列出的平均速度为__________km/h, 提速后列出运行(s+50)km所用的时间为_________h.
例题
某次列车平均提速 v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶 50 km,提速前列车的平均速度为 多少? 思考 问题中的哪个等量关系可以用来列方程?
2x
17600
例题 解:设第一次购进x件衬衫,由题意得,
方程两边都乘以2x,约去分母得, 17 600-16 000 =8x, 解得 x =200. 检验:当x =200时,2x =400≠0, 所以,x =200是原分式方程的解,且符合题意. 答:第一次购进200件衬衫.
人教版八年级上册课件 15.3 分式方程的应用(共15张PPT)
❖ You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
❖
练习1.某单位将沿街的一部分房屋出租,每间房 屋的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021 ❖14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12 ❖15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/122021/8/122021/8/128/12/2021 ❖16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/122021/8/12August 12, 2021 ❖17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/122021/8/122021/8/122021/8/12
要保持什么速度才能使全程的平
均速度是30千米/时?
5、甲、乙两列车分别从相距300 千米的A、B两站同时相向而行。 相遇后,甲车再经过2小时到达B 站,乙车再经过4小时30分到达A 站,求甲、乙两车的速度。
❖ 小结: ❖ 本节课你有何收获?还有何困惑?
同学们再见!
15.3分式方程的 应用
例3:两个工程队共同参与一项筑路工程, 甲队单独施工1个月完成总工程的三分之 一,这时增加了乙队,两队又共同工作了
❖
练习1.某单位将沿街的一部分房屋出租,每间房 屋的租金第二年比第一年多500元,所有房屋 的租金第一年为9.6万元,第二年为10.2万元.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/122021/8/122021/8/122021/8/128/12/2021 ❖14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月12日星期四2021/8/122021/8/122021/8/12 ❖15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/122021/8/122021/8/128/12/2021 ❖16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/122021/8/12August 12, 2021 ❖17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/122021/8/122021/8/122021/8/12
要保持什么速度才能使全程的平
均速度是30千米/时?
5、甲、乙两列车分别从相距300 千米的A、B两站同时相向而行。 相遇后,甲车再经过2小时到达B 站,乙车再经过4小时30分到达A 站,求甲、乙两车的速度。
❖ 小结: ❖ 本节课你有何收获?还有何困惑?
同学们再见!
15.3分式方程的 应用
例3:两个工程队共同参与一项筑路工程, 甲队单独施工1个月完成总工程的三分之 一,这时增加了乙队,两队又共同工作了
人教版八年级数学上册《分式方程的应用》课件
答:乙工程队单独完成这项工程需要 60 天.
(2)求两队合作完成这项工程所需的天数.
(2)设两队合作完成这项工程所需的天数为 y,根据题意,得
答:两队合作完成这项工程需要 24 天.
1
1
+
y=1,解之,得 y=24.
40 60
答案
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。”
− x =20
x-0.5
420
420
D.
− =0.5
x
x-20
A.
B.
关闭
420
设原价每瓶 x 元,能买
列方程为
420
-0.5
−
420
瓶,现价每瓶(x-0.5)元,能买
420
-0.5
瓶,这样现在比原先多买 20 瓶,所以
=20,故选 B.
关闭
B
解析
答案
1
3
2
2.甲、乙分别从相距 36 千米的 A,B 两地同时相向而行.甲从 A 出发
造.已知这项工程由甲工程队单独做需要 40 天完成,如果由乙工程队
10
1 201 天才能完成.
先单独做
10 天,那么剩下的工程还需要两队合作
(1)设乙工程队单独完成这项工程需要
x 天,根据题意,得 + +
×20=1,
x
x 40
(1)求乙工程队单独完成这项工程所需的天数;
解之,得 x=60,经检验,x=60 是原方程的解.
第2课时 分式方程的应用
学前温故
新课早知
列一元一次方程解应用题的一般步骤:
(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;
(2)求两队合作完成这项工程所需的天数.
(2)设两队合作完成这项工程所需的天数为 y,根据题意,得
答:两队合作完成这项工程需要 24 天.
1
1
+
y=1,解之,得 y=24.
40 60
答案
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。”
− x =20
x-0.5
420
420
D.
− =0.5
x
x-20
A.
B.
