初三数学开放型数学问题分类赏析
中考数学复习专题-开放性问题(含详细参考答案)
中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
2023年中考数学热点专题复习课件6 开放型
2
解:(2)由(1),知抛物线的表达式为 y=- x +x+4.
设直线 AB 的表达式为 y=kx+b,
= ,
则 - + = ,解得
∴直线 AB 的表达式为 y=2x+4.
= .
= ,
设直线 DE 的表达式为 y=mx.由 2x+4=mx,得 x= .
-
当 x=3 时,y=mx=3m,∴E(3,3m).
②
⑤
⑥
由(3),知∠BCG=∠ACF,
∴△BGC∽△AFC,
∴
= = =m,
∴BG=mAF,GC=mFC.
在 Rt△CGF 中,
GF= + = + ()
= + ·CF,
∴BF=BG+GF=mAF+ + ·FC.
解决结论开放型问题,要充分利用题目中给出的条件合理地猜想,正确地推理.
小组进行如下探究,请你帮忙解答:
[初步探究]
(1)如图②所示,当ED∥BC时,α=
.
①
解:(1)∵△CED是等腰直角三角形,∴∠CDE=45°.
∵ED∥BC,∴∠BCD=∠CDE=45°,即α=45°.
故答案为45°.
②
(2)如图③所示,当点E,F重合时,请写出AF,BF,CF之间的数量关系:
.
③
①
思路导引:(2)过点M作MD⊥y轴,垂足为D,根据面积关系得出OA=2MD,设点M的坐标为(m,-m2+4),
求出点M的坐标,用待定系数法求出直线AM的表达式,根据点C坐标求出直线CN的表达式,确定点N
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略初中数学中的开放探究题是一类涉及多种解决方法和思路的问题,其答案不唯一,求解过程和思维过程比结果更重要。
开放探究题能够激发学生的思维活动,培养学生的创新能力和解决问题的能力。
下面将介绍一些常见的开放探究题的类型以及解题策略。
一、数列问题:数列问题是初中数学中的重要内容,也是开放探究题的常见类型。
在解决数列问题时,可以采用递归关系与通项公式相结合的方法。
解题策略:1.观察法:观察数列的前几项,寻找规律。
2.分情况讨论法:根据题目的条件,分析数列的性质,将问题分解为几个简单情况进行讨论。
3.递推法:根据数列的递归关系,根据已知的条件,求解下一个数。
4.通项公式法:通过观察数列的性质,找出数列的通项公式。
解题策略:1.画图法:根据题目要求,画出图形,并观察图形的性质,寻找规律。
2.分割法:将图形分割成一些简单的图形,进一步分析每个简单图形的性质,然后综合求解整个问题。
3.等分法:通过分析图形的对称性,将图形分成若干相等的部分,然后计算出每个部分的面积或长度,最后求和得到最终的结果。
4.面积法:通过计算图形的面积,求解某一部分的面积或整个图形的面积。
解题策略:1.列方程法:根据问题所描述的关系,列出相应的方程,然后求解方程得到答案。
2.代入法:将已知的一个或几个条件代入方程中,求解未知数。
3.化简法:对方程进行化简,将复杂的方程化简为简单的方程,然后求解方程得到答案。
4.分类讨论法:根据题目的不同条件,将问题分为几个不同的情况,分别列方程求解。
解题策略:1.相似性:通过观察图形的相似性质,建立相似三角形的比例关系或使用等比例分割线,通过比例关系求解问题。
2.角度关系:通过观察图形的角度关系,利用角度和的等于180度等性质,建立方程求解问题。
3.比例关系:通过观察图形的比例关系,利用等比例分割线,建立比例关系等方程求解问题。
4.三角形的性质:利用三角形的面积公式、三边关系、角平分线等性质,建立方程求解问题。
初三数学开放探索性试题的分类简析
开放探索性试题的分类简析徐利根 杨惠琴探索性试题是中考中必考的试题。
它主要考查学生的探索能力。
也可以充分考查考生观察问题、解决问题的能力,是新课程改革的重要标志。
近几年各地中考试题中,这是一个热点问题。
下面我们分类讨论这类问题的具体处理方法,供大家在中考复习时作参考。
一、存在性探索题这一类试题主要是在某种条件下,判断具有某种性质的数学对象是否存在。
例1. (2007年某某市中考压轴题)已知在Rt △OAB 中,∠OAB =90°,∠BOA =30°,AB =2,若以O 为坐标原点,OA 所在直线为x 轴,建立如图1所示的平面直角坐标系。
点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处。
(1)求点C 的坐标;(2)若抛物线)0a (bx ax y 2≠+=经过C 、A 两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB 交于点D ,点P 是线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M ,问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由。
分析:(1)C (3,3)(2)x 32x y 2+-=(3)如图1,由于CD ∥PM ,要探索四边形CDPM 是否为等腰梯形,我们运用点参数的方法表示出点P 、点Q 、点D 的坐标,假设CE =QD ,问题转化为二次方程是否有解。
解:因为x 32x y 2+-=的顶点坐标为C (3,3),MP ⊥x 轴,设垂足为N ,设PN =t 。
因为∠BOA =30°,所以t 3ON =, 所以P (t ,t 3)。
作PQ ⊥CD ,垂足为Q ,ME ⊥CD ,垂足为E ,把t 3x =代入 ,x 32x y 2+-=得.t 6t 3y 2+-=所以M :)t 6t 3,3(E ),t 6t 3,t 3(22+-+-,同理Q (t ,3),D (1,3)。
浅谈中考数学“开放性问题”
浅谈中考数学“开放性问题”浅谈“开放性问题”所谓的开放性试题是指那些条件不完整,结论不确定的数学问题。
开放题的特征很多,如条件的不确定性,它是开放题的前提;结构的多样性,它是开放题的目标;思维的多向性,它是开放题的实质;解答的层次性,它是开放题的表象;过程的探究性,它是开放题的途径;知识的综合性,它是开放题的深化;情景的模拟性,它是开放题的实践;内涵的发展性,它是开放题的认识.过程开放或结论开放的问题能促使考生积极探究问题情景,鼓励学生多角度、多侧面、多层次地思考问题,有助于充分调动学生的潜在能力.题型1条件开放与探索条件开放探索题的明确特征是缺少确定的条件,问题所需补充的条件不是得出结论的必要条件,所需补充的条件不能由结论推出。
例1.(04苏州) 已知(x1,y1),(x2,y2)为反比例函数y=k/x 图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为___________(只需写出满足条件的一个k的值)【解析】此类开放性试题一般需要结合分类讨论的数学思想进行解题:由于反比例函数的图像有两支,且当k取正、负值时其函数图像所处象限不同,故要进行分类讨论:①k>0且x1<x2<0时,反比例函数的图像分布在第三象限,在此象限,y值随着x值的增加而减小,故不可能;②k且x1<x2<0时,反比例函数的图像分布在第二象限,在此象限,y值随着x值的增加而增大,故只要k,都可以满足题意要求。
本题只要任填一个负数即可。
像本题一样,条件开放性试题主要解题思路是把结论作为条件,采取逆向思维进行探索,执果索因。
题型2结论开放与探索。
给出问题的条件,让解题者根据条件探索相应的结论,并且符合条件的结论往往呈现多样性,或者相应的结论的“存在性”需要解题者进行推断,甚至要求解题者探求条件在变化中的结论,这些问题都是结论开放性问题.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略初中数学开放探究题是指那些没有固定答案,需要学生通过自主探究和思考来解决的问题。
这类问题可以培养学生的探究精神、创造力和解决问题的能力,激发学生的兴趣和动力。
下面将介绍一些常见的初中数学开放探究题的类型及解题策略。
一、模型问题模型问题是指通过构建模型来解决数学问题的问题。
学生可以通过观察、思考和实践构建各种模型,从而深入理解问题的本质和解题方法。
通过操作积木或拼图构建几何模型,通过图表和函数关系构建数学模型等。
解题策略:1.仔细观察题目,理解问题要求。
2.选择合适的模型,并进行构建。
3.通过观察模型的性质和特点来解决问题。
4.进行验证和推理,得到结论。
二、思维拓展问题思维拓展问题是指需要学生进行推理、归纳和创新思维的问题。
这类问题不仅考察学生对基础知识的掌握程度,还培养学生的思维能力和创新意识。
通过给定条件猜测规律,通过归纳总结求解问题等。
三、探究和发现问题探究和发现问题是指通过探究和实践来解决问题的问题。
这类问题需要学生主动参与、积极探究,从而培养学生的观察力、实践动手能力和问题解决能力。
思维导图问题是指通过构建思维导图来解决问题的问题。
学生可以通过有机地组织和连接知识点,梳理问题的思路和思维脉络,从而达到理清思路、整合知识的目的。
解题策略:1.仔细阅读题目,理解问题要求。
2.确定思维导图的主题和关键词。
3.按照逻辑关系建立思维导图,连接各种知识点。
4.分析和解决问题,整理得出结论。
