搅拌器的型式分解
搅拌桨型式概述知识讲解
搅拌功率的计算
搅拌轴和搅拌器的强度和刚度计算 电机和减速机的选型
影响搅拌功率的 主要参数
搅拌器的 几何尺寸
搅拌器的 运动参数
重力参数
搅拌容器 的结构
被搅拌介 质的特性
功率表达式
P=f(n,d,ρ,μ,g )=K na db ρc μe gf K---系统几何构形的总形状系数 功率关联式:
N Pn P 3d5K (R e)r(F r)qf(D d,D B,D h,....)
植物纤维
填料
非金属填料
动物纤维 矿物纤维
人造纤维
金属填料(钢、铅、铜 等)
表(8-13)
填料箱
填料箱宽度:
S(1.4~2) d
填料箱高度:
由填料的尺寸和 圈数确定
标准填料箱
表(8-13)
填料压盖高度:
h (1 ~ 2)H 33
机械密封
(端面密封)
动、静界面 密封点 径向密封 端面比压
动环和静环 弹簧压紧装置
搅拌器的型式
搅拌器的分类
按流体流动形态
轴向流搅拌器 径向流搅拌器
按搅拌器叶片结构
平叶 折叶
混合流搅拌器
螺旋面叶
按搅拌用途
低粘流体用搅拌器 高粘流体用搅拌器
桨式搅拌器
1、式搅拌器主要用于流体的循环, 不能用于气液分散操作。
2、折叶式比平直叶式功耗少,操 作费用低,故折叶桨使用较多。
桨式搅拌器常用参数(表8-5)
推进式搅拌器
推进式搅拌器常用参数(表8-6)
推进式搅拌器的特点
轴向流搅拌器 循环量大,搅拌功率小 常用于低粘流体的搅拌 结构简单、制造方便
涡轮式搅拌器
(透平式叶轮)
搅拌型式
涡轮式搅拌器常用参数 (表8-6)
锚式搅拌器
涡轮式搅拌器常用参数 (表8-6)
框式搅拌器
锚式和框式搅拌器特点
1、结构简单,制造方便。 2、适用于粘度大、处理量大的物料。 3、易得到大的表面传热系数。 4、可减少“挂壁”的产生。
螺杆式搅拌器
螺带式搅拌器
搅拌器的选型
1、介质的性质 (1)介质的粘度 随着介质粘度增高,各种搅拌器使用的顺序是:桨叶式、推 进式、涡轮式、框式和锚式、螺杆(带)式
搅拌器的型式
搅拌器的分类
按流体流动形态
轴向流搅拌器 径向流搅拌器 混合流搅拌器
平叶
按搅拌器叶片结构
折叶 螺旋面叶 低粘流体用搅拌器
按搅拌用途
高粘流体用搅拌器
桨式搅拌器
1、式搅拌器主要用于流体的循环, 不能用于气液分散操作。 2、折叶式比平直叶式功耗少,操 作费用低,故折叶桨使用较多。
桨式搅拌器常用参数(表8-5)
如釜体壁厚的计算、封头壁厚的计算、搅拌轴直径的确定等。
4、主要零部件的选用 搅拌器、传动装置、轴封装置等的选择。
5、绘图、编制技术文件
装配图、各种零部件图、设计计算书、设计说明书、技术要求等。
作业1
1.以机械搅拌反应器为例,说明搅拌反应器由哪几部分组 成,包括哪些构件。 2.搅拌器的功能是什么?中心顶插式搅拌器可形成哪几种 流型?如何控制切向流? 3.分析桨式、推进式、涡轮式、锚式搅拌器的结构特点和 适用场合。 4.搅拌器可通过哪几种方式与搅拌轴连接?
