数字信号处理复习适合期末考试
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理期末试卷(共七套)
第一套试卷学号 姓名 成绩一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R 3(n),则当输入为u(n)-u(n -2)时输出为 。
A.R 3(n)B.R 2(n)C.R 3(n)+R 3(n -1)D.R 2(n)+R 2(n -1) 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列 B.右边序列 C.左边序列 D.双边序列 二、填空题(每题3分,共5题)1、离散时间信号,其时间为 的信号,幅度是 。
2、线性移不变系统的性质有__ ____、___ ___和分配律。
3、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
4、序列R 4(n)的Z 变换为_____ _,其收敛域为____ __。
5、对两序列x(n)和y(n),其线性相关定义为 。
三、1)(-≤≥⎩⎨⎧-=n n ba n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)五、已知两个有限长序列如下图所示,要求用作图法求。
(10分)六、已知有限序列的长度为8,试画出按频率抽选的基-2 FFT算法的蝶形运算流图,输入为顺序。
(10分)七、问答题:数字滤波器的功能是什么?它需要那几种基本的运算单元?写出数字滤波器的设计步骤。
(完整版)《数字信号处理》期末试题库
一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1. 下面说法中正确的是。
A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。
A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。
A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。
A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。
A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。
A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。
(I)原信号为带限II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、IIID.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时,2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。
A.吉布斯效应B.栅栏效应C.泄漏效应D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。
数字信号处理期末试卷及答案
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A 。
非周期序列B.周期6π=N C 。
周期π6=N D 。
周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A 。
a Z <B 。
a Z ≤C 。
a Z >D 。
a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积.A.70≤≤n B 。
197≤≤n C 。
1912≤≤n D 。
190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>N B 。
16=N C 。
16<N D.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。
有限长序列 B.右边序列 C.左边序列 D 。
双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x (n)和y (n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; .5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点.(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换.(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
数字信号处理期末试卷及答案
数字信号处理期末试卷及答案一、 选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n b a n x n n 求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理期末考试资料
《数字信号处理》考试复习资料 一、填空题1.单位采样序列的定义式10()00n n n δ=⎧=⎨≠⎩ 。
单位阶跃序列的定义式⎩⎨⎧<≥=)0(0)0(1)(n n n u2.对一个低通带限信号进行均匀理想采样,当采样频率 大于等于 信号最高频率的两倍时,采样后的信号可以精确地重建原信号。
3.对于右边序列的Z 变换的收敛域是x R ->一个圆的外部 或者 z。
4.根据对不同信号的处理可将滤波器分为 模拟 滤波器和 数字 滤波器。
5.FIR 数字滤波器满足第一类线性相位的充要条件是()(1)h n h N n =--。