关闭
420
设原价每瓶 x 元,能买
列方程为
420
-0.5
−
420
瓶,现价每瓶(x-0.5)元,能买
420
-0.5
瓶,这样现在比原先多买 20 瓶,所以
=20,故选 B.
关闭
B
解析
答案
1
3
2
2.甲、乙分别从相距 36 千米的 A,B 两地同时相向而行.甲从 A 出发
造.已知这项工程由甲工程队单独做需要 40 天完成,如果由乙工程队
10
1 201 天才能完成.
先单独做
10 天,那么剩下的工程还需要两队合作
(1)设乙工程队单独完成这项工程需要
x 天,根据题意,得 + +
×20=1,
x
x 40
(1)求乙工程队单独完成这项工程所需的天数;
解之,得 x=60,经检验,x=60 是原方程的解.
第2课时 分式方程的应用
学前温故
新课早知
列一元一次方程解应用题的一般步骤:
(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;
分式方程的应用 PPT课件 3 人教版
教学反思
如何用分式方程解决实际问题 在用分式方程解决实际问题时应 注意些什么?
小结:
列分式方程解应用题的方法与步骤为:
1 审 ——审清题意
2 设 ——直接设未知数, 或间接设未知数
3 列 ——根据等量关系列出分式方程 4 解 ——解这个分式方程 5 验 ——既要验是否为所列分式方程的根, 又要验是否符合实际情况 6 答 ——完整地写出答案,注意单位
某工程由甲、乙两队合做6天完成,厂家需付 甲、乙两队共8700元;乙、丙两队合做10天完 成,厂家需付乙、丙两队共9500元;甲、丙两 2 队合做5天完成全部工程的 ,厂家需付甲、 3 丙两队共5500元。 ⑴求甲、乙、丙各队单独完成全部工程各需 多少天? ⑵若工期要求不超过15天完成全部工程,问 由哪队单独完成此项工程花钱最少?请说明理 由。
1200 1200 1200 1200 A . 5 B . 5 x x 40 x 40 x 1200 1200 1200 1200 C . 5 D . 5 x x 40 x 40 x
(2006年贵阳市)甲乙两人加工同一种 玩具,甲加工90个玩具所用的时间与乙 加工120个玩具所用的时间相等,已知甲 乙两人每天共加工35个玩具,求甲乙两 人每天各加工多少个玩具?
(2006上海闸北)本市进入汛期,部分路面积 水比较严重.为了改善这一状况,市政公司决 定将一段路的排水工程承包给甲、乙两工程队 来施工.如果甲、乙两队合做需12天完成此项 工程;如果甲队单独完成此项工程需20天, 求: (1)乙队单独完成此项工程需多少天? (2)如果甲队每施工一天需要费用2万元,乙 队每施工一天需要费用1万元,要使完成该工 程所需费用不超过35万元,那么乙工程队至少 要施工多少天?
分式方程的应用 PPT课件 8 人教版
等量关
总面数 人数
问题 甲乙两个工厂分别加工960件产品,已知乙工厂 每天加工的件数比甲工厂多 50%,而甲工厂单独加 2:
工完成这批产品比乙工厂单独加工完成这批产品 多用20天,甲乙两个工厂每天加工该产品多少件
分析:这是一个工程问题 ①乙工作效率=甲工作效率(1+50%) ②甲天=乙天+20 工作总量 甲 乙
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
等量关
甲
乙
人均捐款额=甲人均捐款额+
人数=乙人数(1+
20
人均捐款额
3000 x (1 20 %) 3000 x
20% ) 人数
捐款总额
30000 30000
X(1+20 %)
X
解:设乙公司有X(1+20 %)人,则甲公司有x人,由题意得:
3000 3000 x x( 120 %)
问题 小明买软面笔记本共用去12元,小丽买硬 4 : 面笔记本共用去21元,已知每本硬面笔记本
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
180 200
300
解:设小轿车提速为x千米/小时,依题意得
100 120 100 90 x
解得x=30 经检验,x=30是原方程的解,且x=30,符合 题意.
答:小轿车提速为30千米/小时.
2.两车发现跟丢时,面包车行驶了200公里,小
轿车行驶了180公里,小轿车为了追上面包车,
他就马上提速,他们约定好在s公里的地方碰头,
(2)该果品店在这两次销售中,总体上是盈利 还是亏损?盈利或亏损了多少元?