d 1.72(
M te ) 4 [ ](1 )
1 3
按轴封处允许径向位移验算轴径
限制条件
Lo [ ]Lo Lo 总径向位移 [ ]Lo 轴封处的允许径向位移
搅拌器型式2
搅拌器的分类搅拌器共分为十大类,分别为以下几种:1、二叶浆式搅拌器1)平直叶浆式PJ/PCJ最基本的一种浆型,低速时以水平环流为主;高速时为径向流;有挡板时,为上下循环流。
适用于低粘度液体的混合、均匀、调和、溶解、传热或结晶,或在高粘度下,一般在层流状态工作,采用多层大直径低速搅拌。
2)斜叶浆式XJ/ZJ可制成24º、45º或60º倾角,有轴向和径向分流。
3)弧叶浆式HJ/HCJ新开发的一种类型,可替代XJ、ZJ。
在同等使用条件下,排出性能比XJ高30%,功率水平可持平。
综合性能优于XJ。
4)双折叶浆式SCJ/CCJ多段逆流型搅拌器,运行时促进液体形成较大的轴向循环,一般多层搅拌组合使用。
特别适用于过渡流域下的混合、固液悬浮、液液分散、溶解、传热等。
5)复合折叶浆式FJ/FDJ高效轴向流叶轮,在主叶片上增加了一个辅助叶片,该辅叶片能消除主叶片后端发生的流动剥离现象,使搅拌功率减少,同时在叶端能发生交叉的垂直分流、提高混合效果。
适用于中、低粘度的混合、分散、传热。
特别适用于大型灌槽的固液悬浮。
6)螺旋叶浆式AJ/ACJ与罐体相适应的弧形叶片并与斜叶浆式组合,适用于中高粘度的混合、均质、传热、反应等。
一般多层组合使用。
具有双螺带浆的特点。
7)曲边斜叶式QJ斜叶浆式的一种类型,浆底旋转面接近本容器的椭圆面,浆叶平面与旋转轴垂直面又称倾角45º,兼起刮板作用,多为低转速运行,可在过流或层流区操作。
8)菱臂孤叶BJ/BCJ本搅拌器桨叶类型特别,是行业内专用搅拌,适用于漂洗、浸染类操作,多为低速范围层流操作。
9)花板孔式FJ/FCJ左右两桨叶一高一低,不以轴对称,低速运转,层流状态下有较好的微观剪切效果,行业专用搅拌器。
用于纤维物料的操作,也可用于摆动操作。
2、开启涡轮式搅拌器1)平直叶开启涡轮PK/PKS/PCK/PKW径流型搅拌器,使用转速范围大,使用粘度范围广,具有高剪切力和湍流扩散能力。
聚合反应器的分类介绍
2.底部传动搅拌反应器 该型式反应器的搅拌装置设在反应器的 底部。
优点:当设备较大时,搅拌轴可做成
短而细,稳定性好,且可降低安装高度。同 时由于把笨重的传动装置安装在地面基础上, 从而改善了釜体上封头的受力状态,也便于 维护与检修。
2.釜内传热件 当聚合釜壁采用导热性不良的材质或较大型的聚合釜、
单靠夹套传热不能满足工艺要求时,需在反应器内增设传
热件,如加传热挡板、蛇形管等。 3.釜外传热 釜外传热可分为两种情况,一种是把釜内产生的气体 导出至釜外回流冷凝器,然后使冷凝液返回反应釜。因为 是蒸汽冷凝传热,其传热系数高,且传热面积不受反应器 容积的限制。
3.推进式搅拌器
推进式(也
称螺旋桨式) 搅拌器的结构简单.其直径 较小,d/D=1/4-1/3。以整体铸 造的叶轮最为常见,适合于液体
粘度较低、液量较大的搅拌。其
转速较高.一般为300-600r/min, 叶端线速度为5-15m/s。利用较
小的搅拌功率通过高速旋转的桨
叶获得较好的搅拌效果。
Hale Waihona Puke 4.涡轮式搅拌器吻合,直接刮扫釜壁上的液体,有
利于夹套式搅拌釜的传热与去除釜 壁处的沉积物。
(二)搅拌器的选型
搅拌过程涉及流体的流动、传 热和传质,其影响因素极其复杂,
在选型设计时,既要考虑达到搅拌
效果,保证物料的混合,有利于传 热、传质,也应考虑动力消耗问题; 另外还要考虑搅拌器的结构要便于
操作和维修。
1.以液体粘度和反应釜体积为依 据选型 右图为在较合理搅拌功率消耗 下,物料粘度与反应体积的关系图。 图中表示各种叶轮适用范围。
搅拌桨型式ppt课件
表(8-13)
44
填料压盖高度:
h (1 ~ 2)H 33
45
机械密封
(端面密封)
动、静界面 密封点 径向密封 端面比压
46
动环和静环 弹簧压紧装置
密封圈
47
机械密封的分类
按密封面的对数分单 双端 端面 面机 机械 械密 密封 封表(8-14)
按密封元件置于釜体内外分内外装装式式机机械械密密封封
涡轮式搅拌器常用参数 (表8-6)
9
锚式搅拌器
涡轮式搅拌器常用参数 (表8-6)
10
框式搅拌器
11
锚式和框式搅拌器特点
