湖南省长沙市七年级上期末数学试卷含答案
长沙市人教版七年级上册数学期末试卷及答案-百度文库
长沙市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .206 4.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒5.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠6.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 7.计算(3)(5)-++的结果是( ) A .-8 B .8C .2D .-2 8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 9.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 10.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1 B .m=2,n=0 C .m=4,n=1 D .m=4,n=0 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米12.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .313.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+114.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 17.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.18.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 19.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 20.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 21.因式分解:32x xy -= ▲ .22.若a a -=,则a 应满足的条件为______.23.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 24.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.25.如果一个数的平方根等于这个数本身,那么这个数是_____. 26.若a 、b 是互为倒数,则2ab ﹣5=_____.27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.方程x +5=12(x +3)的解是________. 29.已知代数式235x -与233x -互为相反数,则x 的值是_______. 30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.32.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.34.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.35.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.36.已知:如图,点M是线段AB上一定点,12AB cm=,C、D两点分别从M、B 出发以1/cm s、2/cm s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)()1若4AM cm=,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)()2当点C、D运动了2s,求AC MD+的值.()3若点C、D运动时,总有2MD AC=,则AM=________(填空)()4在()3的条件下,N是直线AB上一点,且AN BN MN-=,求MNAB的值.37.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】x x x的定义分情况讨论即可求解.利用max{}2,,【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.A解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).5.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.6.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.7.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.8.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.10.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.11.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.13.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.14.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a-,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.-2.【解析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;19.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 20.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.21.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).22.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.23.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 25.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.26.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.27.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.30.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题31.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.32.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.33.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解; (2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.34.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,35.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.36.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.37.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而③点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,不存在PA=PB 的时候.【详解】解:(1)∵A 、B 所对应的数值分别为-20和40, ∴AB=40-(-20)=60,∵P 是AB 的中点, ∴AP=60=30,∴点P 表示的数是-20+30=10;∵如图,点A 、B 对应的数值分别是a 和b ,∴AB=b-a ,∵P 是AB 的中点,∴AP=(b-a)∴点P 表示的数是a+(b-a) =(a+b).(2)①点A 和点B 相向而行,相遇的时间为=20(秒),此即整个过程中点P 运动的时间.所以,点P 的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P 点用最短的时间首次碰到A 点,且与B 点未碰到,可知开始时点P 是和点A 相向而行的.所以这个过程中0≤t≤7.5.P 点经过t 秒钟后,在数轴上对应的数值为10-3t . 故答案是:10-3t ,0≤t≤7.5.③不存在.由②可知,点P 是和点A 相向而行的,整个过程中,点P 与点A 的距离越来越小,而点P 与点B 的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t ,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.38.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论,。
长沙市人教版七年级上册数学期末试卷及答案-百度文库
长沙市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1394.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+55.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④6.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。
若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能 7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣18.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒11.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.把5,5,35按从小到大的顺序排列为______.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.16的算术平方根是 .19.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.23.单项式()26a bc -的系数为______,次数为______.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.定义新运算“@”与“⊕”:@2a b a b +=,2a ba b -⊕= (1)计算()()()3@221---⊕-的值;(2)若()()()()()3@23,@329A b a a b B a b a b =-+⊕-=-+-⊕--,比较A 和B 的大小 26.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.27.如图,直线AB 、CD 、MN 相交于O ,∠DOB=60°,BO ⊥FO ,OM 平分∠DOF . (1)求∠MOF 的度数; (2)求∠AON 的度数;(3)请直接写出图中所有与∠AON 互余的角.28.柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆)5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元? 29.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 30.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB = ,BC = .(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。
2023-2024学年湖南省长沙市雅礼教育集团七年级(上)期末数学试卷+答案解析
2023-2024学年湖南省长沙市雅礼教育集团七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“两岸猿声啼不住,轻舟已过万重山”年8月29日,华为搭载自研麒麟芯片的mate60系列低调开售.据统计,截至2023年10月21日,华为mate60系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A. B. C. D.2.下列图形能折叠成圆锥的是()A. B. C. D.3.下面的计算正确的是()A. B.C. D.4.下列说法错误的是()A.是二次二项式B.0是单项式C.的系数是D.的次数是55.下列方程变形正确的是()A.由,得B.由,得C.由,得D.由,得6.下列图形中,由能判定的是()A. B.C. D.7.一份数学试卷共20道选择题,每道题都给出了4个选项,其中只有一个正确选项,每道题选对得5分,不选或错选倒扣2分,已知小雅得了65分,设小雅选对了x道题,则下列所列方程正确的是()A. B.C. D.8.下列说法中正确的是()A.不相交的两条直线叫做平行线B.把弯曲的河道改直,能够缩短航程,这是由于两点之间,线段最短C.射线AB与射线BA是同一条射线D.线段AB叫做A、B两点间的距离9.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.10.有理数a,b,c在数轴上的位置如图,则()A. B.0 C.2c D.二、填空题:本题共6小题,每小题3分,共18分。
11.如果向东50米记作米,那么向西10米记作______米.12.若代数式与是同类项,那么______.13.已知,则代数式的值为______.14.已知,则补角是______.15.如图,,,则______度.16.定义一种新运算:对任意有理数a,b都有,如,则______.三、解答题:本题共9小题,共72分。
湖南省长沙市 七年级(上)期末数学试卷(含答案)
