(整理)多项分类Logistic回归分析的功能与意义1.

合集下载

多分类Logistic回归教程与结果解读

多分类Logistic回归教程与结果解读

Logistic回归分析(logit回归)一般可分为3类,分别是二元Logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。

logistic回归分析类型如下所示。

Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。

如果Y有两个选项,如愿意和不愿意、是和否,那么应该使用二元Logistic回归分析(SPSSAU【进阶方法->二元logit】);如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析(SPSSAU【进阶方法->有序logit】);如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多元无序Logistic回归分析(SPSSAU 【进阶方法->多分类logit】)。

1、多分类logistic回归分析基本说明只要是logistic回归,都是研究X对于Y的影响,区别在于因变量Y上,logistic回归时,因变量Y是看成定类数据的,如果为二元(即选项只有2个),那么就是二元logistic回归; 如果Y是多个类别且类别之间无法进行对比程度或者大小,则为多分类logistic 回归;如果Y是多个类别且类别之间可以对比程度大小(也称为定量数据,或者有序定类数据),此时则使用有序logistic回归。

多分类logistic回归的难点在于:因变量为类别数据,研究X对Y的影响时,如果为类别数据,那么不能说越如何越如何,比如不能说越满意越愿意购买;而只能说相对小米手机来说,对于手机外观越满意越愿意购买苹果手机。

logistic回归

logistic回归

定性资料的回归分析------Logistic 回归Logistic 模型的主要用途:1. 用作影响因素分析2.作为判别分析方法第一节 二分类变量的logistic 回归逻辑回归区别于线性回归,最主要的特点就一个:它的因变量是0-1型数据。

啥是0-1型数据?就是这个数据有且仅有两个可能的取值。

数学上为了方便,把其中一个记作0,另外一个记作1.例1:购买决定:我是买呢?还是买呢?还是买呢?如果您的决策永远是:买、买、买,这不是0-1数据。

我们说的购买决策是:买还是不买?定义:1=购买,0=不购买。

这个关于购买决定的0-1变量老牛了。

为啥?因为它支撑了太多的重要应用。

例如,我生产了一瓶矿泉水,叫做“农妇山泉有点咸”, 到底卖给谁呢?为此,我们需要做市场定位。

什么是市场定位?市场定位从回归分析的角度看,就是想知道:谁会买这个产品?谁不会买?或者说:谁购买这个产品的可能性大,谁购买的可能性小。

这样我们就可以瞄准可能性最高的一批人,他们就构成了我的目标市场。

这就是我们通常所说的市场定位。

令Y 表示购买决定,那么影响它的因素有很多。

比如,消费者自己的人口特征1X 、消费者过去的购买记录是2X 、来自社交网络朋友的行为信息3X 、产品自己的特征4X 、产品正在承受的市场手段策略(例如:促销)5X 、竞争对手的市场动作6X 等等。

一.模型建立 理论回归模型:01122ln...,1p p px x x pββββ=+++-其中1(1,...,)p p p y x x ==。

注:1pp- 称为优势(odds), 表示某个事件的相对危险度. 获得容量为n 的样本()12,,,,1,...,i i ip i x x x y i n =后可得样本回归模型:01122ln,1ii i p ip ip x x x p ββββ=+++-其中1(1,...,)i i p p p y x x ==,1,...,i n =。