1、结构简单,制造方便。 2、适用于粘度大、处理量大的物料。 3、易得到大的表面传热系数。 4、可减少“挂壁”的产生。
12
螺杆式搅拌器
螺带式搅拌器
13
搅拌器的选型
1、介质的性质 (1)介质的粘度 随着介质粘度增高,各种搅拌器使用的顺序是:桨叶式、推
P
n3d 5
K (Re )r (Fr )q
f ( d , B , h ,....) DDD
P N P n3d 5
19
20
搅拌轴设计
搅拌轴的结构设计 计算搅拌轴的直径
21
搅拌轴材料选择
足够的强度、 刚度和韧性
优良的切削 加工性能
加工直线度 的要求
耐腐蚀要求
22
搅拌轴的结构设计
轴颈设计 轴身设计
(3)导热性要好,能够将摩擦产生的热量尽快传递出去。
(4)高温高压条件下使用的填料,要求具有耐高温性能 及足够的机械强度。
42
植物纤维
填料非金属填料动 矿物 物纤 纤维 维
机械搅拌反应器(搅拌釜式反应器)讲解
精品资料
2、 搅拌器分类(fēn lèi)、图谱及典型搅拌器特性
一、搅拌器分类(fēn lèi)
按流体流动形态
轴向流流搅搅拌拌器器 径向流搅拌器
混合流搅拌器
按结构分为
平叶
折叶 螺旋面叶
桨式、涡轮式、框式和 锚式的桨叶都有平叶和 折叶两种结构
推进式、螺杆式和螺带 式的桨叶为螺旋面叶
结构
沿筒体外壁轴向布置
沿筒体外壁螺旋布置
型钢的刚度大, 弯曲成螺旋形
时加工难度大
精品资料
(a)螺旋形角钢(jiǎogāng) 互搭式
图17-5 型钢(xínggāng)夹套
结构
精品资料
(b)角钢螺旋形缠绕
3.半圆 (bànyuán)管夹 套特性(tèxìn半g)圆—管—或弓形管由带材压制而成,加工方便。
减薄筒体壁厚,强化传热效果。
结构
折边式
拉撑式
精品资料
D1
t1
夹套向内折边与筒 体贴合好, 再进行 焊接的结构
D2
t2
A
b
A向
图17-8 折边式蜂窝(fēngwō)夹
精品资料
D1
t1
D2
e
b
dmin
图17-9 短管支撑(zhī chēng)式蜂窝夹
精品资料
用冲压的小锥体或 钢管做拉撑体。蜂 窝(fēngwō)孔在筒体 上呈正方形或三角 形布置
结构(jiégòu)
1. 圆筒体,封头(椭圆形、锥形和平盖,椭圆 2. 形封头应用最广)。 2. 各种接管,满足进料、出料、排气等要求。 3. 加热、冷却装置:设置外夹套或内盘管。 4. 上封头焊有凸缘法兰,用于搅拌容器与机架
搅拌器知识汇总
搅拌器知识汇总搅拌器对于我们来说可能有点陌生,生活中,我们没有直接接触过这一方面的知识,但是,搅拌器的使用已经渗入到各个行业中,并且给生产方面带来了极大的便利。
本文主要从以下几个方面介绍搅拌器:1型式及简介(1)平直叶桨式搅拌器平直叶桨式搅拌器有平直叶整体桨式(HG5-220_65)PJ和平直叶可拆桨式(HG5_220_65)PCJ两种。
其中平直叶可拆桨式是最基本的一种桨型,低速时为水平环流型,层流区操作:高速时为径流型。
有挡板时,功率准数值N P明显上升,为上下循环流,湍流加强,适用于低粘度液的混合、分散、固体悬浮、传热、液相反应等过程。
μ<2000cP,n=1~100rpm,V=1~50m/s。
常用规格D J/D=0.35~0.8,b/D J=0.10~0.25.当D J/D=0.9以上时可设置多层桨叶,适用于高粘度液搅拌;降低桨叶离底部高度可作刮板用,防止重组份沉附底部。
有用于悬浮、结晶与萃取等过程。
产品展示图如下所示:(2)三宽叶旋桨式搅拌器旋桨式搅拌器的桨叶前部桨面与运动方面的倾角是连续变化的(与推进式桨一样),桨叶后部分像斜叶桨面一样有一个固定倾角,所以它综合了推进式桨和斜叶涡轮式桨的特性,是一种应用广泛的搅拌器,它类似推进式属轴流形,循环能力大,动力消耗小,又像斜中涡轮桨剪切性能得到了提高,因此它的适用范围比较大。
低粘液体混合、分散、溶解、固体悬浮、结晶、传热、液相反应等过程都适用,在一些气体吸收过程也得到了应用,三宽叶旋桨式是较普遍使用的搅拌器型式,常用介质粘度范围μ<10000cP,常用运转速度 n=30~500rpm,v=3~15m/s,常用尺寸D J/D=0.2~0.5,B/D J=2.4(宽),常用左旋,可做成右旋。
主要有三种:三宽叶整体旋桨式—KHX、三宽叶稳定环旋桨式—KWX、三宽叶可拆旋桨式—KCX.产品展示:(3)三窄叶旋桨式搅拌器三窄叶旋桨式搅拌器也是常用的旋桨式搅拌器,性能、应用与三宽叶旋桨式搅拌器都相似,相对于宽叶旋桨式,它的排出流量小些,输入功率小些,常用介质粘度范围μ<10000cP,常用转速n=60~500rpm,常用尺寸D J/D=0.2~0.5,B/D J=0.2,常用左旋,可制成右旋。