湖南省长沙市七年级(上)期末数学试卷(含答案)副标题题号一二三四总分得分一、选择题(本大题共9小题;共27.0分)1.据统计;2017年双十一当天;天猫成交额1682亿;1682亿用科学记数法可表示为()A. B. C. D.2.如图;AB∥CD;直线EF分别与直线AB;CD相交于点G;H;已知∠3=50°;GM平分∠HGB交直线CD于点M;则∠1等于()A.B.C.D.3.下列解方程步骤正确的是()A. 由;得B. 由;得C. 由;得D. 由;得4.在雅礼社团年会上;各个社团大放光彩;其中话剧社52人;舞蹈社38人要外出表演;现根据演出需要;从舞蹈社中抽调了部分同学参加话剧社;使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社;可得正确的方程是()A. B. C. D.5.下列各式正确的是()A. B.C. D.6.如图;都是由边长为1的正方体叠成的立体图形;例如第(1)个图形由1个正方体叠成;第(2)个图形由4个正方体叠成;第(3)个图形由10个正方体叠成;依次规律;第(7)个图形由()个正方形叠成.A. 86B. 87C. 85D. 847.如图;C是AB的中点;D是BC的中点;下列等式不正确的是()A. B.C. D.8.如图;把下列图形折成一个正方体的盒子;折好后与“礼”相对的字是()A. 雅B. 教C. 集D. 团9.已知a x b2与ab y的和是a x b y;则(x-y)y等于()A. 2B. 1C.D.二、填空题(本大题共5小题;共15.0分)10.若a的相反数是-3;b的绝对值是4;且|b|=-b;则a-b=______.11.已知代数式x-3y-1的值为3;则代数式5+6y-2x的值为______.12.按照下列程序计算输出值为2018时;输入的x值为______.13.如图;直线a∥b;直角三角形ABC的直角顶点C在直线b上;∠1=20°;∠2=2∠A;则∠A=______.14.一个角的补角比这个角的余角的2倍大18°;则这个角的度数为______.三、计算题(本大题共2小题;共14.0分)15.先化简;再求值;x2-3(2x2-4y)+2(x2-y);其中|x+2|+(5y-1)2=016.解方程:(1)2x+3=12-3(x-3)(2)四、解答题(本大题共5小题;共44.0分)17.“幸福是奋斗出来的”;在数轴上;若C到A的距离刚好是3;则C点叫做A的“幸福点”;若C到A、B的距离之和为6;则C叫做A、B的“幸福中心”(1)如图1;点A表示的数为-1;则A的幸福点C所表示的数应该是______;(2)如图2;M、N为数轴上两点;点M所表示的数为4;点N所表示的数为-2;点C就是M、N的幸福中心;则C所表示的数可以是______(填一个即可);(3)如图3;A、B、P为数轴上三点;点A所表示的数为-1;点B所表示的数为4;点P所表示的数为8;现有一只电子蚂蚁从点P出发;以2个单位每秒的速度向左运动;当经过多少秒时;电子蚂蚁是A和B的幸福中心?18.已知AM∥CN;点B为平面内一点;AB⊥BC于B(1)如图1;直接写出∠A和∠C之间的数量关系;(2)如图2;过点B作BD⊥AM于点D;求证:∠ABD=∠C;(3)如图3;在(2)问的条件下;点E、F在DM上;连接BE、BF、CF;BF 平分∠DBC;BE平分∠ABD;若∠FCB+∠NCF=180°;∠ABF=2∠ABE;求∠EBC的度数.19.中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用;班主任安排班长去商店买篮球和排球;下面是班长与售货员的对话:班长:阿姨;您好!售货员:同学;你好;想买点什么?(1)根据这段对话;你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐;1、套装打折:五个篮球和五个排球为一套装;套装打八折:2、满减活动:999减100;1999减200;两种活动不重复参与;学校打算买15个篮球;13个排球作为奖品;请问如何安排更划算?20.如图:∠BCA=64°;CE平分∠ACB;CD平分∠ECB;DF∥BC交CE于点F;求∠CDF和∠DCF的度数.21.如图;在△ABC中;GD⊥AC于点D;∠AFE=∠ABC;∠1+∠2=180°;∠AEF=65°;求∠1的度数.解:∠AFE=∠ABC(已知)∴______(同位角相等;两直线平行)∴∠1=∠______(两直线平行;内错角相等)∠1+∠2=180°(已知)∴______(等量代换)∴EB∥DG______∴∠GDE=∠BEA______GD⊥AC(已知)∴______(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠______-∠______=90°-65°=25°(等式的性质)答案和解析1.【答案】C【解析】解:1682亿=1.682×1011.故选:C.用科学记数法表示较大的数时;一般形式为a×10n;其中1≤|a|<10;n为整数;据此判断即可.此题主要考查了用科学记数法表示较大的数;一般形式为a×10n;其中1≤|a|<10;确定a与n的值是解题的关键.2.【答案】B【解析】解:∵AB∥CD;∴∠BGM=∠3=50°;∵GM平分∠HGB;∴∠BGF=100°;∴∠1=180°-100°=80°.故选:B.根据平行线的性质与∠3=50°;求得∠BGM=50°;由GM平分∠HGB交直线CD 于点M;得出∠BGF的度数;再根据邻补角的性质求得∠1的度数.本题主要考查了平行线的性质;两直线平行;内错角相等;以及角平分线的定义.3.【答案】D【解析】解:A、由2x+4=3x+1;得2x-3x=1-4;此选项错误;B、由7(x-1)=3(x+3);得7x-7=3x+9;此选项错误;C、由0.2x-0.3=2-1.3x;得2x-3=20-13x;此选项错误;D、由;得2x-2-x-2=12;此选项正确;故选:D.根据解一元一次方程的基本步骤逐一判断即可得.本题主要考查解一元一次方程;解题的关键是掌握解一元一次方程的基本步骤.4.【答案】B【解析】解:设从舞蹈队中抽调了x人参加话剧社;根据题意得:52+x=3(38-x).故选:B.设从舞蹈队中抽调了x人参加话剧社;由抽调后话剧社的人数恰好是舞蹈社的人数的3倍;即可得出关于x的一元一次方程;此题得解.本题考查了由实际问题抽象出一元一次方程;找准等量关系;正确列出一元一次方程是解题的关键.5.【答案】D【解析】解:A、19a2b-9ab2;不能合并;故错误;B、3x+3y;不能合并;故错误;C、16y2-7y2=9y2;故错误;D、2x-5x=-3x;故正确;故选:D.根据合并同类项的法则进行计算即可.本题考查了合并同类项;掌握合并同类项的法则是解题的关键.6.【答案】D【解析】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+;第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.根据图形的变换规律;可知第n个图形中的正方体的个数为1+3+6+…+;据此可得第(7)个图形中正方体的个数.本题主要考查了图形变化类问题以及正方体;解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.7.【答案】C【解析】解:∵C是AB的中点;D是BC的中点∴AC=BC=AB;CD=BD=BC∵CD=AD-AC∴CD=AD-BC故A正确∵CD=BC-DB∴CD=AC-DB故B正确∵AC=BC=AB;CD=BD=BC∴CD=AB故C错误∵CD=BC-DB∴CD=AB-DB故D正确故选:C.根据线段中点的定义可判断.本题考查了两点之间的距离;熟练掌握线段中点的定义是本题的关键.8.【答案】C【解析】解:这是一个正方体的平面展开图;共有六个面;其中面“礼”与面“集”相对;面“雅”与面“教”相对;面“育”与面“团”相对.故选:C.正方体的表面展开图;相对的面之间一定相隔一个正方形;根据这一特点作答.本题考查了正方体相对两个面上的文字;注意正方体的空间图形;从相对面入手;分析及解答问题.9.【答案】B【解析】解:由题意可知:a x b2与ab y是同类项;∴x=1;y=2;∴原式=(-1)2=1;故选:B.根据同类项的定义即可求出答案.本题考查同类项的概念;解题的关键是熟练运用同类型的概念;本题属于基础题型.10.【答案】7【解析】解:根据题意得:a=3;b=-4;则原式=3-(-4)=3+4=7;故答案为:7利用相反数;绝对值的代数意义求出a与b的值;代入原式计算即可求出值.此题考查了有理数的减法;以及相反数;绝对值;熟练掌握各自的性质是解本题的关键.11.【答案】-3【解析】解:∵x-3y-1=3;∴x-3y=4;∴5+6y-2x=5-2(x-3y)=5-2×4=5-8=-3故答案为:-3.首先求出x-3y的值是多少;然后把它代入5+6y-2x;求出算式的值为多少即可.此题主要考查了代数式求值问题;要熟练掌握;求代数式的值可以直接代入、计算.如果给出的代数式可以化简;要先化简再求值.题型简单总结以下三种:①已知条件不化简;所给代数式化简;②已知条件化简;所给代数式不化简;③已知条件和所给代数式都要化简.12.【答案】202【解析】解:根据题意得2(5x-1)=2018;5x-1=1009;所以x=202.故答案为202.利用计算程序得到2(5x-1)=2018;然后解关于x的方程即可.本题考查了有理数混合运算:先算乘方;再算乘除;最后算加减;同级运算;应按从左到右的顺序进行计算;如果有括号;要先做括号内的运算.也考查了一元一次方程的应用;13.【答案】35°【解析】解:∵∠1=20°;∠ACB=90°;∴∠3=90°-∠1=70°;∵直线a∥b;∴∠2=∠3=70°;又∵∠2=2∠A;∴∠A=35°;故答案是:35°.根据平角等于180°列式计算得到∠3;根据两直线平行;同位角相等可得∠3=∠2;进而得到∠A的度数.本题考查了平行线的性质;平角的定义;熟记性质并准确识图是解题的关键.14.【答案】18°【解析】解:设这个角的度数为x;由题意得;180°-x=2(90°-x)+18°;解得;x=18°;故答案为:18°.设这个角的度数为x;根据余角和补角的定义、结合题意列出方程;解方程即可.本题考查的是余角和补角;如果两个角的和等于90°;就说这两个角互为余角;如果两个角的和等于180°;就说这两个角互为补角.15.【答案】解:原式=x2-6x2+12y+2x2-2y=-3x2+10y;∵|x+2|+(5y-1)2=0;∴x=-2;y=;则原式=-12+2=-10.【解析】原式去括号合并得到最简结果;利用非负数的性质求出x与y的值;代入计算即可求出值.此题考查了整式的加减-化简求值;以及非负数的性质;熟练掌握运算法则是解本题的关键.16.【答案】解:(1)去括号得:2x+3=12-3x+9;移项合并得:5x=18;解得:x=3.6;(2)去分母得:9x-6=24-8x+4;移项合并得:17x=34;解得:x=2.【解析】(1)方程去括号;移项合并;把x系数化为1;即可求出解;(2)方程去分母;去括号;移项合并;把x系数化为1;即可求出解.此题考查了解一元一次方程;熟练掌握运算法则是解本题的关键.17.【答案】-4或2;-2或-1或0或1或2或3或4【解析】解:(1)A的幸福点C所表示的数应该是-1-3=-4或-1+3=2;(2)4-(-2)=6;故C所表示的数可以是-2或-1或0或1或2或3或4;(3)设经过x秒时;电子蚂蚁是A和B的幸福中心;依题意有①8-2x-4+(8-2x+1)=6;解得x=1.75;②4-(8-2x)+[-1-(8-2x)]=6;解得x=4.75.故当经过1.75秒或4.75秒时;电子蚂蚁是A和B的幸福中心.(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.本题考查了数轴及数轴上两点的距离、动点问题;熟练掌握动点中三个量的数量关系式:路程=时间×速度;认真理解新定义.18.【答案】解:(1)如图1;∵AM∥CN;∴∠C=∠AOB;∵AB⊥BC;∴∠A+∠AOB=90°;∴∠A+∠C=90°;(2)如图2;过点B作BG∥DM;∵BD⊥AM;∴DB⊥BG;即∠ABD+∠ABG=90°;又∵AB⊥BC;∴∠CBG+∠ABG=90°;∴∠ABD=∠CBG;∵AM∥CN;BG∥AM;∴CN∥BG;∴∠C=∠CBG;∴∠ABD=∠C;(3)如图3;过点B作BG∥DM;∵BF平分∠DBC;BE平分∠ABD;∴∠DBF=∠CBF;∠DBE=∠ABE;由(2)可得∠ABD=∠CBG;∴∠ABF=∠GBF;设∠DBE=α;∠ABF=β;则∠ABE=α;∠ABD=2α=∠CBG;∠GBF=β=∠AFB;∠BFC=3∠DBE=3α;∴∠AFC=3α+β;∵∠AFC+∠NCF=180°;∠FCB+∠NCF=180°;∴∠FCB=∠AFC=3α+β;△BCF中;由∠CBF+∠BFC+∠BCF=180°;可得(2α+β)+3α+(3α+β)=180°;①由AB⊥BC;可得β+β+2α=90°;②由①②联立方程组;解得α=15°;∴∠ABE=15°;∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM;根据同角的余角相等;得出∠ABD=∠CBG;再根据平行线的性质;得出∠C=∠CBG;即可得到∠ABD=∠C;(3)先过点B作BG∥DM;根据角平分线的定义;得出∠ABF=∠GBF;再设∠DBE=α;∠ABF=β;根据∠CBF+∠BFC+∠BCF=180°;可得(2α+β)+3α+(3α+β)=180°;根据AB⊥BC;可得β+β+2α=90°;最后解方程组即可得到∠ABE=15°;进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.本题主要考查了平行线的性质的运用;解决问题的关键是作平行线构造内错角;运用等角的余角(补角)相等进行推导.余角和补角计算的应用;常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.19.【答案】解:(1)设篮球的单价为x元/个;排球的单价为y元/个;根据题意得:;解得:.答:篮球的单价为90元/个;排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元);按满减活动购买需付费用为:15×90+13×60-200=1930(元).∵1830<1930;∴按套装打折购买更划算.【解析】(1)设篮球的单价为x元/个;排球的单价为y元/个;根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球;即可得出关于x、y的二元一次方程组;解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用;比较后即可得出结论.本题考查了二元一次方程组的应用;解题的关键是:(1)找准等量关系;正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.20.【答案】解:∵∠BCA=64°;CE平分∠ACB;∴∠BCF=32°;∵CD平分∠ECB;∴∠BCD=∠DCF=32°;∵DF∥BC;∴∠CDF=∠BCD=32°.【解析】根据角平分线的定义可求∠BCF的度数;再根据角平分线的定义可求∠BCD 和∠DCF的度数;再根据平行线的性质可求∠CDF的度数.考查了角平分线的定义;平行线的性质;关键是熟悉两直线平行;内错角相等的知识点.21.【答案】EF∥BC;EBC;∠EBC+∠2=180°;同旁内角互补;两直线平行;两直线平行;同位角相等;∠GDE=90°;BEA;AEF【解析】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等;两直线平行)∴∠1=∠EBC(两直线平行;内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG (同旁内角互补;两直线平行)∴∠GDE=∠BEA (两直线平行;同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA-∠AEF=90°-65°=25°(等式的性质)故答案为:EF∥BC;∠EBC;∠EBC+∠2=180°;同旁内角互补;两直线平行;两直线平行;同位角相等;∠GDE;∠BEA;∠AEF.根据平行线的性质和判定可填空.本题考查了平行线的判定和性质;灵活运用平行线的性质和判定解决问题是本题的关键.。
长沙市七年级上学期数学期末试卷及答案-百度文库
19.对于有理数a,b,规定一种运算:aba2ab.如1212121,则计算532=___.
