常州市正衡中学数学三角形填空选择专题练习(解析版)
常州市正衡中学七年级数学上册第四单元《几何图形初步》测试题(有答案解析)
![常州市正衡中学七年级数学上册第四单元《几何图形初步》测试题(有答案解析)](https://img.taocdn.com/s3/m/5f6f65d40740be1e640e9a41.png)
一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . 2.观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .3.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个4.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒5.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm6.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.47.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是()A.1B.2C.3D.48.一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是( )A.字母A B.字母F C.字母E D.字母B9.对于线段的中点,有以下几种说法:①若AM=MB,则M是AB的中点;②若AM=MB=12AB,则M是AB的中点;③若AM=12AB,则M是AB的中点;④若A,M,B在一条直线上,且AM=MB,则M是AB的中点.其中正确的是()A.①④B.②④C.①②④D.①②③④10.22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′11.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,112.下列图形中,是圆锥的表面展开图的是()A.B.C.D.二、填空题13.如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm14.若A ,B ,C 三点在同一直线上,线段AB =21cm ,BC =10cm ,则A ,C 两点之间的距离是________.15.如图所示,能用一个字母表示的角有________个,以点A 为顶点的角有________个,图中所有大于0°小于180°的角有________个.16.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.17.8点15分,时针与分针的夹角是______________。
常州市正衡中学数学全等三角形专题练习(解析版)
![常州市正衡中学数学全等三角形专题练习(解析版)](https://img.taocdn.com/s3/m/47584958998fcc22bdd10d29.png)
常州市正衡中学数学全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠,在△BCF和△CDE中,∵BCF CDE∠=∠,∠BFC=∠CED=90°,CB=CD,∴△BCF≌△CDE(AAS),∴CF=DE=5,∴11451022ABCS AB CF=⋅=⨯⨯=.故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.4.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,12),且△ABP和△ABC的面积相等,则a=_____.【答案】-83.【解析】【分析】先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=132,故可得出a的值.【详解】∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,∴223+213AB==,∵△ABC是等腰直角三角形,∠BAC=90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP 的面积与△ABC 的面积相等, ∴111•••222ABP POA AOB BOP S S S S OA OE OB OA OB PE ++=﹣=﹣, 111113332222222a ⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a =﹣83. 故答案为﹣83. 【点睛】本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S △ABP =S △POA +S △AOB -S △BOP 列出关于a 的方程.5.在平面直角坐标系中,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,36ABO ∠=︒,在x 轴或y 轴上取点C ,使得ABC ∆为等腰三角形,符合条件的C 点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A 为圆心,以AB 为半径画弧,与x 轴和y 轴各有两个交点, 但其中一个会与点B 重合,故此时符合条件的点有3个;若以点B 为圆心,以AB 为半径画弧,同样与x 轴和y 轴各有两个交点,但其中一个与点A 重合,故此时符合条件的点有3个;线段AB 的垂直平分线与x 轴和y 轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.6.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】22.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD=2x,解直角三角形求出BC(用x表示)即可解决问题.【详解】解:作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH.设AD=2x,∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=x , ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°, ∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.【详解】∵BF 平分∠ABC ,∴∠DBF =∠CBF ,∵DE ∥BC ,∴∠CBF =∠DFB ,∴∠DBF =∠DFB ,∴BD =DF ,同理FE =EC ,∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.8.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.9.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.10.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由等边三角形的性质可得BD=DC ,AB=AC ,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD ,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF ,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD ,从而可判断②正确;同理可得2BE=2CF=BD ,继而可得4BE=4CF=AB ,从而可判断④正确,由此即可得答案.【详解】∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC ,AB=AC ,∠B=∠C=60°,在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,∴2DE=2DF=AD ,故②正确;同理2BE=2CF=BD ,∵AB=2BD ,∴4BE=4CF=AB ,故④正确,故选D .【点睛】本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.12.如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置,则∠1-∠2的度数是( )A.32°B.64°C.65°D.70°【答案】B【解析】【分析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH-∠DEH=180︒-2∠DEH∠2=180︒-∠D-∠DEH-∠EHF=180︒-∠B-∠DEH-(∠B+∠BEH)=180︒-∠B-∠DEH-(∠B+∠DEH)=180︒-32°-∠DEH-32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH-(180︒-64°-2∠DEH)=180︒-2∠DEH-180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键13.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。
2023-2024学年江苏省常州市天宁区正衡中学七年级(上)期中数学试卷(含解析)
![2023-2024学年江苏省常州市天宁区正衡中学七年级(上)期中数学试卷(含解析)](https://img.taocdn.com/s3/m/8b062cac5ff7ba0d4a7302768e9951e79b896988.png)
2023-2024学年江苏省常州市天宁区正衡中学七年级第一学期期中数学试卷一.选择题(共8小题,每小题2分,共16分,请将答案填在答题纸上)1.﹣3的相反数是( )A.﹣B.3C.﹣3D.2.下面对生活中数据的估计,最合适的是( )A.一瓶矿泉水约为100升B.六年级学生50米跑合格成绩为80秒C.一张数学试卷的面积约为20平方米D.一本七年级数学教科书的质量约为350克3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作( )A.+163cm B.﹣2cm C.+2cm D.﹣163cm4.下列说法正确的是( )A.不是整式B.0不是单项式C.﹣2πab2的系数是﹣2D.2a2+a﹣1是二次三项式5.下列说法错误的有( )①非负数就是正数;②整数和分数统称为有理数;③0既不是正数,也不是负数;④零是最小的整数.A.1个B.2个C.3个D.4个6.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为( )A.﹣10B.﹣9C.﹣8D.﹣47.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板( )A.12ab B.10ab C.8ab D.6ab8.将若干个数组成一个正方形数阵,若任意一行、一列及对角线上的数字之和都相等,则称具有这种性质的数阵为“幻方”,中国古代称“幻方”为“河图”、“洛书”等.现在小明改成了“幻圆”,将﹣1,2,﹣3,4,﹣5,6,﹣7,8分别填入如图所示的圆圈内,使横、竖以及内外两圆上的4个数之和都相等,则a﹣b的值为( )A.﹣6或﹣3B.4或﹣3C.7或4D.﹣3或7二.填空题(共10小题,每小题2分,共20分,请将答案填在答题纸上)9.比较大小:﹣3 ﹣4(用“>”“=”或“<”表示).10.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为 .11.下列各数中:12,,,﹣|﹣1|,0,无理数有 个.12.单项式5x m y5与x6y2n+1是同类项,则m﹣n= .13.若|x﹣2|+(y+3)2=0,则y x= .14.实数a满足a2﹣3a﹣3=0,则2a2﹣6a+2009= .15.为落安“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动,现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为6元/本,设购买甲种读本x本,则购买乙种读本的费用为 .16.有理数a,b,c在数轴上表示的点如图所示,化简|a+b|﹣|a﹣c|﹣2|b+c|= .17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,如图1,孩子出生后的天数=3×72+2×71+6=147+14+6=167(天).请根据图2,计算孩子自出生后的天数是 天.18.有一列式子,按一定规律排列成﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…则第n个式子为 .三.解答题(共7小题,19题16分,20题10分,21题6分,22题6分,23题6分,24题10分,25题10分)19.(16分)计算:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15);(2)(﹣7)×(﹣4)+8÷(﹣2);(3);(4).20.合并同类项:(1)﹣5mn﹣3m2+7mn+m2;(2)2x2﹣4+5x﹣3(x﹣1+x2).21.先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.22.将下列各数:﹣(﹣4),﹣|﹣3.5|,,0在数轴上表示出来:并比较它们的大小(用“<”连接): .23.小波准备完成题目:化简:(x2+6x+8)﹣(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.24.【教材回顾】课本88页,有这样一段文字:人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.【数学问题】三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?【问题探究】为了解决这个问题,我们可以从n=1,2,3等具体的、简单的情形入手,搜索最多可以剪得的三角形个数的变化规律.三角形内点的个数图形最多剪出的小三角形个数1352374…a………【问题解决】(1)表格中的a= ;(2)你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加 个;(3)猜想:当三角形内点的个数为n时,最多可以剪得 个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.【类比应用】(1)四边形有4个顶点,在它的内部画1个点,把四边形剪成若干个小三角形,最多可以剪得 个小三角形;(2)四边形内部每增加1个点,最多剪得的三角形增加 个;(3)当四边形内点的个数为n时,最多可以剪得 个三角形;(4)m边形内有n个点时,最多可以剪得 个三角形.25.在数轴上,把原点记作点O,表示数a的点记作点A.对于数轴上任意一点P(不与点O、点A重合),将线段PO与线段PA的长度之比定义为点P关于点A的幸福值,记作k(P,a),即,例如:点P表示的数为1,点A表示的数为3,因为PO =1,PA=2,所以.(1)当点P是线段OA的中点时,点P关于点A的幸福值k(P,a)= ;(2)若点P表示的数为﹣1,点A表示的数为3,点P关于点A的幸福值k(P,3)= ;(3)若点P表示的数为2,点A表示的数为a,点P关于点A的幸福值k(P,a)=2,求点A表示的数a;(4)若点P表示的数为p,点A表示的数为a,OA=3OP,则点P关于点A的幸福值k (P,a)= ;(5)点P1、点P2为数轴上两个不同的点,并且点P2与P1关于原点对称,点P1表示的数为m,点A、点B分别表示数a、2,若k(P1,a)=k(P2,2),则a、m需满足条件: .参考答案一.选择题(共8小题,每小题2分,共16分,请将答案填在答题纸上)1.﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.2.下面对生活中数据的估计,最合适的是( )A.一瓶矿泉水约为100升B.六年级学生50米跑合格成绩为80秒C.一张数学试卷的面积约为20平方米D.一本七年级数学教科书的质量约为350克【分析】根据生活经验判断即可得到结论.解:A、一瓶矿泉水约为100毫升,故不符合题意;B、六年级学生50米跑合格成绩为10秒,故不符合题意;C、一张数学试卷的面积约为20平方厘米,故不符合题意;D、一本七年级数学教科书的质量约为350克,故符合题意;故选:D.【点评】本题考查了数学常识,正确地把握各种单位在生活中的应用是解题的关键.3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作( )A.+163cm B.﹣2cm C.+2cm D.﹣163cm【分析】小明身高为标准,小明妈妈身高比小明矮,记作负值即可.解:如果小明身高165cm,以小明身高为标准,小明爸爸身高175cm,记作+10cm,小明妈妈身高163cm,应记作﹣2cm.故选:B.【点评】此题考查了正数与负数,以及数学常识,弄清题意是解本题的关键.4.下列说法正确的是( )A.不是整式B.0不是单项式C.﹣2πab2的系数是﹣2D.2a2+a﹣1是二次三项式【分析】由数与字母的积组成的代数式叫做单项式,单独的一个数或字母也是单项式;单项式前面的数字因数是它的系数,所有字母的次数之和是它的次数;几个单项式的和叫做多项式;组成一个多项式的每个单项式都是这个多项式的项,次数最高的单项式的次数是这个多项式的次数;据此进行判断即可.解:是单项式,则A不符合题意;0是单项式,则B不符合题意;﹣2πab2的系数是﹣2π,则C不符合题意;2a2+a﹣1是二次三项式,则D符合题意;故选:D.【点评】本题考查整式,单项式和多项式,熟练掌握相关定义是解题的关键.5.下列说法错误的有( )①非负数就是正数;②整数和分数统称为有理数;③0既不是正数,也不是负数;④零是最小的整数.A.1个B.2个C.3个D.4个【分析】根据有理数的分类即可做出判断.解:①非负数包括0和正数,故①错;②整数和分数统称为有理数对,故②对;③0既不是正数,也不是负数对,故③对;④比0小的整数有﹣1、﹣2,、3……无数个,故④错,∴①④符合题意,共2个,故选:B.【点评】本题考查有理数的分类,掌握方法是解题关键.6.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为( )A.﹣10B.﹣9C.﹣8D.﹣4【分析】根据操作步骤输入数据依次进行计算即可,再与﹣5进行比较,,小于﹣5则输出,大于﹣5则继续输入一直到小于﹣5输出即可.解:由题可知,将x=﹣2代入,﹣2×3﹣(﹣2)=﹣6+2=﹣4,﹣4>﹣5,故继续代入,﹣4×3﹣(﹣2)=﹣12+2=﹣10.故选:A.【点评】本题考查有理数的混合运算,能够理解操作步骤是解题的关键.7.小李家住房的结构如图所示,小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板( )A.12ab B.10ab C.8ab D.6ab【分析】将住房的平面图分割,将不规则图形转化为规则图形,即卧室、客厅都是矩形,再根据矩形的面积计算公式分别计算即可.解:客厅的面积为:4b×2a=8ab.卧室的面积为:2a×2b=4ab.所以需买木地板的面积为:8ab+4ab=12ab.故选:A.【点评】本题考查了根据几何图形列代数式,解题的关键是求出卧室的长,然后代入矩形的面积计算公式进行计算.8.将若干个数组成一个正方形数阵,若任意一行、一列及对角线上的数字之和都相等,则称具有这种性质的数阵为“幻方”,中国古代称“幻方”为“河图”、“洛书”等.现在小明改成了“幻圆”,将﹣1,2,﹣3,4,﹣5,6,﹣7,8分别填入如图所示的圆圈内,使横、竖以及内外两圆上的4个数之和都相等,则a﹣b的值为( )A.﹣6或﹣3B.4或﹣3C.7或4D.﹣3或7【分析】利用內圆上4个数之和等于给定的8个数之和的一半,可列出关于b的一元一次方程,解之可求出b的值,结合“幻圆”的性质,可得出a的值,再将其代入a﹣b中,即可求出结论.解:根据题意得:6﹣3+b+4=×(﹣1+2﹣3+4﹣5+6﹣7+8),解得:b=﹣5,∵a和最右的数在同一条直线且同在外圆上,∴a=﹣1或a=2,当a=﹣1时,a﹣b=﹣1﹣(﹣5)=4;当a=2时,a﹣b=2﹣(﹣5)=7.∴a﹣b的值为7或4.故选:C.【点评】本题考查了一元一次方程的应用、数学常识以及规律型:数字的变化类,根据“幻圆”的性质,求出a,b的值是解题的关键.二.填空题(共10小题,每小题2分,共20分,请将答案填在答题纸上)9.比较大小:﹣3 > ﹣4(用“>”“=”或“<”表示).【分析】本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解:根据有理数大小比较的规律可得两个负数中绝对值大的反而小,﹣3>﹣4.故答案为:>.【点评】规律总结:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.10.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为 2.5×108 .【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.解:250000000用科学记数法表示为2.5×108.故答案为:2.5×108.【点评】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a|<10,n是正整数,正确确定a的值和n的值是解题的关键.11.下列各数中:12,,,﹣|﹣1|,0,无理数有 1 个.【分析】根据无理数的定义逐个判断即可.解:在实数12,,,﹣|﹣1|,0中,无理数有,共1个.故答案为:1.【点评】此题考查了无理数.解题的关键是掌握实数的分类.12.单项式5x m y5与x6y2n+1是同类项,则m﹣n= 4 .【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.解:∵单项式5x m y5与x6y2n+1是同类项,∴m=6,2n+1=5,解得m=6,n=2,∴m﹣n=6﹣2=4.故答案为:4【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键13.若|x﹣2|+(y+3)2=0,则y x= 9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.实数a满足a2﹣3a﹣3=0,则2a2﹣6a+2009= 2015 .【分析】由a2﹣3a﹣3=0得a2﹣3a=3,然后代入2a2﹣6a+2009计算即可.解:∵a2﹣3a﹣3=0,∴a2﹣3a=3,∴2a2﹣6a+2009=2(a2﹣3a)+2009=2×3+2009=2015.故答案为:2015.【点评】此题考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.15.为落安“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动,现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为6元/本,设购买甲种读本x本,则购买乙种读本的费用为 6(100﹣x)元 .【分析】直接根据乙的费用=乙的单价×乙的本数,列式即可.解:设购买甲种读本x本,则购买乙种读本的数量为(100﹣x)本,∴购买乙种读本的费用为:6(100﹣x)元.【点评】此题主要考查了列代数式,正确表示出乙的本数是解答本题的关键.16.有理数a,b,c在数轴上表示的点如图所示,化简|a+b|﹣|a﹣c|﹣2|b+c|= ﹣3b﹣3c .【分析】根据图形判断a、b、c的符号,以及绝对值中三个式子的符号,再去绝对值化简.解:根据数轴可知,a<b<0<c,且b+c>0,故a+b<0,a﹣c<0,b+c>0,|a+b|=﹣a﹣b,|a﹣c|=c﹣a,|b+c|=b+c,∴原式=﹣(a+b)﹣(c﹣a)﹣2(b+c)=﹣a﹣b﹣c+a﹣2b﹣2c=﹣3b﹣3c.故答案为:﹣3b﹣3c.【点评】本题考查了绝对值和数轴.注意数轴上a、b、c的位置,以及他们与原点的距离远近,关键在于判断题干绝对值符号里面各个式子的符号,进而化简得出结果.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,如图1,孩子出生后的天数=3×72+2×71+6=147+14+6=167(天).请根据图2,计算孩子自出生后的天数是 109 天.【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为4,1×7和2×7×7,然后把它们相加即可.解:孩子自出生后的天数是:2×7×7+1×7+4=98+7+4=109.故答案为:109.【点评】本题考查了用数字表示事件.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.18.有一列式子,按一定规律排列成﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…则第n个式子为 (﹣2)n a4n﹣1 .【分析】由﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…,总结规律得第n个式子为(﹣2)n a4n ﹣1.解:由﹣2a3,4a7,﹣8a11,16a15,﹣32a19,…,则第n个式子为(﹣2)n a4n﹣1.故答案为:(﹣2)n a4n﹣1.【点评】本题主要考查了数字变化的规律,解题关键是找到规律并正确应用.三.解答题(共7小题,19题16分,20题10分,21题6分,22题6分,23题6分,24题10分,25题10分)19.(16分)计算:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15);(2)(﹣7)×(﹣4)+8÷(﹣2);(3);(4).