一元一次方程:水箱变高了练习题

合集下载

2023-2024学年北师大版七年级数学上册同步检测卷(附解析)5

2023-2024学年北师大版七年级数学上册同步检测卷(附解析)5

第五章一元一次方程5.3 应用一元一次方程-水箱变高了一、选择题1. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A. 54-x=20%×108B. 54-x=20%(108+x)C. 54+x=20%×162D. 108-x=20%(54+x)2. 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A. 22+x=2×26B. 22+x=2(26-x)C. 2(22+x)=26-xD. 22=2(26-x)3. 甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为()A. 4(x-1)=2013B. 4x-1=2013C. x+1=2013D. (x+1)=20134. 学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,设有x辆汽车,可列方程()A. 45x-28=50(x-1)-12B. 45x+28=50(x-1)+12C. 45x+28=50(x-1)-12D. 45x-28=50(x-1)+125. 我校初一所有学生参加2012年“元旦联欢晚会”,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A. 30x-8=31x+26B. 30x+8=31x+26C. 30x-8=31x-26D. 30x+8=31x-266. 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87第1页共9页C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=877. 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A. 6x+6(x-2000)=150000B. 6x+6(x+2000)=150000C. 6x+6(x-2000)=15D. 6x+6(x+2000)=158. 希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A. 2(x-1)+x=49B. 2(x+1)+x=49C. x-1+2x=49D. x+1+2x=499. 为创建园林城市,盐城市将对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔6米栽1棵,则树苗缺22棵;如果每隔7米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A. 6(x+22)=7(x-1)B. 6(x+22-1)=7(x-1)C. 6(x+22-1)=7xD. 6(x+22)=7x10. 一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x,依题意列方程为()A. 2x+4(70-x)=196B. 2x+4×70=196C. 4x+2(70-x)=196D. 4x+2×70=19611. 一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A. (1+50%)x×80%=x-28B. (1+50%)x×80%=x+28C. (1+50%x)×80%=x-28D. (1+50%x)×80%=x+2812. 甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A. 98+x=x-3B. 98-x=x-3C. (98-x)+3=xD. (98-x)+3=x-313. 甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是()A. 7x=6.5x+5B. 7x+5=6.5x第2页共9页C. (7-6.5)x=5D. 6.5x=7x-514. 某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A. (1+50%)x•80%-x=8B. 50%x•80%-x=8C. (1+50%)x•80%=8D. (1+50%)x-x=815. 王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()A. 2500(1+x)=2650B. 2500(1+x%)=2650C. 2500(1+x•80%)=2650D. 2500(1+x•20%)=2650二、填空题16. 某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列方程为______.17. 小明与家人和同学一起到游泳池游泳,买了2张成人票与3张学生票,共付了155元.已知成人票的单价比学生票的单价贵15元,设学生票的单价为x元,可得方程______.18. “比a的2倍小3的数等于a的3倍”可列方程表示为:______.19. 一台电脑的进价为2000元,原标价为3000元,现打折销售,要使利润率保持20%,那么需要在原标价的基础上打几折?设需要打x折.可列方程为______.20. 七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为______.三、解答题21. 在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)第3页共9页。

5.3 应用一元一次方程---水箱变高了

5.3 应用一元一次方程---水箱变高了

5.3 应用一元一次方程---水箱变高了一.选择题(共9小题)1.(2019秋•萧山区期末)有一个不完整圆柱形玻璃密封容器如图①,测得其底面半径为a ,高为h ,其内装蓝色液体若干.若如图②放置时,测得液面高为12h ;若如图3放置时,测得液面高为23h .则该玻璃密封容器的容积(圆柱体容积=底面积×高)是( )A .5π24a 2ℎB .5π6a 2ℎC .56a 2ℎD .53aℎ 2.(2020春•密山市期末)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm 2,请你根据图中标明的数据,计算瓶子的容积是( )cm 3.A .80B .70C .60D .503.(2019秋•庐阳区期末)如图,小刚将一个正方形纸片剪去一个宽为5cm 的长条后,再从剩下的长方形纸片上剪去一个宽为6cm 的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为( )A .215cm 2B .250cm 2C .300cm 2D .320cm 24.(2019秋•苍溪县期末)将一根长为12cm 的铁丝围成一个长与宽之比为2:1的长方形,则此长方形的面积为( )A .2cm 2B .4.5cm 2C .8cm 2D .32cm 25.(2020秋•定远县月考)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积是()A.1280 cm3B.2560 cm3C.3200 cm3D.4000 cm3 6.(2019秋•天津期末)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()cm2.A.400B.500C.300D.7507.(2019秋•焦作期末)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.9 m2B.25 m2C.16 m2D.4 m2 8.(2020秋•盐池县期末)一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为()A.6cm B.7cm C.8cm D.9cm 9.(2019秋•巩义市期末)一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm二.填空题(共11小题)10.(2019秋•金凤区校级期末)从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.11.(2020秋•南岗区期末)如图,在一块长为a米,宽为10米的长方形草地上,修建两条宽为2米的长方形小路,若这块草地的绿地面积(图中空白部分)为144平方米,则a =.12.(2020秋•青山区期末)如图,用一块长5cm、宽2cm的长方形纸板,和一块长4cm、宽1cm的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则拼成的大正方形的面积是cm2.13.(2020秋•薛城区期末)如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为厘米2.(1毫升=1立方厘米)14.(2019秋•雁塔区校级期末)如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,则剪下的长条的面积之和为.15.(2019秋•武侯区期末)如图,甲、乙两个等高圆柱形容器,内部底面积分别为20cm2,50cm2,且甲中装满水,乙是空的若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了3cm,则甲、乙两容器的高度均为.16.(2019秋•东阳市期末)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.17.(2019春•方城县期中)如图,由6个正方形A、B、C、D、E、F拼成一个长方形,已知位于中间的最小正方形A的面积为1,那么所拼成的这个长方形的面积是.18.(2019秋•太仓市期末)实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56c c m,则开始注入分钟的水量后,甲与乙的水位高度之差是16cm .19.(2019春•孟津县期中)如图,A 、B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以6dm 3/min 的流量从水箱B 中抽水注入水箱A 中,当水箱A 与水箱B 中的水的体积相等时,两水箱中水位的高度差(抽水水管的体积忽略不计) .20.(2019秋•瑞安市月考)如图1,有一个长方形被分割成了6个大小不同的正方形,其中最小正方形的边长是3,则该长方形的长是 ;将同一个长方形作如图2分割,分割成左上角的长方形G 、右下角的长方形H 以及7张长宽相同的小长方形M (小长方形M 如图3所示),当长方形G 与长方形H 的周长相等时,小长方形M 的宽是 .三.解答题(共3小题)21.(2020春•新蔡县期中)如图所示,长方形纸片的长为15厘米,在这张纸片的长和宽上各剪去一个宽为3厘米的纸条,剩余部分(阴影部分)的面积是60平方厘米,求原长方形纸片的宽.22.(2020秋•拱墅区校级期中)如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm,倒放时,空余部分的高度为5cm(如图).现把溶液全部倒在一个底面直径为8cm的圆柱形杯子里.求:(1)瓶内溶液的体积.(2)圆柱形杯子溶液的高度是多少?23.(2020秋•南岗区校级月考)一个长方体玻璃容器,从里面量长为3分米,宽为2分米,高4分米.向容器中倒入9升水,再把一个苹果放入水中,苹果完全浸没在水中,这时测得容器内的水面的高度是18厘米.这个苹果的体积是多少?。