补充说明(1)逻辑回归模型的整个生成过程是以构造性的思想为主,而不是因为:上帝他老人家生成数据的真实机制是这样的,没有那么巧的事。

多分类有序反应变量Logistic回归及其应用

多分类有序反应变量Logistic回归及其应用

3、社会心理因素:老年人的心理状态、生活环境、生活习惯等也会对其睡 眠质量产生影响。例如,孤独、抑郁、生活压力等心理问题可能导致睡眠障碍。
有序多分类Logistic回归分析
为了探讨上述因素对老年人睡眠质量的影响,我们采用有序多分类Logistic 回归分析方法进行建模和分析。有序多分类Logistic回归是一种统计方法,它能 够根据有序类别变量的取值来估计多个类别的影响因素,并计算各因素的影响方 向和作用大小。
还应注意其他潜在影响因素的作用,以便更好地预防和改善公务员的亚健康 状况。
谢谢观看
பைடு நூலகம்
(2)数据拟合:将数据带入Logistic回归模型,用最大似然估计法对模型 参数进行估计。
(3)模型评估:通过交叉验证、准确率、AUC值等指标对模型进行评估,判 断其预测性能。
(4)模型优化:根据模型评估结果,对模型进行优化调整,包括特征选择、 参数调整等。
3、结果解读
多分类有序反应变量Logistic回归的结果解读包括以下几个方面:
影响因素
老年人睡眠质量受到多种因素的影响,包括身体健康状况、药物使用、社会 心理因素等。
1、身体健康状况:老年人往往存在各种健康问题,如慢性疾病、疼痛、呼 吸困难等,这些疾病会直接或间接影响睡眠质量。
2、药物使用:部分老年人在日常生活中需要使用药物来控制血压、治疗疼 痛等。然而,某些药物可能导致不良反应,从而影响睡眠质量。
1、因变量的处理:将亚健康状况分为5个等级(非常健康、健康、轻微不健 康、不健康、非常不健康),并将其作为有序分类变量进行统计处理。
2、自变量的选择:选择工作压力、生活方式、心理状况等作为自变量,并 将其进行标准化处理,以便进行比较和分析。
3、模型的建立:采用有序多分类logistic回归分析方法,建立模型并拟合 数据。通过模型的结果,可以观察各个自变量对因变量的影响程度及比较各个自 变量之间的相对重要性。

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析

数据分析知识:数据分析中的Logistic回归分析Logistic回归分析是数据分析中非常重要的一种统计分析方法,它主要用于研究变量之间的关系,并且可以预测某个变量的取值概率。

在实际应用中,Logistic回归分析广泛应用于医学疾病、市场营销、社会科学等领域。

一、Logistic回归分析的原理1、概念Logistic回归分析是一种分类分析方法,可以将一个或多个自变量与一个二分类的因变量进行分析,主要用于分析变量之间的关系,并确定自变量对因变量的影响。

Logistic回归分析使用的是逻辑回归模型,该模型是将自变量与因变量的概率映射到一个范围为0-1之间的变量上,即把一个从负无穷到正无穷的数映射到0-1的范围内。

这样,我们可以用这个数值来表示某个事件发生的概率。

当这个数值大于0.5时,我们就可以判定事件发生的概率比较高,而当这个数值小于0.5时,我们就可以判定事件发生的概率比较小。

2、方法Logistic回归分析的方法有两种:一是全局最优化方法,二是局部最优化方法。

其中全局最优化方法是使用最大似然估计方法,而局部最优化方法则是使用牛顿法或梯度下降算法。

在进行Logistic回归分析之前,我们首先要对数据进行预处理,将数据进行清洗、变量选择和变量转换等操作,以便进行回归分析。

在进行回归分析时,我们需要先建立逻辑回归模型,然后进行参数估计和模型拟合,最后进行模型评估和预测。

在进行参数估计时,我们通常使用最大似然估计方法,即在估计参数时,选择最能解释样本观测数据的参数值。

在进行模型拟合时,我们需要选取一个合适的评价指标,如准确率、召回率、F1得分等。

3、评价指标在Logistic回归分析中,评价指标包括拟合度、准确性、鲁棒性、可解释性等。

其中最常用的指标是拟合度,即模型对已知数据的拟合程度,通常使用准确率、召回率、F1得分等指标进行评价。

此外,还可以使用ROC曲线、AUC值等指标评估模型的性能。

二、Logistic回归分析的应用1、医学疾病预测在医学疾病预测中,Logistic回归分析可以用来预测患某种疾病的概率,如心脏病、肺癌等。

logistic回归

logistic回归

概念
logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同 之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多 重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p, p =L(w‘x+b),然后根据p与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是 多项式函数就是多项式回归。
感谢观看
logistic回归
一种广义的线性回归分析模型
01 概念
目录
02 主要用途
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断, 经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为 例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。因此因变量 就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。 自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,从而可以大致 了解到底哪些因素是胃癌的危险因素。同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是 看一下这个人有多大的可能性是属于某病。
这是logistic回归最常用的三个用途,实际中的logistic回归用途是极为广泛的,logistic回归几乎已经 成了流行病学和医学中最常用的分析方法,因为它与多重线性回归相比有很多的优势,以后会对该方法进行详细 的阐述。实际上有很多其他分类方法,只不过Logistic回归是最成功也是应用最广的。

多项分类Logistic回归研究分析的功能与意义-()

多项分类Logistic回归研究分析的功能与意义-()