20.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.
21.如图,某海域有三个小岛A,B,O,在小岛O处观测到AOB的度数是__________°.
15.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出 给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
16.若关于 的多项式 的值与 的取值无关,则 的值是________
17.如图甲所示,格边长为 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为 的正方形方框.把 个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.
3.计算 的结果是()
A.-8B.8C.2D.-2
4.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程( )
A. + =1B. + =1C. + =1D. + =1
5.下列因式分解正确的是()
A. B.
C. D.
6.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是( )
A. B. C. D.
11.如图的几何体,从上向下看,看到的是()
A. B. C. D.
12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()
A.①②④B.①②③C.②③④D.①③④
长沙市人教版七年级上册数学期末考试试卷及答案
(2)求甲容器内液体的体积(用含 的代数式表示).
(3)求 的值.
28.如图, , , ,求 .
29.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.
30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题:
A.7cmB.3cmC.3cm 或 7cmD.7cm 或 9cm
7.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )
24.单项式 的系数为______,次数为______.
三、解答题
25.(1)化简:3x2﹣ ;
(2)先化简,再求值:2(a2﹣ab﹣3.5)﹣(a2﹣4ab﹣9),其中a=﹣5,b= .
26.阅读下面解题过程:
计算:
解:原式= (第一步)
= (第二步)
=(﹣15)÷(﹣25)(第三步)
=﹣ (第四步)
回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;
(2)正确的结果是.
27.如图,甲、乙两个圆柱形玻璃容器各盛有一定量的液体,甲、乙容器的内底面半径分别为 和 ,现将一个半径为 的圆柱形玻璃棒(足够长)垂直触底插入甲容器,此时甲、乙两个容器的液面高均为 (如图甲),再将此玻璃棒垂直触底插入乙容器(液体损耗忽略不计),此时乙容器的液面比甲容器的液面高 (如图乙).
A.2B.1
C.0D.-1
二、填空题
13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.
长沙市人教版七年级上册数学期末考试试卷及答案
长沙市人教版七年级上册数学期末考试试卷及答案一、选择题1.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒2.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2 B .22 C .2 D .32 3.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+64.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 7.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)8.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .19.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.3的倒数是( ) A .3B .3-C .13D .13-11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.已知单项式245225n m xy x y ++与是同类项,则m n =______.16.若3750'A ∠=︒,则A ∠的补角的度数为__________.17.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.A 学校有m 个学生,其中女生占45%,则男生人数为________.22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.23.已知二元一次方程2x-3y=5的一组解为x a y b =⎧⎨=⎩,则2a-3b+3=______.24.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(xy )2019的值为_____.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
长沙市七年级上学期数学期末试卷及答案-百度文库
长沙市七年级上学期数学期末试卷及答案-百度文库一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.4 =( ) A .1 B .2 C .3 D .4 4.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒C .60︒D .75︒5.下列因式分解正确的是()A .21(1)(1)xx x +=+-B .()am an a m n +=-C .2244(2)mm m +-=-D .22(2)(1)aa a a --=-+6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 7.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣18.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 9.下列各数中,有理数是( ) A .2B .πC .3.14D .3710.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<0二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.17.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.199________20.﹣213的倒数为_____,﹣213的相反数是_____.21.如图,点B在线段AC上,且AB=5,BC=3,点D,E分别是AC,AB的中点,则线段ED的长度为_____.22.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.23.如果m﹣n=5,那么﹣3m+3n﹣5的值是_____.24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的.三、解答题25.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.26.温州市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.(1)这次共抽取了名学生进行调查.(2)用时在2.45~3.45小时这组的频数是_ , 频率是_ .(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数. 27.计算(1)()547-- (2) 213(2)()24-⨯-28.根据语句画出图形:如图,已知、、A B C 三点.(1)画线段AB ; (2)画射线AC ; (3)画直线BC ;(4)取AB 的中点P ,连接PC .29.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足2|2|(8)0a c ++-=,1b =,(1)a =_____________,c =_________________;(2)若将数轴折叠,使得A 点与B 点重合,则点C 与数 表示的点重合. (3)在(1)(2)的条件下,若点P 为数轴上一动点,其对应的数为x ,当代数式||||||x a x b x c -+-+-取得最小值时,此时x =____________,最小值为__________________.(4)在(1)(2)的条件下,若在点B 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点C 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d (用t 的代数式表示) 30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题: 行驶路程 收费标准 不超出2km 的部分 起步价8元 超出2km 的部分2.6元/km(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示); (3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?四、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.32.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数33.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.B解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.4.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).5.D解析:D 【解析】 【分析】分别利用公式法以及提取公因式法对各选项分解因式得出答案. 【详解】解:A 、21x +无法分解因式,故此选项错误; B 、()am an a m n +=+,故此选项错误; C 、244m m +-无法分解因式,故此选项错误; D 、22(2)(1)aa a a --=-+,正确;故选:D . 【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.7.A解析:A 【解析】 【分析】将a ﹣3b =2整体代入即可求出所求的结果. 【详解】解:当a ﹣3b =2时, ∴2a ﹣6b =2(a ﹣3b ) =4, 故选:A . 【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.8.A解析:A 【解析】 【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. π是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 16.5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.17.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】3,;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.20.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.21.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.23.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.24.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.三、解答题25.AD=7.5cm.【解析】【分析】已知C点为线段AB的中点,D点为BC的中点,AB=10cm,根据线段中点的定义可得AC=CB=12AB=5cm,CD=12BC=2.5cm,由AD=AC+CD即可求得AD的长度.【详解】∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.26.(1)400. (2)104; 0.26.(3)540【解析】【分析】(1)根据频数分布直方图得到各个时间段的频数,计算即可;(2)从频数分布直方图找出用时在2.45−3.45小时的频数,求出频率;(3)利用样本估计总体即可.【详解】解:(1)这次共抽取的学生数为:40+72+104+92+52+40=400(人),故答案为:400;(2)用时在2.45−3.45小时这组的频数为104,频率为:1040.26 400,故答案为:104;0.26;(2)1000×4072104540400(人).答:估计1000名学生一周电子产品用时在0.45~3.45小时的学生人数为540人.【点睛】本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1)8;(2)-1.【解析】【分析】(1)先计算括号内的减法,再进一步计算减法可得;(2)先计算乘方和括号内的减法,再计算乘法可得.【详解】解:()1原式()53538=--=+=;()2原式1414⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.28.(1)见解析;(2)见解析;(3)见解析;(4)见解析.【解析】【分析】(1)由题意根据线段的画法连接AB 即可;(2)由题意根据射线的画法以A 为端点画射线AC 即可;(3)由题意根据直线的定义画出直线BC 即可;(4)由题意测量出AB 的长度,取AB 的中点为P 点,并连接PC 即可.【详解】解:(1)如图所示AB 是所求线段;(2)如图所示AC 是所求射线;(3)如图所示直线BC 是所求直线;(4)如图所示P 为AB 中点,PC 为所连接线段.【点睛】本题考查直线、射线、线段,正确区分直线、线段、射线是解题关键.29.(1)2-,8;(2)9-;(3)1;10;(4)82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧=⎨----=->⎩. 【解析】【分析】(1)根据两个非负数的和为零则这两个数均为零即可得出答案;(2)先求出AB =3,则折点为AB 的中点,故折点表示的数为B 点表示的数减去12AB ,即折点表示的数为:1-12×3=-0.5,再求出C 点与折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9;(3)当P 与点B 重合时,即当x =b 时,|x -a |+|x -b |+|x -c |取得最小值;(4)分小球乙碰到挡板之前和之后,即当0≤t ≤3.5,t >3.5时,表示出甲、乙两小球之间的距离d 即可.【详解】解:(1)2|2|(8)0a c ++-=,|2|0a +≥,2(8)0c -≥20a ∴+=,80c -=2a ∴=-,8c =;故答案为:2-,8;(2)因为2a =-,1b =,所以AB =1-(-2)=3,将数轴折叠,使得A 点与B 点重合,所以对折点为AB 的中点,所以对折点表示的数为:1-12×3=-0.5, C 点与对折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9,即点C 与数-9表示的点重合,故答案为:-9;(3)当x =b =1时,|x -a |+|x -b |+|x -c |=|x -(-2)|+|x -1|+|x -8|=10为最小值;故答案为:1;10;(4)t 秒后,甲的位置是2t --,乙的位置是82(0 3.5)12( 3.5)26( 3.5)t t t t t -≤≤⎧⎨+-=->⎩, 82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧∴=⎨----=->⎩. 【点睛】此题考查是列代数式,数轴上两点之间的距离,掌握数轴上两点之间的距离求法是解决问题的关键.30.(1)15.8;(2)()2.6 2.8x +;(3)他家离学校12千米.【解析】【分析】(1)根据题意,分为不超过2km 的部分和超出2km 的部分,列式计算即可;(2)根据题意,分为不超过2km 的部分和超出2km 的部分,列式即可;(3)由(2)中的代数式列出方程,求解即可.【详解】(1)由题意,得8+2.6×(5-2)=15.8元;故答案为15.8;(2)由题意,得()8 2.628 2.6 5.2 2.6 2.8x x x +⨯-=+-=+故答案为()2.6 2.8x +;(3)设他家离学校x 千米由题意得:2.6 2.834x +=,解得:12x =,答:他家离学校12千米【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出等式.四、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.33.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。
长沙市七年级上册数学期末试题及答案解答
长沙市七年级上册数学期末试题及答案解答一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-=5.下列因式分解正确的是() A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .77.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个8.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y10.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣211.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 12.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102513.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .14.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8mC .0.8m -D .0.5m -15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题16.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 17.|-3|=_________;18.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-20.52.42°=_____°___′___″.21.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.22.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.23.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.24.若∠1=35°21′,则∠1的余角是__.25.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 26.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 27.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 28.钟表显示10点30分时,时针与分针的夹角为________. 29.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.33.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