5.3应用一元一次方程——水箱变高了同步练习含答案

5.3应用一元一次方程——水箱变高了同步练习含答案

5.3 应用一元一次方程——水箱变高了预习感知1.等体积变化:同一物体外形发生了变化,但变化前后的____不变.2.等周长变化:用同一根铁丝围成不同的图形中,形状与大小不同,但____不变.3.等面积变化:在剪切、拼接、割补等图形变化中,图形变化前后的____不变.4.小明在一次登山活动中捡到一块矿石,回到家后,他使用一把刻度尺、一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积,如果他量出玻璃杯的内直径是d ,把矿石完全浸没在水中,测出杯中水面上升的高度为h ,则小明的这块矿石体积是( ) A.2π4d h B.2π2d h C.2πd h D.24πd h A.基础训练达标区1.从一个底面半径是10cm 的凉水杯中,向一个底面半径为5cm ,高为8cm 的空玻璃杯中倒水,当玻璃杯水倒满后,凉水杯的水面将下降( )A.8cmB.2cmC.5cmD.4cm2.用一根铁丝围成一个长24cm ,宽12c m 的长方形,现将它拉成正方形,则这个正方形的边长是( )A.9cmB.10cmC.18cmD.20cm3.要锻造直径为60mm ,高为30mm 的圆柱体钢坯,需截取直径为40mm 的圆柱体钢坯的高为( )A.67.5mmB.45mmC.135mmD.90mm4.将一个底画积为232cm ,高为24cm 的长方体金属熔铸成一个底面长6cm ,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm .5.直径是4cm 的钢丝100m ,可拉成直径为4mm 长为____m 的钢丝.6.甲、乙两个图形的面积之和是2150cm ,面积之比为7:3,则较大图形的面积是____2cm .7.(教材P142随堂练习变式)小彬家的墙上钉着一个用彩绳围成的三角形(如图中实线所示),小彬通过移动钉子,把它变成一个等边三角形.(如图中虚线所示),则这个等边三角形的边长为______.10658.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就成了一个正方形,求这个长方形的面积.9.已知一梯形的高为8cm ,上底长为14cm ,下底长比上底长的2倍少6cm ,若把这个梯形改成与其面积相等的正方形,求这个正方形的周长.B.综合训练提升区10.教室前面的墙长为6米,高是长的一半,现在需要粉刷的面积是15平方米,那么黑板的面积是( )A.2平方米B.3平方米C.4平方米D.5平方米11.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为280cm 、2100cm ,且甲乙容器等高,甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,乙中的水位高度比原先甲的水位高度低了8cm ,则甲的容积为( )A.31280cmB.32560cmC.33200cmD.34000cm12.甲、乙两个容器的容积之比为2:5,它们的容积之差是330dm,则这两个容器的容积分别是____3dm和____3dm.13.用一根绳子可围成边长为5cm的正方形,如果用它围成一个长8cm的长方形,则长方形的宽是____cm.14.用直径为4cm的圆柱形钢材,铸造成三个直径为2cm,高为16cm的圆柱形零件,问需要截取多长的圆柱形钢材?15.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?16.下图所示是两个长方体的容器,它们的长、宽分别为40cm、30cm和30cm、20cm,高分别为60cm和40cm,我们先在小容器中倒满水,然后将其倒入大容器中,问:倒完以后,大容器中的水面离容器口有多少厘米?C.创新拓展区17.用一根60厘米长的铁丝围成一个长方形.(1)使长方形的宽是长的23,求这个长方形的长和宽;(2)使长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1)、(2)所得两个长方形的面积的大小,还能围出面积更大的长方形吗?5.3 应用一元一次方程—水箱变高了预习感知1.体积2.周长3.面积4.AA.基础训练达标区1.B2.C3.A4.325.100006.1057.78.设这个长方形的长为cm x ,则宽为262cm 2x -, 依题意得262122x x --=+,解得8x =, ∴宽为26285cm 2-⨯=, ∴这个长方形的面积为28540cm ⨯=.9.设这个正方形的边长为cm x ,则()2121461482x ⨯⨯-+⨯=⎡⎤⎣⎦, 2144x ∴=,12x ∴=,∴这个正方形的周长为12448cm ⨯=.B.综合训练提升区10.B 11.C 12.20 50 13.214.设需要截取cm x 长的圆柱形钢材,根据题意得:2242π3π1622x ⎛⎫⎛⎫=⨯ ⎪ ⎪⎝⎭⎝⎭,解得12x =, 即需要截取12cm 长的圆柱形钢材.15.设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .16.设大容器内水的高度为cm x ,则4030302040x ⨯=⨯⨯,20x =,602040cm ∴-=,即水面离容器口40cm .C.创新拓展区17.(1)设长方形的长为cm x ,则宽为2cm 3x , 根据题意,得22603x x ⎛⎫+= ⎪⎝⎭,解得18x =,2123x =, 答:长方形的长和宽分别是18cm 和12cm .(2)设长方形的长是cm x ,则宽为()4cm x -.根据题意,得()2460x x +-=⎡⎤⎣⎦,解得17x =,413x -=,此时长方形的面积为()21713221cm ⨯=.答:长方形的面积为2221cm .(3)当长方形的长为18cm 、宽为12cm 时,长方形的面积为()21812216cm ⨯=; 当长为17cm 、宽为13cm 时,长方形的面积为()21713221cm ⨯=; 当长为16cm 、宽为14cm 时,长方形的面积为()21614224cm ⨯=;当长为15cm 、宽为15cm 时,长方形的面积为()21515225cm ⨯=. 相比较可知,(2)中所得长方形的面积较大,当长、宽都为15cm 时,面积最大. 由此可知,当周长一定,长和宽相等时,长方形(即正方形)的面积最大.。

北师大版七年级数学上册《应用一元一次方程——水箱变高了》同步练习2-精品

北师大版七年级数学上册《应用一元一次方程——水箱变高了》同步练习2-精品

应用一元一次方程—水箱变高了
一、选择题
1.要锻造直径为2厘米,高为16厘米的圆柱形机器零件10件,则需直径为4厘米的圆柱钢长( )
A .10厘米
B .20厘米
C .30厘米
D .40厘米
2.一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加2 cm ,长方形就变成了正方形,则正方形的边长为( )
A. 6 cm
B.7 cm
C.8 cm
D.9 cm
3.请根据图中给出的信息,可得正确的方程是( ) A. ()5262822+∙⎪⎭
⎫ ⎝⎛∙=⎪⎭⎫ ⎝⎛∙x x ππ
B.
()5262822-∙⎪⎭⎫ ⎝⎛∙=⎪⎭⎫ ⎝⎛∙x x ππ C. ()56822+∙∙=∙x x ππ
D. 56822∙∙=∙ππx
二、填空题
1.一块长、宽、高分别为4cm,3cm,2cm 的长方体橡皮泥,要用它来捏一个底面半径为2
3cm 的圆柱,若圆柱的高是xcm,则可列方程 .
2.把一个半径为3的铁球融化后,能铸造________个半径为1的小铁球.(球体积公式为:334r V π=)
三、解答题
如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm 的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?
5.3应用一元一次方程—水箱变高了
一、选择题
1.D
2.B
3. A
二、填空题 1.24232=∙⎪⎭⎫ ⎝⎛∙x π 2. 27
三、解答题
1.解:设容器内的水将升高xcm ()()x x +∙=+∙+⨯∙12101221210222πππ 解得:2
3=x 答:容器内的水将升高23cm。

2022年《应用一元一次方程——水箱变高了》专题练习(附答案)

2022年《应用一元一次方程——水箱变高了》专题练习(附答案)