多项分类Logistic回归分析的功能与意义-()————————————————————————————————作者:————————————————————————————————日期:多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。

SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。

例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。

试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

山东省某中学20名学生视力监测结果数据编号视力低下程度性别年龄111152111532114422165321663217722178211891114103218111117121217131115142118151215161215173217181115191115202216分析步骤:1、进入SPSS,打开“分析”|“回归”|“多项Logistic” 命令。

2、选择进行Logistic 回归的变量。

如下图所示对话框左侧的列表中,选中“视力低下程度”并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。

6.jpg(38.14 KB, 下载次数: 47)下载附件2012-8-13 23:20 上传3、其它设置使用系统默认设置即可。

4、设置完毕,单击“确定”按钮,等待输出结果。

模型拟合信息模型模型拟合标准似然比检验-2 倍对数似然值卡方df显著水平仅截距32.633最终18.80413.8284.008伪R 方Cox 和Snell.499Nagelkerke.572McFadden.336似然比检验效应模型拟合标准似然比检验简化后的模型的 -2倍对数似然值卡方df显著水平截距18.804.0000.年龄25.442 6.6382.036性别25.306 6.5022.039参数估计听力低下程度a B标准误Wald df 显著水平Exp(B)Exp(B) 的置信区间 95%下限上限1截距34.33819.553 3.0841.079年龄-2.112 1.181 3.1971.074.121.012 1.225[性别=1]21.272 1.183323.0951.000 1.731E+09 1.702E+08 1.761E+10 [性别=2]0..0....2截距20.97419.066 1.2101.271年龄-1.277 1.141 1.2511.263.279.030 2.613[性别=1]20.540.000.1.8.321E+088.321E+088.321E+08 [性别=2]0..0....还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~!!!!1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。

(整理)多项分类Logistic回归分析的功能与意义1.

(整理)多项分类Logistic回归分析的功能与意义1.

多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。

SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。

例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。

试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。

掌握多元logistic回归分析,看这篇就够了

掌握多元logistic回归分析,看这篇就够了

掌握多元logistic回归分析,看这篇就够了01. 概念多元 logistics 回归(multinomial logistics regression)又称多分类logistics 回归。

医学研究、社会科学领域中,存在因变量是多项的情况,其中又分为无序(口味:苦、甜、酸、辣;科目:数学、自然、语文、英语)和有序(辣度:微辣、中辣、重辣)两类。

对于这类数据需要用多元 logistics 回归。

多元logistics 回归实际就是多个二元logistics 回归模型描述各类与参考分类相比各因素的作用。

如,对于一个三分类的因变量(口味:酸、甜、辣),可建立两个二元logistics回归模型,分别描述酸味与甜味相比及辣味与酸味相比,各口味的作用。

但在估计这些模型参数时,所有对象是一起估计的,其他参数的意义及模型的筛选等与二元logistics类似。

02.条件因变量:三个及以上分类变量自变量:分类或连续变量协变量:分类变量03.案例及操作【例】为了研究饮食口味偏好的影响因素,分析年龄、婚姻情况、生活态度在饮食口味类型偏好(1=酸、2=甜、3=辣)中的作用,共挑选被试30人,结果见下表,试进行多元logistics回归。

说明:本案例数据纯属编造,结论不具有参考性和科学性,仅供操作训练使用。

⑴ 建立数据文件口味偏好,sav,见下图每个被试有一个口味偏好因变量taste和3个自变量age、married、inactive。

⑵对口味偏好 taste 加权单击【数据】→【加权个案】,打开加权个案对话框,加权口味偏好,见下图(3)选择【分析】→【回归】→【多项logistics】,打开多项logistics回归主对话框,见图。

⌝【因变量】:分类变量,本例选择“taste”⌝【因子】:可选择多个变量作为因子,本例选择“age”、“married”、“inactive”⌝【协变量】:可选择多个变量作为协变量,本例未选择(4)单击【参考类别】按钮,打开参考类别对话框,见图⌝【参考类别】:可选择【第一类别】、【最后类别】或【定制】,本例选择【最后类别】⌝【类别顺序】:可选择【升序】或【降序】(5)单击【模型】按钮,打开模型对话框,见下图:本例主要考察自变量age、married、inactive的主效应,暂不考察它们之间的交互作用,然后点击【继续】;(6)单击【statistics】按钮,打开统计对话框,见图:设置模型的统计量。