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略初中数学开放探究题是指一类没有明确解题方法的数学问题,可以通过思考、推理以及试错来解决的问题。
这类问题通常需要学生发现问题的规律和特点,进行探究和推理,从而找到解题的策略和方法。
下面介绍几种常见的初中数学开放探究题的类型及解题策略。
1. 数列问题:数列问题是初中数学中常见的开放探究题类型之一。
通过观察数列的前几项,学生需要发现并推断数列的规律,然后利用这个规律找出数列的通项公式。
解题策略:- 观察数列的前几项,看是否能够找到数列的规律;- 尝试列出数列的通项公式,然后用这个公式验证数列的后几项是否正确;- 如果困难,可以先找出数列的差、比或其他规律,再推导出数列的通项公式;- 考虑使用递推公式或逆向思维方法来推导数列的规律。
2. 图形问题:图形问题是初中数学中的另一类常见开放探究题类型。
学生需要观察、分析图形的性质,根据图形的特点解决问题。
解题策略:- 观察图形的形状、边长、角度等特征,看是否能够发现规律;- 将图形分解为几个简单的几何形状,研究它们之间的关系;- 利用图形中的对称性质、相似性质、平行关系等几何性质寻找解题思路;- 可以尝试将图形转化为其他形式进行思考和分析。
3. 概率问题:概率问题是初中数学中较为抽象和复杂的开放探究题类型。
学生需要基于概率的定义和性质,通过思考、模拟试验等方式解决问题。
解题策略:- 分析给定事件发生的可能性和不可能性;- 利用计数原理和概率公式计算概率;- 利用试验、模拟或图表等方法辅助计算概率;- 考虑使用条件概率、事件的独立性等概率性质推导解题思路。
4. 代数方程问题:代数方程问题是初中数学中的难点之一。
学生需要通过列方程,利用代数运算的性质求解问题。
解题策略:- 确定未知数,并根据问题中的条件列方程;- 对方程进行整理、变形,将问题中的信息转化为方程中的代数式;- 使用代数运算的性质进行方程的解析求解;- 检验方程的解是否符合问题的要求。
数学人教版九年级上册开放型探究型问题
探学
1 . 如图,在△ABC和△DEC中,已知AB=DE,还需 添加两个条件才能使△ABC≌△DEC,不能添加的一组 条件是( C )
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩 形,请说明理由.
当BH=EH时,四边形BFCE是矩形
探学
2.如图,在矩形ABCD中,AB=6,BC=8,点E 是BC的中点,点F是边CD上的任意一点,当△AEF 的周长最小时,则DF的长为( D ) A.1 B.2 C.3 D.4
PA+PB=PC
探学
1.如图,在平面直角坐标系 xOy 中,正方形 OABC 的 k 边长为 2.写出一个函数 y=x(k≠0),使它的图象与正方形 OABC 有 公 共 点 , 这 个 函 数 的 表 达 式 为 __ (答案不唯一)
存在开放型问题
导学
【例3】如图,在平面直角坐标系中,正方形ABCD的 顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA,OB 的长分别是一元二次方程x2-7x+12=0的两个根(OA> OB). (1)求点D的坐标.
专题复习课
开放探究型问题
引学
开放探究型问题
特点
(1)条件多余 需选择,条件不足 需补充。 (2)答案不固 定。 (3)问题一般 没有明确的结论, 没有固定的形式和 方法。
概念
所谓开放探究型 问题是指已知条件 、解题依据、解题 方法、问题结论这 四项要素中 , 缺少 解题要素两个或两 个以上 , 需要通过 观察、分析、比较 、概括、推理、判
中考数学专题复习——开放研究问题(经典题型)
中考数学专题复习——开放研究问题(经典题型)【专题点拨】开放研究型问题是相对于条件和结论明确的封闭试题而言的,是能引起同学们产生联想,并会自然而然的往深处想的一种试题类型,简单来说就是答案不唯一的,解题的方向不确定,条件或者结论不止一种情况的试题,解答此类试题时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法。
根据开放性的试题的特点,主要有如下几种类型:条件开放性、结论开放性、选择开放型、综合开放型。
【典例赏析】【例题1】(2017黑龙江鹤岗)如图,在边长为4的正方形ABCD中,E、F是AD 边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x 的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)解方程即可得到结论;(2)由四边形ABCO是矩形,得到AB=OC,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE≌△COE;根据勾股定理得到OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,根据相似三角形的性质得到CM=,DM=,于是得到结论.(4)过P 1作P 1H ⊥AO 于H ,根据菱形的性质得到P 1E=CE=5,P 1E ∥AC ,设P 1H=k ,HE=2k ,根据勾股定理得到P 1E=k=5,于是得到P 1(﹣,2+3),同理P 3(,3﹣2),当A 与F 重合时,得到P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,得到EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,根据勾股定理即可得到结论.【解答】解:(1)解方程x 2﹣12x+32=0得,x 1=8,x 2=4,∵OA >OC , ∴OA=8,OC=4;(2)∵四边形ABCO 是矩形, ∴AB=OC ,∠ABC=∠AOC=90°,∵把矩形OABC 沿对角线AC 所在直线折叠,点B 落在点D 处, ∴AD=AB ,∠ADE=∠ABC=90°, ∴AD=OC ,∠ADE=∠COE , 在△ADE 与△COE 中,,∴△ADE ≌△COE ;∵CE 2=OE 2+OC 2,即(8﹣OE )2=OE 2+42, ∴OE=3;(3)过D 作DM ⊥x 轴于M , 则OE ∥DM , ∴△OCE ∽△MCD , ∴, ∴CM=,DM=,∴OM=, ∴D (﹣,); (4)存在;∵OE=3,OC=4, ∴CE=5,过P 1作P 1H ⊥AO 于H , ∵四边形P 1ECF 1是菱形,∴P1E=CE=5,P1E∥AC,∴∠P1EH=∠OAC,∴==,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P4N=OG,P4G=ON,EP4∥AC,∴=,设P4N=x,EN=2x,∴P4E=CP4=x,∴P4G=ON=3﹣2x,CG=4﹣x,∴(3﹣2x)2+(4﹣x)2=(x)2,∴x=,∴3﹣2x=,∴P4(,),综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).【例题3】(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【专题】16 :压轴题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG =CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG :S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.【能力检测】1.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【考点】LF:正方形的判定;LB:矩形的性质.【分析】此题是一道开放型的题目答案不唯一,也可以添加AC⊥BD等.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).2.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.3.(2017齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA 的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D 的坐标;(4)若F 是直线AC 上一个动点,在坐标平面内是否存在点P ,使以点E ,C ,P ,F 为顶点的四边形是菱形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【考点】LO :四边形综合题. 【分析】(1)解方程即可得到结论;(2)由四边形ABCO 是矩形,得到AB=OC ,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB ,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE ≌△COE ;根据勾股定理得到OE=3;(3)过D 作DM ⊥x 轴于M ,则OE ∥DM ,根据相似三角形的性质得到CM=,DM=,于是得到结论.