解析:(2)先计算两次购买水果的数量,赚钱情况: 销售的水果量×(实际售价-当次进价),两次合计,就 可以求得是盈利还是亏损了.
(2)第一次购买水果1200÷6=200(千克). 第二次购买水果200+20=220(千克). 第一次赚钱为200×(8-6)=400(元), 第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)= -12(元). 所以两次共赚钱400-12=388(元).
可表示出其工作效率; 3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队
工作效率的和”. 4.解题方法:可概括为“321”,即3指该类问题中三量关系, 如工程问题有工作效率,工作时间,工作量;2指该类问题中 的“两个主人公”如甲队和乙队,或“甲单独和两队合作”; 1指该问题中的一个等量关系.如工程问题中等量关系是:两 个主人公工作总量之和=全部工作总量.
第十五章
八年级数学上(RJ) 教学课件
分式
15.3 分式方程
第2课时 分式方程的应用
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解数量关系正确列出分式方程.(难点) 2.在不同的实际问题中能审明题意设未知数,列分式
方程解决实际问题.(重点)
导入新课
问题引入
1.解分式方程的基本思路是什么?
分式方程
转化 去分母
整式方程
2.解分式方程有哪几个步骤? 一化二解三检验
3.验根有哪几种方法? 有两种方法:第一种是代入最简公分母;第
二种代入原分式方程.通常使用第一种方法.
4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式 是什么?
基本上有4种: (1)行程问题: 路程=速度×时间以及它的两个变式; (2)数字问题: 在数字问题中要掌握十进制数的表示法; (3)工程问题: 工作量=工时×工效以及它的两个变式; (4)利润问题: 批发成本=批发数量×批发价;批发数量=批 发成本÷批发价;打折销售价=定价×折数;销售利润=销售收 入一批发成本;每本销售利润=定价一批发价;每本打折销售 利润=打折销售价一批发价,利润率=利润÷进价。
做一做
抗洪抢险时,需要在一定时间内筑起拦洪大坝, 甲队单独做正好按期完成,而乙队由于人少,单 独做则超期3个小时才能完成.现甲、乙两队合作 2个小时后,甲队又有新任务,余下的由乙队单独 做,刚好按期完成.求甲、乙两队单独完成全部 工程各需多少小时?
解析:设甲队单独完成需要x小时,则乙队需要 (x+3)小时,根据等量关系“甲工效×2+乙工效 ×甲队单独完成需要时间=1”列方程.
s 200
s 200
答:小轿车的提速为 10s km/ h. s 200
3.小轿车平均提速vkm/h,用相同的时间,小轿车 提速前行驶skm,提速后比提速前多行驶50km,提 速前小轿车车的平均速度为多少km/h?
0
S
路程 速度
提速 前
s
v
提速 后
s+50
x+v
S+50
时间
s v s 50 vx
15 15 2 . 3x x 3
解得
x=15.
经检验,x=15是原方程的根.
由x=15得3x=45.
答:自行车的速度是15千米/时,汽车的速度是45千米/时.
课堂小结
类型
行程问题、工程问题、数字问题、顺逆 问题、利润问题等
分式方程 步 骤 一审二设三找四列五解六验七写 的应用
方法
321法
当堂练习
1.几名同学包租一辆面包车去旅游,面包车的 租价为180元,出发前,又增加两名同学,结果 每个同学比原来少分摊3元车费,若设原来参加 旅游的学生有x人,则所列方程为( A )
2.一轮船往返于A、B两地之间,顺水比逆水快1小时到 达.已知A、B两地相距80千米,水流速度是2千米/小
时,求轮船在静水中的速度.
注意两次检验: (1)是否是所列方程的解; (2)是否满足实际意义.
经检验,x=90是原方程的解, 且x=90,x+10=100,符合题意.
答:面包车的速度为100千米/小时, 小轿车的速度为90千米/小时.
做一做
1.小轿车发现跟丢时,面包车行驶了200公里, 小轿车行驶了180公里,小轿车为了追上面包车, 他就马上提速,他们约定好在300公里的地方碰 头,他们正好同时到达,请问小轿车提速多少 km/h?
甲队的工作效率是 1 ,合作的工作效率是 ( 1 1)
x
.