统计学-logistic回归分析

统计学-logistic回归分析

( 0 1 x1 ) ( 0 x0 ) 1 x1
OR e

P odds1 1 /(1 P 1) OR P0 /(1 P0 ) odds0
Y 发病=1 不发病=0
危险因素 x= 1 x= 0 30(a) 10( b) 70(c) 90(d) a+c b+d 危险因素 x= 1 x= 0 p1 p0 1-p1 1-p0
五、回归系数的意义
单纯从数学上讲,与多元线性 回归分析中回归系数的解释并无不 同,亦即bi表示xi改变一个单位时, logit P的平均变化量。
流行病学中的一些基本概念:
相对危险度(relative risk): RR=P1/P2
比数 比数比
Odds=P/(1-P) OR=[P1/(1-P1)]/[P2/(1-P2)]
i
事件发生率很小,OR≈RR。
二、 Logistic回归模型
• Logistic回归的分类
二分类 多分类
条件Logistic回归 非条件Logistic回归
• Logit变换
也称对数单位转换
P logit P= ln 1 P
流行病学概念:
设P表示暴露因素X时个体发病的概率, 则发病的概率P与未发病的概率1-P 之 比为优势(odds), logit P就是odds 的对数值。
九、logistic回归的应用举例
• 输精管切除术与动脉粥样硬化疾病的研究 • 1.问题的描述 (1)输精管切除术是否与动脉粥样硬化疾病 有关? (2)如果存在联系,与其他已知的危险因素 相比,输精管切除术的相对重要性有多大? (3)哪些男性亚群在输精管切除术以后发生 动脉粥样硬化疾病的可能性特别大?

多项logistic回归算法

多项logistic回归算法

多项logistic回归算法多项logistic回归算法是一种常用的分类算法,广泛应用于机器学习和数据分析领域。

本文将介绍多项logistic回归算法的原理、应用和优缺点。

一、多项logistic回归算法原理多项logistic回归算法是一种广义线性回归模型的扩展,用于解决多类别分类问题。

与二项logistic回归算法类似,多项logistic回归算法也基于logistic函数,将输入特征和类别之间的关系建模为一个多类别的logistic回归模型。

多项logistic回归模型假设样本的特征与类别之间服从多项分布,通过最大似然估计的方法,求解模型参数,从而实现多类别分类。

二、多项logistic回归算法应用多项logistic回归算法在实际应用中具有广泛的应用场景。

以下是一些常见的应用领域:1. 电子商务:多项logistic回归算法可以用于商品推荐系统中的商品分类,根据用户的历史购买记录和其他特征,将商品分为不同的类别,从而为用户提供个性化的推荐。

2. 医学领域:多项logistic回归算法可以用于疾病诊断,根据患者的临床特征,将患者分为不同的疾病类别,从而帮助医生进行准确的诊断和治疗。

3. 金融领域:多项logistic回归算法可以用于信用评分,根据客户的个人信息和信用历史,将客户分为不同的信用等级,从而评估客户的信用风险。

4. 自然语言处理:多项logistic回归算法可以用于文本分类,根据文本的特征,将文本分为不同的类别,从而实现文本的自动分类和标注。

三、多项logistic回归算法优缺点多项logistic回归算法具有以下优点:1. 算法简单易实现:多项logistic回归算法基于最大似然估计的方法,参数估计简单,计算效率高。

2. 可解释性强:多项logistic回归算法可以得到每个特征对于各类别的影响程度,从而提供了对分类结果的解释。

3. 适用于多类别分类:多项logistic回归算法可以处理多个类别的分类问题,具有较好的分类性能。

Logistic回归分析及应用-精选文档

Logistic回归分析及应用-精选文档


注:是否患病中,‘0’代表否,‘1’代表是。 性别中‘1’代表男,‘0’代表女,吸烟中‘1’ 代表吸烟,‘0’代表不吸烟。地区中,‘1’代 表农村,‘0’代表城市。