(4)过P 1作P 1H ⊥AO 于H ,根据菱形的性质得到P 1E=CE=5,P 1E ∥AC ,设P 1H=k ,HE=2k ,根据勾股定理得到P 1E=k=5,于是得到P 1(﹣,2+3),同理P 3(,3﹣2),当A 与F 重合时,得到P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,得到EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,根据勾股定理即可得到结论.【解答】解:(1)解方程x 2﹣12x+32=0得,x 1=8,x 2=4,∵OA >OC , ∴OA=8,OC=4;(2)∵四边形ABCO 是矩形, ∴AB=OC ,∠ABC=∠AOC=90°,∵把矩形OABC 沿对角线AC 所在直线折叠,点B 落在点D 处, ∴AD=AB ,∠ADE=∠ABC=90°,∴AD=OC,∠ADE=∠COE,在△ADE与△COE中,,∴△ADE≌△COE;∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,∴OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,∴△OCE∽△MCD,∴,∴CM=,DM=,∴OM=,∴D(﹣,);(4)存在;∵OE=3,OC=4,∴CE=5,过P1作P1H⊥AO于H,∵四边形P1ECF1是菱形,∴P1E=CE=5,P1E∥AC,∴∠P1EH=∠OAC,∴==,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P4N=OG,P4G=ON,EP4∥AC,∴=,设P4N=x,EN=2x,∴P4E=CP4=x,∴P4G=ON=3﹣2x,CG=4﹣x,∴(3﹣2x)2+(4﹣x)2=(x)2,∴x=,∴3﹣2x=,∴P4(,),综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).4.(2017内蒙古赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【考点】RB:几何变换综合题.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.5.(2017张家界)已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.【考点】HF:二次函数综合题.【分析】(1)设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4即可得到结论;(2)解方程组得到x2+3x+m﹣3=0,由于直线l1:y=x+m与c1仅有唯一的交点,于是得到△=9﹣4m+12=0,即可得到结论;(3)根据轴对称的性质得到抛物线c2的解析式为:y=﹣x2+2x+3,根据图象即可刚刚结论;(4)求得B(3,0),得到OB=3,根据勾股定理得到AB==4,①当AP=AB,②当AB=BP=4时,③当AP=PB时,点P在AB的垂直平分线上,于是得到结论.【解答】解:(1)∵抛物线c1的顶点为A(﹣1,4),∴设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4得3=a+4,∴a=﹣1,∴抛物线c1的解析式为:y=﹣(x+1)2+4,即y=﹣x2﹣2x+3;(2)解得x2+3x+m﹣3=0,∵直线l1:y=x+m与c1仅有唯一的交点,∴△=9﹣4m+12=0,∴m=;(3)∵抛物线c1关于y轴对称的抛物线记作c2,∴抛物线c2的顶点坐标为(1,4),与y轴的交点为(0,3),∴抛物线c2的解析式为:y=﹣x2+2x+3,∴①当直线l2过抛物线c1的顶点(﹣1,4)和抛物线记作c2的顶点(1,4)时,即n=4时,l2与c1和c2共有两个交点;②当直线l2过D(0,3)时,即n=3时,l2与c1和c2共有三个交点;③当3<n<4或n>3时,l2与c1和c2共有四个交点;(4)如图,∵若c2与x轴正半轴交于B,∴B(3,0),∴OB=3,∴AB==4,①当AP=AB=4时,PB=8,∴P1(﹣5,0),②当AB=BP=4时,P 2(3﹣4,0)或P3(3+4,0),③当AP=PB时,点P在AB的垂直平分线上,∴PA=PB=4,∴P4(﹣1,0),综上所述,点P的坐标为(﹣5,0)或(3﹣4,0)或(3+4,0)或(﹣1,0)时,△PAB为等腰三角形.。
中考数学专题之开放性问题解析及练习和答案
中考数学专题之开放性问题解析及练习和答案开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连接BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH =FH 或∠EBH =∠FCH 或∠BEH =∠CFH 等. 选择EH =FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH =CH . 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH (SAS ).(2)如图,当BH =EH 时,四边形BFCE 是矩形.理由如下:∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形. 又∵BH =EH ,∴EF =B C. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△AC B.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式.2.(2013·赤峰)请你写出一个大于0而小于1的无理数.3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内? (4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg ).题型之三 综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系,要求: (1)指出变量x 和y 的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x (千米),则车费为y (元).该函数图象就是表示y 随x 的变化过程. (2)①出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; ②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程. 解:①由图象得:出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b , 由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y =2x +2. ②当y =32时,32=2x +2.解得x =15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC (或AB ∥DC )3.∠ADE =∠C (答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x -3<7得x <5. 取x =1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B =90°或∠BAC +∠BCA =90°,或OB =OA =OC 或AB 2+BC 2=AC 2等. 以∠B =90°为例说明.理由: ∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形. 又∵∠B =90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.答案不唯一,如:2,3,4π3.(1)△ABE ≌△CDF ,△ABC ≌△CD A. (2)∵AF =CE ,∴AE =CF . ∵AB ∥CD ,∴∠BAE =∠DCF . 又∵∠ABE =∠CDF ,∴△ABE ≌△CDF .4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如: ① 此函数的解析式为y =kx(k >0), ∵此函数经过点(1,1),∴k =1. ∴此函数可以为:y =1x; ②设此函数的解析式为y =kx +b (k <0), ∵此函数经过点(1,1),∴k +b =1,k <0. ∴此函数可以为:y =-x +2,y =-2x +3,…; ③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×150=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x2-5x-3=0,解得x1=3,x2=-1 2 .经检验知x=3符合题意,∴x=3.∴甲从A地到B地步行所用时间为3小时.3.(1)设y =k x, ∵A (1,10)在图象上,∴10=1k.即k =10. ∴y =10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km /h 的速度去县城,那么小明从家去县城所需的时间y =10x(h ).。