【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘除,后算加减,即可解答;(3)利用乘法分配律进行计算,即可解答;(4)先算乘方,再算乘除,后算加减,有括号先算括号里,即可解答.解:(1)(﹣29)+(﹣5)﹣(+31)﹣(﹣15)=﹣29﹣5﹣31+15=(﹣29﹣31)+(﹣5+15)=﹣60+10=﹣50;(2)(﹣7)×(﹣4)+8÷(﹣2)=28+(﹣4)=24;(3)=12×+12×﹣12×=5+8﹣9=13﹣9=4;(4)=﹣1+4×﹣×=﹣1+﹣=﹣﹣=﹣.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.20.合并同类项:(1)﹣5mn﹣3m2+7mn+m2;(2)2x2﹣4+5x﹣3(x﹣1+x2).【分析】(1)根据合并同类项法则求解即可;(2)先去括号,再合并同类项即可.解:(1)原式=2mn﹣2m2;(2)原式=2x2﹣4+5x﹣3x+3﹣3x2=﹣x2+2x﹣1.【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0.【点评】本题考查了整式的加减﹣化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.22.将下列各数:﹣(﹣4),﹣|﹣3.5|,,0在数轴上表示出来:并比较它们的大小(用“<”连接): .【分析】先将各数在数轴上表示出来,再根据数轴上的数从左到右依次增大,比较数的大小即可.解:﹣(﹣4)=4,﹣|﹣3.5|=﹣3.5,=﹣,将各数在数轴上表示出来,如图所示:由图可知:.故答案为:.【点评】本题考查有数轴表示有理数,并比较有理数的大小.正确的在数轴上表示出各数,熟练掌握数轴上的数从左到右依次增大,是解题的关键.23.小波准备完成题目:化简:(x2+6x+8)﹣(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.【分析】根据整式的运算法则即可求出答案.解:(1)原式=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设为a,原式=(a﹣5)x2+6,当a=5时,此时原式的结果为常数.故为5.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.【教材回顾】课本88页,有这样一段文字:人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.【数学问题】三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?【问题探究】为了解决这个问题,我们可以从n=1,2,3等具体的、简单的情形入手,搜索最多可以剪得的三角形个数的变化规律.三角形内点的个数图形最多剪出的小三角形个数1325374…a………【问题解决】(1)表格中的a= 9 ;(2)你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加 2 个;(3)猜想:当三角形内点的个数为n时,最多可以剪得 (2n+1) 个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.【类比应用】(1)四边形有4个顶点,在它的内部画1个点,把四边形剪成若干个小三角形,最多可以剪得 4 个小三角形;(2)四边形内部每增加1个点,最多剪得的三角形增加 2 个;(3)当四边形内点的个数为n时,最多可以剪得 (2n+2) 个三角形;(4)m边形内有n个点时,最多可以剪得 (m+2n﹣2) 个三角形.【分析】问题解决:可以从数字找规律,然后进行计算即可,类比应用:可以从数字找规律,然后进行计算即可.解:问题解决:(1)当三角形内有1个点时,最多剪出的小三角形个数为:3=1+2×1,当三角形内有2个点时,最多剪出的小三角形个数为:5=1+2×2,当三角形内有3个点时,最多剪出的小三角形个数为:7=1+2×3,当三角形内有4个点时,最多剪出的小三角形个数为:1+2×4=9,(2)三角形内的点每增加1个,最多剪得的三角形增加2个,(3)当三角形内有n个点时,最多剪出的小三角形个数为:1+2n;故答案为:9,2,(2n+1);类比应用:(1)当四边形内有1个点时,最多剪出的小三角形个数为:4=2+2×1,当四边形内有2个点时,最多剪出的小三角形个数为:6=2+2×2,当四边形内有3个点时,最多剪出的小三角形个数为:8=2+2×3,(2)四边形内部每增加1个点,最多剪得的三角形增加2个,(3)当四边形内有n个点时,最多剪出的小三角形个数为:2+2n,(4)当m边形内有1个点时,最多剪出的小三角形个数为:m=m+2×0,当m边形内有2个点时,最多剪出的小三角形个数为:m+2=m+2×1,当m边形内有3个点时,最多剪出的小三角形个数为:m+4=m+2×2,当m边形内有n个点时,最多剪出的小三角形个数为:m+2(n﹣1)=m+2n﹣2,故答案为:4,2,(2n+2),(m+2n﹣2).【点评】本题考查了图形的变化规律,此类问题可以从数字找规律,也可以从图形找规律,然后进行计算即可.25.在数轴上,把原点记作点O,表示数a的点记作点A.对于数轴上任意一点P(不与点O、点A重合),将线段PO与线段PA的长度之比定义为点P关于点A的幸福值,记作k(P,a),即,例如:点P表示的数为1,点A表示的数为3,因为PO =1,PA=2,所以.(1)当点P是线段OA的中点时,点P关于点A的幸福值k(P,a)= 1 ;(2)若点P表示的数为﹣1,点A表示的数为3,点P关于点A的幸福值k(P,3)= ;(3)若点P表示的数为2,点A表示的数为a,点P关于点A的幸福值k(P,a)=2,求点A表示的数a;(4)若点P表示的数为p,点A表示的数为a,OA=3OP,则点P关于点A的幸福值k (P,a)= 或 ;(5)点P1、点P2为数轴上两个不同的点,并且点P2与P1关于原点对称,点P1表示的数为m,点A、点B分别表示数a、2,若k(P1,a)=k(P2,2),则a、m需满足条件: a=2m+2或a=﹣2 .【分析】(1)直接利用“幸福值”的定义即可求解.(2)易得PO=1,PA=4,再利用“幸福值”的定义计算即可.(3)由题意可得关于a的分式方程,求解即可;(4)分别两种情况:点P、A在点O的同侧和点P、A在点O的异侧.分别表示出PO和PA,再根据“幸福值”的定义计算即可.(5)根据题意,分别表示出k(P1,a),k(P2,2),由k(P1,a)=k(P2,2)可得关于a,m的含绝对值的等式,取绝对值符号即可求解.解:(1)∵点P是线段OA的中点,∴PO=PA,∴k(P,a)==1.故答案为:1.(2)∵点P表示的数为﹣1,点A表示的数为3,∴PO=1,PA=4,∴k(P,3)==.故答案为:.(3)∵点P表示的数为2,点A表示的数为a,∴PO=2,PA=|a﹣2|,∵点P关于点A的幸福值k(P,a)=2,∴,经检验,a=1或3原方程的解,解得:a=1或3.(4)①当点P、A在点O的同侧时(此处以点P、A在原点右侧来分析),如图,由题意得OP=p,OA=3P,则PA=2p,∴k(P,a)===;②当点P、A在点O的异侧时(此处以点P在原点左侧,点A在原点右侧来分析),如图,由题意得OP=﹣p,OA=﹣3P,则PA=﹣4p,∴k(P,a)===.故答案为:或.(5)P2与P1关于原点对称,点P1表示的数为m,∴点P2表示的数为﹣m,且PO1=PO2=|m|,点A、点B分别表示数a、2,P1A=|a﹣m|,P2B=|2+m|,∴k(P1,a)==,k(P2,2)==,要使k(P1,a)=k(P2,2),则|a﹣m|=|2+m|,即a﹣m=2+m或a﹣m=﹣2﹣m,∴a=2m+2或a=﹣2.故答案为:a=2m+2或a=﹣2.【点评】本题主要考查数轴、新定义、绝对值、数轴上两点间的距离公式,理解新定义并灵活应用相关知识解决问题是解题关键.。
江苏省常州市天宁区正衡中学2023-2024学年八年级上学期期中数学试卷(含解析)
![江苏省常州市天宁区正衡中学2023-2024学年八年级上学期期中数学试卷(含解析)](https://img.taocdn.com/s3/m/8bea776d443610661ed9ad51f01dc281e43a565a.png)
2023-2024学年江苏省常州市天宁区正衡中学八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)2023年9.23﹣10.8日,19届亚运会在杭州如火如荼地进行,运动健儿们摘金夺银,全国人民感受到一波强烈的民族自豪感.下列图案表示的运动项目标志中,是轴对称图形的是( )A.B.C.D.2.(2分)满足下列条件的△ABC是直角三角形的是( )A.BC=2,AC=3,AB=4B.BC=2,AC=3,AB=3C.BC:AC:AB=3:4:5D.∠A:∠B:∠C=3:4:53.(2分)据统计,2020年国家公务员考试最终过审人数达1437000人,数据1437000精确到万位,并用科学记数法可表示为( )A.144×104B.1.44×106C.1.44×104D.1.43×106 4.(2分)估计2+的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间5.(2分)如图,小亮和小明分别用尺规作∠APB的平分线PQ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确6.(2分)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点7.(2分)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2023次后形成的图形中所有的正方形的面积和是( )A.22023B.22024C.2023D.20248.(2分)如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B、C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.点D在BC 边上从B至C的运动过程中,△BED周长变化规律为( )A.不变B.一直变小C.先变大后变小D.先变小后变大二、填空题(每小题2分,共20分)9.(2分)4的平方根是 .10.(2分)已知点M(2a﹣1,a+2)在x轴上,则点M到y轴的距离为 .11.(2分)如图所示,两个三角形全等,则∠1的度数为 °.12.(2分)如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长为 .13.(2分)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD 的面积为 .14.(2分)如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于 .15.(2分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= .16.(2分)如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为10,小正方形面积为4,则(a+b)2的值为 .17.(2分)如图,在△ABC中,∠BCA=90°,AC=BC,AE平分∠BAC,BE⊥AE,且BE =3.则△ABD的面积是 .18.(2分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,点E为BC上一点,连接AE,∠BAE=∠CAD,连接DE.下列结论中正确的是 .(填序号)①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.三、解答题19.(4分)计算:.20.(4分)求x的值:4(x﹣2)2=16.21.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.22.(8分)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC;(2)若将点C向左平移6个单位到点D,则点D的坐标为 ;(3)在(2)的条件下,在x轴上存在点E,使得CE+DE最小,则点E的坐标为 ;(4)将点C绕着原点逆时针旋转90°到点F,则点F的坐标为 .23.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=5千米,CH=4千米,HB=3千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.24.(10分)(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC 交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?25.(10分)大家知道是无理数,因此的小数部分我们不可能全部写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:,即2<<3,∴的整数部分为2,小数部分为﹣2.(1)整数部分是 ,小数部分是 ;(2)如果的整数部分为a,的整数部分为b,求7a+2b的立方根;(3)已知9+=x+y,其中x是整数,且0<y<1,求x﹣y的值.26.(12分)如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4.(1)试说明:△ABC是等腰三角形;(2)已知,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,直接写出t的值;若不能,请说明理由.2023-2024学年江苏省常州市天宁区正衡中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)2023年9.23﹣10.8日,19届亚运会在杭州如火如荼地进行,运动健儿们摘金夺银,全国人民感受到一波强烈的民族自豪感.下列图案表示的运动项目标志中,是轴对称图形的是( )A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.2.(2分)满足下列条件的△ABC是直角三角形的是( )A.BC=2,AC=3,AB=4B.BC=2,AC=3,AB=3C.BC:AC:AB=3:4:5D.∠A:∠B:∠C=3:4:5【解答】解:A.若BC=2,AC=3,AB=4,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若BC=2,AC=3,AB=3,则BC2+AC2≠AB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C=180°×=75°<90°,故△ABC不是直角三角形.故选:C.3.(2分)据统计,2020年国家公务员考试最终过审人数达1437000人,数据1437000精确到万位,并用科学记数法可表示为( )A.144×104B.1.44×106C.1.44×104D.1.43×106【解答】解:1437000≈1440000=1.44×106.故选:B.4.(2分)估计2+的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2<3,∴4<2+<5,故选:C.5.(2分)如图,小亮和小明分别用尺规作∠APB的平分线PQ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确【解答】解:如图,PE=PF,EC=FC,PC=PC,∴△EPC≌△FPC(SSS),∴∠EPC=∠FPC;∴小亮作图正确;由作图可知PE=PF,∵C是线段PE,PF垂直平分线,∴PC=CE=CF,∴△EPC≌△FPC(SSS),∴∠EPC=∠FPC,小明作图正确;故选:A.6.(2分)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【解答】解:∵三角形三边中垂线的交点到三个顶点的距离相等,∴为使游戏公平,凳子应放的最适当的位置在三角形的三边的垂直平分线的交点,故选:D.7.(2分)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2023次后形成的图形中所有的正方形的面积和是( )A.22023B.22024C.2023D.2024【解答】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2023次后形成的图形中所有的正方形的面积和为2024,故选:D.8.(2分)如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B、C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.点D在BC 边上从B至C的运动过程中,△BED周长变化规律为( )A.不变B.一直变小C.先变大后变小D.先变小后变大【解答】解:∵AD=DE=DF,∴∠DAE=∠DEA,∠DAF=∠DFA,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA,∵∠ACB=∠CFD+∠CDF=60°,∴∠CDF=∠BED,且∠EDB=∠DFA,DE=DF,∴△BDE≌△CFD(AAS),∴BD=CF,BE=CD,∴△BED周长=BD+BE+DE=BD+CD+AD=BC+AD,∴点D在BC边上从B至C的运动过程中,∴AD的长先变小后变大,∴△BED周长先变小后变大,故选:D.二、填空题(每小题2分,共20分)9.(2分)4的平方根是 ±2 .【解答】解:∵22=4,(﹣2)2=4,∴4的平方根为±2,故答案为:±2.10.(2分)已知点M(2a﹣1,a+2)在x轴上,则点M到y轴的距离为 5 .【解答】解:∵点M(2a﹣1,a+2)在x轴上,∴a+2=0,解得a=﹣2,∴2a﹣1=﹣2﹣1=﹣5,∴点M到y轴的距离为|﹣5|=5.故答案为:5.11.(2分)如图所示,两个三角形全等,则∠1的度数为 62 °.【解答】解:∵两个三角形全等,∴∠1=62°,故答案为:62.12.(2分)如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长为 9 .【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴DB=DO,EO=EC,∵AB=5,AC=4,∴△ADE的周长=AD+DE+AE=AD+DO+OE+AE=AD+DB+EC+AE=AB+AC=9,故答案为:9.13.(2分)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD 的面积为 5 .【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.14.(2分)如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于 8 .【解答】解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD===8.故答案为:8.15.(2分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2= 7 .【解答】解:∵∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,∴OB2=OA2+AB2=22+12=5;同理,OC2=OB2+BC2=5+1=6,∴OD2=OC2+CD2=6+1=7.故答案为:7.16.(2分)如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为10,小正方形面积为4,则(a+b)2的值为 16 .【解答】解:设直角三角形的斜边为c,则c2=a2+b2=10,(a﹣b)2=a2+b2﹣2ab=4,∴2ab=10﹣4=6,∴(a+b)2=a2+2ab+b2=10+6=16,故答案为:16.17.(2分)如图,在△ABC中,∠BCA=90°,AC=BC,AE平分∠BAC,BE⊥AE,且BE =3.则△ABD的面积是 9 .【解答】解:分别延长AC、BE交于点F,如图:∵AE平分∠CAB,∴∠EAB=∠EAF,∵BE⊥AE,∴∠AEB=∠AEF=90°,在△ABE与△AFE中,,∴△ABE≌△AFE(ASA),∴BE=FE,∴BF=2BE=6,∵∠ACB=∠AEB=90°,∠ADC=∠EDB,∴∠CAD=∠CBF,在△ACD与△BCF中,,∴△ACD≌△BCF(ASA),∴AD=BF=6,∴△ABD的面积=•AD•BE=×6×3=9.故答案为:9.18.(2分)如图,在Rt△ABC中,∠ABC=90°,以AC为边,作△ACD,满足AD=AC,点E为BC上一点,连接AE,∠BAE=∠CAD,连接DE.下列结论中正确的是 ②③④ .(填序号)①AC⊥DE;②∠ADE=∠ACB;③若CD∥AB,则AE⊥AD;④DE=CE+2BE.【解答】解:如图,延长EB至G,使BE=BG,设AC与DE交于点M,∵∠ABC=90°,∴AB⊥GE,∴AB垂直平分GE,∴AG=AE,∠GAB=∠BAE,∴∠BAE=∠GAE,∵∠BAE=∠CAD,∴∠GAE=∠CAD,∴∠GAE+∠EAC=∠CAD+∠EAC,∴∠GAC=∠EAD,在△GAC与△EAD中,,∴△GAC≌△EAD(SAS),∴∠G=∠AED,∠ACB=∠ADE,∴②是正确的;∵AG=AE,∴∠G=∠AEG=∠AED,∴AE平分∠BED,当∠BAE=∠EAC时,∠AME=∠ABE=90°,则AC⊥DE,当∠BAE≠∠EAC时,∠AME≠∠ABE,则无法说明AC⊥DE,∴①是不正确的;设∠BAE=x,则∠CAD=2x,∴∠ACD=∠ADC=×(180°﹣2x)=90°﹣x,∵AB∥CD,∴∠BAC=∠ACD=90°﹣x,∴∠CAE=∠BAC﹣∠EAB=90°﹣x﹣x=90°﹣2x,∴∠DAE=∠CAE+∠DAC=90°﹣2x+2x=90°,∴AE⊥AD,∴③是正确的;∵△GAC≌△EAD,∴CG=DE,∵CG=CE+GE=CE+2BE,∴DE=CE+2BE,∴④是正确的,故答案为:②③④.三、解答题19.(4分)计算:.【解答】解:原式=3+6+2=11.20.(4分)求x的值:4(x﹣2)2=16.【解答】解:4(x﹣2)2=16,则(x﹣2)2=4,∴x﹣2=±2,解得:x=4或x=0.21.(8分)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.【解答】证明:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF.22.(8分)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC;(2)若将点C向左平移6个单位到点D,则点D的坐标为 (﹣2,3) ;(3)在(2)的条件下,在x轴上存在点E,使得CE+DE最小,则点E的坐标为 (1,0) ;(4)将点C绕着原点逆时针旋转90°到点F,则点F的坐标为 (﹣3,4) .【解答】解:(1)如图,△ABC即为所求.(2)由题意得,点D的坐标为(﹣2,3).故答案为:(﹣2,3).(3)如图,取点D关于x轴的对称点D',连接D'C,交x轴于点E,连接DE,此时CE+DE最小,则点E的坐标为(1,0).故答案为:(1,0).(4)由旋转的性质,画出点F如图所示,∴点F的坐标为(﹣3,4).故答案为:(﹣3,4).23.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=5千米,CH=4千米,HB=3千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【解答】解:(1)CH是为从村庄C到河边的最近路,理由如下:∵42+32=52,∴CH2+BH2=BC2,∴△BCH是直角三角形,且∠CHB=90°,∴CH⊥AB,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,则AB=x千米,∴AH=AB﹣HB=(x﹣3)千米,在Rt△ACH中,由勾股定理得:AC2=AH2+CH2,即x2=(x﹣3)2+42,解得:x=,答:原来的路线AC的长为千米.24.(10分)(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC 交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?【解答】(1)证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAC,∴△ABE≌△ADC∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA,∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴∠BOF=∠DAF=90,即BE⊥DC.(2)解:结论:BE=CD.理由:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOD=60°.25.(10分)大家知道是无理数,因此的小数部分我们不可能全部写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:,即2<<3,∴的整数部分为2,小数部分为﹣2.(1)整数部分是 6 ,小数部分是 ﹣6 ;(2)如果的整数部分为a,的整数部分为b,求7a+2b的立方根;(3)已知9+=x+y,其中x是整数,且0<y<1,求x﹣y的值.【解答】解:(1)∵36<37<49,∴6<<7,即整数部分是6,小数部分是﹣6,故答案为:6;﹣6;(2)∵9<11<15<16,∴3<<<4,∴a=3,b=3,则7a+2b=7×3+2×3=27,那么7a+2b的立方根为3;(3)∵4<5<9,∴2<<3,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y=9+﹣11=﹣2,那么x﹣y=11﹣+2=13﹣.26.(12分)如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4.(1)试说明:△ABC是等腰三角形;(2)已知,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,直接写出t的值;若不能,请说明理由.【解答】(1)证明:设BD=2x,AD=3x,CD=4x,则AB=BD+AD=5x,在Rt△ACD中,由勾股定理得:AC==5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:①∵S△ABC=×5x×4x=90cm2,x>0,∴x=3cm,∴BD=6cm,AD=9cm,CD=12cm,AC=15cm.∵AB=AC,∴∠ACB=∠B,当MN∥BC时,∠ANM=∠ACB,∠AMN=∠B,若△DMN的边与BC平行,∴∠ANM=∠AMN,∴AM=AN,即15﹣t=t,∴t=7.5;当DN∥BC时,同理得:AD=AN=9cm,∴t=9;综上所述,若△DMN的边与BC平行时,t值为7.5或9;②△MDE能成为等腰三角形,理由如下:∵BD=6cm,AD=9cm,CD=12cm,AC=15cm,点E是边AC的中点,∴DE=AE=CE=7.5cm,当点M在BD上,即0≤t<6时,△MDE为钝角三角形,但DM≠DE,当t=6时,点M运动到点D,不构成三角形,当点M在DA上,即6<t≤15时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣6=7.5,∴t=13.5;如果ED=EM,则点M运动到点A,∴t=15;如果MD=ME=t﹣6,如图,过点E作EF⊥AD于F,∵DE=AE,EF⊥AD,∴AF=DF=4.5,在Rt△AEF中,EF2=AE2﹣AF2=7.52﹣4.52=36,∴EF=6(负值已舍去),∵BM=t,BF=BD+DF=6+4.5=10.5,∴MF=t﹣10.5,在Rt△EMF中,EF2+MF2=EM2,∴62+(t﹣10.5)2=(t﹣6)2,∴t=12.25,综上所述,符合要求的t值为13.5或15或12.25.。