5.3 应用一元一次方程——水箱变高了一、选择题(每题4分,共12分)1.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出了这块矿石的体积.如果他量出玻璃杯的内直径是d,把矿石完全浸没在水中,测出杯中水面上升的高度为h,那么小明的这块矿石体积是( )A.d2hB.d2hC.πd2h πd2h2.小明用长250cm的铁丝围成一个长方形,并且长方形的长比宽多25cm,设这个长方形的长为x cm,那么x等于( )A.75 cmB.50 cmC.137.5 cmD.112.5 cm 出的信息,可得正确的方程是( )A.π·()2x=π·()2·(x+5)B.π·()2x=π·()2·(x-5)C.π·82x=π·62(x+5)D.π·82x=π·62×5二、填空题(每题4分,共12分)4.一根内径为3cm的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8cm、高为1.8cm的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了cm.5.用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,那么需要截取的圆钢长cm.6.用5个一样大小的小长方形恰好可以拼成如下图的大长方形,假设大长方形的周长是14,那么小长方形的长是,宽是.答案解析1.【解析】选A.根据圆柱的体积公式可得这块矿石的体积为:d2h.2.【解析】选A.根据题意得:2(x+x-25)=250,解得:x=75.3.【解析】式求得大量筒中的水的体积为:π×()2x.小量筒中的水的体积为:π×()2×(x+5).根据等量关系列方程得:π×()2x=π×()2(x+5).4.【解析】设试管中的水的高度下降了xcm,根据题意得:π·2·x=π·42×1.8,解方程得:x=12.8.答案:5.【解析】设截取的圆钢长xcm.根据题意得:π×()2x=3×π×()2×16,解方程得:x=12.答案:126.【解析】设小长方形的宽为x,那么长为2x,由题意得:(5x+2x)×2=14,解方程得x=1,即小长方形的宽为1,长为2.答案:2 1第2课时 多项式与多项式相乘一、填空题〔每题3分,共24分〕1.假设a b c x x x x =2008x ,那么c b a ++=______________.2.(2)(2)a b ab --=__________,2332()()a a --=__________.3.如果2423)(a a a x =⋅,那么______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式〔一定成立的等式〕,请根据右图写出一个代数恒等式是:________________.7.假设3230123(2)x a a x a x a x -=+++,那么220213()()a a a a +-+的值为 .8.:A =-2ab ,B =3ab 〔a +2b 〕,C =2a 2b -2ab 2 ,3AB -AC 21=__________. 二、选择题〔每题3分,共24分〕9.以下运算正确的选项是〔 〕.A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=10.如果一个单项式与3ab -的积为234a bc -,那么这个单项式为〔 〕. A .14ac B .214a c C .294a c D .94ac 11.计算233[()]()a b a b ++的正确结果是〔 〕.A .8()a b +B .9()a b +C .10()a b +D .11()a b +12.长方形的长为〔a -2〕cm ,宽为〔3a +1〕 cm ,那么它的面积是多少?〔 〕.A .2(352)a a cm --B .2(352)a a cm -+C .2(352)a a cm +-D .2(32)a a cm +-13.以下关于301300)2(2-+的计算结果正确的选项是〔 〕.A .3003013003016012(2)(2)(2)(2)+-=-+-=-B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+14.以下各式中,计算结果是2718x x +-的是〔 〕.A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++15.以下各式,能够表示图中阴影局部的面积的是〔 〕.①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有①B .①和②C .①、②和③D .①、②、③、④16.:有理数满足0|4|)4(22=-++n n m ,那么33m n 的值为〔 〕. A.1 B.-1 C. ±1 D. ±2三、解答题〔共52分〕17.计算:〔1〕3243-ab c 2⎛⎫ ⎪⎝⎭ 〔2〕()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭18.解方程:2(10)(8)100x x x +-=-19.先化简,再求值:〔1〕()()()2221414122x x x x x x ----+-,其中x =-2.〔2〕()()()()5.0232143++--+a a a a ,其中a =-3.20.一个长方形的长为2xcm ,宽比长少4cm ,假设将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.〔1〕计算后填空:()()=++21x x ; ()()=-+13x x ; 〔2〕归纳、猜测后填空:()()()()++=++x x b x a x 2〔3〕运用〔2〕猜测的结论,直接写出计算结果:()()=++m x x 2 .用这种方法不仅可比大小,也能解计算题哟! 22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题.例 假设x =123456789×123456786,y =123456788×123456787,试比拟x 、y 的大小.解:设123456788=a ,那么()()2122x a a a a =+=---,()21y a a a a ==--, ∵()()222x y a a a a =-----=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:假设x =20072007200720112007200820072010⨯-⨯,y =20072008200720122007200920072011⨯-⨯,试比拟x 、y 的大小.参考答案一、填空题1.2007 2.2242a b ab -+、12a - 3.18 4.214a -5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b --二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题〔共56分〕17.〔1〕3612278a b c - 〔2〕3324510323x y x y xy -++ 18.2281080100x x x x -+-=-,220x =-,∴10x =-.19.〔1〕324864x x x +--,8 〔2〕26a --,020.(23)(21)x x +--2(24)x x -=2(4623)x x x +---2(48)x x -=2244348x x x x +--+=123x -答:增大的面积是(123)x cm -.21.〔1〕232x x ++、223x x +- 〔2〕a b +、ab 〔3〕2(2)2x m x m +++ 拓广探索22.设20072007=a ,x =(4)(1)(3)a a a a +-++=224(43)a a a a +-++=-3, y =(1)(5)(2)(4)a a a a ++-++=2265(68)a a a a ++-++=-3,∴x =y .。

5.3 应用一元一次方程-水箱变高了(分层练习)(解析版)

5.3 应用一元一次方程-水箱变高了(分层练习)(解析版)