搅拌器的型式幻灯片
5
推进式搅拌器
推进式搅拌器常用参数(表8-6) 6
推进式搅拌器的特点
轴向流搅拌器 循环量大,搅拌功率小 常用于低粘流体的搅拌 结构简单、制造方便
7
涡轮式搅拌器
(透平式叶轮)
8
1、适用物料粘度范围广。 2、剪切力较大,分散流体 的效果好。 3、直叶和弯叶涡轮搅拌器 主要产生径向流,折叶涡 轮搅拌器主要产生轴向流。
填料需定期更换 轴有一定的磨损
40
填料
41
填料及其选用
(1)填料应富有弹性。在压盖压紧后,弹性变形要大, 这样才能贴紧转轴并对转轴产生一定的抱紧力。
(2)填料应耐磨。填料和轴之间的摩擦系数要小,以降 低摩擦功率的损耗,延长填料的使用寿命。
通常填料需要加润滑油以降低摩擦系数,有些填料(如石 墨、聚四氟乙烯、耐磨尼龙等)本身具有自润滑作用,可 有效地降低摩擦系数。
(3)导热性要好,能够将摩擦产生的热量尽快传递出去。
(4)高温高压条件下使用的填料,要求具有耐高温性能 及足够的机械强度。
42
植物纤维
填料非金属填料动 矿物 物纤 纤维 维
人造纤维
金属填料(钢、铅、铜等)
表(8-13)
43
填料箱
填料箱宽度:
S (1.4 ~ 2) d
填料箱高度:
由填料的尺寸和 圈数确定
17
搅拌功率的计算
搅拌轴和搅拌器的强度和刚度计算 电机和减速机的选型
影响搅拌功率的 主要参数
搅拌器的 几何尺寸
搅拌器的 运动参数
重力参数
搅拌容器 的结构
被搅拌介 质的特性
18
功率表达式
P=f(n,d,ρ,μ,g )=K na db ρc μe gf
搅拌浆及搅拌器形式汇总
搅拌浆常规的搅拌形式有锚式、桨式、涡轮式、推进式、框式等,搅拌装置在高径比较大时,可用多层搅拌桨,特殊产品甚至会使用较为复杂的MIG式搅拌。
桨叶部分分类搅拌桨叶的分类,也可以按照桨叶对流体作用所产生的流动型态来分,可将桨叶分成两种类型-轴流式桨叶及径流式桨叶。
所谓轴流式桨叶,是指桨叶的主要排液方向与搅拌轴平行;螺旋推进式桨叶即是一种典型的轴流式桨叶;所谓径流式桨叶,是指桨叶的主要排液方向与搅拌轴垂直。
桨叶特点:1.框式搅拌器:锚式、框式搅拌器属于同一类,统称锚框式搅拌器,该种搅拌器的叶轮桨径对罐径之比较大。
使用于低粘度液体时,锚式叶轮的叶径与罐径比为0.7~0.9,对于高黏度液体则为0.8~0.95.转速通常为10~50r/min。
为了增大搅拌范围和带走罐壁上的残留物或液层,锚框式搅拌器的外廓要接近搅拌罐的内壁,其底部的形状为适应罐底的轮廓也有椭圆、锥形等。
为了增大对高粘度物料的搅拌范围以及提高叶轮的刚性,还常常要在锚式及框式上增加一些立叶和横梁,这样使得锚框式的结构形状出现了多种多样。
锚式、框式使用于低转速一般在60至300rpm之间,这是因为考虑到锚式、框式长度多有3到5米,支撑点位于轴头,搅拌轴强度有限,高速下搅拌轴跳动比较大,特别是搅拌底部晃动幅度很大,甚至会碰到反应釜内壁。
同时结合物料的粘度选取转数,粘度大转速低,粘度小转数适当的高点。
适用的最高黏度为200~300Pa·s。
框式搅拌可分为锚式、椭圆框式、锥底框式、方框式以及锚框式等。
2.锚式搅拌器结构简单,适用于粘度在100Pa·s以下的流体搅拌,当流体粘度在10~100Pa·s时,可在锚式桨中间加一横桨叶,即为框式搅拌器,以增加容器中的混合。
此类搅拌器为慢速型搅拌器,常用于中高粘度液体混合、传热反应等过程。
1. 锚框式(MKS)低速旋转时沿壁面能得到大的剪切力,可防止沉降及壁面附着,底部形状贴合椭圆形罐与中间的底轴承。
搅拌器(课件)
16
3.涡轮式搅拌器
涡轮式搅拌器(又称透 平式叶轮),是应用较 广的一种搅拌器,能有 效地完成几乎所有的搅 拌操作,并能处理粘度 范围很广的流体。
图9-5 涡轮式搅拌器 17
应用
涡轮式搅拌器有较大的剪切力,可使流体微 团分散得很细,适用于低粘度到中等粘度流体的 混合、液—液分散、液—固悬浮,以及促进良好 的传热、传质和化学反应。
31
二、轴封
机械搅拌反应器 轴封主要有两种
轴的密封装置
填料密封 机械密封
目的:
避免介质通过转轴从搅拌容器内泄漏或外部 杂质渗入搅拌容器内。
32
1、填料密封