6.在实际应用中,在对于相位要求不敏感的场合,如一些检测信号、语音通信等,可以选用IIR (无限冲激响应)数字 滤波器,这样可以充分发挥其经济高效的特点。
7、基2—FFT 算法基本运算单元是 蝶形 运算,一般要求N =2,2M M 为正整数 或者 的正整数幂。
8.若十进制数“1”的二进制表示为“001”,则将它码位倒序后,所表示的十进制数为 4 。
9.满足 叠加原理(或齐次性和可加性) 的系统称为线性系统.10.正弦序列3()cos()74x n A n ππ=+的周期为 14 点,余弦序列2()cos()74x n A n ππ=+的周期为 7 点,正弦序列32()sin()53x n A n ππ=+ 的周期为 10 点.(qp =ωπ2为有理数,周期为p )11、单位阶跃序列()u n 的Z 变换的收敛域为1z >.12.对线性非时变系统,稳定性的充要条件是()n h n ∞=-∞<∞∑,因果性的充要条件是000()0()0n h n n n h n n <=<-=当时,或当时,。
13.在设计IIR 数字滤波器的时候,经常采用的方法是利用现有的 模拟滤波器 设计方法及其相应的转换方法得到数字滤波器.14.已知一个长度为N 的序列()x n ,它的离散傅里叶变换()[()]X k DFT x n ==1()01N kn Nn x n Wk N -=≤≤-∑。
数字信号处理期末试卷(含答案)
数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、双边序列z 变换的收敛域形状为 圆环或空集 。
3、某序列的DFT 表达式为∑-==10)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理期末试卷(含答案)全
数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。
1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
数字信号处理期末复习题
数字信号处理期末复习题一、填空题1.数字频率ω与模拟角频率Ω之间的关系为 。
2.理想采样信号的频谱是原模拟信号的频率沿频率轴,每间隔 重复出现一次,并叠加形成的周期函数。
3.序列)(n x 的共轭对称部分)(n x e 对应着)(ωj e X 的 部分。
4.长度为N 的有限长序列)(n x 的M 点离散傅里叶变换的周期为 。
5.对实信号进行谱分析,要求谱分辨率Hz F 10≤,信号最高频率kHz f c 5.2=,则最小记录时间=min p T ,最少的采样点数=min N 。
6.在DIT-FFT 算法分解过程中,有16点的复数序列,可进行4级蝶形运算,则4级运算总的复数乘法次数为 。
7.如果序列)(n x 的长度为M ,则只有当频率采样点数N 满足 条件时,才可有频率采样)(k X 恢复原序列)(n x ,否则产生时域混叠现象。
8.设)(*n x 是)(n x 的复共轭序列,长度为N ,N n x DFT k X )]([)(=,则=N n x D F T )]([* 。
9.线性相位FIR 滤波器,若)1()(---=n N h n h ,N 为奇数的情况下,只能实现 滤波器。
10.给定序列()14j n x n e π⎛⎫- ⎪⎝⎭=,试判断此序列是否为周期序列 ;若为周期序列,请给出此序列的最小正周期 ,若为非周期序列,请列写判别原因 。
(后面两个填空只需填一个)。
11.已知调幅信号的载波频率为,调制信号频率100m f Hz =,则最小记录时间为 ,最低采样频率 。
12.系统差分方程为()()()21y n x n x n =++ ,其中()x n 和()y n 分别表示系统输入和输出,判断此系统(是,非)线性系统,(是,非)时不变系统,(是,非)因果系统,(是,不是)稳定系统。
(划线部分是正确答案)。
13.周期信号()()0sin xn n ω= ,其中02π为有理数,其用欧拉公式展开后表达式为 ,其傅里叶变换为 。
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理期末试卷含答案
数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
数字信号处理期末试卷及答案
一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(完整word版)数字信号处理期末考试复习(word文档良心出品)
《数字信号处理》期末考试复习题库一、选择题1. δ(n)的z 变换是( A )。
A. 1B.δ(w)C. 2πδ(w)D. 2π2. )(ωj e H 以数字角频率ω的函数周期为( B )。
A.2B. π2C. j π2D.不存在3. 序列x(n)=cos ⎪⎭⎫ ⎝⎛n 8π3的周期为( C ) A.3 B.8C.16D.不存在 4. 已知某序列Z 变换的收敛域为6>|z|>4,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列5. 线性移不变系统的系统函数的收敛域为|Z|>5,则可以判断系统为( B )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统6. 下面说法中正确的是( B )A.连续非周期信号的频谱为非周期离散函数B.连续周期信号的频谱为非周期离散函数C.离散非周期信号的频谱为非周期离散函数D.离散周期信号的频谱为非周期离散函数7. 若离散系统为因果系统,则其单位取样序列( C )。