江苏省常州市天宁区正衡中学2019年九年级数学中考第二次模拟测试题(含答案)
![江苏省常州市天宁区正衡中学2019年九年级数学中考第二次模拟测试题(含答案)](https://img.taocdn.com/s3/m/92c31e9b50e2524de4187e1a.png)
江苏省常州市天宁区正衡中学2019年九年级数学中考第二次模拟测试题一、选择题(每小题2分)1.在平面直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为( )。
【A】(2,-3)【B】(2,3)【C】(3,-2)【D】(-2,-3)2.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”。
下列各组数据中,能作为一个智慧三角形三边长的一组是()。
【A】1,2,3【B】C】D】,一小组的成绩如下表【A】5【B】6【C】4【D】74.的图像如左图所示,那么二次函数大致为()5.如图,若△ABC和△DEF)【A【B【C【D】=6.如图,⊙O的内接△ABC的外角∠ACE的平分线交⊙O于点D.DF⊥AC,垂足为F,DE⊥BC,垂足为E.给出下列4个结论:①CE=CF;②∠ACB=∠EDF;③DE 是⊙O的切线;④.其中一定成立的是()【A】①②③【B】②③④【C】①③④【D】①②④7.)【A】0个【B】1个【C】2个【D】3个8.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点处,其中当k≥2时,=a 的整数部分,例如=2,=0.按此方案,第2017棵树种植点的坐标为()【A】(5,2017)【B】(6,2016)【C】(1,404)【D】(2,404)二、填空题:(每空2分)9.10.已知一个圆锥的侧面积是底面积的2倍,圆锥的母线长为2,则圆锥的底面半径是。
11. 的所有实数根之和等于。
12.已知关于x3个整数解,则a的取值范围是_______.13.将量角器按如图所示的方式放置在三角形纸片上,使点C在半圆圆心上,点B在半圆上,边AB、AC分别交圆于点E、F,点B、E、FA的度数为_____14.如图所示,在x轴上,且、、y轴的平行线,分、、、、作x轴的平行线,分别与y连接则k_____15、如图,x与y(不包含端点),则k的取值范围是_______16、如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点顶点都在格点上,______17.在平面直角坐标系中,A点坐标为(1,0),C点坐标为(7,0),若点P只存在一个点P使∠APC=90°,则k的值是_______ 18.已知线段AB=12,C、D是AB上两点,且AC=DB=2,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P 由点C移动到点D时,G点移动的路径长度为______三、解答题19.20、解下列方程(每小题4分)(122、如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点.(1)AE与CF的关系是______请证明(2)若∠BAC=_______°时,四边形AECF是菱形,请说明理由.(7分)23.已知:如图,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P 处测得该塔的塔顶B的仰角为45∘, 然后他们沿着坡度为1:2.4的斜坡 AP攀行了26米,在坡顶A处测得该塔的塔顶B的仰角为76∘. 求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).( 参考数据:sin76∘≈0.97,cos76∘≈0.24,tan76∘≈4.01)24.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=-0.4m 2 +2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由.25.如图,○O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是○O的切线;(2)若求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)。
江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
![江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】](https://img.taocdn.com/s3/m/930e82a40342a8956bec0975f46527d3240ca6d0.png)
江苏省常州市天宁区正衡中学2024-2025学年数学九年级第一学期开学质量检测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列四个多项式中,不能因式分解的是()A .a 2+a B .22m n -C .24x +D .269a a ++2、(4分)的值为3,那么的值是()A .3B .9C .-3D .3或-33、(4分)在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的可能情况是()A .2:7:2:7B .2:2:7:7C .2:7:7:2D .2:3:4:54、(4分)如图,正方形ABCD 中,3DC DF =,连接AF 交对角线BD 于点E ,那么:DEF AEB S S ∆∆=()A .1:2B .1:3C .1:4D .1:95、(4分)在直角坐标系中,线段A B ''是由线段AB 平移得到的,已知()()()2,3,3,1,3,4,A B A '--则B '的坐标为()A .()1,1B .()2,2C .()3,3D .()4,46、(4分)下列由左到右的变形中,属于因式分解的是()A .()()24416x x x +-=-B .()2ax axy ax ax x y ++=+C .()()222m mn n m n m n -+=+-D .()()2422a a a -=+-7、(4分)在如图所示的单位正方形网格中,△ABC 经过平移后得到△A 1B 1C 1,已知在AC 上一点P (2.4,2)平移后的对应点为P 1,点P 1绕点O 逆时针旋转180°,得到对应点P 2,则P 2点的坐标为A .(1.4,-1)B .(1.5,2)C .(1.6,1)D .(2.4,1)8、(4分)下列二次根式中,属于最简二次根式的是()A .B C D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD 中,点F 在AD 上,5,11,AF cm BF cm FBD CBD ==∠=∠,点E 是BC 的中点,若点P 以1厘米/秒的速度从A 点出发,沿AD 向点F 运动;点Q 同时以2厘米/秒的速度从C 点出发,沿CB 向点B 运动,点P 运动到F 停止运动,点Q 也同时停止运动,当点P 运动时间是_____秒时,以点P Q E F 、、、为顶点的四边形是平行四边形.10、(4分)在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC 的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.11、(4分).12、(4分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,则乙施工队单独完成此项工程需_____天.13、(4分)如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式24x ax >+的解集为___________.三、解答题(本大题共5个小题,共48分)14、(12分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y (件)与销售价x (元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y (件)与销售价x (元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?15、(8分)解下列方程:(1)26x x +=(2)11322x x x -=---16、(8分)如图,直线1y x =-+与直线3y x =-,两直线与x 轴的交点分别为A 、B .(1)求两直线交点C 的坐标;(2)求ABC ∆的面积.17、(10分)如图,在▱ABCD 中,E ,F 是对角线AC 上不同两点,//BE DF ,求证:四边形BFDE 是平行四边形.18、(10分)如图1,在△ABC 中,AB=BC=5,AC=6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、BE ,且AC 和BE 相交于点O.(1)求证:四边形ABCE 是菱形;(2)如图2,P 是线段BC 上一动点(不与B .C 重合),连接PO 并延长交线段AE 于点Q ,过Q 作QR ⊥BD 交BD 于R.①四边形PQED 的面积是否为定值?若是,请求出其值;若不是,请说明理由;②以点P 、Q 、R 为顶点的三角形与以点B .C .O 为顶点的三角形是否可能相似?若可能,请求出线段BP 的长;若不可能,请说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.20、(4分)直角三角形的三边长分别为a 、b 、c ,若3a =,4b =,则c =__________.21、(4分)如图,在正方形ABCD 中,H 为AD 上一点,∠ABH =∠DBH ,BH 交AC 于点G .若HD =2,则线段AD 的长为_____.22、(4分)计算:.学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………23、(4分)顺次连结任意四边形各边中点所得到的四边形一定是.二、解答题(本大题共3个小题,共30分)24、(8分)如图,平面直角坐标系中,点4(0)A ,在y 轴上,点()80B -,在x 轴上.(1)求直线AB 的解析式;(2)若x 轴上有一点P 使得2APO ABO ∠=∠时,求ABP ∆的面积.25、(10分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE (1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?26、(12分)解不等式组1121x x x -+-⎧⎨≥-⎩>①②参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】逐项分解判断,即可得到答案.【详解】解:A选项a2+a=a(a+1);B选项22m n-=(m+n)(m-n);C选项.24x+不能因式分解;D选项.269a a++=(a+3)2.故选C本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).2、D【解析】3x==,∴3x=±.故选D.考点:二次根式的性质.3、A【解析】由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.故选:A.此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.4、D【解析】∽S△AEB,再根据相似三角形的面积比为相似比的平方即可得解.根据正方形的性质易证S△DEF【详解】解:∵四边形ABCD为正方形,∴∠EDF=∠EBA,∠EFD=∠EAB,AB=DC,∴DEF AEB,∵DC=3DF,∴DF:AB=1:3:S△AEB=1:9.∴S△DEF故选:D.本题主要考查相似三角形的判定与性质,正方形的性质,解此题的关键在于熟练掌握其知识点.5、B【解析】根据点A和点A′的坐标判断出平移方式,根据平移方式可得点B 的坐标.【详解】解:∵点A的坐标为(−2,3),A′的坐标为(3,4),∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,∵点B的坐标为(−3,1),∴点B′的坐标为(2,2),故选:B.此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6、D【解析】根据因式分解的定义,逐个判断即可.【详解】解:A、不属于因式分解,故本选项不符合题意;B、ax2+axy+ax=ax(x+y+1),因式分解错误,故本选项不符合题意;C、m2-2mn+n2=(m-n)2,因式分解错误,故本选项不符合题意;D 、属于因式分解,故本选项符合题意;故选:D .本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、C 【解析】试题分析:∵A 点坐标为:(2,4),A 1(﹣2,1),∴平移和变化规律是:横坐标减4,纵坐标减1.∴点P (2.4,2)平移后的对应点P 1为:(-1.6,-1).∵点P 1绕点O 逆时针旋转180°,得到对应点P 2,∴点P 1和点P 2关于坐标原点对称.∴根据关于原点对称的点的坐标是横、纵坐标都互为相反数的性质,得P 2点的坐标为:(1.6,1).故选C .8、C 【解析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【详解】解:A =B 102=不是最简二次根式,错误;C 、D 10=不是最简二次根式,错误;故选:C .本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.二、填空题(本大题共5个小题,每小题4分,共20分)9、3或13 3【解析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBD=∠CBD,∴∠FBD=∠FDB,∴FB=FD=11cm,∵AF=5cm,∴AD=16cm,∵点E是BC的中点,∴CE=12BC=12AD=8cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,分两种情况:①当点Q在EC上时,根据PF=EQ可得:5-t=8-2t,解得:t=3;②当Q在BE上时,根据PF=QE可得:5-t=2t-8,解得:t=13 3.所以,t的值为:t=3或t=13 3.故答案为:3或13 3.本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.10、1 23nna【解析】根据平行四边形的判定定理得到四边形A 1C 1CD 1为平行四边形,根据平行四边形的性质得到A 1D 1=C 1C ,总结规律,根据规律解答.【详解】∵A 1C 1∥AC ,A 1D 1∥BC ,∴四边形A 1C 1CD 1为平行四边形,∴A 1D 1=C 1C=13a=11123a -,同理,四边形A 2C 2C 1D 2为平行四边形,∴A 2D 2=C 1C 2=29a=21223a -,……∴线段A n D n =123n n a -,故答案为:123n n a -.本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.11、【解析】==.12、2.【解析】求的是工效,工作时间,一定是根据工作总量来列等量关系.等量关系为:甲20天的工作总量+乙22天的工作总量=2.【详解】解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天.根据题意得:1012+=145x x.解这个方程得:x=3.经检验:x=3是所列方程的解.∴当x=3时,45x=2.故答案为2应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.13、x≥1.5【解析】试题分析:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x >ax+4的解集即可.解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=3 2,∴A(32,3),∴不等式2x>ax+4的解集为x>3 2.故答案为x>3 2.考点:一次函数与一元一次不等式.三、解答题(本大题共5个小题,共48分)14、(1)2140(4058)82(5871)x xyx x-+⎧=⎨-+<⎩;(2)55元【解析】(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y =kx+b ,得:40605824k b k b +=⎧⎨+=⎩,解得:2140k b =-⎧⎨=⎩,∴当40≤x≤58时,y 与x 之间的函数关系式为y =2x+140;当理可得,当58<x≤71时,y 与x 之间的函数关系式为y =﹣x+1.综上所述:y 与x 之间的函数关系式为2140(4058)82(5871)x x y x x -+⎧=⎨-+<⎩ .(2)设当天的销售价为x 元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x ﹣40)(﹣2x+140)=100×3+150,解得:x 1=x 2=55;当57<x≤71时,依题意,得:(x ﹣40)(﹣x+1)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.15、(1)123,2x x ==-;(2)无解【解析】(1)移项,再因式分解求解即可.(2)方程变形后去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)260x x --=(3)(2)0x x -+=123,2x x ==-.(2)1(1)3(2)x x =----2x =经检验,2x =是原方程的增根,∴原方程无解本题主要考查了解方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16、(1)A(1,0),B(3,0);(2)1【解析】分析:(1)通过解方程组组13y x y x =-+⎧⎨=-⎩可得到C 点坐标;(2)先确定A 点和B 点坐标,然后根据三角形面积公式求解.详解:(1)由13y x y x =-+⎧⎨=-⎩得21x y =⎧⎨=-⎩∴()2,1C -.(2)在1y x =-+中,当0y =时,1x =∴()1,0A 在3y x =-中,当0y =时,3x =∴()3,0B ∴2AB =∴12112ABC S ∆=⨯⨯=.点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.17、证明见解析.【解析】连接BD 交AC 于O ,根据平行四边形性质得出OA OC =,OB OD =,根据平行线性质得出BEO DFO ∠∠=,根据AAS 证BEO ≌DFO ,推出OE OF =,根据平行四边形的判定推出即可.【详解】连接BD 交AC 于O ,四边形ABCD 是平行四边形,OA OC ∴=,OD OB =,BE //DF ,BEO DFO ∠∠∴=,在BEO 和DFO 中,BEO DFO BOE DOF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,BEO ∴≌()DFO AAS ,OE OF ∴=,OB OD =,∴四边形BFDE 是平行四边形.本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18、(1)见解析;(2)①24,②;【解析】(1)利用平移的性质以及菱形的判定得出即可;(2)①首先过E 作EF ⊥BD 交BD 于F ,则∠EFB=90°,证出△QOE ≌△POB ,利用QE=BP ,得出四边形PQED 的面积为定值;②当∠QPR=∠BCO 时,△PQR ∽△CBO ,此时有OP=OC=3,过O 作OG ⊥BC 交BC 于G ,得出△OGC ∽△BOC ,利用相似三角形的性质得出CG 的长,进而得出BP 的长.【详解】(1)证明:∵△ABC 沿BC 方向平移得到△ECD ,∴EC=AB ,AE=BC ,∵AB=BC ,∴EC=AB=BC=AE ,∴四边形ABCE 是菱形;(2)①四边形PQED 的面积是定值,理由如下:过E 作EF ⊥BD 交BD 于F,则∠EFB=90°,∵四边形ABCE 是菱形,∴AE ∥BC ,OB=OE ,OA=OC ,OC ⊥OB ,∵AC=6,∴OC=3,∵BC=5,∴OB=4,sin ∠OBC=,∴BE=8,∴EF=BE ⋅sin ∠OBC=8×,∵AE ∥BC ,∴∠AEO=∠CBO ,四边形PQED 是梯形,在△QOE 和△POB 中,∴△QOE ≌△POB ,∴QE=BP ,∴S =(QE+PD)×EF=(BP+DP)×EF=×BD×EF=×2BC×EF=BC×EF=5×=24;②△PQR 与△CBO 可能相似,∵∠PRQ=∠COB=90°,∠QPR>∠CBO ,∴当∠QPR=∠BCO 时,△PQR ∽△CBO ,此时有OP=OC=3.过O 作OG ⊥BC 交BC 于G.∵∠OCB=∠OCB ,∠OGC=∠BOC ,∴△OGC ∽△BOC ,∴CG:CO=CO:BC ,即CG:3=3:5,∴CG=,∴BP=BC−PC=BC−2CG=5−2×=.此题考查相似形综合题,涉及了相似三角形的判定与性质,解直角三角形,菱形的性质,平移的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、15【解析】l 1∥l 2∥l 3,AB DE AB BC EF DE =++,所以6512.5AC =,所以AC =15.或5【解析】根据斜边分类讨论,然后利用勾股定理分别求出c 的值即可.【详解】解:①若b 是斜边长根据勾股定理可得:c ==②若c 是斜边长根据勾股定理可得:5c ==综上所述:c =5或5此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.21、2【解析】作HE ⊥BD 交BD 于点E ,在等腰直角三角形DEH 中求出HE 的长,由角平分线的性质可得HE=AH ,即可求出AD 的长.【详解】作HE ⊥BD 交BD 于点E ,∵四边形ABCD 是正方形,∴∠BAD=90°,∠ADB=45°,∴△DEH 是等腰直角三角形,∴HE=DE ,∵HE 2+DE 2=DH 2,∴HE=2DH =,∵∠ABH =∠DBH ,∠BAD=90°,∠BEH=90°,∴HE=AH=,∴.AD=2+.故答案为2.本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.22、【解析】23、平行四边形【解析】试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.考点:平行四边形的判定二、解答题(本大题共3个小题,共30分)24、(1)142y x =+;(2)ABP ∆的面积为10或22【解析】(1)根据点A ,B 的坐标,利用待定系数法可求出直线AB 的解析式;(2)设点P 的坐标为(t ,0),分点P 在原点左侧及点P 在原点右侧两种情况考虑:①若点P 在x 轴上原点左侧,当PB=AP 时,∠APO=2∠ABO ,在Rt △APO 中,利用勾股定理可求出t 的值,进而可得出BP 的长,再利用三角形的面积公式可求出△ABP 的面积;②若点P 在x 轴上原点右侧,由对称性,可得出点P ′的坐标,进而可得出BP ′的长,再利用三角形的面积公式可求出△ABP ′的面积.综上,此题得解【详解】解:(1)设直线AB 的解析式为4y kx =+,则:084k =-+解得:12k =∴所求直线AB 的解析式为:142y x =+(2)设点P 为(),0t①若点P 在x 轴上原点左侧,当PB AP =时,2APO ABO ∠=∠在Rt APO ∆中,()88AP BP t t ==--=+,4AO =,PO t =-∴()()22248t t +-=+解得:3t =∴835BP =-=∴154102ABP S ∆=⨯⨯=②若P 点在x 轴上原点右侧,由对称性,得P '点为()30,,此时8311BP '=+=,∴1114222ABP S ∆=⨯⨯=综合上述,ABP ∆的面积为10或22.本题考查了待定系数法求一次函数解析式、勾股定理以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB 的解析式;(2)分点P 在原点左侧及点P 在原点右侧两种情况,求出△ABP 的面积.25、(1)见解析(2)成立【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF .(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CDB CDFBE DF∠∠===第21页,共21页∴△CBE ≌△CDF (SAS ).∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF ,∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.CE =CF ∵∠GCE =∠GCF ,GC =GC ∴△ECG ≌△FCG (SAS ).∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.26、﹣1≤x <2【解析】首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.【详解】解不等式①,得:x <2,解不等式②,得:x≥﹣1,所以不等式组的解集为﹣1≤x <2,将不等式组的解集表示在数轴上如下:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.。