特点: 结构简单,制造容易,适用于非腐蚀性和弱腐蚀性介质、 密封要求不高、并允许定期维护的搅拌设备。
填料密封的结构及工作原理 组成: 底环、本体、油环、填料、螺柱、压盖及油杯等。
26
物料特性对罐体长径比的要求
表9—3 几种搅拌罐的长径比
种类
一般搅拌罐 聚合釜
发酵罐类
设备内物料类型
液-固相、液-液相 气-液相
悬浮液、乳化液 发酵液
长径比
1~1.3 1~2 2.08~3.85 1.7~2.5
27
2、搅拌罐装料量
装料系数
Vg V
初步计算筒体内径
Di
3
4Vg
7
三、选型
搅拌目的 搅拌器选型 物料粘度
搅拌容器容积的大小
选用时除满足工艺要求外,还应考虑功耗低、 操作费用省,以及制造、维护和检修方便等因素。
8
表9-1 搅拌器型式适用条件表
搅拌器型式
涡轮式 桨式 推进式
流动状态
搅拌目的
搅拌器(课件)
第四节 搅拌罐结构设计 罐体的尺寸确定 一、罐体的尺寸确定 1、罐体长径比 、
罐体长径比对搅拌功率的影响 需要较大搅拌功率的,长径比可以选得小些。 需要较大搅拌功率的,长径比可以选得小些。 罐体长径比对传热的影响 体积一定时,长径比越大,表面积越大,越利于传热; 体积一定时,长径比越大,表面积越大,越利于传热;并且 此时传热面距罐体中心近,物料的温度梯度就越大, 此时传热面距罐体中心近,物料的温度梯度就越大,有利于 传热效果。因此,单纯从夹套传热角度考虑, 传热效果。因此,单纯从夹套传热角度考虑,一般希望长径 比大一些。 比大一些。
11
桨式搅拌器的转速一般为20~ 桨式搅拌器的转速一般为 ~100r/min , 最高粘度为20Pas 。 最高粘度为
缺点 不能用于以保持气体和以细微化为目的 的气—液分散操作中。 的气—液分散操作中。
12
2. 推进式搅拌器 推进式搅拌器(又称船用推进器) 推进式搅拌器(又称船用推进器) 常用于低粘流体中。 常用于低粘流体中。
23
①从液体容积值与液体粘度值连线,交于参考线Ⅰ; 从液体容积值与液体粘度值连线,交于参考线Ⅰ ②由该点与液体 比重连线, 比重连线,并交 于参考线Ⅱ 于参考线Ⅱ上某 点; ③将该点与某一 搅拌过程连线, 搅拌过程连线, 交于搅拌功率线, 交于搅拌功率线, 即可求得该过程 的搅拌功率
图9-7 由搅拌过程求搅拌功率的算图
32
工作原理 在压盖压力作用下,装在搅拌轴与填料箱本体之间 在压盖压力作用下, 的填料,对搅拌轴表面产生径向压紧力。 的填料,对搅拌轴表面产生径向压紧力。
填料中含有润滑剂,在对搅拌轴产生径向压紧力的 填料中含有润滑剂, 同时,形成一层极薄的液膜, 同时,形成一层极薄的液膜,一方面使搅拌轴得到 润滑,另一方面阻止设备内流体的逸出或外部流体 润滑, 的渗入,达到密封的目的。 的渗入,达到密封的目的。
搅拌桨型式
搅拌轴直径的确定
(1)轴径应同时满足强度、刚度、临界转速等条件。 (2)在确定轴的结构尺寸时,还应考虑轴上键槽及开孔 所引起的局部削弱,轴径应适当增大。 (3)轴径应圆整到标准公称轴径系列,如φ30、φ40、 φ50、φ65、φ80、φ95、φ110等。
减小轴端挠度、提高搅拌轴 临界转速的措施
缩短悬臂段的长度 增大轴径
(1)计算夹套壁厚(取腐蚀裕量C2=2mm),并进行水压试 验应力校核。
(2)计算并确定搅拌轴直径(搅拌轴材料为45号钢,[τ]=30 Mpa)
(3)计算内筒和夹套的直径、高度,并对传热面积进行校核。
(已知φ1400mm椭圆形封头容积Vh=0.421 m3,表面积 Ah=2.29 m2)
谢谢
作业2
PNPn3d5
搅拌轴设计
搅拌轴的结构设计 计算搅拌轴的直径
搅拌轴材料选择
足够的强度、 刚度和韧性
优良的切削 加工性能
加工直线度 的要求
耐腐蚀要求
搅拌轴的结构设计
轴颈设计 轴身设计
轴头设计
搅拌轴直径计算
影响搅拌轴直径的四个因素
1、扭转变形 2、临界转速 3、扭转和弯矩联合作用下的强度 4、轴封处允许的径向位移
设置底轴承或中间轴承 设置稳定器
密封装置 (轴封装置)
作用 维持设备内的压力,防止介质泄漏。
基本要求
密封可靠,使用寿命长。 结构简单,装拆方便。
类型
填料密封 机械密封
填料密封
填料密封允许有 一定的泄漏量
填料需定期更换 轴有一定的磨损
填料
填料及其选用
(1)填料应富有弹性。在压盖压紧后,弹性变形要大, 这样才能贴紧转轴并对转轴产生一定的抱紧力。
搅拌器的型式.