长沙市七年级上学期数学期末试卷及答案-百度文库
长沙市七年级上学期数学期末试卷及答案-百度文库一、选择题1.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2272.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 3.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7 4.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+5 5.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 6.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠27.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 8.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -=D .21x =,变形为2x =9.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查10.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .2 11.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定 12.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=1 13.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 14.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题16.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.20.若方程11222m x x --=++有增根,则m 的值为____. 21.若a a -=,则a 应满足的条件为______.22.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.23.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___. 24.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 25.当x= 时,多项式3(2-x )和2(3+x )的值相等.26.若2a +1与212a +互为相反数,则a =_____. 27.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)28.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.29.若4a +9与3a +5互为相反数,则a 的值为_____.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.33.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.34.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.35.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.36.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.37.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.2.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.3.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.4.A解析:A试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A .考点:探寻规律.5.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.B解析:B【解析】【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案.【详解】延长EP 交CD 于点M ,∵∠EPF 是△FPM 的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD ,∴∠BEP=∠FMP ,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP ,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.8.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 9.B解析:B【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.10.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.11.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.13.A解析:A【解析】【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.14.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键17.-3【解析】【分析】根据题意将代入方程即可得到关于a,b的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.18.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.20.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键21.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.22.60 【解析】【分析】 本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】 解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 23.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】 5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可. 【详解】解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 25.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.26.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a =﹣3,解得:a =﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.27.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a ≠b ,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.28.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.29.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.30.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】 (1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健33.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x=14 13;当4≤x≤8时,12﹣1.5x+5x﹣20=25,解得:x=667>8,不合题意,舍去;当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141 . 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.34.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD , ∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°, ∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.35.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.36.(1)点P 在线段AB 上的13处;(2)13;(3)②MN AB 的值不变. 【解析】【分析】(1)根据C 、D 的运动速度知BD=2PC ,再由已知条件PD=2AC 求得PB=2AP ,所以点P 在线段AB 上的13处; (2)由题设画出图示,根据AQ-BQ=PQ 求得AQ=PQ+BQ ;然后求得AP=BQ ,从而求得PQ。
长沙市人教版七年级数学上册期末试卷及答案
长沙市人教版七年级数学上册期末试卷及答案一、选择题1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( ) A . B .C .D .4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .55.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 6.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 7.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1- 8.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .7 9.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15010.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟11.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元 12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.159________16.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 19.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.24.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.三、解答题25.计算:(1)84(3)-÷⨯- (2)220192(3)(1)-+---26.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-.27.化简求值:()()2222533x y xyxy x y --+,其中1x =,12y . 28.计算:(1)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(2)2211(10.5)19(5)3⎡⎤---⨯⨯--⎣⎦. 29.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.30.如图1,在一条可以折叠的数轴上,点A ,B 分别表示数-9和4.(1)A ,B 两点之间的距离为________.(2)如图2,如果以点C 为折点,将这条数轴向右对折,此时点A 落在点B 的右边1个单位长度处,则点C 表示的数是________.(3)如图1,若点A 以每秒3个单位长度的速度沿数轴向右运动,点B 以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A 、B 两点相距4个单位长度?四、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 4.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.5.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 6.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小. 8.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.10.C解析:C【解析】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .11.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.19.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算.20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.24.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.三、解答题25.(1)6;(2)12.【解析】【分析】(1)由题意利用有理数的乘除运算法则对式子进行运算即可;(2)先进行乘方与去绝对值运算,最后进行加减运算即可.【详解】解:(1)84(3)-÷⨯-= 2(3)-⨯-=6(2)220192(3)(1)-+--- =29(1)+--=12【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则包括乘方与去绝对值运算等是解题关键.26.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +--=22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.27.22126x y xy -,152-. 【解析】【分析】根据整式的运算法则,将代数式进行化简,然后将字母的值代入求取结果即可.【详解】原式=222215-53x y xy xy x y --=22126x y xy -.当x =1,y =-12时, 原式=2211121--61-22⨯⨯⨯⨯()() =15-2. 【点睛】 本题考查了整式的化简求值,解决本题的关键是正确理解题意,熟练掌握整式运算的法则,注意在合并同类项时找准同类项.28.(1)-12;(2)0【解析】【分析】(1)将除法变乘法计算,最后计算减法即可;(2)先算乘方和括号内的式子,然后计算乘法,最后计算加减.【详解】(1)解:原式=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=12-(2)解:原式=()111192523--⨯⨯- =()1166--⨯- =11-+=0【点睛】 本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.29.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键.30.(1)13;(2)-2;(3)t= 9秒或17秒.【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C 表示的数是x ,分别表示出AC 、BC ,再根据AC-BC=1列出方程解答即可; (3)运动t 秒后,可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,再根据AB 的距离为4,可得方程,解方程即可.【详解】解:(1)AB=4-(-9)=13(2)设点C 表示的数是x ,则AC=x-(-9)=x+9,BC=4-x ,∵A 落在点B 的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x )=2x+5=1,解得:x=-2,∴点C 表示的数是-2.故答案为:-2.(3) 设运动t 秒后,点A 与点B 相距4个单位,由题意可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,∴()93424t t -+-+=(), ∴()93424t t -+-+=()或()93424t t -+-+=-() 解得t=17或9.答:运动9秒或17秒后,点A 与点B 相距4个单位.【点睛】本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式表示出线段的长度.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.。
2023-2024学年湖南省长沙市长沙县七年级(上)期末数学试卷(含解析)
2023-2024学年湖南省长沙市长沙县七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−12024的倒数是( )A. −2024B. 2024C. 12024D. −120242.下列整式中,是二次单项式的是( )A. x2+1B. xyC. x2yD. 22x3.若单项式2x m y2与−3x3y n是同类项,则m+n的值为( )A. 5B. 6C. 1D. 94.下列说法不正确的是( )A. 若a=b,则a+2c=b+2cB. 若am =bm,则a=bC. 若ac=b c,则a=bD. 若a=b,则a2=b25.如果a+b<0,ba>0,那么下列结论成立的是( )A. a>0,b>0B. a<0,b<0C. a>0,b<0D. a<0,b>06.下面各式的变形正确的是( )A. 由6−x=5,得x=5−6B. 由x−(2+3x)=1,得x−2+3x=1C. 由11%x−42%=15%x−3,得11x−42=15x−3D. 由3−2x−15=x+12,得30−2(2x−1)=5(x+1)7.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A. 两点之间,线段最短B. 两点确定一条直线C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是( )A. 3x−2=2x+9B. 3(x−2)=2(x+9)C. x3+2=x2−9 D. 3(x−2)=2x+99.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是( )A. 9和13B. 2和9C. 1和13D. 2和810.如图,点E在CD延长线上,下列条件中不能判定AC//BD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠CD. ∠C+∠BDC=180°二、填空题:本题共6小题,每小题3分,共18分。
2023年湖南省长沙市雨花区七年级上期末数学试卷及答案解析
2023年湖南省长沙市雨花区七年级上期末数学试卷
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()
A.1枚B.2枚C.3枚D.任意枚
2.(3分)下列各组数中,互为相反数的是()
A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1 3.(3分)下列关系式正确的是()
A.35.5°=35°5′B.35.5°=35°50′
C.35.5°>35°5′D.35.5°<35°5′
4.(3分)当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16B.﹣8C.8D.16
5.(3分)下列各图中,可以是一个正方体的平面展开图的是()
A .