九年级数学中考专题系列-开放型专题辅导全国通用
开放性问题数学开放性问题是指那些条件不完备、结论不确定(或不明确)、方法不惟一的数学问题.此类试题是能使学生展开思维去发散、去发现、去创新的数学问题.中考将开放性问题作为命题创新的突破口,是近几年中考数学命题的一大特点,而且考查力度逐年加大.一、数学开放性问题的类型数学开放性问题的具体表现形式多种多样,依据不同的标准有不同的分类.一般有以下几种分类方法. 1、按问题要求的发散倾向来分,有情境开放、条件开放、策略开放、结论开放、综合开放等; 2、按解题目标的操作模式来分,有探索类,讨论、迁移类等;3、按学习过程中价值取向来分,有知识巩固、技能考查、能力检测、信息迁移等. 二、数学开放性问题的特点1、强调过程的探究性,指数学开放性问题给学生提供了广阔的思维空间,能够激发学生创新意识,可使学生积极参与创造性活动,开发学生创造潜能;2、突出情境模拟的新颖性,指数学开放性问题所附设的材料新、条件复杂、结论多样、解决问题的思路和方法新颖而独特;3、展示问题形式的生动性,指数学开放性问题的开放,可能在于条件、结论、解法驰可能在于问题的设问角度、方式的变化;4、注重问题解决的发散性,指解题者在解决问题过程中,一方面需要动用多种思维方法,另一方面需要多角度、多侧面地进行分析研究,以获取解决问题的方法,并从中选择最佳的解题途径.三、数学开放性问题的解题策略 1、执因索果,直接探求【例1】(1)写出一个两实数根符号相反的一元二次方程:__________________.(2)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果. (3)请写出一个图象在第二、四象限的反比例函数关系式_____________ (4)如图,将一X 等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称. 【解析】(1)答案不唯一:如2230x x +-= (2)答案不唯一,如2x x 42++2=2(x +1)2第(4)题图(3)答案不唯一,如:y =-2x(4)平行四边形、矩形、等腰梯形(三种中任选一种即可)【点评】 这几道小的开放性填空题都是由因索果,根据所给的限制条件,可以探究出很多开放的结果.我们在处理此类题时注意的是所写的答案尽量简洁、贴近题意,不提倡过分的标新立异.【例2】在市区内,我市乘坐出租车的价格y (元)与路 程x (km )的函数关系图象如图1所示. 请你根据图象写出两条信息.【解析】在0到2km 内都是5元;2km 后,每增加加1元. (答案不唯一)【点评】这类识图写信息的开放性问题近年来是命题热点,解决的关键是,认真看准图形中的关键点所对应的横坐标与纵坐标的意义.【例3】某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种..合适的统计表或统计图整理表示上述数据; (2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息: ①______________________________________________________ ②______________________________________________________ 【解析】(1)选择条形统计图图1绘图略.(2)获得的信息如:成绩为五个的有3人,占10%等等.【点评】从统计图表中获取相关的信息也是我们识图的一个重要能力,解决此类问题的技巧是,抓住特征数据进行描述,描述时注意结合题目的问题背景展开.【例4】如图1,线段PB 过圆心O ,交圆O 于A B ,两点,PC 切圆O 于点C ,作AD PC ⊥,垂足为D ,连结AC BC ,.(1)写出图1中所有相等的角(直角除外),并给出证明;(2)若图1中的切线PC 变为图2中割线PCE 的情形,PCE 与圆O 交于C E ,两点,AE 与BC 交于点M ,AD PE ⊥,写出图2中相等的角(写出三组即可,直角除外);【解析】(1)图1中相等的角有:ACD ABC BAC CAD ∠=∠∠=∠,.证明:连结OC ,则OC PC ⊥,AD PC ⊥,AD OC ∴∥,CAD OCA ∴∠=∠,又OA OC =,BAC OCA ∠=∠, BAC CAD ∴∠=∠.又AB 为直径,9090ACB BAC B ∠=∴∠+∠=,, 90CAD ACD ACD ABC ∠+∠=∴∠=∠,.(2)ACD ABE ABC AEC BAE BCE BEA BCA CBE CAE ∠=∠∠=∠∠=∠∠=∠∠=∠,,,,(三组即可)【点评】第(1)问寻找所有相等的角这种问题的解决一定要注意分类思想和有序化的处理方法,不少同学图1图2总是漏解或重解,其原因就是没有一种有序的思路,比如从某字母为顶点有序的出发依次寻找.第(2)问探究相等的角时,主要知识运用是圆中角的关系、相似三角形性质及直角三角形锐角关系的应用.2、执果索因,反溯探求【例5】(1)如果一个立体图形的主视图为矩形,则这个立体图形可能是(•只需填上一个立体图形).(2)(2007年某某市)如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是(只要写一个条件).【解析】(1)答案不唯一如:长方体、圆柱等;(2)B C ∠=∠,AEB ADC ∠=∠,CEO BDO ∠=∠,AB AC BD CE ==,(任选一个即可) 【点评】 由所给的结果出发,找寻适合的条件,这种逆向思维方式在这种开放性问题中得好较好的考查.当然,准确而快速地得到合适的条件还要靠我们对具体知识或某数学模型的熟练程度.【例6】已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.【解析】(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.【点评】这道题要求我们根据所给的要求,探究符合条件的点P 的坐标,结果开放,在寻找过程 中,我们注意严格按照所限制的要求去寻找,不能顾此失彼,得到一个符合条件的坐标后再代入题中逐个验证,确保不出差错.【例7】X 强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全等人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.【解析】本题是一道开放性试题,既然推断存在偏差,说明问题是出在估计的可靠性上,进而言之,在样本选取上出现了问题.原因可能如下:样本选取过少;或样本不具代表性、广泛性、随机性等等(只要答对其中一项即可)样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;(只要答对其中一项均可得分)【点评】近年来对统计内容的考查已经摆脱了单纯的数据运算,而是注重考查统计知识的理解和统计思想OC EA DB图在现实生活中的应用,重要引导学生树立统计意识、形成统计观念,学会分析、学会明理、学会应用. 【例8】如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).【解析】有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =,2(1y x =-.【点评】本题有多种探究思路,如从抛物线向上平移一定会经过点A ,而不会经过点B 可以探究到相应的解析式,再如假设抛物线的顶点平移到A 处,也可得到解析式2(1)2y x =-+等.只有不过分的标新立异,解答本题难度不大.3、关注过程,考查方法【例9】(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有、(填2个即可).(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有、、(填3个即可).【解析】(1)填数形结合、分类讨论、类比、从特殊到一般、化归、函数方程思想等中的2个即可; (2)填教材中的选学内容(如阅读与思考、观察与猜想、实验与探究、信息技术应用等)、数学活动、课x图①题学习等的标题,只要意思对即可.【点评】此题针对学习过程中对数学思想方法重视不够、体会和落实不到位等现象,希望考查学生学习函数学习时对所用到的数学思想方法是否清楚,增强从数学思想方法的角度看待问题,当然为了降低难度,答题时设置成了开放题,只要求答出其中2个即可.“学数学不仅仅是听课和解题”引导学生正确处理课内学习与课外学习的关系,重视有用的、学生能接受的、生动活泼的数学知识和学生数学素养提提高.体现了对整个数学学习过程的关注.4、探索结论,自选解答 【例10】给出三个多项式:2221111,31,,222x x x x x x +-++- 请你选择其中两个进行加法运算,并把结果因式分解.【解析】如选择多项式:22111,3122x x x x +-++, 则:22211(1)(31)4(4)22x x x x x x x x +-+++=+=+.