(整理)多项分类Logistic回归分析的功能与意义1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项分类Logistic回归分析的功能与意义
我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。
例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。
并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择
“
年龄”使之进入“协变量”列表框。
还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:
上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:
1:设置随机抽样的随机种子,如下图所示:
选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、
2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:
在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值
如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"
为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”
点击“如果”按钮,进入如下界面:
如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:
将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法
将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:
设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录
点击继续,返回,再点击“分类”按钮,进入如下页面
在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回
再点击—“保存”按钮,进入界面:
在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”
点击继续,返回,再点击“选项”按钮,进入如下界面:
分析结果如下:
1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个
1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103
那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,
B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著
1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内
表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:
(公式中(Xi- X¯) 少了一个平方)
下面来举例说明这个计算过程:(“年龄”自变量的得分为例)
从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489
那么:y¯ = 129/489 = 0.2638036809816
x¯ = 16951 / 489 = 34.664621676892
所以:∑(Xi-x¯)² = 30074.9979
y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8
所以:
=43570.8 / 5 840.9044060372 =
7.4595982010876 = 7.46 (四舍五入)
计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:
从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~