B .
C
.D
.
6.(3分)a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()
A.互为相反数B.互为倒数C.相等D.无法确定7.(3分)下列各式中,去括号或添括号正确的是()
A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c
B.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)
C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1
D.﹣2x﹣y﹣a+1=﹣(2x﹣y)+(a﹣1)
8.(3分)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()
第1页共14页。
2023年湖南省长沙市七年级上期末数学试卷及答案解析
则∠MON 的度数为 ( )
第 1 页 共 14 页
A.30°
B.45°
6.(3 分)下列运算正确的是( )
C.60°
D.75°
A.
B.
C.3a+5b=8ab
D.3a2b﹣4ba2=﹣a2b
7.(3 分)如图几何体的展开图形最有可能是( )
A.
B.
C.
D.
8.(3 分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)
(1)求这批零件的个数;
(2)车间按每天加工 200 个零件的速度加工了 m 个零件后,提高了加工速度,每天加工
250 个零件,结果比原计划提前 6 天完成了生产任务,求 m 的值.
25.(10 分)对于任意有理数 a、b、c、d,可以组成两个有理数对(a,b)与(c,d).
我们规定:(a,b)⊗(c,d)=ac﹣bd.例如:(﹣2,6)⊗(1,3)=﹣2×1﹣6×3
2023 年湖南省长沙市七年级上期末数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)
1.(3 分)青藏高原是世界上海拔最高的高原,它的面积约为 2500000 平方千米.将 2500000
用科学记数法表示应为( )
A.0.25×107
B.2.5×107
C.2.5×106
D.25×105
(2)
t
t
20.(6 分)解方程:
21.(8 分)如图所示,线段 CD 的长度为 y 厘米,线段 DB 的长度比线段 CD 长度的 2 倍少 3 厘米,线段 AC 的长度比线段 DB 长度的 2 倍多 4 厘米. (1)写出用 y 表示的线段 AB 的长度 l; (2)当 y=4 时,求 l 的值.
长沙市七年级上学期数学期末试卷及答案-百度文库
长沙市七年级上学期数学期末试卷及答案-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30°B .40°C .50°D .90°2.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 7.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣78.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm9.﹣2020的倒数是( ) A .﹣2020B .﹣12020C .2020D .1202010.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠211.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A.设B.和C.中D.山12.如果单项式13ax y+与2bx y是同类项,那么a b、的值分别为()A.2,3a b==B.1,2a b==C.1,3a b==D.2,2a b==二、填空题13.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.14.若212-my x与5x3y2n是同类项,则m+n=_____.15.9的算术平方根是________16.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___17.对于有理数a,b,规定一种运算:a⊗b =a2-ab .如1⊗2=12-1⨯2 =-1,则计算-5⊗[3⊗(-2)]=___.18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费_____元(用含a,b的代数式表示).20.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.3.6=_____________________′22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 23.观察“田”字中各数之间的关系:则c 的值为____________________.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.28.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.29.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分EOD∠时,求旋转角度α;②是否存在2BOC AOD∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 30.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B.【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A.3d2bc与bca2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B.225m n的系数是25,故本选项错误.C.单项式﹣x3yz的次数是5,故本选项正确.D.3x2﹣y+5xy5是六次三项式,故本选项错误.故选C.【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213+x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.8.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.11.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵93=,∴9的算术平方根是3;故答案为:3.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:1214【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据2137SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.17.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.36【解析】【分析】根据题意和展开图,求出x和A的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面19.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.20.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.21.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.22.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.23.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
2023-2024学年湖南省长沙市长郡教育集团七年级(上)期末数学试卷及答案解析
2023-2024学年湖南省长沙市长郡教育集团七年级(上)期末数学试卷一、单项选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.﹣(﹣2021)B.|﹣2022|C.﹣|﹣2023|D.﹣(+2024)2.(3分)2024年元旦假期的到来,点燃了消费者的出游热情,也激发了旅游市场的活力.元旦假期三天,长沙市共接待游客609.65万人次.数据“609.65万”用科学记数法表示为()A.0.60965×108B.6.0965×107C.60.965×106D.6.0965×106 3.(3分)单项式﹣2πxy2z3的系数和次数分别是()A.﹣π,5B.﹣2π,6C.﹣1,6D.﹣2,74.(3分)2023年长沙国际马拉松在芙蓉中路(贺龙体育中心东广场旁)起跑,来自国内外的26000名跑友汇成一片红色的海洋驰骋在长马赛道上,他们用脚步丈量星城,感受一江两岸、山水洲城的魅力.图①是此次全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台从正面看到的平面图形是()A.B.C.D.5.(3分)下列变形一定正确的是()A.若a=b,则a+c=b﹣c B.若,则a=bC.若2a=3b,则D.若2a=2b+1,则a=b+16.(3分)如图,直线DE与BC相交于点O,∠COE与∠AOE互余,∠BOD=35°,则∠AOE的度数是()A.55°B.45°C.35°D.65°7.(3分)有理数a,b在数轴上对应点的位置如图所示,下列说法中正确的是()A.a>b B.﹣a>b C.|a|>|b|D.a+b>0 8.(3分)某学校教学楼扩建工程甲单独做9天完成,乙单独做15天完成.现在乙先做3天,甲再加入合做.设完成此工程一共用了x天,则下列方程正确的是()A.B.C.D.9.(3分)如图,将一副三角尺按不同位置摆放,摆放方式中∠α=∠β的图形有()A.1个B.2个C.3个D.4个10.(3分)1883年,康托尔用以下的方法构造的这个分形,称做康托尔集.如图,取一条长度为1的线段,将它三等分,去掉中间一段,留剩下两段,这称为第一阶段;然后将剩下的两段再三等分,各去掉中间一段,剩下更短的四段,这称为第二阶段…将这样的操作无限地重复下去,余下的无穷点就称做康托尔集.那么经过第四个阶段后,留下的线段的长度之和为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:9ab﹣2ab=.12.(3分)如果单项式﹣x m y2与6xy n+5是同类项,那么m+n=.13.(3分)如图,点A在点O的东南方向,点B在点O的北偏东50°方向,则∠AOB=________°.14.(3分)元旦节期间,某商店将一件衣服按成本价提高50%后标价,然后打八折卖出,结果仍获利60元,那么这件衣服的成本价是元.15.(3分)已知(a﹣1)x|a|+2024=0是关于x的一元一次方程,则a=.16.(3分)2023年5月9日,湖南湘江新区大王山欢乐云巴正式对外运营.一张云巴票就能领略沿途10余个景点,感受大王山人文风情,如图,乘云巴从山塘站出发,沿途经过7个车站方可到达观音港站,那么运营公司在山塘站,观音港站两站之间需要安排不同的车票种.三、解答题(本大题共9小题,共22分,解答应写出文字说明,证明过程或演算步骤)17.(6分)解方程:(1)5(x+6)=5﹣3(1﹣3x);(2).18.(6分)计算:(1)﹣6+(﹣4)×(﹣3)+(﹣2)3÷4;(2)﹣13﹣[2×(﹣5)+(﹣3)2]÷.19.(6分)先化简,再求值:﹣a2b+2(3ab2﹣a2b)﹣3(ab2﹣a2b),其中a=1,b=﹣2.20.(8分)已知关于x的方程与方程3x+5=11的解互为相反数,求a的值.21.(8分)如图,线段AB=24.C是线段AB的中点,D是线段BC的中点.(1)求线段AD的长;(2)在线段AD上有一点E,满足,求AE的长.22.(9分)如图,已知点O为直线AB上一点∠COE=62°,∠COD=90°,OE平分∠BOD.(1)求∠AOD的度数;(2)若∠AOF=3∠BOE,求∠FOD的度数.23.(9分)2024年10月26日,长郡中学将举行120周年华诞庆典.为更好的展示庆典盛况,学校计划用无人机进行拍摄选用无人机时,为比较I号、II号两架无人机的性能,让I号无人机从海拔10米处出发,以18米/分钟的速度匀速上升,II号无人机从海拔30米处同时出发,匀速上升,经过12分钟,I号无人机比Ⅱ号无人机高40米.(1)求Ⅱ号无人机的上升速度;(2)当这两架无人机位于同一海拔高度时,求此时的海拔高度.24.(10分)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角与这个角互余,那么这两条射线所成的角叫做这个角的内余角,如图1,若射线OC,OD在∠AOB的内部,且∠COD+∠AOB=90°,则∠COD是∠AOB的内余角.根据以上信息,解决下面的问题:(1)如图1,∠AOB=72°,∠AOC=20°,若∠COD是∠AOB的内余角,则∠BOD =;(2)如图2.已知∠AOB=60°将OA绕点O顺时针方向旋转一个角度α(0°<α<60°)得到OC.同时将OB绕点O顺时针方向旋转一个角度得到OD.若∠COB是∠AOD 的内余角,求α的值;(3)把一块含有30°角的三角板COD按图3方式放置,使OC边与OA边重合,OD 边与OB边重合,如图4将三角板COD绕顶点O以6度/秒的速度按顺时针方向旋转,旋转时间为t秒,在旋转一周的时间内,当射线OA,OB,OC,OD构成内余角时,请求出t的值.25.(10分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,其中b是最小的正整数,且多项式(a+2)x3+2x2+9x+5是关于x的二次多项式,一次项系数为c.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,此时点B与某数表示的点重合,则此数为;(3)在数轴上剪下AC(从a到c)这条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图).若这三条线段的长度之比为2:2:5,则折痕处对应的点在数轴上所表示的数可能是多少?2023-2024学年湖南省长沙市长郡教育集团七年级(上)期末数学试卷参考答案与试题解析一、单项选择题(本大题共10小题,每小题3分,共30分)1.【分析】根据正数大于负数,两个负数比较大小,绝对值的大的反而小判断即可.