3
x3
工作时间(月) 工作效率
甲单独
1
1
3
两队合作
1
(1 1)
2
x3
工作总量(1) 表格为 “3行4列
1
此时方程是:3
1
1 2
(1 3
1 x
)
1
知识要点
工程问题 1.题中有“单独”字眼通常可知工作效率;
2.通常间接设元,如× ×单独完成需 x(单位时间),则
他们正好同时到达,请问小轿车提速多少km/h?
路程 速度
面包 车
s-200
100
小轿 车
s-180
90+x
时间
s 200 100
s 180 x 90
0
180 200
S
解:设小轿车提速为x千米/小时,依题意得
s 200 s 180
100
x 90
解得x=
10s s 200
经检验: x 10s 是原方程的解,且x 10s 满足题意。
例3 佳佳果品店在批发市场购买某种水果销售, 第一次用1200元购进若干千克,并以每千克8元出 售,很快售完.由于水果畅销,第二次购买时, 每千克的进价比第一次提高了10%,用1452元所购 买的数量比第一次多20千克,以每千克9元售出 100千克后,因出现高温天气,水果不易保鲜,为 减少损失,便降价50%售完剩余的水果.
解:设船在静水中的速度为x千米/小时,根据题
意得
80 80 1.
x2 x2
方程两边同乘(x-2)(x+2)得
80x+160 -80x+160=x2 -4. 解得 x=±18.
x=-18(不合题意,舍去), 检验得:x=18.
答:船在静水中的速度为18千米/小时.
3. 农机厂到距工厂15千米的向阳村检修农机,一部分人骑 自行车先走,过了40分钟,其余人乘汽车去,结果他们同 时到达,已知汽车的速度是自行车的3倍,求两车的速度. 解:设自行车的速度为x千米/时,那么汽车的速度是3x 千米/时,依题意得:
行程问题 1.注意关键词“提速”与“提速到”的区别; 2.明确两个“主人公”的行程问题中三个量用代数 式表示出来;
3.行程问题中的等量关系通常抓住“时间线”来建 立方程.
列分式方程解应用题的一般步骤 1.审:清题意,并设未知数; 2.找:相等关系; 3.列:出方程; 4.解:这个分式方程; 5.验:根(包括两方面 :(1)是否是分式方程的根; (2)是否符合题意); 6.写:答案.
解:设甲队单独完成需要x小时,则乙队需要
(x+3)小时.
ห้องสมุดไป่ตู้
由题意得
.
解得x=6.
经检验x=6是方程的解.∴x+3=9.
答:甲单独完成全部工程需6小时,乙单独完 成全部工程需9小时.
解决工程问题的思路方法:各部分工作量之和等 于1,常从工作量和工作时间上考虑相等关系.
二 列分式方程解决行程问题
例2 朋友们约着一起开着2辆车自驾去黄山玩, 其中面包车为领队,小轿车车紧随其后,他们同 时出发,当面包车车行驶了200公里时,发现小 轿车车只行驶了180公里,若面包车的行驶速度 比小轿车快10km/h,请问面包车,小轿车的速度 分别为多少km/h?
(1)求第一次水果的进价是每千克多少元?
解析:根据第二次购买水果数多20千克,可得出 方程,解出即可得出答案;
解:(1)设第一次购买的单价为x元,则第二
次的单价为1.1x元,
根据题意得 1452 20 1200 ,
1.1x
x
解得x=6.
经检验,x=6是原方程的解.
答:第一次水果的进价为每千克6元.
0
180
200
分析:设小轿车的速度为x千米/小时
列表格如下:
面包 车
小轿 车
路程 速度 200 x+10
180 x
时间
200 x 10
180 x
等量关系: 面包车的时间=小轿车的时间
解:设小轿车的速度为x千米/小时,则面包 车速度为x+10千米/小时,依题意得
180 200 x x 10
解得x=90
工作总量(1)
1 2 1 2x
甲队完成的工作总量+乙队完成的工作总量=“1”
解:设乙单独 完成这项工程需要x个月.记工作总量为1,甲的
工作效率是 1 ,根据题意得
3
1 (1 1) 1 1 1, 3 2 x2
即
1 1 1. 2 2x
方程两边都乘以6x,得
3x 3 6x.
解得 x=1.
检验:当x=1时,6x≠0.
所以,原分式方程的解为x=1.