常州市初中数学三角形经典测试题附答案
![常州市初中数学三角形经典测试题附答案](https://img.taocdn.com/s3/m/388c7b51c5da50e2534d7f2c.png)
常州市初中数学三角形经典测试题附答案一、选择题1.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D .【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A.13B.5C.22D.4【答案】A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.3.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.4.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E ,若BC =10cm ,则△DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm【答案】B【解析】【分析】 根据“AAS”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.【详解】∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠EBD .又∵ ∠A =∠DEB =90°,BD 是公共边,∴ △ABD ≌△EBD (AAS),∴ AD =ED ,AB =BE ,∴ △DEC 的周长是DE +EC +DC=AD +DC +EC=AC +EC =AB +EC=BE +EC =BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.5.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==. 【详解】 解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =∴2221OA AD OD =+= ∴21OC OA ==. 故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.6.如图,在▱ABCD 中,E 为边AD 上的一点,将△DEC 沿CE 折叠至△D ′EC 处,若∠B =48°,∠ECD =25°,则∠D ′EA 的度数为( )A .33°B .34°C .35°D .36°【答案】B【解析】【分析】 由平行四边形的性质可得∠D =∠B ,由折叠的性质可得∠D '=∠D ,根据三角形的内角和定理可得∠DEC ,即为∠D 'EC ,而∠AEC 易求,进而可得∠D 'EA 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠D =∠B =48°,由折叠的性质得:∠D '=∠D =48°,∠D 'EC =∠DEC =180°﹣∠D ﹣∠ECD =107°, ∴∠AEC =180°﹣∠DEC =180°﹣107°=73°,∴∠D 'EA =∠D 'EC ﹣∠AEC =107°﹣73°=34°.故选:B .本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.7.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为()A.16cm B.21cm 或 27cm C.21cm D.27cm【答案】D【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.故选D.【点睛】本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.8.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.9.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=2234 =5,作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,∵AC 是∠DAB 的平分线,E 是AB 的中点,∴E ′在AD 上,且E′是AD 的中点,∵AD=AB ,∴AE=AE ′,∵F 是BC 的中点,∴E ′F=AB=5.故选C .10.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等,即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.11.如图,已知AC=FE,BC=DE,点A,D,B,F 在一条直线上,要利用“SSS”证明△ABC ≌△FDE,还可以添加的一个条件是( )A .AD=FBB .DE=BDC .BF=DBD .以上都不对【答案】A【解析】∵AC=FE ,BC=DE , ∴要利用“SSS”证明△ABC ≌△FDE ,需添加条件“AB=DF”或“AD=BF”.故选A.12.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=, 2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 221k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.13.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.14.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形【答案】C【解析】【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理.15.如图,在ABC ∆中,AB AC =,分别是以点A ,点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ∠=︒,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒【答案】B【解析】【分析】 根据题意,DE 是AB 的垂直平分线,则AD=BD ,40ABD A ==︒∠∠,又AB=AC ,则∠ABC=70°,即可求出DBC ∠.【详解】解:根据题意可知,DE 是线段AB 的垂直平分线,∴AD=BD ,∴40ABD A ==︒∠∠,∵AB AC =, ∴1(18040)702ABC ∠=⨯︒-︒=︒, ∴704030DBC ∠=︒-︒=︒;故选:B.【点睛】 本题考查了垂直平分线的性质,等腰三角形的性质,以及三角形的内角和,解题的关键是熟练掌握所学的性质,正确求出DBC ∠的度数.16.等腰三角形的一个角比另一个角的2倍少20度,则等腰三角形顶角的度数是( ) A .140oB .20o 或80oC .44o 或80oD .140o 或44o 或80o【答案】D【解析】【分析】设另一个角是x ,表示出一个角是2x-20°,然后分①x 是顶角,2x-20°是底角,②x 是底角,2x-20°是顶角,③x 与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x ,表示出一个角是2x-20°,①x 是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x 是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x 与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D .【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.17.如图,在ABC ∆,90C =o ∠,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N ,为圆心,大于12MN 长为半径画弧,两弧交于点O ,作弧线AO ,交BC 于点E .已知3CE =,5BE =,则AC 的长为( )A .8B .7C .6D .5【答案】C【解析】【分析】 直接利用基本作图方法得出AE 是∠CAB 的平分线,进而结合全等三角形的判定与性质得出AC=AD ,再利用勾股定理得出AC 的长.【详解】过点E 作ED ⊥AB 于点D ,由作图方法可得出AE 是∠CAB 的平分线,∵EC ⊥AC ,ED ⊥AB ,∴EC=ED=3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED ⎧⎨⎩==, ∴Rt △ACE ≌Rt △ADE (HL ),∴AC=AD ,∵在Rt △EDB 中,DE=3,BE=5,∴BD=4,设AC=x ,则AB=4+x ,故在Rt △ACB 中,AC 2+BC 2=AB 2,即x 2+82=(x+4)2,解得:x=6,即AC 的长为:6.故答案为:C .【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.19.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A .51-B .51+C .31-D .31+【答案】B【解析】【分析】 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则BC=BD+DC=51+.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.20.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.。
常州数学三角形填空选择单元达标训练题(Word版 含答案)
![常州数学三角形填空选择单元达标训练题(Word版 含答案)](https://img.taocdn.com/s3/m/665d24768bd63186bdebbc4e.png)
常州数学三角形填空选择单元达标训练题(Word 版 含答案) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.3.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.4.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.5.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中,∠A=52°,则∠ABX+∠ACX=_________________.【答案】38°【解析】∠A=52°,∴∠ABC+∠ACB=128°,∠XBC+∠XCB=90°,∴∠ABX+∠ACX=128°-90°=38°.6.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,AD MD ADB MDC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为:3<x <5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.7.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解.∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1, ∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.8.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.10.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A 点出发最后回到出发点A 时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.二、八年级数学三角形选择题(难)11.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【解析】【分析】连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.12.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【答案】B【解析】如图,∵等边三角形的边长为3, ∴高线AH=3×333= S △ABC =1111••••2222BC AH AB PD BC PE AC PF ==+ ∴11113?3?3?3?2222AH PD PE PF ⨯=⨯+⨯+⨯ ∴PD+PE+PF=AH=33 即点P 到三角形三边距离之和为33. 故选B.13.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
常州市正衡中学八年级数学上册第十二章《全等三角形》复习题(提高培优)
![常州市正衡中学八年级数学上册第十二章《全等三角形》复习题(提高培优)](https://img.taocdn.com/s3/m/eb0c8d8c7fd5360cbb1adbae.png)
一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20D解析:D【分析】 根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF , ∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】 根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .5D解析:D【分析】 过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,则CM 即为CF EF +的最小值,再根据三角形的面积公式求出CM 的长,即为CF EF +的最小值.【详解】解:过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,BD 平分ABC ∠,'MF AB ⊥于点M ,''F E BC ⊥于'E ,'''MF F E ∴=,'''''CM CF MF CF E F ∴=+=+的最小值.三角形ABC 的面积为10,4AB =, ∴14102CM ⨯⋅=,21054CM ⨯∴==. 即CF EF +的最小值为5,故选:D .【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线是解题的关键.4.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE = D解析:D【分析】 根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.5.如图,123,,l l l 是三条两两相交的公路,现需建一个仓库,要求仓库到三条公路距离相等,则仓库的可能地址有( )处.A .1B .2C .3D .4D解析:D【分析】 到三条相互交叉的公路距离相等的地点应是三条角平分线的交点,把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】(1)三角形两个内角平分线的交点,共一处(2)三个外角两两平分线的交点,共三处,共四处,故选:D ..【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质是正确解题的关键.6.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .9D解析:D【分析】 由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.如图,已知∠A=∠D, AM=DN,根据下列条件不能够判定△ABN≅△DCN的是()A.BM∥CN B.∠M=∠N C.BM=CN D.AB=CD C解析:C【分析】利用全等三角形的判断方法进行求解即可.【详解】A、因为 BM∥CN,所以∠ABM=∠DCN,又因为∠A=∠D, AM=DN,所以△ABN≅△DCN(AAS),故A选项不符合题意;B、因为∠M=∠N ,∠A=∠D, AM=DN,所以△ABN≅△DCN(ASA),故B选项不符合题意;C、BM=CN ,不能判定△ABN≅△DCN,故C选项符合题意;D、因为AB=CD,∠A=∠D, AM=DN,所以△ABN≅△DCN(SAS),故D选项不符合题意.故选:C.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A.50°B.65°C.70°D.80°A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.9.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b B解析:B【分析】 在线段AC 上作AF=AB ,证明△AEF ≌△AEB 可得∠AFE=∠B ,∠AEF=∠AEB ,再证明△CEF ≌△CED 可得CD=CF ,即可求得四边形ABDC 的周长.【详解】解:在线段AC 上作AF=AB ,∵AE 是BAC ∠的平分线,∴∠CAE=∠BAE ,又∵AE=AE ,∴△AEF ≌△AEB (SAS ),∴∠AFE=∠B ,∠AEF=∠AEB ,∵AB ∥CD ,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE ,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键. 10.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个C解析:C【分析】 根据“SAS”可证明△CDE ≌△BDF ,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE 和DE 不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD ,则利用平行线的判定方法可对③进行判断;【详解】∵ AD 是△ABC 的中线,∴ CD=BD ,∵ DE=DF ,∠CDE=∠BDF ,∴ △CDE ≌△BDF(SAS),所以④正确;∴ CE=BF ,所以①正确;∵ AE 与DE 不能确定相等,∴ △ACE 和△CDE 面积不一定相等,所以②错误;∵ △CDE ≌△BDF ,∴∠ECD=∠FBD ,∴BF ∥CE ,所以③正确;故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形的面积 ,熟练掌握三角形全等的判定方法并准确识图是解题的关键.二、填空题11.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .13【分析】过点C 作CN ⊥AD 交AD 延长线于点N 由角平分线的性质得到CN=CM 然后证明△CDN ≌△CBM 得到DN=BMCD=CB=25然后求出AN=AM=4则AD=4DN 即可求出四边形的周长【详解】解析:13【分析】过点C 作CN ⊥AD ,交AD 延长线于点N ,由角平分线的性质,得到CN=CM ,然后证明△CDN ≌△CBM ,得到DN=BM ,CD=CB=2.5,然后求出AN=AM=4,则AD=4-DN ,即可求出四边形的周长.【详解】解:根据题意,过点C 作CN ⊥AD ,交AD 延长线于点N ,如图:∵CM AB ⊥,CN ⊥AD ,∴∠N=∠CMB=90°,∵180B ADC ∠+∠=︒,180CDN ADC ∠+∠=︒,∴B CDN ∠=∠,∵AC 平分DAB ∠,∴CN=CM ,∴△CDN ≌△CBM ,∴DN=BM,CD=CB=2.5,∵AC=AC,∠N=∠CMA=90°,∴△ACN≌△ACM(HL),∴AN=AM=4,∴AD=4-DN,∴AB=4+BM=4+DN,∴四边形ABCD的周长为:4 2.5 2.5413AD DC CB AB DN DN+++=-++++=;故答案为:13.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,解题的关键是利用所学的知识,正确得到AD=4-DN,AB=4+DN.12.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,AB=10cm,则S△ABD=______.15cm2【分析】过点D作DE⊥AB于E根据角平分线的性质可得DE=CD根据三角形的面积公式即可求得△ABD的面积【详解】解:过点D作DE⊥AB于E∵AD是∠BAC的角平分线∠C=90°DE⊥AB∴解析:15cm2【分析】过点D作DE⊥AB于E,根据角平分线的性质可得DE=CD,根据三角形的面积公式即可求得△ABD的面积.【详解】解:过点D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB∴DE=DC,∵BC=8cm,BD=5cm,∴DE=DC=3cm,∴S△ABD=12·AB·DE=12×10×3=15(cm2),故答案为:15cm2.【点睛】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键. 13.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS 解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠. 在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△, ∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.14.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________【分析】过点作于作于利用平行线的性质可证得OM ⊥BD进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.15.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .(1)(2)(3)(4)【分析】在△ABC 中AB=ACAD 是△ABC 的平分线可知直线AD 为△ABC 的对称轴再根据图形的对称性逐一判断【详解】解:(1)∵在中是的角平分线∴∵∴∴∴平分故(1)正确;(解析:(1)(2)(3)(4)【分析】在△ABC 中,AB=AC ,AD 是△ABC 的平分线,可知直线AD 为△ABC 的对称轴,再根据图形的对称性,逐一判断.【详解】解:(1)∵在ABC 中,AB AC =,AD 是ABC 的角平分线,∴BAD CAD ∠=∠.∵DE AB ⊥,DF AC ⊥,∴ADE 90BAD ∠∠=︒-,ADF 90CAD ∠∠=︒-,∴ADE ADF ∠∠=, ∴DA 平分EDF ∠,故(1)正确;(2)由(1)可知,ADE ADF ∠∠=,在AED 和AFD 中,EAD FAD,AD AD,ADE ADF,∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AED AFD ASA ≅,∴AE AF =,DE DF =,故(2)正确;(3)在AD 上取一点M ,连结BM ,CM .在ABM 和ACM 中,AB AC BAD CAD AM AM =⎧⎪∠=∠⎨⎪=⎩∴()ABM ACM SAS ≅,∴BM CM =,故(3)正确;(4)在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS ≅.∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°在ADE 和ADF 中,AED=AFD BAD CAD AD AD ∠∠⎧⎪∠=∠⎨⎪=⎩∴()ADE ADF AAS ≅. ∵ABD ACD ≅∴∠ABC=∠ACB ,BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠BED=∠CFD在BED 和CFD △中,EBD FCD BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED CFD AAS ≅,∴图中共有3对全等三角形,故(4)正确.