• • • • • • • • • • •
表4 配对资料(1:1) 对子号 病例 对照 x1 x2 x3 x1 x2 x3 1 1 3 0 1 0 1 2 0 3 1 1 3 0 3 0 1 2 0 2 0 … … … … … … … 10 2 2 2 0 0 0 注:X1蛋白质摄入量,取值:0,1,2,3 X2不良饮食习惯,取值:0,1,2,3 X3精神状况 ,取值:0,1,2
'
b Si为 Xi的标准差 i b i *S i / Sy ,其中 Sy为 y 的标准差。
5.假设检验
• (1)回归方程的假设检验 i 0 0 , i 0 , 1 , 2 , , p • H0:所有 H :某个 i 1 • 计算统计量为:G=-2lnL,服从自由度等于n-p 2 • 的 分布 • (2)回归系数的假设检验 • H0: i 0 H1:i 0 2 计算统计量为:Wald ,自由度等于1。
第十六章 Logistic回归分析
Logistic
regression
1
复习

多元线性回归
(multiple linear regression)
在医学实践中,常会遇到一个应变量与 多个自变量数量关系的问题。如医院住院 人数不仅与门诊人数有关 , 而且可能与病 床周转次数 , 床位数等有关;儿童的身高 不仅与遗传有关还与生活质量,性别,地 区,国别等有关;人的体表面积与体重、 身高等有关。
2
• 1
表1 y1

logistic回归分析及其应用-41页文档资料

logistic回归分析及其应用-41页文档资料
多元直线回归模型 y = a + b1x1 + b2x2 + … + bkxk + e
21.03.2020
2
F(y) :因变量的logit值
1.00
0.75
0.50
0.25
0.00 -4.00 -2.00 0.00 2.00 4.00
X:自变量
21.03.2020
如果一定要进 行直线回归也 可以做出结果, 但此时效果不 佳。当自变量 取一定值时, 因变量的预测 值可能为负数。
21.03.2020
14
2.哑变量的设置和引入
哑变量,又称指示变量或设计矩阵。 有利于检验等级变量各个等级间的变 化是否相同,但主要适合于无序分类变 量。 一个k分类的分类变量,可以用k-1个 哑变量来表示。
21.03.2020
15
哑变量的设置
教育程度:文盲,小学,初中,高中以上
教育程度 X1
X2
X3
文盲:0 0
0
0
小学:1 1
0
0
初中:2 0
1
0
高中:3 0
0
1
以文盲作为参考组
21.03.2020
16
以高中作为参照
教育程度
X1
X2
X3
文盲:010 Nhomakorabea0
小学:1
0
1
0
初中:2
0
0
1
高中:3
0
0
0
21.03.2020
17
SPSS提供的方法
Indicator: 默认。以第1 或最后1类作对照,其他每类 与对照比较; Sample: 以第1 或最后1类作对照,其他每类与对照比 较,但反映平均效应。 Difference: 除第1类外各分类与其前各类平均效应比较; Helmert: 除最后1类外各分类与其前各类平均效应比较; Repeated: 除第1类外各分类与其前一类比较; Polynomial: 假设类间距相等,用于数值型变量。 Deviation: 以第1 或最后1类作对照,其余每类与总效 应比较。