A. 当n>0时, h(n)=0B. 当n>0时, h(n)≠0C. 当n<0时, h(n)=0D. 当n<0时, h(n)≠08. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率fm 关系为( A )。
A. fs ≥2fmB. fs ≤2fmC. fs ≥fmD. fs ≤fm9. 序列x (n )的长度为4,序列h (n )的长度为3,则它们线性卷积的长度和5 点圆周卷积的长度分别是( B ) 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 510. 若离散系统的所有零极点都在单位圆以内,则该系统为( A )。
A. 最小相位超前系统B. 最大相位超前系统C. 最小相位延迟系统D. 最大相位延迟系统11. 处理一个连续时间信号,对其进行采样的频率为3kHz ,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为( B )A. 6kHzB. 1.5kHzC. 3kHzD. 2kHz12.下列序列中______为共轭对称序列。
数字信号处理期末试卷(含答案)
数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。
2、双边序列z 变换的收敛域形状为 圆环或空集 。
3、某序列的DFT 表达式为∑-==1)()(N n knMW n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2 。
4、线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为 不稳定 。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在 。
5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n Nh n h --=,此时对应系统的频率响应)()()(ωϕωωj j e H e H =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、椭圆滤波器 。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理期末试题和答案解析
WORD 格式整理数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理期末试题及答案
数字信号处理期末试题及答案《数字信号处理》课程期末考试试卷一一、选择题1、)125.0cos()(n n x π=的基本周期是(D )。
(A )0.125 (B )0.25 (C )8 (D )16。
2、一个序列)(n x 的离散傅里叶变换的变换定义为(B )。
(A )∑∞-∞=-=n jn j en x e X ωω)()( (B )∑-=-=1/2)()(N n Nnk j en x k X π(C )∑∞-∞=-=n nzn x z X )()( (D )∑-=-=1)()(N n kn nk W An x z X 。
3、对于M 点的有限长序列,频域采样不失真恢复时域序列的条件是频域采样点数N (A )。
(A )不小于M (B )必须大于M(C )只能等于M (D )必须小于M 。
4、有界输入一有界输出的系统称之为(B )。
(A )因果系统(B )稳定系统(C )可逆系统(D )线性系统。
二、判断题(本大题8分,每小题2分。
正确打√,错误打×)1、如果有一个实值序列,对于所有n 满足式:)()(n x n x -=,则称其为奇序列。
(× )2、稳定的序列都有离散时间傅里叶变换。
(√ )3、n j nM j e e00)2(ωπω=+ , M =0,±1,±2,…。
(√ )4、时域的卷积对应于频域的乘积。
(√ )三、填空题(本大题10分,每小题2分)1、在对连续信号进行频谱分析时,频谱分析范围受采样速率的限制。
2、∞∞-=ωωδd ( 1 。
3、对于一个系统而言,如果对于任意时刻0n ,系统在该时刻的响应仅取决于在时刻及其以前的输入,则称该系统为因果系统。
4、对一个LSI 系统而言,系统的输出等于输入信号与系统单位采样响应的线性卷积。
5、假设时域采样频率为32kHz ,现对输入序列的32个点进行DFT 运算。
此时,DFT 输出的各点频率间隔为 1000 Hz 。
数字信号处理复习(适合期末考试)
1如果信号的自变量和函数值都取连续值,则称这种信号为模拟信号或者称为时域连续信号,例如语言信号、温度信号等;2如果自变量取离散值,而函数值取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3如果信号的自变量和函数值均取离散值,则称为数字信号。
4数字信号是幅度量化了的时域离散信号。
5如果系统n 时刻的输出只取决于n 时刻以及n 时刻以前的输入序列,而和n 时刻以后的输入序列无关,则称该系统为因果系统。
6线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:________。
7序列x (n )的傅里叶变换X (e j ω)的傅里叶反变换为:x (n )=IFT[X (e j ω)]=————————8序列x (n )的傅里叶变换X (e j ω)是频率的ω的周期函数,周期是2π。
这一特点不同于模拟信号的傅里叶变换。
9序列x (n )分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称性,虚部和j 一起对应的傅里叶变换具有共轭反对称性。
10序列x (n )的共轭对称部分x e (n )对应着X (e j ω)的实部X R (e j ω),而序列x (n )的共轭反对称部分x o (n )对应着X (e j ω)的虚部(包括j)。