故答案为:(1)(2)(3)(4).【点睛】本题考查了等腰三角形的性质,利用三角形全等是正确解答本题的关键.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,射线OC 是∠AOB 的角平分线,D 是射线OC 上一点,DP ⊥OA 于点P ,DP =5,若点Q 是射线OB 上一点,OQ =4,则△ODQ 的面积是__________.10【分析】作DH ⊥OB 于点H 根据角平分线的性质得到DH=DP=5根据三角形的面积公式计算得到答案【详解】解:作DH ⊥OB 于点H ∵OC 是∠AOB 的角平分线DP ⊥OADH ⊥OB ∴DH=DP=5∴△OD解析:10【分析】作DH ⊥OB 于点H ,根据角平分线的性质得到DH=DP=5,根据三角形的面积公式计算,得到答案.【详解】解:作DH ⊥OB 于点H ,∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,∴DH=DP=5,∴△ODQ的面积=12×OQ×DH=12×4×5=10;故答案为:10.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,垂足为A,B,S△AOM=8cm2,OA=4cm,则MB=___.4cm【分析】根据求得AM的长度利用角平分线上的点到角两边的距离相等即可求解【详解】解:解得∵OM平分∠POQ∴故答案为:4cm 【点睛】本题考查角平分线的性质掌握角平分线上的点到角两边的距离相等是解解析:4cm【分析】根据12AOMS OA AM=⋅求得AM的长度,利用角平分线上的点到角两边的距离相等即可求解.【详解】解:114822AOMS OA AM AM=⋅=⨯=,解得4cmAM=,∵OM平分∠POQ,∴4cmMB AM==,故答案为:4cm.【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.19.如图,已知点(44)A-,,一个以A为顶点的45︒角绕点A旋转,角的两边分别交x轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,,综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.解析:(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒. ∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.22.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.解析:见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.23.如图,点C 在BE 上,AB ⊥BE ,DE ⊥BE ,且AB =CE ,AC =CD .判断AC 和CD 的关系并说明理由.解析:AC ⊥CD ,理由见解析【分析】根据条件证明△ABC ≌△CED 就得出∠ACD=90°,则可以得出AC ⊥CD .【详解】解:AC ⊥CD .理由:∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°.在Rt △ABC 和Rt △CED 中,AB CE AC CD =⎧⎨=⎩, ∴Rt △ABC ≌Rt △CED (HL ),∴∠A =∠DCE ,∠ACB =∠D .∵∠A+∠ACB =90°,∴∠DCE+∠ACB =90°.∵∠DCE+∠ACB+∠ACD =180°,∴∠ACD =90°,∴AC ⊥CD .【点睛】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.24.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.解析:【问题1】边边边(或SSS );【问题2】见解析【分析】问题1:根据三角形全等的SSS 定理解答;问题2:证明Rt △ONP ≌Rt △OMP ,根据全等三角形的性质证明即可.【详解】解:问题1:张老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS , 故答案为:SSS ;问题2:由作图得:OM ON =,PN OB ⊥,PM OA ⊥.∴90PNO PMO ∠=∠=︒.∴PNO 和PMO △是直角三角形.∵OP OP =,∴ONP OMP ≌.∴AOP BOP ∠=∠.∴OP 为AOB ∠的平分线.【点睛】本题考查了全等三角形的应用及基本作图的知识,同学们注意仔细审题,理解这些作角平分线的方法,按照题目意思解答.25.如图,点E 在线段BD 上,已知,,AB AC AD AE BE CD ===.(1)求证:BAC EAD ∠=∠.(2)写出123∠∠∠、、之间的数量关系,并予以证明.解析:(1)证明见解析;(2)312∠=∠+∠,证明见解析.【分析】(1)根据SSS 证BAE CAD ≅,推出 1BAE ∠=∠即可;(2)根据全等三角形性质推出1BAE ∠=∠,2ABE ∠=∠,代入 3BAE ABE ∠=∠+∠求出即可.证明:(1)∵在BAE △和CAD 中AE AD AB AC BE DC =⎧⎪=⎨⎪=⎩,∴()BAE CAD SSS ≌, ∴1BAE ∠=∠,∴1BAE EAC EAC ∠+∠=∠+∠,∴BAC EAD ∠=∠.(2)312∠=∠+∠,证明:∵BAE CAD △≌△,∴1BAE ∠=∠,2ABE ∠=∠,∵3BAE ABE ∠=∠+∠,∴312∠=∠+∠.【点睛】本题考查了全等三角形的性质和判定和三角形外角性质的应用,注意:全等三角形的对应角相等.26.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)解析:(1)作图见解析;(2)作图见解析.【分析】(1)根据题意,作一条长射线,在射线上连续截取a 和b 即可;(2)作射线OA ,通过截取角度即可得解.【详解】(1)作射线CF ,在射线上顺次截取CD=a ,DE=b ,如下图所示,线段CE 即为所求:(2)首先作射线OA ,如下图所示,∠AOB 即为所求:本题主要考查了尺规作图,属于基础题,熟练掌握尺规作图的相关方法是解决本题的关键.27.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.解析:(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C '; ③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
常州市正衡中学八年级数学上册第十二章《全等三角形》复习题(提高培优)
![常州市正衡中学八年级数学上册第十二章《全等三角形》复习题(提高培优)](https://img.taocdn.com/s3/m/9e41efef5f0e7cd18525364d.png)
一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .74.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 5.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°6.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =7.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 8.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:4 10.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 11.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80° 12.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .413.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等14.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL15.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等二、填空题16.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.17.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .18.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.19.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________20.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)21.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.22.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.23.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____24.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.25.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.26.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.三、解答题27.如图,点E 在线段BD 上,已知,,AB AC AD AE BE CD ===.(1)求证:BAC EAD ∠=∠.(2)写出123∠∠∠、、之间的数量关系,并予以证明.28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.29.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.30.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; ②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C '; ③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ; ④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠. ∴A O B '''∠就是所求作的角.。
常州市正衡中学八年级数学上册第十一章《三角形》复习题(提高培优)
![常州市正衡中学八年级数学上册第十一章《三角形》复习题(提高培优)](https://img.taocdn.com/s3/m/e9fa520b4693daef5ff73d4d.png)
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 3.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .114.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .65.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m6.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒7.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 8.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米9.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒10.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°11.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°12.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . 13.如图,王师傅用六根木条钉成一个六边形木框,要使它不变形,至少还要再钉上________根木条( )A .2B .3C .4D .514.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°15.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题16.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.17.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=______°.18.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.19.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.20.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.21.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.22.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.23.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.24.如图,在ABC 中,80B ∠=︒,BAC ∠和BCD ∠的平分线交于点E ,则E ∠的度数是______.25.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.26.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题27.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).28.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.29.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.30.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少.。
常州市正衡中学必修第一册第五单元《三角函数》测试题(有答案解析)
![常州市正衡中学必修第一册第五单元《三角函数》测试题(有答案解析)](https://img.taocdn.com/s3/m/d23f1a76dd3383c4ba4cd233.png)
一、选择题1.若将函数1()sin 223f x x π⎛⎫=+ ⎪⎝⎭图象上的每一个点都向左平移3π个单位长度,得到()g x 的图象,则函数()g x 的单调递增区间为( )A .3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,()44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C .2,()36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦2.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1523.将函数()22sin cos 23f x x x x =+的图象向右平移π6个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的一个对称中心是( )A .π,03⎛⎫⎪⎝⎭B .(π3C .π,06⎛⎫-⎪⎝⎭D .π36⎛-⎝ 4.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦5.函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6 C .4 D .26.设1cos 3x =-,则cos2x =( ) A .13B 22C .79D .79-7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭ 8.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()2303f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x 的最小正周期为π4.则上述说法正确的序号为( ) A .①④B .③④C .①②④D .①③④9.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-10.3tan 26tan 34tan 26tan 34++=( ) A .33B .3-C .3D .3-11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.将函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移4π单位,所得到的函数解析式是_________. 14.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:当04θ<<时,则我方必胜的排序是______.15.已知2sin 3x π⎛⎫-=⎪⎝⎭,则cos 6x π⎛⎫-= ⎪⎝⎭________. 16.设函数()cos 2sin f x x x =+,下述四个结论正确结论的编号是__________. ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点. 17.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 18.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 19.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 20.将函数()y f x =图象右移6π个单位,再把所得的图象保持纵坐标不变,横坐标伸长到原来的2倍得到sin 3y x π⎛⎫=-⎪⎝⎭,则6f π⎛⎫=⎪⎝⎭______. 三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间.22.已知函数2()2sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值.23.已知函数()21cos cos 2f x x x x =--. (1)求函数的最小正周期,及函数在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2)若()012f x =-,0ππ,42x ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.24.已知函数2()2sin )sin ()2f x x x x x ππ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围. 25.在①1cos 3B =,②2b =,ABC 的周长为8,③3c =,ABC 的外接圆半径为2,这三个条件中任选一个,补充到下面的问题中,并加以解答.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,2sin b a C =, ?求sin A .26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【分析】 求出()1sin 22g x x =-,令()322222k x k k Z +≤≤+∈ππππ即可解出增区间. 【详解】 由题可知()()111sin 2sin 2sin 223322g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦, 令()322222k x k k Z +≤≤+∈ππππ,解得()344k x k k Z ππππ+≤≤+∈, ∴()g x 的单调递增区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 故选:A.2.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠= ∴30PE DE PD CD ====∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .3.B解析:B 【分析】首先利用二倍角公式及辅助角公式将函数()f x 化简 ,再根据三角函数的变换规则求出()g x 的解析式,最后根据正弦函数的性质求出函数的对称中心;【详解】解:()22sin cos f x x x x =+())sin 2cos21f x x x ∴=+ ()sin 2f x x x ∴=()π2sin 23f x x ⎛⎫∴=++ ⎪⎝⎭将()f x 向右平移π6个单位长度得到()g x , ()ππ2sin 263g x x ⎡⎤⎛⎫∴=-+ ⎪⎢⎥⎝⎭⎣⎦()2sin 2g x x ∴=∴()g x的对称中心为()π2k k ⎛∈ ⎝Z , 当2k =时为(π. 故选:B.4.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.5.A解析:A 【分析】根据函数图象的对称性,可知交点关于对称中心对称,即可求解.【详解】由函数图象的平移可知,函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=. 故选:A 【点睛】关键点点睛:由基本初等函数及图象的平移可知1()11f x x=+-与()2sin 1g x x π=+都是关于(1,1)中心对称,因此图象交点也关于(1,1)对称,每组对称点的横坐标之和为2,由图象可知共8个交点,4组对称点.6.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈, 所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.D解析:D 【分析】根据()03f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】对于①:由()03f =知2tan 3ϕ=,即tan 3ϕ=,结合π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④. 故选:D .9.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+ ⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】利用三角函数图象的平移和伸缩变换即可得正确答案【详解】函数的图象上各点的纵坐标不变横坐标伸长到原来的倍得到再向右平移个单位得到故最终所得到的函数解析式为:故答案为: 解析:()sin f x x =【分析】利用三角函数图象的平移和伸缩变换即可得正确答案. 【详解】 函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍, 得到sin 4y x π⎛⎫=+⎪⎝⎭, 再向右平移4π个单位,得到sin sin 44y x x ππ⎛⎫=-+=⎪⎝⎭, 故最终所得到的函数解析式为:()sin f x x =. 故答案为:()sin f x x =.14.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案.【详解】 因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.15.【分析】由再结合诱导公式可得结果【详解】【点睛】方法点睛:利用诱导公式求值或化简时常用拼凑角常见的互余关系有:与与与等;常见的互补关系有:与与等;解析:3-【分析】 由2623x x πππ⎛⎫-=-- ⎪⎝⎭,再结合诱导公式可得结果. 【详解】22cos cos sin 6233x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】方法点睛:利用诱导公式求值或化简时,常用拼凑角,,常见的互余关系有:3πα+与6πα-,3πα-与6πα+,4πα-与4απ+等;常见的互补关系有: 3πα+与23πα-,4πα+与34πα-等; 16.①②③【分析】对①根据即可判断①正确对②根据函数和的最小正周期即可判断②正确对③首先得到再利用二次函数的性质即可判断③正确对④令解方程即可判断④错误【详解】对①因为函数的定义域为所以是偶函数故①正确解析:①②③ 【分析】对①,根据()()f x f x -=即可判断①正确,对②,根据函数cos 2y x =和sin y x=的最小正周期即可判断②正确,对③,首先得到()2192sin 48f x x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数的性质即可判断③正确,对④,令()cos 2sin 0f x x x =+=,解方程即可判断④错误. 