【点评】观察所给的三个多项式,选择两个进行加法运算后再进行因式分解,结论开放,有效的考查了整式的加减及因式分解,能充分还学习主动权给学生,是一道设置新颖的中考试题.【例11】甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个,并展示求解思路).图13【解析】(1)5020(km /h)2.5V ==甲,6030(km /h)2V ==乙; (2)5020S t =-甲(0 2.5t ≤≤)或6030S t =-乙(02t ≤≤)(答对一个即可).如,求解甲距A 地的路程s 与行驶时间t 之间的函数关系式时,我们考虑到甲的图象是一条线段,是一次函数图象一部分,可以选取上面两点坐标应用二元一次方程组来确定待定系数. 把(2.5,0)(0,50)代入.S kt b =+解得5020S t =-甲(0 2.5t ≤≤).【点评】 本题也是一道识图问题,在确定一个函数解析式时给了学生以选择权,这在紧X 的考试中,让学生稍稍轻松,是一道值得提倡的命题设计.【例12】如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF ,并说明理由. 解: 需添加条件是. 理由是:【解析】需添加的条件是:BD =CD ,或BE =CF .添加BD =CD 的理由:如图,∵ AB =AC ,∴∠B =∠C . 又∵ DE ⊥AB ,DF ⊥AC ,∴∠BDE =∠CDF . ∴ △BDE ≌△CDF (ASA). ∴ DE = DF . 添加BE =CF 的理由: 如图,∵ AB =AC , ∴ ∠B =∠C .∵ DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD . 又∵ BE =CF , ∴ △BDE ≌△CDF (ASA). ∴DE = DF .【点评】本题考查了等腰三角形底边上哪一点到两腰距离相等,熟悉等腰三角形性质就能很快知道,只要D 为底边中点即可,这是从等腰三角形性质出发的一种思路;也可以从全等三角形的性质入手,如果我们知道BE=CF ,也可以根据直角三角形全等的来获得问题的解决.5、特例引路,探究说明【例13】按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大. (1)若y 与x 的关系是y =x +p (100-x ),请说明:当p =12时,这种变换满足上述两个要求; (2)若按关系式y =a (x -h )2+k (a >0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解析】(1)当P=12时,y=x +()11002x -,即y=1502x +. ∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一.若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x ≤100时,y 随着x 的增大, 令x=20,y=60,得k=60 ①令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+. 【点评】 本题以程序问题为背景,第(1)问以一次函数为引子,拓展到第(2)问中的开放性问题,这种特例引路,探究说明问题,要认真阅读特例,再去探究新问题是否符合题意,类比意识很重要.6、有效探究,细心求证【例14】已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE【解析】(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线, ∴ MAE CAE ∠=∠.∴∠DAE =∠DAC +∠CAE =⨯21180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴ADC CEA ∠=∠=90°, ∴ 四边形ADCE 为矩形.(2)例如,当AD=12BC 时,四边形ADCE 是正方形.证明:∵AB=AC ,AD ⊥BC 于D .∴DC=12BC .又 AD=12BC ,∴DC=AD .由(1)四边形ADCE 为矩形,∴矩形ADCE 是正方形.【点评】 第(1)问已证得矩形的基础上,添加一个适当的条件推证出正方形,没有多大的难度.这样的题型,只要充分分析矩形与正方形之间还差什么有效的条件即可,即添加邻边相等就可以证明了,这样我N(例14)们结合等腰三角形ABC 的性质,只要AD=12BC 时,四边形ADCE 是正方形.【例15】如图,把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =,把三角板DCE 绕点C 顺时针旋转15得到D CE ''△如图乙.这时AB 与CD '相交于点O ,D E ''与AB 相交于点F . (1)求OFE '∠的度数; (2)求线段AD '的长.(3)若把三角形D CE ''绕着点C 顺时针再旋转30得D CE ''''△,这时点B 在D CE ''''△的内部、外部、还是边上?证明你的判断.【解析】(1)315∠=,90E '∠=,12∠=∠,175∴∠=.又45B ∠=,14575120OFE B '∴∠=∠+∠=+=.(2)连结AD '.120OFE '∠=,60D FO '∴∠=,又30CD E ''∠=,490∴∠=.又AC BC =,6AB =,3OA OB ∴==,90ACB ∠=,116322CO AB ∴==⨯=. 又7CD '=, A C B ED(甲) E 'A CB OFD ' (乙)C '24题答图734OD CD OC ''∴=-=-=.在Rt AD O '△中,5AD '==. (3)点B 在D CE ''''△内部.理由如下:设BC (或延长线)交D E ''''于点B '.153045B CE '''∠=+=,在Rt B CE '''△中,2CB '''==,又32CB =<,即CB CB '<, ∴点B 在D CE ''''△内部.【点评】本题中,主要变化经过程是把三角板CDE 绕点C 顺时针旋转.边操作,边设置问题,从而,实施了图形变换与问题探究的有机结合.动手练一练1.用同一种正多边形地板砖密铺地面,为铺满地面而不重叠,那么这种正多边形的地板砖可以是正边形.(只需写出一种即可)1.三(或四,或六)2.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用 __分钟.2.经分析,安排工序为①、(④②③)、⑤共计12分钟. 3.如图,在ABC △和DCB △中,AB DC =,若不添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是.4.如图,在ABCD 中,点E F ,分别在BC AD ,上,在不添加辅助线的情况下,请你添加一个..适当的条件,使ABE △和CDF △全等,你添加的条件是,并给出你的证明.3.ABC DCB ∠=∠或AC DB =均可. 4.解:①DE DF CG +=证明:连结AD ,则ABC ABD ACD S S S =+△△△,B即111222AB CG AB DE AC DF =+ 因为AB AC =,所以CG DE DF =+②当点D 在BC 延长线上时,①中的结论不成立,有DE DF CG -=. 理由:连结AD ,则ABD ABC ACD S S S =+△△△,即有,111222AB DE AB CG AC DF =+ 因为AB AC =,所以DE CG DF =+,即DE DF CG -=. 当D 点在CB 的延长线上时,则有DF DE CG -=,说明方法同上.5.如图1,2所示,将一X 长方形的纸片对折两次后,沿图3中的虚线AB 剪下,将AOB △完全展开.(1)画出展开图形,判断其形状,并证明你的结论;(2)若按上述步骤操作,展开图形是正方形时,请写出AOB △应满足的条件.AG E BDFAG BFDC EC图1图2图3ABO5.(1)展开图如图所示,它是菱形.(展开图只要求画出示意图即可.) 证明:由操作过程可知OA OC =,OB OD =,∴四边形ABCD 是平行四边形.又OA OB ⊥,即AC BD ⊥,∴四边形ABCD 是菱形.(2)AOB △中,45ABO =∠(或45BAO =∠或OA OB =).6.将图(1)中的矩形ABCD 沿对角线AC 剪开,再把ABC △沿着AD 方向平移,得到图(2)中的A BC ''△,除ADC △与C BA ''△全等外,你还可以指出哪几对...全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.6.有两对全等三角形,分别为:AA E C CF ''△≌△分 A DF CBE '△≌△解法一:求证:AA E C CF ''△≌△ 证明:由平移的性质可知:AA CC ''=,又A C '∠=∠∵,90AA E C CF ''∠=∠=AA E C CF ''∴△≌△解法二:求证:A DF CBE '△≌△证明:由平移的性质可知:A E CF '∥,A F CE '∥∴四边形A ECF '是平行四边形D CBE FA '图(2)A F CE '=∴,A E CF '= AB CD '=∵DF BE =∴又90B D ∠=∠=∵A DF CBE '∴△≌△7.