【解答】解:﹣(﹣2021)=2021,|﹣2022|=2022,﹣|﹣2023|=﹣2023,﹣(+2024)=﹣2024,∵﹣2024<﹣2023<2021<2022,∴|﹣2022|>﹣(﹣2021)>﹣|﹣2023|>﹣(+2024),故选:B.【点评】本题考查了有理数比较大小,解题关键是熟记有理数比较大小的法则.2.【分析】确定n的值的方法是看数变成a时,小数点的移动,当小数点向左移动时,n的值与移动位数相同;当小数点向右移动时,小数点移动位数的相反数等于n的值.【解答】解:609.65万=6096500=6.0965×106,故选:D.【点评】本题主要考查科学记数法的运用,掌握科学记数法的表示形式a×10n,其中1≤|a|<10,n的取值是解题的关键.3.【分析】根据单项式的系数和次数的概念解答.【解答】解:单项式﹣2πxy2z3的系数是﹣2π,次数是6,故选:B.【点评】本题考查的是单项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.【分析】观察图形,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,可得到图形:.故选:A.【点评】本题主要考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.5.【分析】根据等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立;等于两边同时乘以(或除以)同一个不为零的数或式子,等式仍成立;由此即可求解.【解答】解:A、等式两边同时加或减同一个数,等式仍成立,故原选项错误,不符合题意;B、等式两边同时乘以不为零的数c,等式仍成立,故原选项正确,符合题意;C、等式两边同时除以2得,,故原选项错误,不符合题意;D、等式两边同时除以2得,,故原选项错误,不符合题意;故选:B.【点评】本题主要考查等式的性质,解题的关键是理解根据等式的性质:等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立;等于两边同时乘以(或除以)同一个不为零的数或式子,等式仍成立.6.【分析】根据对顶角的定义,得∠BOD=∠COE=35°.根据互余的定义,得∠AOE=90°﹣∠COE=55°.【解答】解:∵∠BOD和∠COE是对顶角,∴∠BOD=∠COE=35°.∵∠COE+∠AOE=90°,∴∠AOE=90°﹣∠COE=90°﹣35°=55°.故选:A.【点评】本题主要考查对顶角、余角,熟练掌握对顶角的定义、余角的定义是解决本题的关键.7.【分析】根据有理数a,b在数轴上对应点的位置,可知,a<0,b>0,且|a|<|b|,再根据有理数加法的计算方法得出答案.【解答】解:根据有理数a,b在数轴上对应点的位置,可知a<0,b>0,且|a|<|b|,∴a+b>0,故选:D.【点评】考查数轴表示数的意义,根据数轴上两点位置,确定各个数的符号和绝对值是得出正确结论的前提.8.【分析】根据乙先做3天,甲再加入合做找到等量关系列出方程即可.【解答】解:由题意可得:,故选:A.【点评】此题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找出等量关系.9.【分析】根据每个图中的三角尺的摆放位置,容易得出∠α和∠β的关系.【解答】解:第1个图中,∠α=∠β=45°,符合题意;第2个图中,根据同角的余角相等,∠α=∠β,且∠α与∠β均为锐角,符合题意;第3个图中,根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β,符合题意;第4个图中,根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°,不符合题意;综上,∠α=∠β的图形有3个.故选:C.【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.10.【分析】根据题意具体表示出前几个式子,然后推而广之发现规律.【解答】解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=,第三阶段时,余下的线段的长度之和为=,第四阶段时,余下的线段的长度之和为×=,故选:B.【点评】此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】根据合并同类项运算法则进行计算即可.【解答】解:9ab﹣2ab=(9﹣2)ab=7ab,故答案为:7ab.【点评】本题主要考查合并同类项,掌握合并同类项运算法则进行计算是关键.12.【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【解答】解:∵单项式﹣x m y2与6xy n+5是同类项,∴,∴,∴m+n=1+(﹣3)=﹣2故答案为:﹣2.【点评】本题主要考查了同类项的定义,解题的关键在于能够熟练掌握同类项的定义.13.【分析】利用平角180°减去45°与50°的和进行计算即可解答.【解答】解:由题意得:∠AOB=180°﹣(45°+50°)=85°,故答案为:85.【点评】本题考查了方向角,根据题目的已知条件并结合图形分析是解题的关键.14.【分析】设这件衣服的成本价为x元,根据数量关系列式求解即可求解,【解答】解:设这件衣服的成本价为x元,∴标价为:x(1+50%)=1.5x(元),∴打八折的标价为:1.5x×80%=1.2x(元),∴1.2x﹣x=60,解得,x=300,∴这件衣服的成本价为300元,故答案为:300.【点评】本题主要考查一元一次方程的运用,关键是理解题目中的数量关系,掌握标价﹣成本价=利润的数量关系,解方程的方法是解题的关键.15.【分析】根据一元一次方程的定义解答即可.【解答】解:由题意得:|a|=1且a﹣1≠0,∴a=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解题的关键.16.【分析】本题需先求出首尾两站之间共有多少条线段,根据线段的条数即可求出车票的种数.【解答】解:设首尾两站为点A、B,点C、D、E、F、G、H、M是线段AB上的七个点,根据题意可得:图中共用条线段,∵A到B与B到A车票不同.∴A、B之间的车票共有36×2=72(种),故答案为:72.【点评】本题主要考查了如何求线段的条数的问题,关键是要注意线段的条数与车票种数的联系与区别.三、解答题(本大题共9小题,共22分,解答应写出文字说明,证明过程或演算步骤)17.【分析】(1)去括号,移项,合并同类项,系数化为1即可求解;(2)去分母,去括号,移项,合并同类项,系数化为1即可求解.【解答】解:(1)5(x+6)=5﹣3(1﹣3x),去括号得,5x+30=5﹣3+9x,移项得,5x﹣9x=5﹣3﹣30,合并同类项得,﹣4x=﹣28,系数化为1得,x=7;(2)去分母得,2(4y+2)﹣5(3y﹣1)=10,去括号得,8y+4﹣15y+5=10,移项得,8y﹣15y=10﹣4﹣5,合并同类项得,﹣7y=1,系数化为1得,.【点评】本题主要考查解一元一次方程,掌握去括号、去分母、移项、合并同类项,系数化为1的方法是解题的关键.18.【分析】(1)先算乘方,再算乘法与除法,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算除法,最后算加减即可.【解答】解:(1)﹣6+(﹣4)×(﹣3)+(﹣2)3÷4=﹣6+(﹣4)×(﹣3)﹣8÷4=﹣6+12﹣2=4;(2)﹣13﹣[2×(﹣5)+(﹣3)2]÷=﹣1﹣[2×(﹣5)+9]×2=﹣1﹣(﹣10+9)×2=﹣1﹣(﹣1)×2=﹣1+2=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.19.【分析】利用整式加减运算的法则化简代数式,再将a=1,b=﹣2代入化简后的式子计算即可.【解答】解:﹣a2b+2(3ab2﹣a2b)﹣3(ab2﹣a2b)=﹣a2b+6ab2﹣2a2b﹣3ab2+3a2b=3ab2,将a=1,b=﹣2代入得:3ab2=3×1×(﹣2)2=12.【点评】本题考查了整式加减的化简求值,解题的关键是熟练掌握整式加减的运算法则.20.【分析】首先解得第二个方程的解x=2,然后根据相反数的定义将x=﹣2代入第一个方程来求a的值即可.【解答】解:3x+5=11,∴3x=11﹣5,∴3x=6,解得:x=2,∴x=﹣2是方程的解,代入得:,∴2(﹣2+a)=﹣12﹣3a,解得:.【点评】本题考查了一元一次方程的解的定义及解一元一次方程,正确进行计算是解题关键.21.【分析】(1)根据线段的中点先算出AC,CD的长,再根据线段的和差即可求解;(2)根据题意可算出CE的长,分类讨论,当点E在AC之间时;当点E在CD之间时;由此即可求解.【解答】解:(1)∵点C是线段AB的中点,∴,∵点D是线段BC的中点,∴,∴AD=AC+CD=12+6=18,∴线段AD的长为18;(2)∵AC=BC=12,∴,当点E在AC之间时,AE=AC﹣CE=12﹣2=10;当点E在CD之间时,AE=AC+CE=12+2=14;综上所述,AE的长为10或14.【点评】本题主要考查线段的和差运算,掌握中点的运算是解题的关键.22.【分析】(1)根据角平分线定义,结合余角补角概念计算即可;(2)先求出∠AOF=84°,再根据两角之差求出结论.【解答】解:(1)∵∠COE=62°,∠COD=90°,∴∠DOE=90°﹣62°=28°,∵OE平分∠BOD,∴∠BOD=2∠DOE=2×28°=56°,∴∠AOD=180°﹣56°=124°;(2)∵∠DOE=∠BOE=28°,∠AOF=3∠BOE,∴∠AOF=3×28°=84°,∴∠FOD=∠AOD﹣∠AOF=124°﹣84°=40°.【点评】本题考查的是角平分线的有关计算及角的和差计算,解题的关键是理解角的和差定义.23.【分析】(1)设Ⅱ号无人机的上升速度为x米/分,根据题意列出方程求解即可;(2)设当y分钟时这两架无人机位于同一海拔高度,根据题意列出方程求解即可.【解答】解:(1)设Ⅱ号无人机的上升速度为x米/分,根据题意,得:10+18×12﹣40=30+12x,解得:x=13,答:Ⅱ号无人机的上升速度是13米/分;(2)设当y分钟时这两架无人机位于同一海拔高度,根据题意,得:10+18y=30+13y,解得:y=4,∴10+18y=10+18×4=82(米),答:此时的海拔高度是82米.【点评】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.24.【分析】(1)根据内余角可求出∠COD的度数,再根据∠BOD=∠AOB﹣∠AOC﹣∠COD 即可求解;(2)根据旋转的性质分别用含α的式子表示∠COB,∠BOD的度数,再根据∠COB是∠AOD的内余角列式求解即可;(3)根据内余角的概念及计算方法,分类讨论,当OC在∠AOB内部时;当OC在射线OB下方时;当OD在OA上方时;当OD在∠AOB内部时;根据旋转的性质表示角的数量关系,列表求解即可.【解答】解:(1)∵∠COD是∠AOB的内余角,∴∠COD+∠AOB=90°,∵∠AOB=72°,∴∠COD=90°﹣∠COD=90°﹣72°=18°,∵∠AOC=20°,∴∠BOD=∠AOB﹣∠AOC﹣∠COD=72°﹣20°﹣18°=34°,故答案为:34°;(2)已知∠AOB=60°,OA绕点O顺时针方向旋转一个角度α(0°<α<60°)得到OC,OB绕点O顺时针方向旋转一个角度得到OD,∴∠AOC=α,,∴∠BOC=∠AOB﹣α=60°﹣α,,∵∠COB是∠AOD的内余角,∴∠COB+∠AOD=90°,∴,解得α=45°∴α的值为45°;(3)根据题意可得,∠AOB=30°,三角板COD绕顶点O以6度/秒的速度按顺时针方向旋转,旋转时间为t秒,当OC在∠AOB内部时,如图所示,∴∠AOC=6t,∠BOD=6t,∴∠BOC=∠AOB﹣∠AOC=30°﹣6t,∠AOD=∠AOB+∠BOD=30°+6t,若∠COB是∠AOD的内余角时,得∠COB+∠AOD=90°,∴30﹣6t+30+6t=90°,无解,∴当OC在∠AOB内部时,射线OA,OB,OC,OD不能构成内余角;当OC在射线OB下方时,如图所示,∴∠BOC=6t﹣30°,∠AOD=6t+30°,若∠BOC是∠AOD的内余角,∴6t﹣30°+6t+30°=90°,解得t=7.5;当OD在OA上方时,如图所示,∴∠AOD=360°﹣6t﹣30°=330°﹣6t,∠BOC=∠AOD+60°=330°﹣6t+60°=390°﹣6t,若∠AOD是∠BOC的内余角,∴330°﹣6t+390°﹣6t=90°,解得t=52.5;当OD在∠AOB内部时,如图所示,∴∠AOC=360°﹣6t,∠BOD=360°﹣6t,∠AOD=6t﹣∠AOC=6t﹣(360°﹣6t)=12t﹣360°,∴∠BOC=∠AOC+∠BOD=360°﹣6t+360°﹣6t=720°﹣12t,若∠AOD是∠BOC的内余角,∴12t﹣360+720﹣12t=90°,无解,∴当OD在∠AOB内部时,射线OA,OB,OC,OD不能构成内余角;综上所述,当射线OA,OB,OC,OD构成内余角时,t的值为7.5秒或52.5秒.【点评】本题主要考查角的和差的运算,掌握内余角的概念及计算方法是解题的关键.25.【分析】(1)根据有理数概念及多项式定义得出结论;(2)根据数轴上两点间距离及线段中点表示即可解决;(3)根据数轴上点的表示及线段中点定义即可求出.【解答】解:(1)∵b是最小的正整数,多项式(a+2)x3+2x2+9x+5是关于x的二次多项式,一次项系数为c,∴b=1,a+2=0,c=9,解得:a=﹣2,b=1,c=9,故答案为:﹣2,1,9;(2)∵将数轴折叠,使得点A与点C重合,∴线段AC中点为,设此时与点B重合表示的点表示的数是x,∴,解得:x=6,则此数为6,故答案为:6;(3)∵线段AC=9﹣(﹣2)=11,这三条线段的长度之比为2:2:5,∴,∴这三条线段的长度分别为,,,若剪下的从左到右第一条线段长为,第2条线段长度也为时,则折痕表示的数为:;若剪下的从左到右第一条线段长为,第2条线段长度为,则折痕表示的数为:;若剪下的从左到右第一条线段长为,第2条线段长度为,则折痕表示的数为:;∴折痕表示的数为或或,故答案为:或或.【点评】本题考查用数轴上的点表示有理数、数轴上两点间的距离及一元一次方程的应用,解题的关键是理解题意,学会利用转化的思想思考问题。
长沙市人教版七年级上册数学期末试卷及答案-百度文库