【详解】对①,因为函数()f x 的定义域为R ,()()()cos 2sin =cos 2sin f x x x x x f x -=-+-+=,所以()f x 是偶函数,故①正确;对②,因为cos 2cos2y x x ==,最小正周期为π,sin y x =的最小正周期为π,所以函数()cos 2sin f x x x =+的最小正周期为π,故②正确; 对③,()2cos 2sin cos2sin 12sin sin f x x x x x x x =+=+=-+2192sin 48x ⎛⎫=--+ ⎪⎝⎭.因为0sin 1x ≤≤,当sin 1x =时,()f x 取得最小值为0,故③正确. 对④,令()cos 2sin 0f x x x =+=,即212sin sin 0x x -+=,解得sin 1x =或1sin 2x =-(舍去). 当[]0,2x π∈时,sin 1x =,解得2x π=或32x π=, 所以()f x 在[]0,2π上有2个零点.故④错误. 故选:①②③17.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.18.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 4x π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.19.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19- 【分析】由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-20.【分析】把的图象反过来变换可得的图象得然后再计算函数值【详解】把的图象上点的横坐标缩小为原来的纵坐标不变得的图象再向左平移个单位得∴故答案为:【点睛】结论点睛:本题考查三角函数的图象变换三角函数的图解析:2 【分析】 把sin 3y x π⎛⎫=- ⎪⎝⎭的图象反过来变换可得()f x 的图象,得()f x ,然后再计算函数值. 【详解】把sin 3y x π⎛⎫=- ⎪⎝⎭的图象上点的横坐标缩小为原来的12,纵坐标不变得sin 23y x π⎛⎫=- ⎪⎝⎭的图象,再向左平移6π个单位得sin 2sin 263y x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,∴()sin 2f x x =.sin 63f ππ⎛⎫= ⎪⎝⎭【点睛】结论点睛:本题考查三角函数的图象变换,三角函数的图象中注意周期变换与相位变换的顺序不同时,平移单位的变化.()y f x =向右平移ϕ个单位,再把横坐标变为原来的1ω倍得图象的解析式为()y f x ωϕ=+,而()y f x =的图象的横坐标变为原来的1ω倍,纵坐标不变,所得图象再向右平移ϕ个单位得图象的解析式为[]()y fx ωϕ=+.三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈ 【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解; (2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==, 最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)π;(2)最小值为1,最大值为4.【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 23.(1)π,最大值为0,最小值为32-;(2)1-. 【分析】(1)由二倍角公式和两角差正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的性质求解; (2)由(1)知,0π1sin 262x ⎛⎫-= ⎪⎝⎭,求得026x π-的范围后求得0πcos 26x ⎛⎫- ⎪⎝⎭,然后利用两角和的余弦公式求得0cos2x . 【详解】 (1)()21cos cos 2f x x x x =--1cos 21222x x +=--1sin 2cos 2122x x =--πsin 216x ⎛⎫=-- ⎪⎝⎭,故()f x 的最小正周期为2π2ππ2T w ===, 当π0,2x ⎡⎤∈⎢⎥⎣⎦,[]20,πx ∈,ππ5π2,666x ⎡⎤-∈-⎢⎥⎣⎦,∴()min 13sin 11622f x π⎛⎫=--=--=- ⎪⎝⎭, ()max 110f x =-=,∴()f x 的最大值为0,最小值为32-. (2)()00π1sin 2162f x x ⎛⎫=--=- ⎪⎝⎭ 0π11sin 21622x ⎛⎫⇒-=-= ⎪⎝⎭,∵0ππ,42x ⎡⎤∈⎢⎥⎣⎦,0π2,π2x ⎡⎤∈⎢⎥⎣⎦,0ππ5π2,636x ⎡⎤-∈⎢⎥⎣⎦,∴0πcos 262x ⎛⎫-=- ⎪⎝⎭, 故()00ππcos 2cos 266x x ⎛⎫=-+ ⎪⎝⎭00cos 2cos sin 2sin6666x x ππππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭112222=--⋅3144=--1=-.【点睛】关键点点睛:本题考查两角和与差的正弦、余弦公式,考查正弦函数的性质.解题方法是利用三角恒等变换公式化函数的一个角的一个三角函数形式(一次的):()sin()f x A x m ωϕ=++,然后利用正弦函数的性质求解()f x 的性质.三角函数求值时要注意已知角和未知角之间的关系,以确定先用什么公式及选用公式的顺序计算. 24.(1)最小正周期为π;(2)单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(3)[0,3].【分析】(1)逆用二倍角公式化简整理可得()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用2T ωπ=即可求得()f x 的最小正周期;(2)令26z x π=-,利用函数2sin 1y z =+的图像与性质,列出不等式,即可求得()f x 的单调递减区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦,可得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数的图像与性质,即可求得()f x 的取值范围.【详解】(1)由已知可得()1cos 2cos f x x x x =-+2cos 21x x =-+2sin 216x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期为22T ππ==. (2)令26z x π=-,函数2sin 1y z =+的单调递减区间是32,222k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .所以3222262k x k πππππ+≤-≤+,k ∈Z 得536k x k ππππ+≤≤+,k ∈Z . 所以()f x 的单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(3)因为20,3x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[0,3]f x ∈, 即()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围是[0,3]. 【点睛】本题考查二倍角公式的逆用,辅助角公式的应用,正弦型函数的单调区间、周期和值域问题,综合性较强,考查计算化简,数形结合的能力,考查整体性的思想,属基础题. 25.答案见解析. 【分析】利用正弦定理,作边化角,然后利用正弦的两角和与差的公式,再利用三角函数的诱导公式即可求解 【详解】 若选条件①,由正弦定理2cos b a C =可化为sin 2sin cos B A C =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =, 则()22cos cos()cos(2)cos 212sin 2sin 1B A C A A A A ππ=--=-=-=--=-,又1cos 3B =,所以212sin 13A -=,22sin 3A =,sin A =若选条件②,由正弦定理,2cos b a C =可化为sin 2sin cos B A C =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =, 因为ABC 的周长为8,2b =,所以3a c ==,由余弦定理可得2223231cos 2233A +-==⨯⨯,所以sin A =. 若选条件③,由正弦定理,2cos b a C =可化为sin 2sin cos B A C =, 又()B A C π=-+,所以sin()2sin cos A C A C +=,sin cos cos sin 2sin cos A C A C A C +=,sin cos cos sin 0A C A C -=,sin()0A C -=,因为0A π<<,0C π<<,所以A C ππ-<-<,0A C -=,A C =,所以a c =, 又3c =,所以3a =,因为ABC 的外接圆半径为2,所以34sin A =,所以3sin 4A =. 【点睛】本题考查正弦定理、正弦的两角和与差的公式以及三角函数的诱导公式,主要考查学生的运算能力,属于中档题 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-,所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-, 又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。
常州市正衡中学二年级数学上册第三单元《角的初步认识》单元测试题(有答案解析)
![常州市正衡中学二年级数学上册第三单元《角的初步认识》单元测试题(有答案解析)](https://img.taocdn.com/s3/m/d23bf7156529647d272852ca.png)
常州市正衡中学二年级数学上册第三单元《角的初步认识》单元测试题(有答案解析)一、选择题1.时针和分针形成的较小的角是直角时,时间可能是()。
A. 6时B. 12时C. 9时2.一个三角形的一个内角是直角的一半,另一个内角是直角的三分之一,这个三角形是()三角形。
A. 钝角B. 等腰C. 锐角3.钟面上9时整,时针和分针组成的角是()A. 锐角B. 钝角C. 直角4.下列图形中有两个直角的是()。
A. B. C.5.三时三十分,钟面上时针与分针之间的夹角为()A. 钝角B. 锐角C. 直角6.一个20度的角,在5倍的放大镜下,这个角是()。
A. 100度B. 50度C. 20度7.图中有()个直角。
A. 4B. 6C. 88.两个锐角的和()。
A. 比直角小B. 比直角大C. 等于直角D. 以上都有可能9.两条直线相交,如果其中一个是直角,那么其他三个是()角。
A. 锐角B. 直角C. 钝角10.一张长方形纸片,剪掉一个角,还剩()个角。
A. 3个B. 5个C. 3个,4个或5个11.下面的角中,()比直角大。
A. B. C.12.上午9时整,钟面上时针与分针所形成的角是()。
A. 锐角B. 钝角C. 直角D. 平角二、填空题13.在下面横线上填上“直角”“锐角”或“钝角”。
________________________________14.3时整,时针与分针所成的角是________角;10时整,时针和分针所成的锐角是________度.15.直角比钝角________。
16.红领巾上共有________个角,其中锐角有________个,钝角有________个。
17.把一张纸先上下对折,再左右对折,就能折出________个直角。
18.我们用的一个三角板有________个直角,________个锐角。
19.下图中,________是锐角,________是钝角。
A. B. C.20.下图中是锐角的是________,是钝角的是________。
常州市正衡中学必修五第二章《解三角形》测试题(有答案解析)
![常州市正衡中学必修五第二章《解三角形》测试题(有答案解析)](https://img.taocdn.com/s3/m/4022255369dc5022abea00be.png)
一、选择题1.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米2.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .43kmB .210kmC .10kmD .62km3.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =5cos A ,则a =( ) A .1 B . 5 C . 13D . 174.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .103kmD .53km7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知3a =,(2332)b ∈,,且223cos cos a b B b A =+,则cos A 的取值范围为( )A .[12,34] B .(12,34) C .[1324,34] D .(1324,34) 9.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .24B .22C .1D .2 10.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m11.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4312.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+B = ( )A .56π B .6π C .3πD .2π 二、填空题13.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C 的最小值是________.14.在ABC 中,2AB =,4AC =,则C ∠的取值范围为______.15.一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西45︒方向上,另一灯塔在南偏西60︒方向上,则该船的速度是____海里/小时.16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin C B =,则cos A =________.17.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.20.一渔船在A 处望见正北方向有一灯塔B ,在北偏东45方向的C 处有一小岛,渔船向正东方向行驶2海里后到达D 处,这时灯塔B 和小岛C 分别在北偏西30和北偏东15的方向,则灯塔B 和小岛C 之间的距离为___________海里.三、解答题21.已知在△ABC (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.在ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,221sin cos 22A B C +-=. (1)求角C ; (2)若2c =,4A π=,求ABC 的面积.23.ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,4c =,面积sin S bc B =. (1)若60C ∠=,求S ;(2)若S =ABC 的周长.24.在ABC 中,cos sin )sin cos B b C b B C -=.(1)求B ;(2)若2c a =,ABC 的面积为233,求ABC 的周长. 25.如图,在ABC 中,2AB =,3B π∠=,点D 在线段BC 上.(1)若4BAD π∠=,求AD 的长;(2)若3BD DC =,且23ABCS=sin sin BADCAD∠∠的值. 26.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量(sin ,),(1,sin )m A a n B ==(1)当2sin m n A =时,求b 的值;(2)当//m n 时,且1cos 2C a =,求tan tan A B 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:222212cos60803028030702AC AB BC AB BC =+-⋅︒=+-⨯⨯⨯=米,即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.2.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得362sin 223sin sin 75CD ADCAC DAC⋅∠===∠︒在BDC 中,由正弦定理得162sin 231sin 22CD BDCBC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22123312233112=+-⨯⨯=,所以10km AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.3.A解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A 25,运用余弦定理可求得边a . 【详解】因为b =2,c S cos A =12bc sin A A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A .所以a 2=b 2+c 2-2bc cos A =4+5-=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .5.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30sin120PB ==,即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c=, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=, B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形.故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.D解析:D 【分析】本题先求9c b=,再化简22222819cos 218b bc a b A bc +-+-==,接着求出22817545()42b b +∈,,最后求出cos A 的取值范围即可. 【详解】解:由题意有3a =,223cos cos a b B b A =+,由余弦定理得:2222222233232a c b b c a b b c bc+-+-=⋅+⋅⨯⨯,整理得:9bc = , 所以9c b=, 则22222819cos 218b bc ab A bc+-+-==.因为b ∈,所以2(1218)b ∈,,所以22817545()42b b +∈,, 则133cos (,)244A ∈. 故选:D. 【点睛】本题考查余弦定理,利用函数ky x x=+,(0k >)的单调性求范围,是中档题. 9.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.10.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC302sin 45203sin120BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.11.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角. 【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解.【详解】因为sin A ,sin C ,sin B 成等差数列, 所以2sin sin sin C A B =+, 由正弦定理得2c a b =+,所以()22222cos 122a b c a b c C ab ab+-+-==-, ()2222231112222a b c c c a b +-≥-=-=+⎛⎫⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.14.【分析】先根据三角形任意两边之和大于第三边求出的范围再结合余弦定理可以用表示求出的范围进而求得的取值范围【详解】解:在中内角的对边分别是由题意得即令所以所以根据导数与函数单调性的关系得:函数在上单调 解析:π0,6⎛⎤⎥⎝⎦【分析】先根据三角形任意两边之和大于第三边求出a 的范围,再结合余弦定理可以用a 表示cos C ,求出cos C 的范围,进而求得C ∠的取值范围.【详解】解:在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c , 由题意得2c =,4b =,b c a b c -<<+,即26a <<,2222123cos 2882a b c a a C ab a a+-+===+,令()382x f x x =+,所以()2221312'828x f x x x-=-=, 所以根据导数与函数单调性的关系得:函数()f x 在(2,上单调递减,在()上单调递增,所以当26x <<时,()f x 的取值范围为⎫⎪⎪⎣⎭.所以cos C ⎫∈⎪⎪⎣⎭又因为0πc <<, 所以π0,6C ⎛⎤∈ ⎥⎝⎦.故答案为:π0,6⎛⎤⎥⎝⎦.【点睛】本题考查余弦定理解三角形,三角形的性质,考查运算能力与化归转化思想,是中档题.15.【分析】由题意设得到然后在中利用正弦定理求解【详解】如图所示:设船的初始位置为半小时后行驶到两个港口分别位于和所以则设则在中所以利用正弦定理解得所以船速为故答案为:【点睛】本题主要考查正弦定理的实际解析:)101【分析】由题意,设BA x =,得到CA x =,然后在Rt BDA 中,利用正弦定理求解.【详解】 如图所示:设船的初始位置为A ,半小时后行驶到B ,两个港口分别位于C 和D , 所以45BCA ∠=︒,15CBD ∠=︒, 则30CDB ∠=︒, 设BA x =,则CA x =,在Rt BDA 中,10DA x =+. 所以利用正弦定理10sin 60sin 30x x+=︒︒,解得)531x =所以船速为))153110312÷=.故答案为:)1031【点睛】本题主要考查正弦定理的实际应用,还考查了运算求解的能力,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正 3 【分析】由sin 3sin C B =,根据正弦定理“边化角”,可得3=c b ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin 3sin C B =,根据正弦定理:sin sin b cB C=,∴ 3=c b , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:2222232cos 2c b a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:3cos A =.. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos 2cos 22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos 2cos 22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠; sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.18.【分析】由余弦定理直接进行计算即可得的值根据正弦定理可求结合大边对大角可求的值【详解】解:由余弦定理得:则由正弦定理可得:为锐角故答案为:【点睛】本题主要考查正弦定理余弦定理在解三角形中的应用考查计解析:6π 【分析】由余弦定理直接进行计算即可得b 的值,根据正弦定理可求sin C ,结合大边对大角可求C 的值.【详解】 解:4a =,2c =,60B =︒,∴由余弦定理得:22212cos 164242208122b ac ac B =+-=+-⨯⨯⨯=-=,则b =∴由正弦定理sin sin b cB C=,可得:2·sin 1sin 2c B C b ===, c a <,C 为锐角,6C π∴=.故答案为:6π. 【点睛】本题主要考查正弦定理,余弦定理在解三角形中的应用,考查计算能力.19.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.20.【分析】求得在三角形中利用余弦定理求得【详解】依题意画出图象如下图所示在三角形中由正弦定理得所以在中所以在三角形中由余弦定理得所以故答案为:【点睛】本小题主要考查正弦定理余弦定理解三角形属于中档题解析:【分析】求得,BD CD ,在三角形BCD 中利用余弦定理求得BC . 【详解】依题意,画出图象如下图所示,2AD =,301545BDC ∠=︒+︒=︒,903060BDA ∠=︒-︒=︒,45,180********CAD ACD ∠=︒∠=︒-︒-︒-︒=︒,在三角形ACD 中,由正弦定理得2sin 30sin 45CD=︒︒,所以CD = 在Rt ABD △中,906030ABD ∠=︒-︒=︒,所以24BD AD ==.在三角形BCD 中,由余弦定理得(222424cos458BC =+-⨯⨯︒=,所以BC =故答案为:【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.