如图,ABC △中,90ACB =∠,AC BC =,CO 为中线.现将一直角三角板的直角顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC CB ,的延长线于点G H ,.(1)试写出图中除AC BC OA OB OC ===,外其他所有相等的线段; (2)请任选一组你写出的相等线段给予证明. 我选择证明=.7.(1)CG BH AG CH OG OH ===,, (2)90ACB AC BC AO BO ===∠,,,45CO OB CO AB ABC ∴=⊥=,,∠. 9090COG GOB BOH GOB +=+=∠∠,∠∠,COG BOH ∴=∠∠.又4518045135ABC OCB OBH ==∴=-=∠∠,∠,9045135GCO =+=∠, GCO OBH ∴=∠∠. (利用等角的补角相等证GCO OBH =∠∠亦可) GCO HBO ∴△≌△ CG BH ∴=.8.为了配合“八荣八耻”宣传教育,针对闯红灯的现象时有发生的实际情况,八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早、中、晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志. 数据汇总如下:BC OHG部分时段车流量情况调查表回答下列问题:⑴请你写出2条交通法规:①. ②.⑵画出2枚交通标志并说明标志的含义.标志含义: 标志含义:⑶早晨、中午、晚上三个时段每分钟车流量的极差是,这三个时段的车流总量的中位数是. ⑷观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因. ⑸通过分析写一条合理化建议.8.(1)如:红灯停、红灯行;过马路要走人行横道线;不可酒后驾车等. (2)标志及标志含义只要解释合理即可. (3)74;2747.(4)现象:如果行人违章率最高,汽车违章率最低;产生原因是汽车驾驶员是专门培训过的,行人存在图方便的心理等. (5)建议:如:广泛宣传交通法规;增加值勤警力等.(只要建议合理均可)9.如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,BCA ∠的平分线,AD ,CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在ABC △中,如果ACB ∠不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.9.图略.(1)FE 与FD 之间的数量关系为FEFD =. (2)答:(1)中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连结FG .因为12∠=∠,AF 为公共边, 可证AEF AGF △≌△.所以AFE AFG ∠=∠,FE FG =.由60B ∠=,ADCE ,分别是BAC BCA ∠∠,的平分线, 可得2360∠+∠=.所以60AFE CFD AFG ∠=∠=∠=. 所以60CFG ∠=.由34∠=∠及FC 为公共边,可得CFG CFD △≌△. 所以FG FD =. 所以FE FD =. 证法二:如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H .ONPM图3图1 图2图4因为60B ∠=,且AD ,CE 分别是BAC ∠,BCA ∠的平分线, 所以可得2360∠+∠=,F 是ABC △的内心. 所以601GEF ∠=+∠,FG FH =. 又因为1HDF B ∠=∠+∠, 所以GEF HDF ∠=∠. 因此可证EGF DHF △≌△. 所以FE FD =.10.如图(8-1),四边形ABCD 是O 的内接四边形,点C 是BD 的中点,过点C 的切线与AD 的延长线交于点E .(1)求证:AB DE CD BC =. (2)如果四边形ABCD 仍是O 的内接四边形,点C 在劣弧BD 上运动,点E 在AD 的延长线上运动,切线CE 变为割线EFC ,请问要使(1)的结论成立还需要具备什么条件?请你在图(8-2)上画出示意图,标明有关字母,不要求进行证明.10.证明:(1)连结AC .C 是BD 的中点BC DC BAC DAC ∴==,∠∠CE 切O 于点C ,点C 在O 上 DCE DAC BAC ∴==∠∠∠图8-1图8-2四边形ABCD 是O 的内接四边形,EDC B ∴=∠∠ EDC CBA ∴△∽△AB BCCD DE∴=AB DE CD BC ∴=(2)条件为:DF BC =(或DF BC =或DAF BAC =∠∠ 或DCF BAC =∠∠或FC BD ∥等) 如右图,(图中虚线为可能画的线)11.如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O . (1)将图14(a )中的OAB △绕点O 顺时针旋转90角,在图14(b )中作出旋转后的OAB △(保留作图痕迹,不写作法,不证明).(2)在图14(a )中,你发现线段AC ,BD 的数量关系是,直线AC ,BD 相交成度角. (3)将图14(a )中的OAB △绕点O 顺时针旋转一个锐角,得到图14(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB △绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.11.(1)如图(a )(请注意一些问题,AB ,字母位置不能互换,加弧线,连结AB ) (2)AC BD =;90(90)图(a )图(b )图(c )(3)成立.如图(90COD AOB ∠=∠=∵COA AOD AOD DOB ∠+∠=∠+∠∴即:COA DOB ∠=∠(或由旋转得COA DOB ∠=∠)CO OD =∵OA OB =COA DOB ∴△≌△ AC BD =∴延长CA 交OD 于E ,交BD 于F (下面的证法较多)COA DOB ∵△≌△,ACO ODB ∠=∠∴CEO DEF ∠=∠∵90COE EFD ∠=∠=∴AC BD ∴⊥旋转更大角时,结论仍然成立.图(a )图(b )。
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略在初中数学教学中,开放性探究题是培养学生数学思维和解决问题能力的重要组成部分。
通过开放性探究题,学生可以自由地运用所学知识和技能,发挥自己的创造力和想象力,从而提高数学学习的兴趣和积极性。
在这篇文章中,我们将探讨初中数学开放探究题的类型及解题策略,帮助学生更好地应对这类题目。
一、类型1. 探索规律型这类问题要求学生通过观察数据,寻找其中的规律,进而总结规律并加以应用。
给定一个数列,要求学生找出其中的规律并推测下一个数的值;或者给定一些图形,要求学生找出它们之间的规律并继续下一个图形。
这类问题培养了学生的观察力和逻辑推理能力,对于学生培养数学思维和解决实际问题能力非常有帮助。
2. 设计问题型这类问题要求学生自行设计一些与所学知识相关的问题,并且给出解决问题的方法和步骤。
要求学生设计一个游戏规则,并计算游戏的胜率;或者要求学生设计一个简单的调查问卷,并对结果进行分析。
这类问题培养了学生的创造力和动手能力,让他们从设计问题中更好地理解所学知识和技能。
3. 数学建模型这类问题要求学生运用所学数学知识和技能,解决实际生活中的问题。
要求学生通过建模计算一个简单的实际问题,比如计算一条绳子在不同条件下的张力;或者要求学生通过建模计算一个简单的实际问题,比如计算一条绳子在不同条件下的张力。
这类问题培养了学生的数学综合能力和实际问题解决能力,让他们在数学应用中更好地理解和掌握所学知识。
二、解题策略1. 理清题意在面对开放性探究题时,学生首先要认真阅读题目,理清题意,明确问题的要求和所给条件,确保自己对问题有一个清晰的理解。
这样可以避免在解题过程中出现偏离题意或者误解题意的情况,有利于解题的顺利进行。
2. 分析问题在理清题意之后,学生需要对问题进行分析,思考如何利用所学知识和技能解决问题。
对于探索规律型的问题,可以尝试先列举一些数据,通过观察数据找出规律;对于设计问题型的问题,可以尝试先确定问题的范围和难度,然后设计解决问题的方法和步骤;对于数学建模型的问题,可以尝试先将实际问题抽象成数学问题,然后运用所学知识解决数学问题。
中考数学开放性问题PPT课件
A
D
象限内y的值随着x的值增大而增大,则b可以是
————。
F
2、如图(1),E、F是平行四边形ABCD对角线BD上
E
的两点,请你添加一个适当的条件:—————,
使四边形AECF是平行四边形。
3、在多项式4 X 2+1中,添加一个单项式,使所得的
B
(1) C
整式成为一个完全平方式,则添加的单项式是
——————。(只写出一个即可)
D
连结DE、BE,若∠BDE+ ∠BCE=180°
写出图中至少两对类似三角形(注意:不得添
加字母和线段),并说明理由。
⊿ADE~ ⊿ACB
B
⊿FEC~ ⊿FBD