长沙市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .32.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2C .3D .44.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=5.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 326.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =17.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯9.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 10.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=011.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x ym m=,则x y = D .若x y =,则x y m m= 12.下列各数中,比73-小的数是( )A .3-B .2-C .0D .1-13.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=214.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15015.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.19.﹣30×(1223-+45)=_____.20.已知m﹣2n=2,则2(2n﹣m)3﹣3m+6n=_____.21.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___22.若方程11222mx x--=++有增根,则m的值为____.23.如图所示,ABC90∠=,CBD30∠=,BP平分ABD.∠则ABP∠=______度.24.对于有理数a,b,规定一种运算:a⊗b =a2-ab .如1⊗2=12-1⨯2 =-1,则计算-5⊗[3⊗(-2)]=___.25.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.26.当x= 时,多项式3(2-x)和2(3+x)的值相等.27.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 28.若523m xy +与2n x y 的和仍为单项式,则n m =__________.29.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.30.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.34.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.35.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.36.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.38.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP =2t ,BQ =t , ∴PB =AP ﹣AB =2t ﹣30, ∴2t ﹣30=12t , t =20,不符合t >30, 综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.3.B解析:B 【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得AC =12AB =2. 故选B . 【点睛】本题考查了两点间的距离,利用了线段中点的性质.4.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x ,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.5.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.6.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.7.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数有35-、π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时,∵BC=4cm ,∴AC=14cmM 是线段AC 的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm .故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A .11.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m =不成立,故D 选项错误; 故选:D .【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A .【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小. 13.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.14.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.﹣.【解析】【分析】把x =3代入方程得到关于m 的方程,求得m 的值即可.【详解】解:把x =3代入方程得1+1+=,解得:m =﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83. 【解析】【分析】把x =3代入方程得到关于m 的方程,求得m 的值即可.【详解】解:把x =3代入方程得1+1+mx(31)4-=23, 解得:m =﹣83. 故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.【解析】【分析】设小长方形卡片的长为2m ,则宽为m ,观察图2可得出关于m 的一元一次方程,解之即可求出m 的值,设盒子底部长方形的另一边长为x ,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m ,则宽为m ,观察图2可得出关于m 的一元一次方程,解之即可求出m 的值,设盒子底部长方形的另一边长为x ,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x 的一元一次方程,解之即可得出x 的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m ,则宽为m ,依题意,得:2m +2m =4,解得:m =1,∴2m =2.再设盒子底部长方形的另一边长为x ,依题意,得:2(4+x ﹣2):2×2(2+x ﹣2)=5:6,整理,得:10x =12+6x ,解得:x =3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.19.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 20.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.21.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.22.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键23.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=, BP 平分ABD ∠, ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 24.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.26.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.27.18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:118000=1.18×105,故答案为1.18×105.28.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.29.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】x=代入方程,得把1m⨯-=141m=∴5故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.30.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()+++++++=+1771416x x x x xx+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767. 位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元. ()3设商品标价为x 元,抵扣金额为b 元,则优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>>。
湖南省长沙市七级上期末数学试卷含答案
2017-2018学年湖南省长沙市南雅、中雅中学七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共9小题,共27.0分)1.据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为()A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×10122.如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于()A.60°B.80°C.50°D.130°3.下列解方程步骤正确的是()A.由2x+4=3x+1,得2x?3x=1+4B.由7(x?1)=3(x+3),得7x?1=3x+3C.由0.2x?0.3=2?1.3x,得2x?3=2?13xD.由x?13?x+26=2,得2x?2?x?2=124.在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是()A.3(52?x)=38+xB.52+x=3(38?x)C.52?3x=38+xD.52?x=3(38?x)5.下列各式正确的是()A.19x2x?9xx2=10x2xB.3x+3x=6xxC.16x2?7x2=9D.2x?5x=?3x6.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方形叠成.A.86B.87C.85D.847. 如图,C 是AB 的中点,D 是BC 的中点,下列等式不正确的是( )A.xx =xx ?xxB.xx =xx ?xxC.xx =13xxD.xx =12xx ?xx8. 如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团 9. 已知13a x b 2与15ab y 的和是815a xb y ,则(x -y )y 等于( ) A.2 B.1 C.?2 D.?1二、填空题(本大题共5小题,共15.0分)10. 若a 的相反数是-3,b 的绝对值是4,且|b |=-b ,则a -b =______.11. 已知代数式x -3y -1的值为3,则代数式5+6y -2x 的值为______.12. 按照下列程序计算输出值为2018时,输入的x 值为______.13.14.如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A=______.15.16.17.18.一个角的补角比这个角的余角的2倍大18°,则这个角的度数为______.三、计算题(本大题共2小题,共14.0分)19.先化简,再求值,x2-3(2x2-4y)+2(x2-y),其中|x+2|+(5y-1)2=020.21.22.23.24.25.26.27.解方程:28.(1)2x+3=12-3(x-3)29.(2)3x?24=2?2x?1330.31.32.33.34.35.36.四、解答题(本大题共5小题,共44.0分)37.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”38.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;39.(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);40.(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?41.42.已知AM∥CN,点B为平面内一点,AB⊥BC于B43.(1)如图1,直接写出∠A和∠C之间的数量关系;44.(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;45.(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.46.47.中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:48.班长:阿姨,您好!售货员:同学,你好,想买点什么?49.50.(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?51.(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?52.53.54.55.56.57.58.59.如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.60.61.62.63.64.65.如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.66.解:∠AFE=∠ABC(已知)67.∴______(同位角相等,两直线平行)68.