第五章 一元一次方程5.3 应用一元一次方程--水箱变高了精选练习一、单选题1.(2021·黑龙江·绥棱县教师进修学校期末)三角形三边比是3:4:5,周长是72,那么,最长边是( )A .30B .24C .18D .122.(2023·福建·泉州五中三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B.7x +4 = 9x -8C .4879x x +-=D .4879x x -+=【答案】B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.3.(2022·全国·七年级课时练习)在一个底面直径为6cm ,高为9cm 的圆柱形瓶内注水,使水柱的高为5cm ,向瓶中放入一块长、宽、高分别为2cm ,2cm ,4cm 的长方体铁块,则此时水柱的高为( )(p 取3)A .559cmB .14527cmC .539cmD .15127cm4.(2022·四川·三台博强蜀东外国语学校七年级阶段练习)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为210cm ,请你根据图中标明的数据,计算瓶子的容积是( )3cm .A .80B .70C .60D .50【答案】C 【分析】据“空余容积+水的体积=瓶子的容积”和圆柱的体积公式作答.【详解】解:由左图知,水体积为40 cm 3,在左图中用v 表示瓶子的体积,空余容积为(v-40)cm 3;由右图知空余容积为()751020-´= cm 3,由左右两图得到的空余容积应相等得方程:v-40=20.v=40+20=60故选择:C .【点睛】本题考查列一元一次方程解应用题,掌握列一元一次方程解应用题的方法,关键是分析图形信息找等量关系.5.(2021·湖南·宁远县启慧学校七年级阶段练习)甲乙两桶共有48千克水,如果甲桶给乙桶加乙桶水的一倍,然后乙桶又给甲桶加甲桶剩余水的一倍,那么两桶水的质量相等,问原来甲、乙两桶内各有多少千克水?若设原来乙桶内水的质量为x 千克,则可列方程为( )A .()()()24848x x x x x x --=+---B .()()()2[48248[]48]x x x x x --=----C .()()()2484848x x x x x x --=+----D .()()()()484848x x x x x x x x --++=+----【答案】A【分析】利用列表法,逐渐分析计算判断即可.【详解】根据题意,列表得:根据题意,得()()()24848x x x x x x --=+---,故选A.【点睛】本题考查了一元一次方程的应用,熟练运用列表法分析变化规律,寻找等量关系是解题的关键.6.(2021·陕西·无七年级期末)为了保护生态环境,某山区县将该县某地一部分耕地改为林地,改变后林地和耕地面积共有180平方千米,其中耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则根据题意,列出方程正确的是( )A .18025%x x-=B .()25%180x x =-C .180225%x +=D .180225%x -=【答案】B【分析】首先理解题意找出题中存在的等量关系:林地面积+耕地面积=180km 2,耕地面积是林地面积的25%,若设耕地面积为x 平方千米,则林地面积为(180-x)平方千米,再由耕地面积是林地面积的25%,列方程即可.【详解】解:设耕地面积为xkm 2,则林地面积应该表示为()180x -平方千米,依题意得,()25%180x x =-故选:B【点睛】此类题目的解决需仔细分析题意,找准关键描述语:林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%.进而利用方程即可解决问题.二、填空题7.(2022·江苏·南京民办求真中学七年级阶段练习)比例的两个内项分别为2和5,两个外项分别为x 和2.5,则x 的值为_______.【答案】4【分析】根据比例的基本性质:内项之积等于外项之积,列方程求解即可.【详解】解:由题意得:25 2.5x ´=,解得:4x =,故答案为:4.【点睛】本题考查比例的基本性质:内项之积等于外项之积.8.(2022·湖北襄阳·七年级期末)根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )的销售瓶数的比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装_______大瓶.【答案】20000【分析】设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据大小消毒液的总重量为22.5吨=22500000克建立方程求出其解即可.【详解】解:设每份为x 瓶,则大瓶销售了2x 瓶,小瓶销售了5x 瓶,根据题意得:2x ×500+5x ×250=22500000,解得x =10000,所以大瓶销售了:2×10000=20000瓶,故答案是:20000.【点睛】本题考查了运用比例问题的设每份为未知数的方法建立方程求解的运用,一元一次方程的解法的运用,解答时运用设间接未知数降低解题难度是关键.9.(2022·全国·七年级课时练习)将一根底面积为28.26平方厘米,高为10厘米的圆柱形铁块锻压成底面积为78.5平方厘米的“胖”铁块,此时的高为____________.【答案】3.6厘米.【分析】设“胖”铁块的高为x 厘米,根据锻造前的体积=锻造后的体积列方程求解即可.【详解】设“胖”铁块的高为x 厘米,由题意得78.5x=28.26×10,解之得x=3.6.故答案为3.6厘米.【点睛】本题考查了几何图形中一元一次方程的应用,根据“锻造前的体积=锻造后的体积”得到等量关系是解决本题的关键.10.(2022·全国·七年级课时练习)如图,一个尺寸为3604(´´单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34´为底面)时,箱中液体的高度是________dm .【答案】45.【分析】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm ,根据等积法列方程求解即得.【详解】设当此铁箱竖起来(以34´为底面)时,箱中液体的高度是x dm由题意得:3603=43x´´´´解得:45x =答:当此铁箱竖起来(以34´为底面)时,箱中液体的高度是45dm故答案为:45.【点睛】本题考查了一元一次方程实际问题,解题关键是熟知前后液体体积不变.三、解答题11.(2021·全国·七年级课时练习)第一块试验田的面积比第二块试验田的3倍还多2100m ,这两块试验田共22900m ,两块试验田的面积分别是多少?【答案】第一块试验田面积为22200m ,第二块试验田面积为2700m .【分析】首先设第二块实验田面积是2m x ,则第一块实验田的面积23100m x +,再根据两块实验田面积总和是22900m ,列出方程即可.【详解】解:设第二块实验田面积是2m x ,由题意得:31002900x x ++=,解得:2700m x =,第一块实验田的面积:237001002200m ´+=.答:两块试验田的面积分别是2700m ,22200m .【点睛】本题主要考查了一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,再列出方程.12.(2022·全国·七年级专题练习)墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?【答案】长为16cm ,宽为10cm .【分析】设长方形的长为cm x ,由梯形与长方形的周长相等列方程可得2(10)10462x +=´+´,再解方程可得答案.【详解】解:设长方形的长为cm x ,根据题意,得2(10)10462x +=´+´.25220,x \=-解得:16,x =所以长方形的长为16cm ,宽为10cm .一、填空题1.(2022·全国·七年级专题练习)根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,则这些消毒液分装成的这两种产品中有______瓶大瓶产品.【答案】20000【分析】设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程求出x,则可知大瓶的数量【详解】换算单位:22.5t=22.5×1000×1000g设大瓶有2x瓶,小瓶有5x瓶,根据题意列方程,得500·2x+250·5x=22.5×1000×1000,解得x=100002x=20000∴大瓶有20000瓶.故答案为:20000【点睛】本题考查了列一元一次方程解应用题,一般情况下题目中出现比值问题,通常设每份为x,掌握以上方法是解题的关键.2.(2022·全国·七年级课时练习)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.3.(2021·湖北·武汉外国语学校(武汉实验外国语学校)七年级期末)如图,将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形.若灰色长方形的长与宽之比为7:3,试求AD:AB的值.【答案】9:4【分析】可设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,因为将长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形,可表示出灰色长方形的长和宽,进而求出大长方形的长和宽,从而可求解.【详解】解:设灰色长方形的长上摆7x个小正方形,宽上摆3x个小正方形,根据“长方形ABCD分割成1个灰色长方形与204个面积相等的小正方形”可知:2(7x+3x)=204-4,解得:x=10,则灰色长方形的长上摆了70个小正方形,宽上摆了30个小正方形,∴AD=72个小正方形的边长,AB=32个小正方形的边长,∴AD:AB=72:32=9:4.【点睛】此题考查理解题意能力及一元一次方程的应用,关键是看到灰色长方形的周长和204个小正方形的关系从而求解.4.(2022·全国·七年级专题练习)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.【答案】()103530x x +-=【分析】设清酒x 斗,则醐洒酒为(5-x )斗,一斗清酒价值10斗谷子,x 斗清酒价值10x 斗谷子;一斗醐洒酒价值3斗谷子,(5-x )斗醐洒酒价值3(5-x )斗谷子.存在“换x 斗清酒和(5-x )斗醐洒酒共用30斗谷子”的等量关系,根据等量关系可列方程.【详解】解:设清酒x 斗,则醐洒酒为(5-x )斗.()103530x x +-=.故答案为:()103530x x +-=.【点睛】本题主要考查了一元一次方程的实际应用,准确分析出数量关系和等量关系是解决本题的关键.5.(2022·重庆·黔江区育才初级中学校七年级期中)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植A 、B 、C 三种经济作物增加收入,经过一段时间,该村已种植的A 、B 、C 三种经济作物的面积之比为3:2:4,单位面积产值之比为1:2:2,为了进一步提高该村的经济收入,将在该村余下土地上继续种植这三种经济作物,经测算需将余下土地面积的16种植C 经济作物,则C 的种植总面积将达到这三种经济作物种植总面积的38,且A 、B 、C 三种经济作物的总产值提高了13,则该村还需种植A 、B 两种经济作物的面积之比是__________.二、解答题6.(2022·全国·七年级)一圆柱形桶内装满了水,已知桶的底面直径为a,高为b.又知另一长方体形容器的长为b,宽为a,若把圆柱形桶中的水倒入长方体形容器中(水不溢出),水面的高度是多少?7.(2022·全国·七年级课时练习)用一根长为10m的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?8.(2022·全国·七年级专题练习)有一个盛水的圆柱体玻璃容器,它的底面直径为12cm(容器厚度忽略不计),容器内水的高度为10cm.(1)如图1,容器内水的体积为______3cm(结果保留p).(2)如图2,把一根底面直径为6cm,高为12cm的实心玻璃棒插入水中(玻璃棒完全淹没于水中),求水面上升的高度是多少?(3)如图3,若把一根底面直径为6cm,足够长的实心玻璃棒插入水中,求水面上升的高度是多少?。

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。

一元一次方程应用题水箱变高了题型

一元一次方程应用题水箱变高了题型

一、概述水箱变高了是一个常见的一元一次方程应用题,它涉及到数学在实际生活中的应用,对于学生来说具有一定的教育意义。

在解决这类问题时,需要运用一元一次方程的知识,通过设立未知数、建立方程式、解方程等步骤来求解问题。

本文将通过具体的例题分析,帮助读者更好地理解并掌握解决这类问题的方法。

二、问题描述某地区的一个水箱的水位原来是30米,后来升高了h米。

经过一段时间,水箱的水位降低到了原来的一半,那么水箱升高了多少米?三、问题分析1. 设定未知数:我们可以设未知数x表示水箱升高的高度。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程来求解出水箱升高的高度x。

四、具体步骤1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程求出x的值。

4. 检验答案:将得到的结果代入原方程中进行检验。

五、具体计算1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程30 + x = 60 + 2x - 2h,得到x = 30 - 2h。

4. 检验答案:将x = 30 - 2h代入方程30 + x = 2(30 + x - h)中进行检验:30 + (30 - 2h) = 2 * [30 + (30 - 2h) - h]化简得到:30 + 30 - 2h = 60 + 60 - 4h - 2h化简得到:60 - 2h = 120 - 6h化简得到:4h = 60化简得到:h = 15六、问题解答根据计算,水箱升高了15米。