11时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为TF s s ππ22==Ω,因此由模拟信号进行采样得到时域离散信号时,同样要满足采样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会差生频域混叠现象,频率混叠在Ωs/2附近最严重,在数字域则是在π附近最严重。
12因果(可实现)系统其单位脉冲响应h (n )一定是因果序列 ,那么其系统函数H (z )的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆内,收敛域在某个圆外。
13系统函数H (z )的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1如果信号的自变量和函数值都取连续值,则称这种信号为模拟信号或者称为时域连续信号,例如语言信号、温度信号等;2如果自变量取离散值,而函数值取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3如果信号的自变量和函数值均取离散值,则称为数字信号。
4数字信号是幅度量化了的时域离散信号。
n nnn时时刻以及5如果系统而和时刻的输出只取决于时刻以前的输入序列,刻以后的输入序列无关,则称该系统为因果系统。
6线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:________。
jωXxn)(e(的傅里叶反变换为:)的傅里叶变换 7序列jωXxn)]=(e(————————)=IFT[jωxnX(e)是频率的ω的周期函数,周期是2π8序列。
(这一特点)的傅里叶变换不同于模拟信号的傅里叶变换。
xn)分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称9序列性,(虚部和j一起对应的傅里叶变换具有共轭反对称性。
jωjωxnxnX X xn)的((e())对应着,而序列(e)10序列的()的共轭对称部分实部R ejωXxn)的虚部(包括(j))对应着。
(e 共轭反对称部分o11时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为?2?同样要满足采,因此由模拟信号进行采样得到时域离散信号时,F2???ss T样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会差生s/2附近最严重,在数字域则是在πΩ附近最严重。
频域混叠现象,频率混叠在hn)一定是因果序列( 12因果(可实现)系统其单位脉冲响应,那么其系统函Hz)的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆(内数,收敛域在某个圆外。
13系统函数H(z)的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。
14freqz计算数字滤波器H(z)的频率响应:[H,ω]=freqz(B,A);B和A为系j ωjωjφ)| eH(e)= |H(e统函数H(z) = B(z)/A(z)的分子和分母多项式系数向量。
(ω),则:jω, angle(H)= φ(ωabs(H)=|H(e))|15如果滤波器的幅频特性对所有频率均等于常数或1,则该滤波器称为全通滤波器(或称全通系统、全通网络)。
信号通过全通滤波器后,幅度谱保持不变,仅相位谱改变,起纯相位滤波作用。
Hz),其所有极点必须在单位圆内。
16一个因果稳定的时域离散线性不变系统(Hz)的所有零点都在单位圆内,则称之为“最小相位系统”。
17如果因果稳定系统 (18如果所有零点都在单位圆外,则称之为“最大相位系统”。
19若单位圆内、外都有零点,则称之为“混合相位系统”。
HzHz)最小相位系统20任何一个非最小相位系统的系统函数min(()均可由一个Hz)级联而成。
ap(和一个全通系统21在幅频响应特性相同的所有因果稳定系统集中,最小相位系统的相位延迟(负的相位值)最小。
xnXkxn分别为DFT)的j的实部和虚部(包括)(,则)(为DFT的)(如果序列22.Xk)的共轭对称分量和共轭(反对称分量。
23如果序列x(n)的DFT为X(k),则x(n)的共轭对称分量和共轭反对称分量的。
的实部和虚部乘以jDFT分别为X(k)*nxnXkxnx)])=DFT[,则)的复共轭序列,长度为N24设,((()是( N**Nkk≤N XxNn X X(0)≤DFT[。
((P84)] =-1,且(-)=) 0N xnXkxnXk) (())=DFT[25设](()是长度为N的实序列,且,则N*NkkkXNX-1。
(=0, 1, 共轭对称,即-(…)=) ,xnxnxN-n)(,且)= 26设(()是长度为N的实偶对称序列,即XkxnXk XkXN-k)(。
()=)],则( )实偶对称,即(()=DFT[N xnxnxN-n)(,27设)=-( )是长度为N的实奇对称序列,即(XkxnXk XkXN-k))=-)],则。
((且)(纯虚奇对称,即)=DFT [ ((N xnMN M时,才有 )的长度为28如果序列≥(,则只有当频域采样点数xnXkxnXkxn)()]=恢复原序列()(,即可由频域采样)=IDFT[,否则产生时(()N 域混叠现象。
29所谓信号的谱分析,就是计算信号的傅里叶变换。
xtxt)()进行频谱分析,先对30为了利用DFT对进行时域采样,得到(aajωXnXkxxnxnTxn)))则是(的傅里叶变换),再对(()进行DFT,得到的(e(()=a xnXk)均为有限长序列。
(( )和。
在频率区间[0,2π]上的N点等间隔采样这里31由傅里叶变换理论知道,若信号持续时间有限长,则其频谱无限宽;若信号的频谱有限宽,则其持续时间必然为无限长。