logistic回归法

logistic回归法

logistic回归法Logistic回归法是一种常用的分类算法,广泛应用于各个领域。

它通过构建一个逻辑回归模型来预测某个事件发生的概率。

本文将介绍Logistic回归法的原理、应用场景以及优缺点。

一、Logistic回归法的原理Logistic回归法是基于线性回归的一种分类算法,它使用sigmoid 函数将线性回归的结果映射到[0,1]之间。

sigmoid函数的公式为:$$f(x) = \frac{1}{1+e^{-x}}$$其中,x为线性回归的结果。

通过这个映射,我们可以将线性回归的结果解释为某个事件发生的概率。

二、Logistic回归法的应用场景Logistic回归法常用于二分类问题,如预测某个疾病的发生与否、判断邮件是否为垃圾邮件等。

它也可以通过一些改进来应用于多分类问题。

在实际应用中,Logistic回归法非常灵活,可以根据需要选择不同的特征和参数,以达到更好的分类效果。

同时,它对特征的要求相对较低,可以处理连续型和离散型的特征,也可以处理缺失值。

三、Logistic回归法的优缺点1. 优点:- 计算简单、效率高:Logistic回归法的计算量相对较小,算法迭代速度快,适用于大规模数据集。

- 解释性强:Logistic回归模型可以得到各个特征的权重,从而可以解释每个特征对结果的影响程度。

- 可以处理离散型和连续型特征:Logistic回归法不对特征的分布做出假设,可以处理各种类型的特征。

- 可以处理缺失值:Logistic回归法可以通过插补等方法处理缺失值,不需要将含有缺失值的样本剔除。

2. 缺点:- 容易出现欠拟合或过拟合:当特征过多或特征与目标变量之间存在非线性关系时,Logistic回归模型容易出现欠拟合或过拟合问题。

- 对异常值敏感:Logistic回归模型对异常值比较敏感,可能会对模型造成较大的干扰。

- 线性关系假设:Logistic回归模型假设特征与目标变量之间的关系是线性的,如果实际情况并非线性关系,模型的预测效果可能较差。

Logistic回归分析概要

Logistic回归分析概要
多项有序分类:某一治疗结果,治愈、显效、 有效、无效;
多项无序分类:肝炎分型 甲、乙、丙、丁、 戊
研究分类反应变量与多个影响因素之间的 相互关系的一种多变量分析方法,进行疾病的 病因分析。
• Logistic回归的分类
Logistic回归 二分类 有序反应变量 多分类 无序反应变量
非条件 1:1配对资料
条件Logistic回归 1:m配对资料 m:n配对资料
Logistic回归模型是一种概率模型, 通常以疾病,死亡等结果发生的概率为因变 量, 影响疾病发生的因素为自变量建立回 归模型。
• 例:为了探讨糖尿病与血压、血脂等因素 的关系,研究者对56例糖尿病病人和65例 对照者进行病例对照研究,收集了性别、 年龄、学历、体重指数、家族史、吸烟、
一、Logistic回归方程 Logistic回归的logit模型
P= 1x1 2 x2 n xn
Logit变换 P转换为ln[P/(1-P)]
logit (P)= 1x1 2 x2 n xn ln[P/(1-P)]= 1x1 2 x2 n xn
• (1)取值问题
• (2)曲线关联
• Logit变换
也称对数单位转换
logit P=
ln
P 1 P
( 1x1 2 x2 n xn )
P 1 e e( 1x1 2x2 n xn ) 1
1 P 1 e( 1x1 2x2 nxn )
其中,为常数项,为偏回归系数。
二、参数估计
• 建立Logistic回归方程就是求和i • 意义 常数项是当各种暴露因素为0时,个体发
得出参数 j 的估计值 b j 和 b j 的渐进标准误 Sbj 。
最大似然法的基本思想是先建立似然 函数与对数似然函数,再通过使对数 似然函数最大求解相应的参数值(使 得一次抽样中获得现有样本的概率为 最大),所得到的估计值称为参数的 最大似然估计值。

[转载]logistic回归模型总结

[转载]logistic回归模型总结

[转载]logistic回归模型总结logistic回归模型是最成熟也是应用最广泛的分类模型,通过学习和实践拟通过从入门、进阶到高级的过程对其进行总结,以便加深自己的理解也为对此有兴趣者提供学习的便利。

一、有关logistic的基本概念logistic回归主要用来预测离散因变量与一组解释变量之间的关系最常用的是二值型logistic。

即因变量的取值只包含两个类别例如:好、坏;发生、不发生;常用Y=1或Y=0表示 X表示解释变量则P(Y=1|X)表示在X的条件下Y=1的概率,logistic回归的数学表达式为:log(p/1-p)=A+BX =L其中p/1-p称为优势比(ODDS)即发生与不发生的概率之比可以根据上式反求出P(Y=1|X)=1/(1+e^-L)根据样本资料可以通过最大似然估计计算出模型的参数然后根据求出的模型进行预测下面介绍logistic回归在SAS中的实现以及输出结果的解释二、logistic回归模型初步SAS中logistic回归输出结果主要包括预测模型的评价以及模型的参数预测模型的评价与多元线性回归模型的评价类似主要从以下几个层次进行(1)模型的整体拟合优度主要评价预测值与观测值之间的总体一致性。

可以通过以下两个指标来进行检验1、Hosmer-Lemeshowz指标HL统计量的原假设Ho是预测值和观测值之间无显著差异,因此HL指标的P-Value的值越大,越不能拒绝原假设,即说明模型很好的拟合了数据。

在SAS中这个指标可以用LACKFIT选项进行调用2、AIC和SC指标即池雷准则和施瓦茨准则与线性回归类似AIC和SC越小说明模型拟合的越好(2)从整体上看解释变量对因变量有无解释作用相当于多元回归中的F检验在logistic回归中可以通过似然比(likelihood ratio test)进行检验(3)解释变量解释在多大程度上解释了因变量与线性回归中的R^2作用类似在logistic回归中可以通过Rsquare和C统计量进行度量在SAS中通过RSQ来调用Rsquare,C统计量自动输出(4) 模型评价指标汇总说明:在实践中,对以上统计量最为关注的是C统计量,其次是似然比卡方,最后才是HL统计量。