七、总结通过上述的步骤,我们成功地解决了水箱变高了的一元一次方程应用题。

在解决这类问题时,关键在于正确地建立方程式,然后通过解方程的方法求解未知数。

为了确保解答正确,还需要对得到的结果进行检验。

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为().A.150 mm B.200 mm C.250 mm D.300 mm 2.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣23.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A.23﹣x=2(17+20﹣x)B.23﹣x=2(17+20+x)C.23+x=2(17+20﹣x)D.23+x=2(17+20+x)4.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350650x x+-=+D.120350506x x+-=+5.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;①60m+10=62m+8;①1086062n n-+=;①1086062n n+-=中,其中正确的有()A.① ①B.① ①C.① ①D.① ①6.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B .1136434x x +=C .143643x x +=D .133644x x +=7.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x 人,则可列方程为( )A .13(100)1003x x +-=B .33(100)100x x +-=C .13(100)1003x x +-=D .1(100)1003x x +-=8.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48D .48+x=2×549.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.用一根铁丝围成一个长24cm ,宽12cm 的长方形,现将它拉成正方形,则这个正方形的边长是( ) A .9cm B .10cmC .18cmD .20cm评卷人 得分二、填空题 11.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米.12.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程______.14.某部队开展植树活动,甲队35 人,乙队27 人,现另调28 人去支援,使两队的人数相等,设应调往甲队x 人,依题意列方程为___________15.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.某车间原计划用13小时生产一批零件,后来每小时多生产10个,用了12小时,不但完成了任务,而且还多生产零件60个,设原计划每小时生产零件x个,则可列方程为_______.18.将一个底画积为232cm,高为24cm的长方体金属熔铸成一个底面长6cm,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm.19.甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm.评卷人得分三、解答题20.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?21.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.23.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?24.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)25.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?参考答案:1.B【解析】【详解】试题分析:设内径为120 mm玻璃杯的内高为x mm.由题意本题的等量关系为两个圆柱形玻璃杯容积相同,则可列方程组π×1502×32=π×602x,解得即可.解:设内径为120 mm玻璃杯的内高为x mm.由题意得π×1502×32=π×602x,解得x=200(mm).即内径为120 mm玻璃杯的内高为200 mm.故选B.2.B【解析】【详解】根据题意可得:长方形的宽为(13-x)cm,根据题意可得:x-1=(13-x)+2.故选B.考点:一元一次方程的应用3.C【解析】【分析】设应调往甲处x人,则调往乙处(20-x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应调往甲处植树x人,则调往乙处植树(20﹣x)人,根据题意得:23+x=2(17+20﹣x).故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.D【解析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:1203 50506x x+-=+,故选:D.【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键.5.A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:108 6062n n-+=,故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.6.B【解析】【分析】设和尚的个数为x位,根据共有三百六十四只碗,三人共餐一碗饭,四人共尝一碗羹列出方程.【详解】设和尚的个数为x位.可列方程11364 34x x+=;故答案为B.本题考查由实际问题列一元一次方程,解题的关键是理解题意找出等量关系列方程. 7.A 【解析】 【分析】根据题意, 大和尚有x 人,共分馒头3x 个,小和尚有()100x -人,3人分1个,每人分13个,共分()11003x -个,再根据大小和尚得到的馒头之和为100,列出方程. 【详解】解:设大和尚有x 人,则小和尚有()100x -人, 据题意得,13(100)1003x x +-=.故选:A. 【点睛】本题主要考查一元一次方程解决问题中的分配问题,理解题意,找到数量关系是解答关键. 8.A 【解析】 【详解】解:设从乙班调入甲班x 人,则乙班现有48﹣x 人,甲班现有54+x 人.此时,甲班人数是乙班的2倍,所以所列的方程为:54+x =2(48﹣x ),故选A . 9.A 【解析】 【分析】利用两种不同栽法的总路程都是某一段公路的一侧的长,总长度等于(棵数-1)×每两棵之间的距离,列方程即可 【详解】解:设原有树苗x 棵,每隔5米栽1棵,则树苗缺21棵; 5(x+21-1), 每隔6米栽1棵,则树苗正好用完.6(x-1), 由题意得:5(211)6(1)x x+-=-.故选A.【点睛】本题考查列一元一次方程解应用题,抓住等量关系两种不同栽法总长度一样,总长度=(棵数-1)×每两棵之间的距离列方程是解题关键.10.C【解析】【详解】设正方形的边长为xcm,依题意有24×2+12×2=4x,解得x=18,故正方形的边长为18cm.11.30【解析】【详解】试题分析:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据锻造前后体积不变列方程求解即可.解:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据题意得20×20x=40×30×10,解得x=30(厘米).故答案为30.12.2【解析】【详解】试题分析:设要用长1.6米、宽1.2米的长方形红纸x张,求出x张长方形红纸的面积,根据等量关系:长方形红纸做成三角形小旗后总面积不变,列方程求解即可.解:设要用长1.6米、宽1.2米的长方形红纸x张,则长方形红纸面积为1.6×1.2x平方米,做成的三角形小旗总面积为12×0.4×0.3×64平方米,根据题意得1.6×1.2x=12×0.4×0.3×64,解得x=2.故答案为2.13.7 4 x-【解析】【详解】设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,96x+=74x-.14.35+x=27+(28-x)【解析】【分析】设应调往甲队x人,乙队(28-x)人,根据人数相等可得.【详解】设应调往甲队x人,乙队(28-x)人.由题意得:35+x=27+(28-x),故答案为:35+x=27+(28-x)【点睛】考核知识点:一元一次方程应用.理解题意是关键.15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:①糯米做成年糕的过程中重量会增加20%,①a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键. 16.35【解析】【详解】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.解得x=35故答案为35.17.12(x+10)=13x+60.【解析】【详解】解:设原计划每小时生产零件x个,则实际每小时生产零件(x+10)个.根据等量关系列方程得:12(x+10)=13x+60.故答案为12(x+10)=13x+60.点睛:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,然后再列出方程.18.32【解析】【详解】设这个长方体零件毛坯的高是xcm,由题意得:32×24=6×4×x,解得x=32,故答案为32.19.105【解析】【详解】设较大图形的面积为x2cm,则较小图形的面积为(150-x)2cm,由题意得:x:(150-x)=7:3,解得x=105,即较大图形的面积是1052cm20.小赵的设计符合要求.按他的设计养鸡场的面积是143米2.【解析】【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断.【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).【点睛】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.x =60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;①有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解22.11110024x x x x++++=【解析】【详解】试题分析:根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.试题解析:解:设这群羊有x只,根据题意得:x+x+12x+14x+1=100.23.飞机票价格应是1200元.【解析】【详解】试题分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.试题解析:解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200.答:飞机票价格应是1200元.24.(1)填表见解析;(2)﹣10x+15000;(3)﹣130x+3900=0.【解析】【详解】试题分析:(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.试题解析:解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为﹣(3)140x +150(100﹣x )+200(70﹣x )+80(x +10)=25900,整理得:﹣130x +3900=0. 点睛:此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键 25.每一个长条的面积都是2320cm .【解析】【详解】试题分析:经分析显然要设正方形的边长是xcm .根据“两次剪下的长条面积正好相等”这一关系列出方程即可.试题解析:设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .。

北师大版七年级数学上册《应用一元一次方程——水箱变高了》典型例题(含答案)

北师大版七年级数学上册《应用一元一次方程——水箱变高了》典型例题(含答案)

《应用一元一次方程——水箱变高了》典型例题例1用内径为90毫米的圆柱形玻璃杯装满水,向一个底面积为131×131(毫米)2,内高为81毫米的长方体容器倒水,玻璃杯里的水恰好倒满该容器,问玻璃杯的内高是多少( 取3.14)。

例2现有铁篱笆120米,靠墙围成一个长方形菜地(墙可做菜地的一个长边,其他三面用铁篱笆围成),要使菜地的长是宽的2倍,则菜地的长和宽各是多少米。

例3如图“□”“△”“○”各代表一种物质,其质量的关系由下面两个天平给出,如果“○”的质量是一千克,求“□”和“△”的质量.例4一个长方形如图所示,恰好分成六个正方形,其中最小的正方形面积cm,求这个长方形的面积.是12例5某农民准备利用一面旧墙围一长方形鸡舍,他编好了6米竹篱笆,考虑三种方案.(1)要使长比宽多0.6米,此时长方形的长和宽及面积各是多少?(2)要使长比宽多0.3米,此时长方形的长和宽及面积各是多少?(3)要使长和宽相等,此时长方形的边长是多少米?参考答案例1 分析 由题意可知,有如下相等关系:圆柱形玻璃杯的容积=长方体容器的容积若把玻璃杯的内高用x 表示出来,就可以得方程。