⊿AEB~ ⊿ADC
⊿CFD~ ⊿EFB
E
C
F
小试身手
A
B
C
A
A A
二分之一点
二分之一点
二分之一点
二分之一点
B
四四四 分分分
之之之
一一一
点点点
(1)
CB
A
二
分 之
C
一
点
(2) A
B
二分之一点 C
(3)
A
三分之一点 三分之一点
B 四分之一点 (4)
B C
二分之一点
二分之一点
C
(5)
B
平行与BC 且类似比是 1/√2
二分之一点 C (6)
x 1、请你写出一个b值,使得函数y= 2+2bx+1在第一
填写条件时,应符合题意或相关的概念、 性质、定理。
例题精讲
A
D
例1:已知如图,AC=DB,如不增加字母和辅助线
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略初中数学开放探究题是数学学习中非常重要的一部分,它不仅能够帮助学生理解数学知识,还可以培养学生的逻辑思维能力和解决问题的能力。
本文将介绍一些常见的初中数学开放探究题的类型及解题策略。
一、基础性开放探究题基础性开放探究题是指在已有数学知识和技能基础上,通过挑战性问题,让学生进行探索和思考,以提高他们的数学解决问题能力。
这类问题一般涉及到初中数学的基本概念和技能,如整数、有理数、代数式、等式与方程等。
解决这类问题需要学生结合所学的数学知识,灵活运用,并进行推理、分析和论证。
解题策略:1. 深刻理解问题:学生在解决基础性开放探究题时,首先要深刻理解问题的背景和要求,对问题进行分析和拆解。
2. 灵活运用数学知识:学生需要结合所学的数学知识,如奇偶数性质、整数运算规律、代数式展开与化简等,运用到问题的解决中。
3. 利用图表工具辅助分析:对于涉及到几何图形或数量关系的问题,学生可以通过绘制图表进行辅助分析,帮助理解问题和规律。
4. 推理与论证:解决开放探究题时,学生需要进行推理和论证,以确保解题过程的合理性和解题答案的正确性。
三、跨学科开放探究题跨学科开放探究题是指在初中数学学习中,将数学知识与其他学科知识进行跨学科整合和运用。
这类问题要求学生能够综合运用所学的数学知识和其他学科知识,进行综合性解决问题。
生活中的诸多实际问题都是跨学科性质的,如物理、化学、地理、生物等。
解题策略:1. 跨学科整合:学生需要将数学知识与其他学科知识进行整合,对于涉及多学科合作的问题,需要跨学科分析和思考。
2. 推理与论证:解决跨学科开放探究题也需要进行推理与论证,同时涉及多学科知识时,需要较高的综合分析能力。
3. 转化应用:对于跨学科开放探究题,学生需要将所学知识转化应用到实际问题中,理论应用与实际问题的联系性。
四、实际应用开放探究题实际应用开放探究题是指将数学知识与实际生活中的问题相结合,通过解决实际问题,提高学生的数学解决问题能力。
中考数学中的开放性问题剖析
ED COBA(图4) 中考数学中的开放性问题江苏省泰州市九龙实验学校 顾广林(此文在国家级核心期刊《中学数学教学参考》2007.4上发表)新课程标准把逐步形成数学创新意识列为教学目标,各地中考数学命题为了实现这个目标都做了有益的尝试,并在不同程度上给予体现,主要表现在涌现出不少别具创意、独特新颖的探索规律、条件、结论的开放性问题。
这类试题不仅考查了学生观察、实验、类比、归纳、猜想、判断、探究等能力而且把解题的过程、考试的过程,变成了学生研究的过程,变成了探索规律、发现规律的过程。
尤其在考查高层次思维能力和创新意识方面具有独特的作用.下面例析活跃在2006年中考数学试题中的开放性试题. 一、开放题常见的题型开放性试题从结构特征上看主要分为三类:条件开放题、结论开放题及条件和结论都开放的试题。
开放题是相对于传统的封闭题而言的,其显著特征是问题的答案不唯一(开放性),并且在设问方式上要求学生进行多方面、多角度、多层次探索.1.条件开放型 例1.(2006 海口)如图, D 、E 分别在AC 、AB 上,且DE 与BC 不平行,请填上一个你认为合适的条件:__________________,使得△ADE ∽△ABC.分析:这是一道条件开放题,只要寻求其成立的一个充分条件即可.如∠ADE=∠B 或∠AED=∠C 或AD :AB=AE :AC 等∠B 或∠AED=∠C 或AD :AB=AE :AC 等.评注:在上述问题中,结论已知,而条件需探求,并且具有开放性,这类问题称为条件开放题.在解决此类问题时,通常采取执果索因的策略进行探求.这类题型虽然考查的都是基础知识,但是给学生较大的思考空间,不是被动地套用解题模式,而是在问题情景中创造性地解决问题. 2.结论开放型 例2.(2006 南昌)如图AB 是⊙O 的直径,BC 是⊙O 弦OD ⊥CB 于点E ,交BC 于点D (1)请写出三个不同类型的正确结论: (2)连结CD ,设∠CDB =α,∠ABC =β, 试找出α与β之间的一种关系式并给予证明.解:(1)不同类型的正确结论不惟一.以下答案供参考:① BE = CE ;② BD⌒ = CD ⌒ ;③ ∠BED = 90°;④ ∠BOD ② =∠A ;⑤ AC ∥OD ;⑥AC ⊥BC ;⑦ 222OE BE OB +=;⑧ S △ABC = BC·OE ;⑨ △BOD 是等腰三角形;⑩ △BOE ∽ △BAC ;等等.AB CDE(2)α与β的关系式主要有如下两种形式. ①答;α与β之间的关系式为α-β=90°.证明:∵AB 为⊙O 的直径,∴∠A +∠ABC =90°.又∵四边形ACDB 为圆的内接四边形,∴∠A +∠CDB =180°.∴∠CDB -∠ABC =90°,即α-β = 90°. ②答α与β之间的关系式为α>2β. 证明 ∵ OD =OB , ∴∠ODB =∠ OBD .又∵∠ OBD =∠ABC +∠CBD , ∴∠ODB>∠ABC .∵OD ⊥BC ,∴CD BD =,∴CD =BD .∴∠CDO =∠ODB =12∠CDB ,∴12∠CDB >∠ABC ,即α>2β.评注:本题是在一定条件下,探求问题的结论,属于结论开放题.解决此类问题时,通常采用由因导果的策略进行探求。
初中数学开放探究题的类型及解题策略
初中数学开放探究题的类型及解题策略初中数学开放探究题是指没有明确给出解题步骤和答案的问题,学生需要通过探究和思考来解决问题。
这类题目能够培养学生的综合运用数学知识和思维能力,激发学生的创造性思维和探索欲望。
下面介绍几种常见的初中数学开放探究题类型和解题策略。
1. 排列组合问题排列组合问题是指从给定的元素集合中选择若干元素,按照一定的规则进行排列或组合的问题。
解决这类问题可以通过列举、归纳和寻找规律的方法。
学生可以通过数学模型或图表的方式来组织思维,找出规律并推广。
举例:从数字1、2、3中选择两个数字组成两位数,要求所得数的位数和为奇数,一共有多少种可能?解题策略:列举法。
列出所有满足条件的可能:13、21、23,共3种。
2. 几何问题几何问题是指涉及图形和空间的问题,需要学生通过观察和推理来解答。
解决这类问题可以通过观察图形性质、利用几何定理、运用比例关系等方法。
学生可以通过画图、引入辅助线、构造等方法,激发创造性思维,找出解题的关键点。
举例:如何用一个正方体的六个面拼接成一个立方体?解题策略:观察图形。
通过观察正方体的六个面,发现其中相邻两个面有一个公共边,将相邻两个面沿公共边贴合即可得到一个立方体。
3. 数据分析问题数据分析问题是指给出一组数据,要求学生分析、研究数据的特征和规律,并据此给出结论或解决问题。
解决这类问题可以通过排序、整理数据,绘制图表、计算平均数、众数等统计量,运用统计学知识来分析数据。
举例:某班级60个学生的英语成绩如下,请计算平均成绩,并画出成绩分布直方图。
解题策略:分析数据。
首先将数据整理并按大小排序,然后计算平均成绩,最后根据成绩的范围绘制成绩分布直方图。
4. 逻辑推理问题逻辑推理问题是指给出一组条件和一些结论,学生需要通过分析条件间的关系和逻辑推理,确定结论的正确性。
解决这类问题可以通过抽象问题,构造逻辑推理链条,利用逻辑关系和条件推理来解答。
举例:如果有两个对象,一个是圆,另一个是方形。
初中数学创新性开放性问题(3)
设下,分设若干新的限制条件对结论的是与否进行讨论得出不同结果.
例1:某种细菌在培养过程中,细菌每
半小时分裂一次(由一个分裂为两
个),经过两小时,这种细菌由一个
可分裂繁殖成(
)
A :8个 B:16个 C:4个 D:32个
例1:某种细菌在培养过程中,细菌每
(1):编写一道行程问题的应用题, 使得根据其题意列出的方程为:
例2:如图,已知△ABC,P为AB上一点, 连结CP,要使△ACP∽△ABC,只需添 加条件_________(只需写一种合适的 条件)。
∠1=∠B ∠2=∠ACB
AC2=AP·AB
启示:若Q是AC上一点,连结PQ, △APQ与△ABC相似的条件应是什么?
例3:先根据条件要求编写应用题,再 解答你所编写的应用题。 编写要求:
2.结论开放型:此类型还可细分为以下三种分类型:(1)猜想型:结论未明
确给出,需通过题设归纳、猜想得出,然后论证.(2)判断型:指在题目所给的 某些限制条件下,判断数学对象是否具有某种性质.再利用题设进行推证.(3) 存在型:这类问题的特征是在题设条件下判断数学对象的存在性,解法步骤是 先假设数学对象成立,以此为前提,进行运算或推理,若推出矛盾可否定假设, 否则给出肯定的证明.