多项分类Logistic回归分析的功能与意义 (1)

多项分类Logistic回归分析的功能与意义 (1)

多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。

SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。

例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。

试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。

Logistic回归分析简介

Logistic回归分析简介

Logistic回归分析简介Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。

1.应用范围:①适用于流行病学资料的危险因素分析②实验室中药物的剂量-反应关系③临床试验评价④疾病的预后因素分析2.Logistic回归的分类:①按因变量的资料类型分:二分类多分类其中二分较为常用②按研究方法分:条件Logistic回归非条件Logistic回归两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍研究。

3.Logistic回归的应用条件是:①独立性。

各观测对象间是相互独立的;②LogitP与自变量是线性关系;③样本量。

经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。

4.拟和logistic回归方程的步骤:①对每一个变量进行量化,并进行单因素分析;②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等级资料。

可采用的方法有依据经验进行离散,或是按照四分、五分位数法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离散变量。

③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量变换;④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变量。

可以采用双向筛选技术:a进入变量的筛选用score统计量或G 统计量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔除。

多项Logistic回归分析及其应用

多项Logistic回归分析及其应用

多项Logistic回归分析及其应用
刘世良
【期刊名称】《中南医学科学杂志》
【年(卷),期】1989(000)002
【摘要】在医用多因素分析中,当反应变量的分类超过两项时,应用二项logistic模型分别作每两类的回归分析是可行的。

但如果应用多项logistic模型作回归分析,不仅可以同时估计各类别的参数,而且可以直接作包括所有类别的假设检验,尤其在分类数较多时,大大减少了计算工作量,在解释参数时也不会顾此失彼。

【总页数】4页(P198-201)
【作者】刘世良
【作者单位】衡阳医学院卫生学教研室
【正文语种】中文
【中图分类】R
【相关文献】
1.多项式logistic回归分析在患者就诊行为影响因素研究中的应用 [J], 饶克勤;李青
2.多项超声特征联合诊断周围神经鞘瘤的Logistic回归分析 [J], 杨帆;朱吉发;吴火林;陈媛;陈贤翔;俞林芳;黄晓娟
3.基于多项Logistic回归分析关于大学生红色文化认知状况的调查——以南充高校为例 [J], 陈思年;张娜
4.白杨河4至5月平均流量多项Logistic回归分析与预报 [J], 琪美格
5.高等职业教育毕业生职业迁移的影响因素——基于多项分类Logistic回归分析[J], 姚长佳;马莹
因版权原因,仅展示原文概要,查看原文内容请购买。

logistic回归详解一:为什么要使用logistic函数

logistic回归详解一:为什么要使用logistic函数

logistic回归详解一:为什么要使用logistic函数从线性分类器谈起给定一些数据集合,他们分别属于两个不同的类别。

例如对于广告数据来说,是典型的二分类问题,一般将被点击的数据称为正样本,没被点击的数据称为负样本。

现在我们要找到一个线性分类器,将这些数据分为两类(当然实际情况中,广告数据特别复杂,不可能用一个线性分类器区分)。

用X表示样本数据,Y表示样本类别(例如1与-1,或者1与0)。

我们线性分类器的目的,就是找到一个超平面(Hyperplan)将两类样本分开。

对于这个超平面,可以用以下式子描述:ωTx+b=0对于logistic回归,有:hθ(x)=g(θTx)=11+e?θTx其中x 为样本,x=[x1,x2,?,xn] 为n维向量,函数g为我们常说的logistic函数。

g的更一般公式为:g(z)=11+e?z这个公式,对机器学习稍微有点了解的同学可能都特别熟悉,不光在logistic回归中,在SVM中,在ANN中,都能见到他的身影,应用特别广泛。

大部分资料在谈到这个式子时候,都是直接给出来。

但是不知道大家有没有想过,既然这个式子用途这么广泛,那我们为什么要用它呢?是不是已经有好多人愣住了。

大家都是这么用的。

书上都是这么写的啊。

是的,但是当一个东西老在你眼前晃来晃去的时候,你是不是应该想想为什么呢?反正对于我来说,如果一个东西在我眼前都出现了第三次了而我还不知其所以然,我一定会去想方设法弄明白为什么。