三、解答题21.(1)3π;(2)4+23.【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解. 【详解】 (1)∵3sin (A +B )=1+2sin 22C,且A +B +C =π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB ∠=sin3AB π=2×2=4,∴AB =23∵∠ACB =3π,∴∠ABC +∠BAC =23π, ∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π,在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠23sin34,∴BI =4sin (3π﹣θ),AI =4sin θ,∴△ABI 的周长为3(3π﹣θ)+4sin θ=3(32cos θ﹣12sin θ)+4sin θ=33θ+2sin θ=4sin (θ+3π)3∵0<θ<3π,∴3π<θ+3π<23π, ∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3故△ABI 的周长的最大值为3 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.(1)2C π=或3C π=;(2)333+或1. 【分析】(1)利用二倍角余弦公式可得22cos cos C C -=-,从而可得cos 0C =或1cos 2C =,即求.(2)由(1)知3C π=或2C π=,当3C π=时,利用正弦定理求出,a b ,再根据三角形的面积公式即可求解;当2C π=时,根据直角三角形即可求解.【详解】 (1)由221sincos 22A B C +-=,得222sin 2cos 12A BC +-=, 化简得222cos 12sin2A BC +-=-,即()22cos cos C A B -=+,即22cos cos C C -=-,即()cos 2cos 10C C -=,解得cos 0C =或2cos 10C -=. 即cos 0C =或1cos 2C =. 又0C π<<,所以2C π=或3C π=.(2)由(1)得3C π=或2C π=,当3C π=时,由正弦定理sin sin sin a b cA B C ==得,sin sin c a A C=⋅=3, 2sinsin 34c b B C ππ⎛⎫=⋅=- ⎪⎝⎭ 22sin cos cos sin3434ππππ⎫=-⎪⎭1222⎛⎫=--⨯=⎪⎝⎭⎦,故11sin 22ABC S ab C ===△;当2C π=时,由2c =,4A π=,得4B π=,a b ==因此11122ABC S ab ===△.综上,ABC 的面积是33+或1.23.(1;(2)4或4. 【分析】(1)利用三角形的面积公式可得出2a b =,利用余弦定理可求得b 、a 的值,再利用三角形的面积公式可求得S ;(2)由已知条件可得sin B =,由余弦定理得出2316cos 16b B b +=,结合22sin cos 1B B +=可求得b 的值,由此可得出ABC 的周长.【详解】(1)1sin sin 2S bc B bc A ==,所以,sin 2sin A B =,2a b ∴=,由余弦定理可得2222222162cos 423c a b ab C b b b b ==+-=+-=,3b ∴=,a =因此,11sin2223S ab C ===;(2)sin 4sin 3S bc B b B ===,可得sin 6B b=,2222316cos 216a c b b B ac b+-+==,由22sin cos 1B B +=可得222316116b b ⎛⎫++= ⎪⎝⎭⎝⎭,整理可得422748010880b b -+=,即()()223891340b b --=,解得b =或b =.当b =时,ABC 的周长为34a b c b c ++=+=;当b =时,ABC 的周长为34a b c b c ++=+=.综上所述,ABC 的周长为4或4. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.24.(1)3B π=;(2)2+.【分析】(1cos sin B b A =,根据正弦定理、三角形内角的性质,即可求B ;(2)由三角形面积公式求出a 、c ,再根据余弦定理求b ,即可求ABC 的周长. 【详解】(1)由cos sin )sin cos B b C b B C -=,得cos cos sin sin cos B b B C b B C -=,∴cos sin cos cos sin B b B C b B C =+cos sin()B b B C =+,∴cos sin B b A =.cos sin sin A B B A =,又sin 0A ≠,∴sin B B =,即tan B 0B π<<,∴3B π=.(2)由2,c a ABC =11sin 222ABCS ac B a a ==⨯⨯=解得a =2c a ==.由余弦定理2222cos b a c ac B =+-,可得2221242b =+-=⎝⎭⎝⎭,解得2b =. ∴ABC的周长为2233a b c ++=++=+ 【点睛】 关键点点睛:(1)利用三角恒等变换及正弦定理,将已知条件化简为一个内角的函数值,根据函数值确定角的大小.(2)综合应用正余弦定理求三角形的边,进而求其周长. 25.(1)AD =2)sin sin BADCAD∠∠=【分析】(1)利用正弦定理求解即可.(2)用余弦定理求出AC =sin 3sin 2BAD ACCAD ∠=∠,代入AC 值求解即可. 【详解】解:(1)∵sin sin AD ABB ADB=∠,且75ADB ︒∠=∴=∴AD =(2)∵1sin 23ABCA SB BC π==⋅⋅, 故算得4,3,1BC BD DC ===, 在ABD △中,利用正弦定理有32sin sin BAD ADB=∠∠,在ADC 中,有1sin sin AC DAC ADC =∠∠ ∴sin 3sin 2BAD AC CAD ∠=∠, ∵21416224122AC =+-⨯⨯⨯=,∴AC =∴sin sin BAD CAD∠∠=26.(1)1;(2)2.【分析】(1)由题意得sin sin 2sin m n A a B A =+=,即1sin sin a A B=,由正弦定理有:sin sin a b A B=,联立即可得解b 的值. (2)由平行条件得sin sin a A B =,由1cos 2C a =,则可得1cos cos 2A B a =,联立即可得解.【详解】解:(1)由题意得:sin sin 2sin m n A a B A =+=, 即得1sin sin a A B=, 在三角形中由正弦定理有:sin sin a b A B=, 由以上两式可知:1b =. (2)由平行条件得sin sin a A B =,1cos cos()sin sin cos cos 2C A B A B A B a =-+=-=, 则可得到:1cos cos 2A B a =, ∴sin sin tan tan 2cos cos A B A B A B ==.。
常州市正衡中学九年级数学下册第三单元《锐角三角函数》测试题(有答案解析)
![常州市正衡中学九年级数学下册第三单元《锐角三角函数》测试题(有答案解析)](https://img.taocdn.com/s3/m/8c6e1812a1c7aa00b52acbea.png)
一、选择题1.一段公路路面的坡度为i =1:2.4.如果某人沿着这段公路向上行走了260m ,那么此人升高了( )A .50mB .100mC .150mD .200m 2.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .123.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC 的顶点都在这些小正方形的顶点上,那么cos ∠ACB 值为( )A .355B .175C .35D .454.如图,河坝横断面迎水坡AB 的坡比为1:3,坝高BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m 5.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .55C .355D .956.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 7.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A 2B 26C 26D 13 9.如图,为测量瀑布AB 的高度,测量人员在瀑布对面山上的D 点处测得瀑布顶端A 点的仰角是30,测得瀑布底端B 点的俯角是10︒,AB 与水平面垂直.又在瀑布下的水平面测得27.0CG m =,17.6GF m =(注:C 、G 、F 三点在同一直线上,CF AB ⊥于点F ),斜坡20.0CD m =,坡角40ECD ∠=︒,那么瀑布AB 的高度约为( ).(精确到0.1m ,参考数据:3 1.73≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin100.17︒≈,cos100.98︒≈,tan100.18︒≈)A .44.8mB .45.4mC .47.4mD .114.6m 10.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .111.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .3⎛- ⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .3⎛- ⎝⎭D .21,3⎛⎫- ⎪⎝⎭12.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .125二、填空题13.01sin 4513(32018)6tan 302--+-+︒︒=________. 14.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.15.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)16.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.17.已知32<cosA <sin70°,则锐角A 的取值范围是_________ 18.已知在矩形ABCD 中,AC =12,∠ACB =15°,那么顶点D 到AC 的距离为_____. 19.在Rt △ABC 中,∠C =90°,如果tan ∠A =33,那么cos ∠B =_____. 20.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.三、解答题21.解答下列问题.(1)解方程:2670x x --=.(2)先化简,再求值:22211111a a a a +⎛⎫-÷⎪---⎝⎭,其中2cos30tan 45a =︒-︒. 22.计算:202( 3.14)1244sin 60π-+----︒.23.计算:()20120201232cos302π-⎛⎫----+︒ ⎪⎝⎭. 24.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.(参考数据:2=1.414,3=1.732)25.如图所示,ABC 中,45B ∠=︒,30C ∠=︒,22AB =.求BC 的长.26.门环,在中国绵延了数千多年的,集实用、装饰和门第等級为一体的一种古建筑构件,也成为中国古建“门文化”中的一部分,现有一个门环的示意图如图所示,点O 为正六边形 ABCDEF 的中心.(1)请用无刻度直尺与圆规,过点O 作一个⊙P ,使⊙P 与直线AF 和直线AB 同时相切.(请保留作图痕迹)(2)若正六边形 ABCDEF E 的边长为18cm ,试求(1)中⊙P 的半径.(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】已知了坡面长为260米,可根据坡度比设出两条直角边的长度,根据勾股定理可列方程求出坡面的铅直高度,即此人上升的最大高度.【详解】解:如图,Rt △ABC 中,tan A =12.4,AB =260米. 设BC =x ,则AC =2.4x ,根据勾股定理,得:x 2+(2.4x )2=2602,解得x =100(负值舍去).故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及勾股定理、三角函数的运用能力,难度不大,注意掌握坡度的定义及数形结合思想的应用.2.D解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】 本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 3.C解析:C【分析】如图,过点A 作AH BC ⊥于H .利用勾股定理求出AC 即可解决问题. 【详解】解:如图,过点A 作AH BC ⊥于H .在Rt ACH ∆中,4AH =,3CH =,2222435AC AH CH ∴=+=+=,3cos 5CH ACH AC ∴∠==, 故选:C .【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 4.A解析:A【分析】根据坡比的概念求出AC ,根据勾股定理求出AB .【详解】解:∵迎水坡AB 的坡比为13∴3BC AC =33AC = 解得,AC =3由勾股定理得,AB 22BC AC =+=6(m ), 故选:A .【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 5.A解析:A【分析】 根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解. 【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos 55sin 5θθ-=,∴5cos sin 5θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin 5θθ-=. 6.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.7.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键. 8.B解析:B【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABC S AC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.B解析:B【分析】如图,作DM ⊥AB 于M ,DN ⊥EF 于N ,在Rt △DCN 中,求出CN 即可得到FN 的长,由四边形DMFN 是矩形可得DM 的长,然后分别在Rt △ADM 和Rt △DMB 中,解直角三角形求出AM ,BM 即可解决问题.【详解】解:如图,作DM ⊥AB 于M ,DN ⊥EF 于N ,在Rt △DCN 中,CN =CD•cos40°≈20.0×0.77=15.4(米),∵CF =CG +GF =44.6(米),∴FN =CN +CF =60.0(米),易得四边形DMFN 是矩形,∴DM =FN =60.0(米),在Rt △ADM 中,AM =DM•tan30°=3 1.7360.060.0=34.633(米), 在Rt △DMB 中,BM =DM•tan10°≈60.0×0.18=10.8(米),∴AB =AM +BM =45.4(米),即瀑布AB 的高度约为45.4米,故选:B .【点睛】本题考查解直角三角形的应用—仰角俯角问题,坡度坡角问题等知识,解题的关键是灵活运用三角函数解决问题,属于中考常考题型.10.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312a 即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB≌△OEC∴DB=EC∴BDE的周长=DB+BE+DE= EC+BE+DE=BC+DE=a+DE ∴DE最小时BDE的周长最小∵DE=3OE∴OE最小时,DE最小而OE的最小值为OE′=3 6a∴DE的最小值为3×36a=12a∴BDE的周长的最小值为a+12a=1.5a,故④正确;综上:4个结论都正确,故选A.【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.11.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE '=⎧⎨=⎩∴Rt △ADE ≌Rt △AB′E (HL ),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan ∠∴点E 的坐标为(-1,3) 故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.12.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.二、填空题13.【分析】先计算特殊角的三角函数值化简绝对值零指数幂再计算实数的混合运算即可得【详解】原式故答案为:【点睛】本题考查了特殊角的三角函数值绝对值零指数幂实数的运算熟记各运算法则是解题关键解析:32+ 【分析】先计算特殊角的三角函数值、化简绝对值、零指数幂,再计算实数的混合运算即可得.【详解】原式1113)622-++=⨯⨯,21312322+=-++, 23232=++, 故答案为:32322++. 【点睛】 本题考查了特殊角的三角函数值、绝对值、零指数幂、实数的运算,熟记各运算法则是解题关键.14.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考 解析:205【分析】先画出图形,再根据坡度的可得12AC BC =,然后设AC x =米,从而可得2BC x =米,最后利用勾股定理求出x 的值,由此即可得出答案.【详解】 如图,由题意得:90C ∠=︒,100AB =米,1tan 2AC B BC ==, 设AC x =米,则2BC x =米,由勾股定理得:22AB AC BC =+,即()222100x x +=, 解得205x =(米),则205AC =米,即他上升的高度是205米,故答案为:205.【点睛】本题考查了勾股定理、解直角三角形的应用:坡度问题,掌握理解坡度的概念是解题关键.15.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F , 3sin 606332AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==, ∵13DE EC =, ∴9EC =,∵1193333222ABF S AF BF =⋅=⨯⨯=, 11273933222CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=,∴9327312330352.022ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法.16.8【分析】作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CHAH=CF 在Rt △ABH 中解直角三角形即可解决问题【详解】解:作AH ⊥BC 于H 则四边形AFCH 是矩形AF=CH 在Rt △ABE 中∠BAE=90解析:8【分析】作AH ⊥BC 于H ,则四边形AFCH 是矩形,AF=CH ,AH=CF. 在Rt △ABH 中,解直角三角形即可解决问题.【详解】解:作AH⊥BC于H,则四边形AFCH是矩形,AF=CH.在Rt△ABE中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt△ABH中,∠ABH=30°,3,BC=26∴BH=AB cos30°33=182∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题.17.20°<∠A<30°【详解】∵<cosA<sin70°sin70°=cos20°∴cos30°<cosA<cos20°∴20°<∠A<30°解析:20°<∠A<30°.【详解】∵3cosA<sin70°,sin70°=cos20°,∴cos30°<cosA<cos20°,∴20°<∠A<30°.18.3【分析】先利用三角函数的值分别求出AB及BC然后利用三角形ADC面积的两种表示形式可求出DE的长【详解】如图过点D作DE⊥AC于点E在这里先推导出sin15°的值:如图设中D是AC上一点则设则由题解析:3【分析】先利用三角函数的值分别求出AB及BC,然后利用三角形ADC面积的两种表示形式可求出DE的长.【详解】如图,过点D作DE⊥AC于点E,在这里先推导出sin15°的值:如图,设Rt ABC 中,A 15,C 90∠=︒∠=︒,D 是AC 上一点,BDC 30∠=︒,则ABD 15∠=︒,AD BD =,设BC x =,则AD BD 2x ==,DC 3x =,AC (32)x =+2222[(32)](62)AB AB BC x x ∴=+=+⨯+=+,BC 62sin15sin A AB 4(62)x x -∴︒====+由题意得:AB =AC sin ∠ACB =6﹣2,BC =62,S △ADC =12AD •DC =12AC •DE =9, ∴DE =3. 故答案为:3.【点睛】此题考查的是矩形的性质,解答本题的关键是根据∠ACB 的度数求出AB 及AC 的长,这要求我们熟练掌握三角函数值的求解方法.19.【分析】直接利用特殊角的三角函数值得出∠A=30°进而得出∠B 的度数进而得出答案【详解】∵tan ∠A=∴∠A=30°∵∠C=90°∴∠B=180°﹣30°﹣90°=60°∴cos ∠B=故答案为:【点解析:12【分析】直接利用特殊角的三角函数值得出∠A =30°,进而得出∠B 的度数,进而得出答案.【详解】∵tan ∠A 3 ∴∠A =30°,∵∠C =90°,∴∠B =180°﹣30°﹣90°=60°,∴cos ∠B =12.故答案为:12.【点睛】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.20.【分析】过点F作FI⊥BC于点I延长线IF交AD于J根据含30°直角三角形的性质可求出FIFJ和JH的长度从而求出HD的长度【详解】解:过点F作FI⊥BC于点BC延长线AD交AD于J由题意可知:CF解析:23【分析】过点F作FI⊥BC于点I,延长线IF交AD于J,根据含30°直角三角形的性质可求出FI、FJ 和JH的长度,从而求出HD的长度.【详解】解:过点F作FI⊥BC于点BC,延长线AD交AD于J,由题意可知:CF=BC=6,∠FCB=30°,∴FI=3,CI=33∵JI=CD=6,∴JF=JI-FI=6-3=3,∵∠HFC=90°,∴∠JFH+∠IFC=∠IFC+∠FCB=90°,∴∠JFH=∠FCB=30°,设JH=x,则HF=2x,∴由勾股定理可知:(2x)2=x2+32,∴3∴DH=DJ-JH=33323=故答案为:3【点睛】本题考查正方形的性质,涉及正方形的性质,勾股定理,旋转的性质,含30°的直角三角形的性质,本题属于中等题型.三、解答题21.(1)17x =,21x =-;(2)11a +. 【分析】 (1)因式分解法解一元二次方程即可;(2)先通分合并再约分化简为最简分式,求出a 的值,在代入计算求代数式的值即可.【详解】解:(1)2670x x --=,()()710x x -+=,则17x =,21x =-.(2)原式2221(1)(1)(1)a a a a a +--=⨯-+- 11a =+, 2cos30tan 45a =︒-︒21=1=,∴原式===【点睛】 本题考查一元二次方程的解法与分式化简求值,掌握一元二次方程的解法与分式化简求值的方法与步骤是解题关键.22.-7【分析】将原式依次利用乘方运算、零指数幂、绝对值的代数意义化简、特殊角的三角函数值计算进行化简,再计算即可得到结果.【详解】原式41(44=-+---34=--+34=--+7=-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.63- 【分析】 先计算负指数,零次幂,化去绝对值,与特殊三角函数再化简二次根式,合并同类项即可. 【详解】 ()20120201232cos302π-⎛⎫----+︒ ⎪⎝⎭ =4-1-23+3+3=6-3.【点睛】本题考查实数混合运算问题,关键掌握负指数,会用负指数计算,掌握零次幂的性质,能进行化简,掌握绝对值的意义,会利用绝对值意义去绝对值符号,记住特殊三角函数,能转化为,会化简二次根式为最简二次根式,会判断同类项,能合并同类项使问题得以解决.24.该文化墙PM 不需要拆除,见解析【分析】首先过点C 作CD ⊥AB 于点D ,则天桥高CD=6,由新坡面的坡度为1:3,可得tanα=tan ∠CAB=1333==,然后由特殊角的三角函数值来求AD ,BD 的长;由坡面BC 的坡度为1:1,新坡面的坡度为1:3,即可求得AD ,BD 的长,继而求得AB=AD-BD 的长,则可求得PA 答案.【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为1:3, ∴tanα1333==,∴α=30°.作CD ⊥AB 于点D ,则CD =6米, ∵新坡面的坡度为1:3,∴tan ∠CAD CD 61AD AD 3===, 解得,AD =63,∵坡面BC 的坡度为1:1,CD =6米,∴BD =6米,∴AB =AD ﹣BD =(3-6)米,又∵PB =8米,∴PA =PB ﹣AB =8﹣(3-6)=14﹣63≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM 不需要拆除.【点睛】此题考查了坡度坡角的知识.注意根据题意构造直角三角形,利用好坡比,会解直角三角形是关键.25.223BC =+【分析】如图,过A 点作AD ⊥BC 于D 点,把一般三角形转化为两个直角三角形,然后分别在两个直角三角形中利用三角函数,即可求出BC 的长度.【详解】解:过点A 作AD BC ⊥于点D ,如图所示.在Rt △ABD 中,90ADB ∠=︒,45B ∠=︒,22AB =∴2sin 222AD BD AB B ==⋅∠==. 在Rt ACD △中,90ADC ∠=︒,30C ∠=︒,2AD =,∴24AC AD ==,323CD == ∴223BC BD CD =+=+【点睛】本题主要考查了利用直角三角形解斜三角形,考查了三角函数的运用,解答本题的关键是熟练运用三角函数求解.26.(1)作图见解析;(2)⊙P 的半径为36354.【分析】(1)先过点O 作OM ⊥AF 交AF 于点M(或延长EF 、BA 交于点H ,作直线HO),然后作∠HOA 的角平分线OI 交AF 于点I ,再过点I 作IP//MO 交OA 于点P(或在KC 上截取KL=MI),最后以点P 为圆心,PO 长为半径作圆,⊙P 即为所求;(2)设OP=PI=r ,由题意可得23r ,在Rt △API 中,PA+PO=18,代入求解即可. 【详解】解:(1)第一步过点O 作OM ⊥AF 交AF 于点M(或延长EF 、BA 交于点H ,作直线HO) 第二步作∠HOA 的角平分线OI 交AF 于点I第三步过点I 作IP//MO 交OA 于点P(或在KC 上截取KL=MI)第四步以点P 为圆心,PO 长为半径作圆,⊙P 即为所求.(2)∵AF=18,∴AO=18,∠AOM=∠API=30°(△OAF为等边三角形),设OP=PI=r,PA=PI÷cos30°=233r,在Rt△API中,23r+=18 ,解得r=354.【点睛】本题考查解直角三角形和正多边形与圆的关系,掌握等边三角形的性质是解题的关键.。