解 设玻璃杯的内高是x 毫米,依题意,得 81131131)290(2⨯⨯=⨯x π 解方程,得 61.218≈x答:玻璃杯的内高大约是218.61毫米。

说明:在列一元一次方程解应用题时,设和答必须标明单位,而解出的x 是一个数不需要再标单位。

如上题是61.218≈x ,不要写成61.218≈x 毫米。

例2 分析 由题意可知,相等关系是:某地的长边+菜地的宽×2=120米题中又给出了长和宽的关系,易得方程。

解 设菜地的宽是x 米,则菜地的长就是2·x 米,依题决,得12022=+x x 解方程,得 30=x所以602=x答:菜地的长是60米,宽是30米。

说明:这题给出了墙是菜地的长边,可得上面方程,如果没有说明墙是长边,还是宽,我们就必须分两种情况进行讨论。

北师大版 七年级数学上册5.3应用一元一次方程——水箱变高了同步练习

北师大版 七年级数学上册5.3应用一元一次方程——水箱变高了同步练习

5.3应用一元一次方程—水箱变高了考点内容:1、等积变形问题2、等长变形问题知识点一等积变形问题(重点)等积变形:指的是图形或物体的形状发生变化,但变化前后的体积或面积不变,等积变形问题中的等量关系:变化前图形的面积或物体的体积=变化后图形的面积或体积。

易错:等积变形问题中涉及求圆柱体积问题时,会用到圆柱底面半径,读题时要看清题目所给的条件是直径还是半径。

考核角度1:利用等积变形解决锻造问题练习:例题1 用直径为4cm的圆柱形钢铸造3个直径为2cm,高为16cm的圆柱形零件,需要截取多长的圆柱形钢?例题2 某厂要锻造长、宽、高分别为260mm,150mm,130mm的长方体毛坯,需要截取横截面面积为130×130mm2的方钢多长?(不计损耗)例题3 要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取半径为4cm的圆柱形钢的高度为多少?例题4一个长方体合金长80cm、宽80cm、高100cm,现要锻压新的长方形,使其底面积为边长是40cm的正方形的高为多少?例题5 有一个长、宽、高分别是15cm,10cm,30cm的长方体钢锭,现将它锻压成一个底面为正方形,且边长为15cm的长方体钢锭,求锻压后长方形钢锭的高。

(忽略锻压过程中的损耗)例题6 将一个底面积为28.26cm2,高为10cm的铁块锻压成底面积为78.5cm2的“胖”铁块,此时铁块的高为多少?考核角度2:利用等积变形解决容器注水问题练习:例题1 将装满水的底面直径为40cm,高为60cm的圆柱形水桶里的水全部灌于另一个底面直径为50cm的圆柱形水桶(水不会溢出),这时水面的高度是多少厘米?例题2 一个长方形水箱,从里面量长、宽、高分别为40cm,30cm和30cm,水箱中水面高10cm,放进一个棱长为20cm的正方形铁块后,铁块顶面仍高于水面,这时水面高多少厘米?例题3 将内径为12cm的圆柱形杯子装满水后倒入内径为30cm,内高为3.2cm的圆柱形容器里刚好倒满,求杯子的内高?(注:内径是指内圆的直径)例题4 在水平桌面上有甲、乙两个圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的。

一元一次方程:水箱变高了练习题

一元一次方程:水箱变高了练习题

一元一次方程应用题水箱变高了一、水箱变高了:圆柱的体积=2π⨯⨯半径高例1:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m 。

那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?等量关系:旧水箱的容积=新水箱的容积根据等量关系,列出方程:()()224x ππ⨯⨯=⨯⨯解得:x= 答:变式练习:将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱锻压成底面直径是10厘米的“瘦长”形圆柱,高变成了多少?这个问题中的等量关系是: 解:例2:用一根长为10m 的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m ,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m ,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比、面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?例3:(1)小明的爸爸想用10米铁线在墙边围成一个鸡棚,使长比宽大4米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?(2)若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?课后练习:1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。

2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。

若将它围成一个正方形,则这个 正方形的面积是( ) A 、81cm² B 、18cm² C 、324cm² D 、326cm²3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的32,设水箱容积为x 立方厘米,则可列方程_________________.4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)3.填空:长方形的周长=_________. 面积=__________ .长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:1.将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如下的等量关系:锻压前的体积=锻压后的体积.解:设锻压后圆柱的高为x米,填写下表:根据等量关系,列出方程:___________________________________________.解得x_______________.答:高变成了__________厘米.2.用一根长为l0米的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4米,此时长方形的长为________米,宽为_________米.(2)使得该长方形的长比宽多0.8米,此时长方形的长为_______米,宽为_____米,它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是______米,它所围成的面积与(2)中相比又有什么变化?二:典例讲练例1.请根据图5—3—2中给出的信息,可得正确的方程是( ) 【跟踪练习】1.长方形的长是宽的3倍,如果宽增加了4 m,而长减少了5 m,那么面积增加15㎡,设长方形原来的宽为x m,则所列方程是()2.一块矩形草坪的长比宽多l0米,它的周长是132米,求宽x.所列的方程是( )3.如图5—3—3,把一个长方形分成大小不等的6个小正方形,已知中间的最小的正方形的边长为1厘米,求这个长方形的面积.解:设正方形A的边长为x厘米,则99x正方形B的边长为________厘米;正方形C的边长为________厘米;正方形D的边长为________厘米;正方形E的边长为________厘米.由题意可得方程:______________________.解得x= ________,答:长方形的面积为___________平方厘米.【当堂达标】7.用直径为120 mm的圆钢铸造成5.9㎏的工件,已知每立方厘米的圆钢重7.8g,这样需截取圆钢的长是多少㎜?解题时,设需要截圆钢的长为x mm,那么下面列方程正确的是( )8.为了做一个试管架,在长为a cm(a>6 cm)的木板上钻3个小孔(如图5—3—4),每个小孔的直径为2cm,则x等于( )9.已知一个三角形三条边长的比为2:4:5,最长边比最短边长6㎝,则这个三角形的周长为( ) A.21㎝B.22㎝C.23㎝D.24㎝10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图5—3—8实线所示.小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图5—3—8虚线所示.小颖所钉长方形的长、宽各为___________________厘米?11.要锻造直径为16厘米、高为5厘米的圆柱形毛坯.设需截取边长为6厘米的方钢x厘米,可得方程为___________________________.12.(2012.山西)图5—3—5是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图5—3—5所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________.13·一个底面半径为4㎝,高为10㎝的圆柱形烧杯中装1 cm高的水.把烧杯中的水倒入底面半径为1㎝的圆柱形试管中,刚好倒满试管.问试管的高为多少㎝?三:巩固练习一、选择题1.周长为68的长方形ABCD被分成7个全等的长方形,如图5—3—6所示,则长方形ABCD的面积为( )A .98B .196C .280D .284 2.用长为20米的铁丝围成一个长方形方框,使长为6.2 米,宽为x 米,则可列方程为 ( )3.一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加 2 cm ,长方形就变成了正方形,则正方形的边长为( )A .6 cmB .7 cmC .8 cmD .9 cm4.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒人一一个底面直径为lo cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为 ( )A .6 cmB .8 cmC .10 cmD .12 cm 二、填空题5.三角形三边长之比为7:5:4,若中等长度的一边长的两倍比其它两边长的和少3 cm ,则三角形的周长为_________________________.6.将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的32,设水箱容积为x 立方厘米,则可列方程_________________. 7.将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.8.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:㎝)如图5—3—7所示.则三个几何体的体积和为_____________3cm .(计算结果保留π)三、解答题9.将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖’’形圆柱,高变成了多少?四、拓展应用10.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是多少?。