为什么要用Logistic函数学过模式识别的同学肯定学过各种分类器。

分类器中最简单的自然是线性分类器,线性分类器中,最简单的应该就属于感知器了。

在上个世纪五六十年代,感知器就出现了:y=0,∑i=1nωi x≤by=1,∑i=1nωix>b感知器的思想,就是对所有特征与权重做点积(内积),然后根据与阈值做大小比较,将样本分为两类。

稍微了解一点神经网络的同学,对一下这幅图一定不陌生:没错,这幅图描述的就是一个感知器。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。

SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。

例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。

试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。

并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。

还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。

2:从Hosmer 和Lemeshow 检验随即表中可以看出:”观测值“和”期望值“几乎是接近的,不存在很大差异,说明模型拟合效果比较理想,印证了“Hosmer 和Lemeshow 检验”中的结果而“Hosmer 和Lemeshow 检验”表中的“卡方”统计量,是通过“Hosmer 和Lemeshow 检验随即表”中的数据得到的(即通过“观测值和”预测值“)得到的,计算公式如下所示:x²(卡方统计量)= ∑(观测值频率- 预测值频率)^2 / 预测值的频率举例说明一下计算过程:以计算"步骤1的卡方统计量为例"1:将“Hosmer 和Lemeshow 检验随即表”中“步骤1 ”的数据,复制到excel 中,得到如下所示结果:从“Hosmer 和Lemeshow 检验”表中可以看出,步骤1 的卡方统计量为:7.567,在上图中,通过excel计算得到,结果为7.566569 ~~7.567 (四舍五入),结果是一致的,答案得到验证!!1:从“分类表”—“步骤1” 中可以看出:选定的案例中,“是否曾今违约”总计:489个,其中没有违约的360个,并且对360个“没有违约”的客户进行了预测,有340个预测成功,20个预测失败,预测成功率为:340 / 360 =94.4%其中“违约”的有189个,也对189个“违约”的客户进行了预测,有95个预测失败,34个预测成功,预测成功率:34 / 129 = 26.4%总计预测成功率:(340 + 34)/ 489 = 76.5%步骤1 的总体预测成功率为:76.5%,在步骤4终止后,总体预测成功率为:83.4,预测准确率逐渐提升76.5%—79.8%—81.4%—83.4。

83.4的预测准确率,不能够算太高,只能够说还行。

从“如果移去项则建模”表中可以看出:“在-2对数似然中的更改” 中的数值是不是很眼熟,跟在“模型系数总和检验”表中“卡方统计量"量的值是一样的将“如果移去项则建模”和“方程中的变量”两个表结合一起来看1:在“方程中的变量”表中可以看出:在步骤1中输入的变量为“负债率”,在”如果移去项则建模“表中可以看出,当移去“负债率”这个变量时,引起了74.052的数值更改,此时模型中只剩下“常数项”-282.152为常数项的对数似然值在步骤2中,当移去“工龄”这个自变量时,引起了44.543的数值变化(简称:似然比统计量),在步骤2中,移去“工龄”这个自变量后,还剩下“负债率”和“常量”,此时对数似然值变成了:-245.126,此时我们可以通过公式算出“负债率”的似然比统计量:计算过程如下:似然比统计量= 2(-245.126+282.152)=74.052 答案得到验证2:在“如果移去项则建模”表中可以看出:不管移去那一个自变量,“更改的显著性”都非常小,几乎都小于0.05,所以这些自变量系数跟模型显著相关,不能够剔去!!3:根据" 方程中的变量“这个表,我们可以得出logistic 回归模型表达式:= 1 / 1+ e^-(a+∑βI*Xi)我们假设Z= 那么可以得到简洁表达式:P(Y) = 1 / 1+e^ (-z)将”方程中的变量“ —步骤4中的参数代入模型表达式中,可以得到logistic回归模型如下所示:P(Y) = 1 / 1 + e ^ -(-0.766+0.594*信用卡负债率+0.081*负债率-0.069*地址-0.249*功龄)从”不在方程中的变量“表中可以看出:年龄,教育,收入,其它负债,都没有纳入模型中,其中:sig 值都大于0.05,所以说明这些自变量跟模型显著不相关。

相关文档
最新文档