常州市正衡中学中考数学填空题专项练习复习题(提高培优)
![常州市正衡中学中考数学填空题专项练习复习题(提高培优)](https://img.taocdn.com/s3/m/8ef9635cb0717fd5370cdc00.png)
一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为( )A .B .C .D .3.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .20194.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3π C .2π-12D .125.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A.①③B.②④C.②③D.③④6.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°7.下列函数中是二次函数的为()A.y=3x-1B.y=3x2-1C.y=(x+1)2-x2D.y=x3+2x-38.下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦9.以394cx±+=为根的一元二次方程可能是()A.230x x c--=B.230x x c+-=C.230-+=x x c D.230++=x x c 10.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y ﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件( ) A.1.2<x<1.3B.1.3<x<1.4C .1.4<x <1.5D .1.5<x <1.6 11.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36° B .54° C .72° D .108° 12.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)13.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°14.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形15.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .45二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____. 18.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O 的半径为______.19.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小. 20.若实数a 、b 满足a+b 2=2,则a 2+5b 2的最小值为_____.21.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____. 22.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.23.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20° 24.函数 2y 24x x =-- 的最小值为_____.25.某地区2017年投入教育经费2 500万元,2019年计划投入教育经费3 025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.三、解答题26.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.27.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?28.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=029.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?30.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.A4.A5.D6.D7.B8.C9.A10.C11.C12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系18.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:19.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质20.4【解析】【分析】由a+b2=2得出b2=2-a代入a2+5b2得出a2+5b2=a2+5(2-a)=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b221.-1-1【解析】【分析】设方程的另一根为t根据根与系数的关系得到2+t=-p2t=-2然后先求出t再求出p【详解】解:设方程的另一根为t根据题意得2+t=﹣p2t=﹣2所以t =﹣1p=﹣1故答案为:22.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=23.B【解析】试题分析:根据AE是⊙O的切线A为切点AB是⊙O的直径可以先得出∠BAD 为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B从而得到∠ADB的度数由题意得:∠BAD=90°∵∠B=∠24.-5【解析】【分析】将二次函数配方即可直接求出二次函数的最小值【详解】∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5∴可得二次函数的最小值为﹣5故答案是:﹣5【点睛】本题考查了二次函数的25.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.C解析:C 【解析】 【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线cy x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象, 可得a <0,b >0,c <0, ∴y=ax+b 过一、二、四象限,双曲线cy x=在二、四象限, ∴C 是正确的. 故选C . 【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3.A解析:A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解. 【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.4.A解析:A 【解析】 【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A. 【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.5.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.8.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.9.A解析:A【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】设x 1,x 2是一元二次方程的两个根,∵32x ±= ∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A.【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.10.C解析:C【解析】【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得.【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax 2+bx+c=0的一个解x 的取值范围为1.4<x <1.5.故选C .【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.C解析:C【解析】 正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C . 12.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.13.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.14.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.15.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m 根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系解析:2【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.18.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD ⊥AB 于点E ,∴DE=CE= 12CD= 12×8=4,∠OED=90°, 由勾股定理得:2222345OE DE +=+=,即⊙O 的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE 的长是解此题的关键.19.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质20.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4【解析】【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】∵a+b 2=2,∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4.故答案是:4.【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24. 21.-1-1【解析】【分析】设方程的另一根为t 根据根与系数的关系得到2+t=-p2t=-2然后先求出t 再求出p 【详解】解:设方程的另一根为t 根据题意得2+t =﹣p2t =﹣2所以t =﹣1p =﹣1故答案为:解析:-1 -1【解析】【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-p ,2t=-2,然后先求出t ,再求出p .【详解】解:设方程的另一根为t ,根据题意得2+t =﹣p ,2t =﹣2,所以t =﹣1,p =﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 22.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB ′,则线段BF 为所求的最短路线.设∠BAB ′=n °.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF=2263-=33,∴最短路线长为33.故答案为:33.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.23.B【解析】试题分析:根据AE是⊙O的切线A为切点AB是⊙O的直径可以先得出∠BAD为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B从而得到∠ADB的度数由题意得:∠BAD=90°∵∠B=∠解析:B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.24.-5【解析】【分析】将二次函数配方即可直接求出二次函数的最小值【详解】∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5∴可得二次函数的最小值为﹣5故答案是:﹣5【点睛】本题考查了二次函数的解析:-5【解析】【分析】将二次函数配方,即可直接求出二次函数的最小值.【详解】∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点睛】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.25.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10%【解析】【分析】设年平均增长率为x ,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x ,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.三、解答题26.(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析【解析】【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.27.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】【分析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得2236 2432.k bk b+=⎧⎨+=⎩解得280. kb=-⎧⎨=⎩∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.28.(1)x1=x2=32)x1=﹣2.5,x2=3【解析】【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2﹣6x ﹣6=0,∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3(2)2x 2﹣x ﹣15=0,(2x +5)(x ﹣3)=0,2x +5=0,x ﹣3=0,x 1=﹣2.5,x 2=3.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.29.(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】【分析】(1)设每次降价的百分率为a ,(1﹣a )2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a ,根据题意,得:50(1﹣a )2=32,解得:a =1.8(舍)或a =0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x 元,由题意,得(10+x )(500﹣20x )=6000,整理,得 x 2﹣15x +50=0,解得:x 1=5,x 2=10,因为要尽快减少库存,所以x =5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.30.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;
D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.
【详解】
解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.
∵E是AC的中点,∴S△AGE=S△CGE.
又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.
故答案为30.
【点睛】
本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.
故选:D.
【点睛】
此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
13.如图,△ABC中,E是AC的中点,延长BC至D,使BC:CD=3:2,以CE,CD为邻边做▱CDFE,连接AF,BE,BF,若△ABC的面积为9,则阴影部分面积是()
【答案】
【解析】
【分析】
根据角平分线的定义可得出∠CBF= ∠ABC、∠BCF= ∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.
【详解】
∵∠ABC、∠ACB的平分线BE、CD相交于点F,
∴∠CBF= ∠ABC,∠BCF= ∠ACB.
∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
17.如果一个多边形的内角和是1800°,这个多边形是( )
A.八边形B.十四边形C.十边形D.十二边形
【答案】D
【解析】
【分析】
n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.
【详解】
这个正多边形的边数是n,根据题意得:
(n﹣2)•180°=1800°
解得:n=12.
故选D.
【点睛】
本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.
常州市正衡中学数学三角形填空选择专题练习(解析版)
一、八年级数学三角形填空题(难)
1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.
【答案】30
【解析】
【分析】
由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.
A. B. C. D.不能确定
【答案】B
【解析】
如图,
∵等边三角形的边长为3,
∴高线AH=3×
S△ABC=
∴
∴PD+PE+PF=AH=
即点P到三角形三边距离之和为 .
故选B.
15.一个多边形的内角和是1260°,这个多边形的边数是( )
A.6B.7C.8D.9
【答案】D
【解析】
试题解析:设这个多边形的边数为n,
10.如图所示,请将 用“>”排列__________________.
【答案】
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】
解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A
∴∠2>∠1>∠A,
故答案为:∠2>∠1>∠A.
【点睛】
本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
【解析】
【分析】
①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;
②根据角平分线的定义和三角形外角的性质证明结论正确;
③根据垂直的定义和同角的余角相等的性质证明结论正确;
④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.
【详解】
解:①∵BD⊥FD,
∴∠FGD+∠F=90°,
∵FH⊥BE,
由题意可得:(n-2)×180°=1260°,
解得n=9,
∴这个多边形的边数为9,
故选D.
16.如图,将一张含有 角的三角形纸片的两个顶点叠放在矩形的两条对边上,若 ,则 的大小为()
A. B. C. D.
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.
故答案为:20°.
4.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF= (∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F= (∠BAC﹣∠C);其中正确的是_____.
【答案】①②③④
∴∠OBC+∠OCB= ×(∠ABC+∠ACB)= ×130°=65°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,
故答案为:115°.
【点睛】
本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB的度数.
7.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为( )
18.如下图,线段 是 的高的是()
A. B.
C. D.
【答案】D
【解析】
【分析】
根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.
【详解】
解:由图可得,线段BE是△ABC的高的图是D选项;
故选:D.
【点睛】
本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.
【详解】
设少加的2个内角和为x度,边数为n.
则(n-2)×180=830+x,
即(n-2)×180=4×180+110+x,
因此x=70,n=7或x=250,n=8.
故该多边形的边数是7或8.
故选C.
【点睛】
本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.
∵∠CBD=90°-∠C,
∴∠DBE=∠BAC-∠C-∠DBE,
由①得,∠DBE=∠F,
∴∠F=∠BAC-∠C-∠DBE,
∴∠F= (∠BAC-∠C);
故④正确,
故答案为①②③④.
【点睛】
本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键
5.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.
【答案】115°.
【解析】
【分析】
根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.
【详解】
解;∵∠A=50°,
∴∠ABC+∠ACB=180°﹣50°=130°,
∵∠B和∠C的平分线交于点O,
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
A.6B.4C.3D.2
【答案】A
【解析】
【分析】
根据三角形中位线性质结合三角形面积去解答.
【详解】
解:在 中,E是AC的中点, ,BC:CD=3:2
▱CDFE中,CD=EF
设 的高为 , 的高为
【点睛】
此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.
14.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )
19.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为( )
A.12B.15C.12或15D.18
【答案】B
∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣ (∠ABC+∠ACB)=120°.
故答案为120°.
【点睛】
本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.
9.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.
二、八年级数学三角形选择题(难)
11.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于 ,则该多边形的边数是( )
A.7B.8C.7或8D.无法确定
【答案】C
【解析】
【分析】
n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.
【答案】40°
【解析】
【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.