应用一元一次方程—水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册

应用一元一次方程—水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册

5.3应用一元一次方程——水箱变高了同步练习题2021-2022学年北师大版七年级数学上册A组(基础题)一、填空题1.(1)要锻造直径为16 cm、高为5 cm的圆柱形毛坯,设需截取横截面边长为6 cm的方钢(横截面为正方形的钢材)x cm,则可得方程为________________.(2)一个长方体合金底面长为80 mm、宽为60 mm、高为100 mm,现要锻压成新的长方体合金,其底面是边长为40 mm的正方形,则新长方体合金的高为_____________.2.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x人,可列方程为_____________.3.(1)李红用40 cm长的铁丝围成一个长方形,要使长方形的长比宽多4 cm.设宽为x cm,则可列方程为_____________,围成的长方形的面积为_____________.(2)如图,小明将一个正方形纸片剪去一个宽为4 cm的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm的长条.如果两次剪下的长条面积正好相等,那么原来的正方形的面积是_______cm2.4.有一艘轮船的载重量是800吨,容积是795立方米.现要装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,则生铁装_______吨、棉花装_______吨才能充分利用船的载重量和容积.二、选择题5.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( ) A.面积与周长都不变化B.面积相等但周长发生变化C.周长相等但面积发生变化D.面积与周长都发生变化6.根据图中给出的信息,可得正确的方程是( )A .π×(82 )2×x =π×(62 )2×(x +5) B .π×82×x =π×62×5C .π×(82 )2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)7.有一个底面半径为10 cm 、高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6 cmB .8 cmC .10 cmD .12 cm8.如图所示,有一圆柱形的实心铁柱直立于一个内部装有水的圆柱形水桶内,水桶内的水面高度为12 cm ,且水桶与铁柱的底面半径比为2∶1.将铁柱移至水桶外部,过程中水桶内的水量未改变.若不计水桶的厚度,则水桶内的水面高度变为( )A .4.5 cmB .6 cmC .8 cmD .9 cm三、解答题9.(1)将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?(2)李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?10.在一个底面直径为5 cm 、高为18 cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm 、高为10 cm 的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.B组(中档题)四、填空题11.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为_______.12.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为_______平方厘米.(1毫升=1立方厘米)13.如图,水平地面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出.若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为_______cm.五、解答题14.用总长30 m的篱笆和墙(墙足够长)围一个长方形鸡舍,除墙这一边外,其他三边(门除外)都用篱笆围成,且长方形的长是宽的2倍,并要求在墙的对边留2 m宽的门,则这个长方形的鸡舍的长和宽分别为多少米?C组(综合题)15.列方程解应用题:“乌鸦喝水”的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦就喝到了水.根据图中给出的信息,解答下列问题:(1)放入1个小球水面升高2cm,放入1个大球水面升高3cm;(2)如果放入10个球且使水面恰好上升到52 cm,那么应放入大球、小球各多少个?(3)若放入1个钢珠可以使水面上升k cm,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41 cm,求k的整数值.(球和钢珠完全在水面以下)参考答案5.3应用一元一次方程——水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册A 组(基础题)一、填空题1.(1)要锻造直径为16 cm 、高为5 cm 的圆柱形毛坯,设需截取横截面边长为6 cm 的方钢(横截面为正方形的钢材)x cm ,则可得方程为(162)2π×5=62·x .(2)一个长方体合金底面长为80 mm 、宽为60 mm 、高为100 mm ,现要锻压成新的长方体合金,其底面是边长为40 mm 的正方形,则新长方体合金的高为300__mm .2.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x 人,可列方程为2x +55=589-x .3.(1)李红用40 cm 长的铁丝围成一个长方形,要使长方形的长比宽多4 cm.设宽为x cm ,则可列方程为2(x +4+x )=40,围成的长方形的面积为96__cm 2.(2)如图,小明将一个正方形纸片剪去一个宽为4 cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm 的长条.如果两次剪下的长条面积正好相等,那么原来的正方形的面积是400cm 2.4.有一艘轮船的载重量是800吨,容积是795立方米.现要装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,则生铁装650吨、棉花装150吨才能充分利用船的载重量和容积.二、选择题5.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( C )A .面积与周长都不变化B .面积相等但周长发生变化C .周长相等但面积发生变化D .面积与周长都发生变化 6.根据图中给出的信息,可得正确的方程是( A )A .π×(82 )2×x =π×(62 )2×(x +5) B .π×82×x =π×62×5C .π×(82 )2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)7.有一个底面半径为10 cm 、高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( C ) A .6 cm B .8 cm C .10 cm D .12 cm8.如图所示,有一圆柱形的实心铁柱直立于一个内部装有水的圆柱形水桶内,水桶内的水面高度为12 cm ,且水桶与铁柱的底面半径比为2∶1.将铁柱移至水桶外部,过程中水桶内的水量未改变.若不计水桶的厚度,则水桶内的水面高度变为( D )A .4.5 cmB .6 cmC .8 cmD .9 cm三、解答题9.(1)将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少? 解:设毛坯的高为x cm ,根据题意,得 π×62×40=π×122·x . 解得x =10.答:毛坯的高是10 cm.(2)李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?解:设李明的年龄为x 岁,则他父亲的年龄为(3x -1)岁,可列方程为3x -1+x =55, 解得x =14.则3x -1=41.答:李明的年龄为14岁,他父亲的年龄为41岁.10.在一个底面直径为5 cm 、高为18 cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm 、高为10 cm 的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.解:设圆柱形瓶内的水倒入玻璃杯中水的高度为x cm.由题意,得 (52 )2π×18=(62 )2πx . 解得x =12.5.因为12.5>10,所以不能完全装下. 设瓶内水还剩y cm 高.由题意,得 (52 )2π×18=(52 )2πy +(62 )2π×10. 解得y =3.6.答:瓶内水还剩3.6 cm 高.B 组(中档题)四、填空题11.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为54.12.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为25平方厘米.(1毫升=1立方厘米)13.如图,水平地面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出.若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为44.5cm.五、解答题14.用总长30 m的篱笆和墙(墙足够长)围一个长方形鸡舍,除墙这一边外,其他三边(门除外)都用篱笆围成,且长方形的长是宽的2倍,并要求在墙的对边留2 m宽的门,则这个长方形的鸡舍的长和宽分别为多少米?解:设宽为x m,则长为2x m.∶当长方形的长与墙平行时,根据题意,得x+2x+x=30+2,解得x=8.则2x=16.故这个长方形鸡舍的长与宽分别为16 m,8 m.∶当长方形鸡舍的宽与墙平行时,根据题意,得x+2x+2x=30+2,解得x=6.4.则2x=12.8.故这个长方形鸡舍的长与宽分别为12.8 m,6.4 m.答:这个长方形的长和宽分别为16 m,8 m或12.8 m,6.4 m.C组(综合题)15.列方程解应用题:“乌鸦喝水”的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦就喝到了水.根据图中给出的信息,解答下列问题:(1)放入1个小球水面升高2cm ,放入1个大球水面升高3cm ;(2)如果放入10个球且使水面恰好上升到52 cm ,那么应放入大球、小球各多少个? (3)若放入1个钢珠可以使水面上升k cm ,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41 cm ,求k 的整数值.(球和钢珠完全在水面以下) 解:(2)设放入大球m 个,则放入小球(10-m )个, 根据题意,得3m +2(10-m )=52-26,解得m =6. 则10-m =10-6=4.答:应放入大球6个、小球4个.(3)设在玻璃桶内同时放入z 个小球和z 个钢珠时,水面上升到41 cm ,根据题意,得 zk +2z =41-26, 解得k =15-2z z.当z =1时,k =13;当z =3时,k =3;当z =5时,k =1. 故k 的整数值为13,3,1.。

03-第五章3应用一元一次方程——水箱变高了 (1)

03-第五章3应用一元一次方程——水箱变高了 (1)