外装式和装内式机械密封
双端面机械密封
双端面机械密封
d>D1
d<D1
d=D1
K>1
K=1
平衡型机械密封:K=0.6~0.9 非平衡型机械密封:K=1.1~1.2
动环和静环的材料要求
( 1 )耐磨性和导热性 — 动环和静环做相对摩擦滑 动,会产生发热和磨损现象,要求动环和静环的耐 磨性好,并且能将摩擦产生的热量及时传导出去。 ( 2 )硬度 — 由于动环形状复杂,容易变形,所以 要求动环的硬度比静环大。(表8-15) (3)耐腐蚀性
d 1.72(
M te ) 4 [ ](1 )
1 3
按轴封处允许径向位移验算轴径
限制条件
Lo [ ]Lo Lo 总径向位移 [ ]Lo 轴封处的允许径向位移
搅拌轴直径的确定
(1)轴径应同时满足强度、刚度、临界转速等条件。 (2)在确定轴的结构尺寸时,还应考虑轴上键槽及开孔 所引起的局部削弱,轴径应适当增大。 ( 3 )轴径应圆整到标准公称轴径系列,如 φ30、φ40、 φ50、φ65、φ80、φ95、φ110等。
减小轴端挠度、提高搅拌轴 临界转速的措施
缩短悬臂段的长度
设置底轴承或中间轴承
增大轴径
设置稳定器
密封装置
(轴封装置)
作用
维持设备内的压力,防止介质泄漏。
基本要求
密封可靠,使用寿命长。
结构简单,装拆方便。
类型
填料密封
机械密封
填料密封
填料密封允许有 一定的泄漏量
填料需定期更换 轴有一定的磨损
搅拌轴的力学模型
按扭转变形计算搅拌轴的直径
刚度条件
583.6 M n max [ ] 4 4 Gd (1 )
搅拌器的型式及选型 ppt课件
ppt课件
图9-5 涡轮式搅拌器 16
主要应用
涡轮式搅拌器有较大的剪切力,可使流体微 团分散得很细,适用于低粘度到中等粘度流体的 混合、液—液分散、液—固悬浮,以及促进良好 的传热、传质和化学反应。
10~300 1~100 0.5~50 0.5~50
500 1000 1000 1000
注 表中空白为不适或不详,○为适合。
ppt课件
8
四、几种常用搅拌器简介
桨式、推进式、涡轮式和锚式搅拌器在 搅拌反应设备中应用最为广泛,据统计约占 搅拌器总数的75~80%。
ppt课件
9
1. 桨式搅拌器
结构最简单
结构
标准推进式搅拌器有三瓣叶
片,其螺距与桨直径d相等。
它直径较小,d/D=1/4~1/3,
叶端速度一般为 7~10 m/s,
最高达15 m/s。
ppt课件
图9-4 推进式搅拌器
13
搅拌时——流体由桨叶上方吸入,下方以圆筒状螺旋形排 出,流体至容器底再沿壁面返至桨叶上方,形 成轴向流动。
特点 ——搅拌时流体的湍流程度不高,循环量大,结构 简单,制造方便。
1~100 1~200
10~300 500 10~300 20
推进式
○○
○
○○ ○
○○ ○ 1~1000 10~500 500
折叶开启涡轮式 ○ ○
○
○○ ○
○○ 1~1000 10~300 500
布尔马金式
○○○○ ○
○
锚式
○
○
○
搅拌器的型式
表(8-13)
填料压盖高度:
h (1 ~ 2)H 33
机械密封
(端面密封)
动、静界面 密封点 径向密封 端面比压
动环和静环 弹簧压紧装置
密封圈
机械密封的分类
按密封面的对数分单 双端 端面 面机 机械 械密 密封 封表(8-14)
按密封元件置于釜体内外分内外装装式式机机械械密密封封
当搅拌轴转速n ≥ 200r/min时,应进 行临界转速的验算。
nc
30
3EI(1 4 ) L12 (L1 )ms
搅拌轴临界转速的选取—(表8-11)
要求
n≤ 0.7 nc(刚性轴) 1.3 nc (柔性轴)
按强度计算搅拌轴的直径
强度条件
max
M te WP
[ ]
Mte 当量扭矩
全
封
介质易燃、易爆
闭
密
剧毒物料
封
贵重物料
高纯度物料
高真空操作
优点
1、功耗小、效率高。 2、电机过载保护。 3、可承受较高压力。
缺点
1、内轴承寿命短。 2、涡流、磁滞等损耗。 3、使用温度的限制。
传动装置
适用于单跨轴
适用于悬臂轴
搅拌反应器的机械设计内容
1、釜体的结构型式和尺寸的确定 包括釜体结构、釜体尺寸(直径、高度)、封头形式的选择等。 2、材料的选择 根据工作温度、压力、物料的性质、设备加工要求等条件选择。 3、强度计算及校核(包括带夹套反应釜的稳定性校核) 如釜体壁厚的计算、封头壁厚的计算、搅拌轴直径的确定等。 4、主要零部件的选用 搅拌器、传动装置、轴封装置等的选择。 5、绘图、编制技术文件 装配图、各种零部件图、设计计算书、设计说明书、技术要求等。
搅拌器的结构与设计
机械密封