∴∠1=∠______(两直线平行,内错角相等)69.∠1+∠2=180°(已知)70.∴______(等量代换)71.∴EB∥DG______72.∴∠GDE=∠BEA______73.GD⊥AC(已知)74.∴______(垂直的定义)75.∴∠BEA=90°(等量代换)76.∠AEF=65°(已知)77.∴∠1=∠______-∠______=90°-65°=25°(等式的性质)78.79.80.81.82.83.答案和解析1.【答案】C【解析】解:1682亿=1.682×1011.故选:C.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【答案】B【解析】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180°-100°=80°.故选:B.根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.3.【答案】D【解析】解:A、由2x+4=3x+1,得2x-3x=1-4,此选项错误;B、由7(x-1)=3(x+3),得7x-7=3x+9,此选项错误;C、由0.2x-0.3=2-1.3x,得2x-3=20-13x,此选项错误;D、由,得2x-2-x-2=12,此选项正确;故选:D.根据解一元一次方程的基本步骤逐一判断即可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.4.【答案】B【解析】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38-x).故选:B.设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.【答案】D【解析】解:A、19a2b-9ab2,不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2-7y2=9y2,故错误;D、2x-5x=-3x,故正确;故选:D.根据合并同类项的法则进行计算即可.本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.【答案】D【解析】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.7.【答案】C【解析】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD-AC∴CD=AD-BC故A正确∵CD=BC-DB∴CD=AC-DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC-DB∴CD=AB-DB故D正确故选:C.根据线段中点的定义可判断.本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.【答案】C【解析】解:这是一个正方体的平面展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.【答案】B【解析】解:由题意可知:a x b2与ab y是同类项,∴x=1,y=2,∴原式=(-1)2=1,故选:B.根据同类项的定义即可求出答案.本题考查同类项的概念,解题的关键是熟练运用同类型的概念,本题属于基础题型.10.【答案】7【解析】解:根据题意得:a=3,b=-4,则原式=3-(-4)=3+4=7,故答案为:7利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.11.【答案】-3【解析】解:∵x-3y-1=3,∴x-3y=4,∴5+6y-2x=5-2(x-3y)=5-2×4=5-8=-3故答案为:-3.首先求出x-3y的值是多少,然后把它代入5+6y-2x,求出算式的值为多少即可.此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.【答案】202【解析】解:根据题意得2(5x-1)=2018,5x-1=1009,所以x=202.故答案为202.利用计算程序得到2(5x-1)=2018,然后解关于x的方程即可.本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了一元一次方程的应用,13.【答案】35°【解析】解:∵∠1=20°,∠ACB=90°,∴∠3=90°-∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.14.【答案】18°【解析】解:设这个角的度数为x,由题意得,180°-x=2(90°-x)+18°,解得,x=18°,故答案为:18°.设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.15.【答案】解:原式=x2-6x2+12y+2x2-2y=-3x2+10y,∵|x+2|+(5y-1)2=0,,∴x=-2,y=15则原式=-12+2=-10.【解析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.16.【答案】解:(1)去括号得:2x+3=12-3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x-6=24-8x+4,移项合并得:17x=34,解得:x=2.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.【答案】-4或2;-2或-1或0或1或2或3或4【解析】解:(1)A的幸福点C所表示的数应该是-1-3=-4或-1+3=2;(2)4-(-2)=6,故C所表示的数可以是-2或-1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8-2x-4+(8-2x+1)=6,解得x=1.75;②4-(8-2x)+[-1-(8-2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.18.【答案】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.19.【答案】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,x?x=30,根据题意得:{3x+5x=600?30x=90.解得:{x=60答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60-200=1930(元).∵1830<1930,∴按套装打折购买更划算.【解析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.20.【答案】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=32°.【解析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.21.【答案】EF∥BC;EBC;∠EBC+∠2=180°;同旁内角互补,两直线平行;两直线平行,同位角相等;∠GDE=90°;BEA;AEF【解析】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG(同旁内角互补,两直线平行)∴∠GDE=∠BEA(两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA-∠AEF=90°-65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.根据平行线的性质和判定可填空.本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
••GM平分/HGB,
•••启GF=100°,
•2=180 -100=80°
故选:B.
根据平行线的性质与73=50°,求得ZBGM=50,由GM平分ZHGB交直线CD于点M,得出ZBGF的度数,再根据邻补角的性质求得71的度数.
本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.
41.
41.已知AM /CN,点B为平面内一点,ABXBC于B
42.(1)如图1,直接写出ZA和/C之间的数量关系;
43.(2)如图2,过点B作BD^AM于点D,求证:zSABD=ZC;
44.(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF, BF平分/DBC,BE平分ZABD,若ZFCB+ZNCF=180°ZABF=2ZABE,求ZEBC的度数.
46.
45.中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长 去商店买篮球和排球,下面是班长与售货员的对话:
46. 班长:阿姨,您好!售货员:同学,你好,想买点什么?
50.(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?
51.(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套 装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学 校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解 题的关键.
5.【答案】D
【解析】
2017-2018
题号
-一-
-二二
三
四
总分
得分
一、选择题(本大题共9小题,共27.0分)
1.据统计,2017年双^一当天,天猫成交额1682亿,1682亿用科学记数法可表示为()
如图,AB/CD,直线EF分别与直线AB,CD相交于点G,H,已 知73=50°,GM平分ZHGB交直线CD于点M,则/1等于()
二(同位角相等,两直线平行)
•••/=(两直线平行,内错角相等)
Z1 + Z2=180°(已知)
二(等量代换)
••EB /DG
•••/DE=ZBEA
GD^AC(已知) 二(垂直的定义)
•••/EA=90°(等量代换)
ZAEF=65°(已知)
• /=-/=90-65°25°(等式的性质)
C
G
1
82.
83.
解方程:
(1)2x+3=12-3(x-3)
30.
31.
32.
33.
34.
35.
36.
四、解答题(本大题共5小题,共44.0分)
37.幸福是奋斗出来的”在数轴上,若C到A的距离刚好是3,则C点叫做A的幸福点” 若C到A、B的距离之和为6,则C叫做A、B的 幸福中心”
38.(〔)如图〔,点A表示的数为-1,则A的幸福点C所表示的数应该是;
3.【答案】D
【解析】
解:A、由2x+4=3x+1,得2x-3x=1-4,此选项错误;
B、由7x-1)=3x+3),待x-7=3x+9,此选项错误;
C、由0.2x-0.3=2-1.3x,得2x-3=20-13x,此选项错误;
X—1丄+2
D、 由,',得2x-2-x-2=12,此选项正确;
故选:D.
根据解一元一次方程的基本步骤逐一判断即可得.
16.
17.
18.
三、
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
如图,直线a/b,直角三角形ABC的直角顶点C在直线b上,/1=20。,
Z2=2必,则/A=.
一个角的补角比这个角的余角的2倍大18°则这个角的度数为
计算题(本大题共2小题,共14.0分)
先化简,再求值,x2-3(2x2-4y)+2(x2-y),其中x+2|+(5y-1)2=0
A.B.C.D.
5.下列各式正确的是()
A.B.
C.D.
6.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠
成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律, 第(7)个图形由()个正方形叠成.
7.
8.
9.
、
10.
11.
12.
13.
14.
15.
答案和解析
1.【答案】C
【解析】
解:1682亿=1.682 X1011.
故选C
用科学记数法表示较大的数时,一般形式为aX10n,其中1W|^10,n为整数,据此判断即
可.
此题主要考查了用科学记数法表示较大的数,一般形式为aX10n,其中K|齐10,确定a与n的值是解题的关键.
2.【答案】B
【解析】
解:'-AB /CD,
39.(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C
就是M、N的幸福中心,贝U C所表示的数可以是(填一个即可);
40.(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4, 点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运 动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?
52.
53.
54.
55.
56.
57.
58.
59.
如图:ZBCA=64°CE平分/ACB,CD平分/ECB,DF /EC交CE于点F,求/CDF和ZDCF的度数.
60.
61.
62.
63.
64.
65.
£
.D
B
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
C如图,在△ABC中,GD丄AC于点D,ZAFE= ZABC,Z1 + Z2=180°,ZAEF=65°求/1的度数.解:ZAFE=/ABC(已知)
本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步 骤.
4.【答案】B
【解析】
解:设从舞蹈队中抽调了x人参加话剧社,
根据题意得:52+x=3 38-x).
故选:B.
设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍, 即可得出关于x的一元一次方程,此题得解.
A.
B.
C.
D.
3.下列解方程步骤正确的是()
A.由,得
B.由,得
C.由,得
D.由一一 ,得
4.在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,
现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞 蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是()