32实际上对频谱很宽的信号,为防止时域采样后产生频谱混叠失真,可用预滤波器滤除幅度较小的高频成分,使连续信号的带宽小于折叠频率。
33对模拟信号频谱的采样间隔,称之为频率分辨率。
P96f c(即谱分析范围)时,为了避免频率混叠现象,要求34在已知信号的最高频率F F s>2fc。
满足:采样频率s FF FN,如果保持采样点数N=不变,要采样频率35s/s,采样点数N,谱分辨率F),就必须降低采样频率,采样频率的降低会引起谱分析减小提高频谱分辨率(F s不变,为提高频率分辨率可以增加采样点和频谱混叠失真。
如维持范围变窄N。
数36对连续信号进行谱分析时,首先要对其采样,变成时域离散信号后才能用F s必须满足采样定理,否则会在ω=πDFT(FFT)进行谱分析。
采样速率(对应模fFfF s/2分析的结果必然在=s/2)附近发生频谱混叠现象拟频率。
这时用=DFT附近产生较大误差。
N点DFT是在频率区间[0,2π37]上对时域离散信号的频谱进行N点等间隔采样,而采样点之间的频谱函数是看不到的。
这就好像从N个栅栏缝隙中观看信N 个缝隙中看到的频谱函数值。
因此称这种现象为栅栏号的频谱情况,仅得到效应。
由于这种效应,有可能漏掉(挡住)大的频谱分量。
xn)的频谱是离散谱线,经截断后,使原来的离散谱线向附近展宽,通(38序列常称这种展宽为泄露。
显然,泄露使频谱变模糊,使谱分辨率降低。
39在主谱线两边形成很多旁瓣,引起不同频率分量间的干扰(简称谱间干扰),特别是强信号谱的旁瓣可能湮没弱信号的主谱线,或者把强信号谱的旁瓣误认为是另一频率的信号的谱线,从而造成假信号,这样就会使谱分析产生较大偏差。
M MN级蝶形,每一级都时,其运算流图应有=2算法的分解过程,DIT-FFT由40.NN M级运次复数乘。
所以,由/2/2个蝶形运算构成。
因此,每一级运算都需要算总共需要的复数乘次数为:NlogN/2. 2N=1024点DFT,需要计算-2 FFT算法计算______次复数41采用按时间抽取的基加法,需要______次复数乘法。
P114 42所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
43经典滤波器的特点是其输入信号中有用的频率成分和希望滤除的频率成分各占有不同的频带,通过一个合适的选频滤波器滤除干扰,得到纯净信号,达到滤波的目的。
44如果信号和干扰的频谱相互重叠,则经典滤波器不能有效地滤除干扰,最大限度地恢复信号,这时就需要现代滤波器,例如维纳滤波器、卡尔曼滤波器、自适应滤波器等最佳滤波器。
45现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度地抑制干扰,同时最大限度地恢复信号,从而达到最佳滤波的目的。
46经典数字滤波器从滤波特性上分类,可以分成低通、高通、带通和带阻等滤波器。
jωH(e)都是以数字滤波器的频率响应函数2π为周期的,低通滤波器的通频47带中心位于2π的整数倍处,而高通滤波器的通频带中心位于π的奇数倍处,这一点和模拟滤波器是有区别的。
一般在数字频率的主值区[-π, π]描述数字滤波器的频率响应特性。
48数字滤波器从实现的网络结构或者从单位脉冲响应长度分类,可以分成无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器。
jωH)(e用下式表示:49数字滤波器的频率响应函数jωjωjθ(ω)jωHHH)|称为幅频特性函数)|e; θ(e(ω )(e式中,|)=|(e称为相频特性函数。
幅频特性表示信号通过该滤波器后各频率成分振幅衰减情况,而相频特性反映各频率成分通过滤波器后在时间上的延时情况。
H a(jΩ),50模拟滤波器的频率响应函数所谓的损耗函数(也称为衰减函数)AA(Ω)定义如下)来描述滤波器的幅频响应特性,对归一化幅频响应函数,(Ω(其单位是分贝,用dB表示):A H a(jΩ)|(Ω)=-20lg|H a(jΩ)|的取值非线性压缩,损耗函数的优点是对幅频响应|放大了小的幅度,从而可以同时观察通带和阻带频响特性的变化情况。
P153Hz)的极点全部在单位圆内。
51数字滤波器因果稳定的条件是(T;脉冲响应不变法ω=Ω52脉冲响应不变法的优点是频率变换关系是线性的,即的最大缺点是会产生不同程度的频率混叠失真,其适合用于低通、带通滤波器的设计,不适合用于高通、带阻滤波器的设计。
53数字频率ω与模拟频率Ω之间的非线性关系是双线性变换法的缺点,其关系?2??tan(),:式它使数字滤波器频响曲线不能保真地模仿模拟滤波器频响的T2曲线形状。
54稳定和线性相位特性是FIR滤波器最突出的优点。
FIR滤波器设计任务是选jωHhn)满足技术指标要求。
请列出(eFIR择有限长度的滤(),使频率响应函数波器三种设计方法:窗函数法、频率采样法和切比雪夫等波纹逼近法。
Nhn)=ω(θ数字滤波器的相位函数FIR的第一类线性相位)(的对于长度为55.(N-1)/2hn)的约束条件:h(n)=h(N-1-n),0≤n≤,它对N-1(。
ω-Nhn)的第二类线性相位FIR数字滤波器的相位函数θ56对于长度为(的ω()= (N-1)/2hn)的约束条件:h(n)=-h(N-1-n),0≤(n≤--ωN-1。
,它对2N为偶数hn)的第一类线性相位FIR的数字滤波器不能实现(57对于长度为高通和带阻滤波器。
N为奇数hn)的第二类线性相位FIR(58对于长度为数字滤波器只能实现带通的滤波器。
N为偶数hn)的第二类线性相位对于长度为FIR数字滤波器不能实现的低通(59和带阻滤波器。
60等波纹最佳逼近设计中,把数字频段分为“逼近(或研究)区域”和“无关区域”。
逼近区域一般指通带和阻带,而无关区域一般指过渡带。
设计过程中H d(ω)不,即只考虑对逼近区域的最佳逼近。
应当注意,无关区宽度不能为零能是理想滤波特性。