(端面密封)
动、静界面 密封点 径向密封 端面比压
动环和静环
弹簧压紧装置 密封圈
机械密封的分类
单端面机械密封 表(8-14) 按密封面的对数分 双端面机械密封
外装式机械密封 按密封元件置于釜体内 外分 内装式机械密封
平衡型(k 1) 按介质压力对端面比压 的影响分 非平衡型(k 1)
如釜体壁厚的计算、封头壁厚的计算、搅拌轴直径的确定等。
4、主要零部件的选用 搅拌器、传动装置、轴封装置等的选择。
5、绘图、编制技术文件
装配图、各种零部件图、设计计算书、设计说明书、技术要求等。
搅拌轴的力学模型
按扭转变形计算搅拌轴的直径
刚度条件
583.6 M n max [ ] 4 4 Gd (1 )
1 M n max d 4.92( )4 [ ]G(1 4 )
轴径
按临界转速校核搅拌轴的直径
临界转速
nc 30 3EI (1 4 ) 2 L1 ( L1 )ms
外装式和装内式机械密封
双端面机械密封
双端面机械密封
d>D1
d<D1
d=D1
K>1
K=1
平衡型机械密封:K=0.6~0.9 非平衡型机械密封:K=1.1~1.2
动环和静环的材料要求
(1)耐磨性和导热性—动环和静环做相对摩擦滑 动,会产生发热和磨损现象,要求动环和静环的耐 磨性好,并且能将摩擦产生的热量及时传导出去。 (2)硬度—由于动环形状复杂,容易变形,所以 要求动环的硬度比静环大。(表8-15) (3)耐腐蚀性
减小轴端挠度、提高搅拌轴 临界转速的措施
缩短悬臂段的长度
设置底轴承或中间轴承
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)介质的密度
(3)介质的腐蚀性 2、反应过程的特性 间歇操作还是连续操作;吸热反应还是放热反应;是否结晶 或有固体沉淀物产生等。 3、搅拌效果和搅拌功率的要求
搅拌器的选用
生物反应物料的特性
生物反应都是在多相体系中进行
大多数生物颗粒对剪切力非常敏感
大多数微生物发酵需要氧气
搅拌功率的计算
搅拌轴和搅拌器的强度和刚度计算
填料
填料及其选用
( 1)填料应富有弹性。在压盖压紧后,弹性变形要大, 这样才能贴紧转轴并对转轴产生一定的抱紧力。 ( 2)填料应耐磨。填料和轴之间的摩擦系数要小,以降 低摩擦功率的损耗,延长填料的使用寿命。 通常填料需要加润滑油以降低摩擦系数,有些填料(如石 墨、聚四氟乙烯、耐磨尼龙等)本身具有自润滑作用,可 有效地降低摩擦系数。 ( 3)导热性要好,能够将摩擦产生的热量尽快传递出去。 ( 4)高温高压条件下使用的填料,要求具有耐高温性能 及足够的机械强度。
机械密封
(端面密封)
动、静界面 密封点 径向密封 端面比压
动环和静环
弹簧压紧装置 密封圈
机械密封的分类
单端面机械密封 表(8-14) 按密封面的对数分 双端面机械密封
外装式机械密封 按密封元件置于釜体内 外分 内装式机械密封
平衡型(k 1) 按介质压力对端面比压 的影响分 非平衡型(k 1)
植物纤维 非金属填料动物纤维 填料 矿物纤维 人造纤维 等) 金属填料(钢、铅、铜
表(8-13)
填料箱
填料箱宽度:
S (1.4 ~ 2) d
填料箱高度:
由填料的尺寸和 圈数确定
标准填料箱
表(8-13)
填料压盖高度:
1 2 h ( ~ )H 3 3
如釜体壁厚的计算、封头壁厚的计算、搅拌轴直径的确定等。
4、主要零部件的选用 搅拌器、传动装置、轴封装置等的选择。
5、绘图、编制技术文件
装配图、各种零部件图、设计计算书、设计说明书、技术要求等。
习题
某一带夹套的立式搅拌反应器,设备容积V=2.5 m3,操作容 积V0=2 m3,长径比(H/D)=1,工艺要求传热面积为7 m2, 搅拌功率为1.4KW,搅拌轴转速为50r/min。已知釜内压力为 0.2 Mpa,夹套内压力为0.3 Mpa,内筒壁厚10mm,内筒与 夹 套 采 用 相 同 材 料 , [ σ]t=113Mpa,σs=235Mpa, G=8×104Mpa。 (1)计算夹套壁厚(取腐蚀裕量 C2=2mm),并进行水压试 验应力校核。
搅拌器的型式
搅拌器的分类
按流体流动形态
轴向流搅拌器 径向流搅拌器 混合流搅拌器
平叶
按搅拌器叶片结构
折叶 螺旋面叶 低粘流体用搅拌器
按搅拌用途
高粘流体用搅拌器
桨式搅拌器
1、式搅拌器主要用于流体的循环, 不能用于气液分散操作。 2、折叶式比平直叶式功耗少,操 作费用低,故折叶桨使用较多。
桨式搅拌器常用参数(表8-5)
电机和减速机的选型
影响搅拌功率的 主要参数
重力参数 搅拌器的 几何尺寸 搅拌器的 运动参数