3应用一元一次方程——水箱变高了基础闯关全练拓展训练1.一个圆柱,底面半径增加到原来的3倍,而高度缩短为原来的13,则变化后的圆柱体积是原来圆柱体积的( )A.8倍B.2倍C.3倍D.9倍答案C设原来圆柱底面半径为r,高为h,则体积为πr2h,半径增加到原来的3倍,高度缩短到原来的13,则此时圆柱的底面积为9πr2,高为13h,则体积为9πr2×13h=3πr2h.故选C.2.用一根小铁丝围成一个三条边长都为24cm的三角形,如果将该铁丝围成一个正方形,则正方形的边长是( )A.24cmB.18cmC.12cmD.9cm答案B设正方形的边长为xcm,则4x=24×3,解得x=18,故选B.3.用直径为4cm的圆钢,铸造三个底面直径为2cm,高为16cm的圆柱形零件,需要截取cm的圆钢.答案12解析设截取直径为4cm的圆钢xcm,则(42)2πx=(22)2π×16×3,解得x=12.4.要分别锻造底面直径为70mm,高为45mm和底面直径为30mm,高为30mm的圆柱形零件毛坯各一个,需要截取直径为50mm的圆钢多长?解析设截取直径为50mm的圆钢xmm,则(502)2πx=(702)2π×45+(302)2π×30.解得x=99.答:需要截取直径为50mm的圆钢99mm.能力提升全练拓展训练1.如图所示,将一个正方形纸条剪去一个宽为5cm的长条后,再从剩下的长方形条上剪去一个宽为3cm 的长条,且第一次剪下的长条面积是第二次剪下的长条面积的2倍,若设原正方形纸条的边长为xcm,则可列方程为( )A.5x=2×3(x-5)B.2×5x=3(x-5)C.5(x-3)=2×3xD.2×5(x-3)=3x答案A第一次剪下的纸条的面积为5xcm2,第二次剪下的纸条的面积为3(x-5)cm2,故有5x=2×3(x-5).2.如图,一个盛有水的圆柱形玻璃容器的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm 的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?解析设容器内的水将升高xcm,则π·102×12+π·22(12+x)=π·102(12+x),.解得x=12cm.答:容器内的水将升高12三年模拟全练拓展训练1.(2017山东滕州期末,15,★★☆)用A、B两种规格的长方形纸板(如图①)无重合无缝隙地拼接可得如图②所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是( )A.10cm2B.12cm2C.14cm2D.16cm2答案B设B种长方形的宽为xcm,由已知得大正方形的边长为32÷4=8cm,则2x+4×1=8,解得x=2,所以B种长方形的长为8-2=6cm,所以B种长方形的面积为2×6=12cm2.2.(2017辽宁大石桥金桥管理区中学期末,17,★★☆)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32cm,则小长方形的面积是cm2.答案 12解析 设小长方形的宽为xcm,则长为3xcm. 根据题意得,2×(3x+3x+2x)=32. 解得x=2.3x ·x=3×2×2=12,所以小长方形的面积为12cm 2.五年中考全练拓展训练(2015浙江绍兴中考,16,★★★)实验室里,水平桌面上有甲、乙、丙三个圆柱形的容器(容器足够高),如图所示,底面半径之比为1∶2∶1,用两个相同的管子在容器的5cm 高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.答案 35,3320,17140解析 设注水时间为t 分钟. 由题意分为以下几种情况: (1)甲的水位比乙的水位高0.5cm. 要满足此条件,则1-56t=0.5,解得t=35. (2)乙的水位比甲的水位高0.5cm. 开始注水1分钟,乙的水位上升56cm, 则开始注水1分钟,丙的水位上升56÷14=103cm, 因为5÷103=32,32×56-1=0.25<0.5,所以当乙的水位比甲的水位高5cm 时,丙的水位达到5cm.①当丙的水位达到5cm,乙的水位低于5cm时,丙容器向乙容器溢水,要满足乙的水位比甲的水位高0.5cm,则56×2(t-32)+56×32=0.5+1,解得t=3320;②当丙的水位达到5cm,且乙的水位达到5cm时,乙容器向甲容器溢水,易知乙的水位刚到达5cm所用的时间为32+(5-56×32)÷56÷2=154(分钟),要使乙的水位比甲的水位高0.5cm,则(t-154)×103×2=5-1-0.5,解得t=17140.综上,满足题意的t=35或3320或17140.故答案为35,3320,17140.核心素养全练拓展训练图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体盒子的宽是高的2倍,则它的体积是cm3.答案1000解析设长方体盒子的高为xcm,由题图知,其宽为30-2x2cm,其长为(30-2x)cm.根据题意得,30-2x2=2x,解得x=5,故长方体盒子的宽为10cm,长为20cm,则长方体盒子的体积为20×10×5=1000(cm3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题水箱变高了
一、水箱变高了:圆柱的体积=2π⨯⨯半径高
例1:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m 。

那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?
等量关系:旧水箱的容积=新水箱的容积
根据等量关系,列出方程: ()()224x ππ⨯⨯=⨯⨯
解得:x=
答:
变式练习:将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱锻压成底面直径是10厘米的“瘦长”形圆柱,
高变成了多少?
这个问题中的等量关系是:
解:
例2:用一根长为10m 的铁丝围成一个长方形.
(1)使得该长方形的长比宽多1.4m ,此时长方形的长、宽各为多少米?
(2)使得该长方形的长比宽多0.8m ,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比、面积有什么变化?
(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?
例3:(1)小明的爸爸想用10米铁线在墙边围成一个鸡棚,使长比宽大4米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?
(2)若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?
课后练习:
1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。

2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。

若将它围成一个正方形,则这个 正方形的面积是( )
A 、81cm²
B 、18cm²
C 、324cm²
D 、326cm²
3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的32,设水箱容积为x 立方厘米,则可列方程_________________.
4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)
3.填空:
长方形的周长=_________. 面积=__________ .
长方体的体积=_________. 正方体的体积=__________.
圆的周长=___________. 面积=_______________.
圆柱的体积=_______________.
解决以下问题:
1.将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”
形圆柱,高变成了多少?
假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如下的等量关系:锻压前的体积=锻压后的体积.
解:设锻压后圆柱的高为x米,填写下表:
根据等量关系,列出方程:___________________________________________.
解得
x_______________.
答:高变成了__________厘米.
2.用一根长为l0米的铁丝围成一个长方形.
(1)使得该长方形的长比宽多1.4米,此时长方形的长为________米,宽为_________米.
(2)使得该长方形的长比宽多0.8米,此时长方形的长为_______米,宽为_____米,它所围成的长方形与(1)中所围长方形相比,面积有什么变化?
(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是______米,它所围成的面积与(2)中相比又有什么变化?
二:典例讲练
例1.请根据图5—3—2中给出的信息,可得正确的方程是( )
【跟踪练习】
1.长方形的长是宽的3倍,如果宽增加了4 m,而长减少了5 m,那么面积增加15㎡,设长方形原来的宽为x m,则所列方程是( )
2.一块矩形草坪的长比宽多l0米,它的周长是132米,求宽x.所列的方程是( )
3.如图5—3—3,把一个长方形分成大小不等的6个小正方形,已知中间的最小的正方形的边长为1厘米,求这个长方形的面积.
解:设正方形A的边长为x厘米,则
99
x
正方形B的边长为________厘米;
正方形C的边长为________厘米;
正方形D的边长为________厘米;
正方形E的边长为________厘米.
由题意可得方程:______________________.
解得x= ________,答:长方形的面积为___________平方厘米.
【当堂达标】
7.用直径为120 mm的圆钢铸造成5.9㎏的工件,已知每立方厘米的圆钢重7.8g,这样需截取圆钢的长是多少㎜?解题时,设需要截圆钢的长为x mm,那么下面列方程正确的是( )
8.为了做一个试管架,在长为a cm(a>6 cm)的木板上钻3个小孔(如图5—3—4),每个小孔的直径为2cm,则x等于( )
9.已知一个三角形三条边长的比为2:4:5,最长边比最短边长6㎝,则这个三角形的周长为( ) A.21㎝B.22㎝C.23㎝D.24㎝
10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图5—3—8实线所示.小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图5—3—8虚线所示.小颖所钉长方形的长、宽各为
___________________厘米?
11.要锻造直径为16厘米、高为5厘米的圆柱形毛坯.设需截取边长为6厘米的方钢x厘米,可得方程为___________________________.
12.(2012.山西)图5—3—5是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图5—3—5所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________.
13·一个底面半径为4㎝,高为10㎝的圆柱形烧杯中装1 cm高的水.把烧杯中的水倒入底面半径为1㎝的圆柱形试管中,刚好倒满试管.问试管的高为多少㎝?
三:巩固练习
一、选择题
1.周长为68的长方形ABCD被分成7个全等的长方形,如图5—3—6所示,则长方形ABCD的面积为( )
A .98
B .196
C .280
D .284
2.用长为20米的铁丝围成一个长方形方框,使长为6.2
米,宽为x 米,则可列方程为 ( )
3.一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加
2 cm ,长方形就变成了正方形,则正方形的边长为( )
A .6 cm
B .7 cm
C .8 cm
D .9 cm
4.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒人一一个底面直径为lo cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为 ( )
A .6 cm
B .8 cm
C .10 cm
D .12 cm
二、填空题
5.三角形三边长之比为7:5:4,若中等长度的一边长的两倍比其它两边长的和少3 cm ,则三角形的周长为_________________________.
6.将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的3
2,设水箱容积为x 立方厘米,则可列方程_________________. 7.将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.
8.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:㎝)如图5—3—7所示.则三个几何体的体积和为_____________3cm .(计算结果保留π)
三、解答题
9.将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖’’形圆柱,高变成了多少?
四、拓展应用
10.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是多少?。

相关文档
最新文档