搅拌容器 的结构 被搅拌介 质的特性
功率表达式
P=f(n,d,ρ,μ,g )=K na db ρc μe gf K---系统几何构形的总形状系数
功率关联式:
P d B h r q NP K ( Re ) ( Fr ) f ( , , ,....) 3 5 D D D n d
(2)计算并确定搅拌轴直径(搅拌轴材料为45号钢,[τ]=30 Mpa)
(3)计算内筒和夹套的直径、高度,并对传热面积进行校核。
(已知φ1400mm椭圆形封头容积Vh=0.421 m3,表面积 Ah=2.29 m2)
搅拌轴的力学模型
按扭转变形计算搅拌轴的直径
刚度条件
583.6 M n max [ ] 4 4 Gd (1 )
1 M n max 4 d 4Байду номын сангаас92( ) [ ]G(1 4 )
轴径
按临界转速校核搅拌轴的直径
临界转速
nc 30 3EI (1 4 ) 2 L1 ( L1 )ms
涡轮式搅拌器常用参数 (表8-6)
锚式搅拌器
涡轮式搅拌器常用参数 (表8-6)
框式搅拌器
锚式和框式搅拌器特点
1、结构简单,制造方便。 2、适用于粘度大、处理量大的物料。 3、易得到大的表面传热系数。 4、可减少“挂壁”的产生。
螺杆式搅拌器
螺带式搅拌器
搅拌器的选型
1、介质的性质 (1)介质的粘度 随着介质粘度增高,各种搅拌器使用的顺序是:桨叶式、推 进式、涡轮式、框式和锚式、螺杆(带)式
P N P n 3 d 5
搅拌轴设计
搅拌轴的结构设计
计算搅拌轴的直径
搅拌轴材料选择
足够的强度、 刚度和韧性
加工直线度 的要求
耐腐蚀要求
优良的切削 加工性能
搅拌轴的结构设计
轴颈设计 轴头设计 轴身设计
搅拌轴直径计算
影响搅拌轴直径的四个因素
1、扭转变形
2、临界转速 3、扭转和弯矩联合作用下的强度 4、轴封处允许的径向位移
减小轴端挠度、提高搅拌轴 临界转速的措施
缩短悬臂段的长度
设置底轴承或中间轴承
增大轴径
设置稳定器
密封装置
(轴封装置)
作用
维持设备内的压力,防止介质泄漏。
基本要求
密封可靠,使用寿命长。
结构简单,装拆方便。
类型
填料密封
机械密封
填料密封
填料密封允许有 一定的泄漏量
填料需定期更换 轴有一定的磨损
当搅拌轴转速n ≥ 200r/min时,应进 行临界转速的验算。
搅拌轴临界转速的选取—(表8-11) 要求
n≤ 0.7 nc(刚性轴)
1.3 nc (柔性轴)
按强度计算搅拌轴的直径 强度条件
max
M te [ ] WP
M te 当量扭矩
2 M te M n M2
轴径
全 封 闭 密 封
介质易燃、易爆
剧毒物料 贵重物料 高纯度物料
高真空操作
优点
1、功耗小、效率高。 2、电机过载保护。 3、可承受较高压力。
缺点 1、内轴承寿命短。 2、涡流、磁滞等损耗。 3、使用温度的限制。
传动装置
适用于单跨轴
适用于悬臂轴
搅拌反应器的机械设计内容
1、釜体的结构型式和尺寸的确定 包括釜体结构、釜体尺寸(直径、高度)、封头形式的选择等。 2、材料的选择 根据工作温度、压力、物料的性质、设备加工要求等条件选择。 3、强度计算及校核(包括带夹套反应釜的稳定性校核)
外装式和装内式机械密封
双端面机械密封
双端面机械密封
d>D1
d<D1
d=D1
K>1
K=1
平衡型机械密封:K=0.6~0.9 非平衡型机械密封:K=1.1~1.2
动环和静环的材料要求
( 1 )耐磨性和导热性 — 动环和静环做相对摩擦滑 动,会产生发热和磨损现象,要求动环和静环的耐 磨性好,并且能将摩擦产生的热量及时传导出去。 ( 2 )硬度 — 由于动环形状复杂,容易变形,所以 要求动环的硬度比静环大。(表8-15) (3)耐腐蚀性
d 1.72(
M te ) 4 [ ](1 )
1 3
按轴封处允许径向位移验算轴径
限制条件
Lo [ ]Lo Lo 总径向位移 [ ]Lo 轴封处的允许径向位移
搅拌轴直径的确定
(1)轴径应同时满足强度、刚度、临界转速等条件。 (2)在确定轴的结构尺寸时,还应考虑轴上键槽及开孔 所引起的局部削弱,轴径应适当增大。 ( 3 )轴径应圆整到标准公称轴径系列,如 φ30、φ40、 φ50、φ65、φ80、φ95、φ110等。
推进式搅拌器
推进式搅拌器常用参数(表8-6)
推进式搅拌器的特点
轴向流搅拌器
循环量大,搅拌功率小
常用于低粘流体的搅拌 结构简单、制造方便
涡轮式搅拌器
(透平式叶轮)
1、适用物料粘度范围广。 2、剪切力较大,分散流体 的效果好。 3、直叶和弯叶涡轮搅拌器 主要产生径向流,折叶涡 轮搅拌器主要产生轴向流。