半小时分裂一次(由一个分裂为两
个)
A :8个 B:16个 C:4个 D:32个
分裂 0
1
2
3
4
次数
细菌 1=20 2=21 4=22 8=23 16=24 个数
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开放型数学问题分类赏析
胡美绚
近年来,开放型问题直接进入中考数学试卷中。
这类试题知识覆盖面广,综合性强,再加上题意新颖,构思精巧,具有相当的深度和难度。
开放型问题重在考查学生的分析、探索能力和思维的发散性,下面以具体实例分类加以解析。
一、探求条件型
这类问题的明确特征是缺少确定的条件,问题所需补充的条件不是必要的条件即所需补充的条件不能由结论完全推出。
解此类题的基本策略是执果索因,寻找结论成立的条件,在判断条件有误时,常举例说明。
例1. (2006年淮安市)如图1,AB=CD=ED ,AD=EB ,BE ⊥DE ,垂足为E 。
(1)求证:△ABD ≅△EDB ;
(2)只需添加一个条件,即____________,可使四边形ABCD 为矩形,请加以证明。
解析:若AB ∥CD ,由已知可证出四边形ABCD 是平行四边形,再结合已证△ABD ≅△EDB 可得∠A=∠E=︒90,从而证出四边形ABCD 是矩形,或由AD=BC 也可得出四边形ABCD 是矩形。
故增加AB ∥CD 或AD =BC 或∠EDB=∠CDB 等。
点评:此例属于数学探求条件型开放型问题,其特点是命题中结论明确而需要完善使结论成立的条件。
解答此类问题,一般从结论出发,设想出合乎要求的一些条件,逐一列出,逐一推导,从中找出满足题意的条件。
二、探求结论型
此类问题的基本特征是有条件无结论,缺少确定的结果,或结论正确与否常需进一步证明确定,或在给定的条件下结论不唯一。
解此类问题的一般方法是研究特殊情况,常对不同的情形进行分类讨论。
例2. (2006年青岛市)如图2所示,∠BAC=︒30,AB=10,现请你给定线段BC 的长,使构成△ABC 能唯一确定,你认为BC 的长可以是________、_________。
解析:若△ABC 为Rt △且∠C=︒90,则BC=5,△ABC 唯一确定。
若10BC 5<<时,△ABC 并不唯一确定。
若△ABC 为钝角△,当BC 10≥时,△ABC 能唯一确定,故BC 可为5,或大于等于10的值。
三、归纳猜想型
归纳猜想型是没有常规的解法和明确的结论,不能靠简单的模仿套路去解决,它考查的是考生观察、分析、比较、概括、归纳、猜想等综合能力。
例3. (2006年荆门市)如图3所示,是用火柴棒摆出的一系列三角形图案,按这种方案摆下去,当每边上摆2006根火柴棒时,共需要摆_______根火柴棒。
解析:在第一图形有313=⨯根火柴棒,第二个图形中外三角形有32⨯根,里面一个三角形有3根火柴棒,共9根,第三个图形外三角形有33⨯根,里面有1+2个三角形,有33⨯根,共18根火柴棒,第四个图形外三角形有34⨯根,里面有321++个三角形,有36⨯根,共30根火柴棒,故第n 个图形外部三角形有3n ⨯根,里面有1n ...21-+++个三角形,有
()31n ...21⨯-+++根,即()32
1n n ⨯-根,共()()21n n 321n n 3n 3+=-+根,所以第2006个三角形,共需摆60390632
200720063=⨯⨯根火柴棒。
四、组合探索题
这类问题条件和结论都不确定,需要答题者判定条件和结论,然后组合成一个新命题,再按题目具体要求探求相应结果和给出必要的证明。
例4. (2006年扬州市)如图4所示,在△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,给出下列三个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD 。
(1)上述三个条件中,哪两个条件可判定△ABC 是等腰三角形;(用序号写出所有情形)
(2)选择第(1)小题中的一种情形,证明△ABC 是等腰三角形。
解析:三个条件两两组合可有三种情形,即①②、①③和②③,其中只有①③和②③的组合能推出△ABC 是等腰三角形。
选择①③。
因为∠EBO=∠DCO ,∠EOB=∠DOC ,BE=CD ,
所以△BEO ≅△CDO 。
所以OB=OC ,从而∠OBC=∠OCB ,
所以∠ABC=∠ACB ,
所以△ABC 为等腰三角形。
选择②③
因为∠BEO=∠CDO ,∠EOB=∠DOC ,BE=CD ,
所以△BEO ≅△CDO ,
所以OB=OC ,∠EBO=∠DCO ,∠OBC=∠OCB ,
所以∠ABC=∠ACB ,
所以△ABC 为等腰三角形。
五、结论不定性开放型问题
这类问题一般需要推理论证。
“是否存在”结论有两种:一种是可能存在;另一种是不存在,均需要说明理由。
例5. (2006年河北省)如图5所示,在Rt △ABC 中,∠C=︒90,AC=12,BC=16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动,P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动。
在运动过程中,PCQ 关于直线PQ 对称的图形是△PDQ 。
设运动时间为t (s )。
(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式;
(2)t 为何值时,四边形PQBA 是梯形?
(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;
(4)通过观察,画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(1t 0≤≤,2t 1≤<,3t 2≤<,4t 3≤<);若不存在,请简要说明理由。
解析:(1)由12t 30≤≤,16t 40≤≤,
故4t 0≤≤。
CQ PC 2
12S 2y PCQ ⋅⨯==△ ()t 4t 312CQ PC ⨯-=⋅=
t 48t 122+-=(4t 0≤≤)
(2)如图6,当PQ ∥AB 时,
△CPQ ∽△CAB 得
CB CQ CA PC =, 所以16
t 412t 312=-, 所以2t =(s )。
(3)如图7,当PD ∥AB 时,过P 作PM ⊥AB ,延长QD 交AB 于N ,则PDNM 为矩形,PM=DN 。
因为PM=AP t 5
1254t 3A sin =⨯
=∠, QN=()5
3t 416B sin BQ ⨯-=∠, DN=()t 4t 4165
3QD QN --=-, 所以()t 4t 4165
3t 512-=, 解得11
12t =(s )。
(4)如图8,通过画图或折纸猜想当3t 2≤<时,PD ⊥AB ,图8延长PD 交AB 于E ,过Q 作QF ⊥AB 于F ,则DEFQ 为矩形,DE=QF 。
PE=t 51254t 3A sin AP =⨯
=∠, DE=PE ()t 312t 5
12PD --=-, QF=()5
3t 416B sin QB ⨯-=∠, 所以()()t 4165
3t 312t 512-=--, 解得13
36t =(s ), 所以当t 的值在3t 2≤<的时段内可使PD ⊥AB 。
六、信息迁移型
这类题型的特点是设计或定义一个陌生的数学情景,要求考生在理解的基础上运用所学知识和方法灵活地进行迁移。
例6. (2006年山东省)我们学过二次函数的图像的平移,如将二次函数2x 3y =的图像向左平移2个单位,再向下平移4个单位,所得图像的函数表达式是()42x 3y 2-+=,类比二次函数的图像的平移,我们对反比例函数的图像作类似的变换:
(1)将x
1y =
的图像向右平移1个单位,所得图像的表达式为_________,再向上平移1个单位,所得图像的函数表达式为_________。
(2)函数x
1x y +=的图像可由x 1y =的图像向_________平移_________个单位得到;2
x 1x y --=的图像可由哪个反比例函数的图像经过怎样的变换得到? (3)一般地,函数a
x b x y ++=(0ab ≠,且b a ≠)的图像可由哪个反比例函数的图像经过怎样的变换得到?
解析:(1)由二次函数图像平移知识迁移可得
1x 1y -=,1
x 1y -=+1=1x x -。
(2)x
11x 1x y +=+=, 所以可由x
1y =的图像向上平移1个单位得到 12
x 12x 12x 2x 1x y +-=-+-=--=, 可由x
1y =先向右平移2个单位,再向上平移1个单位得到。
(3)a
x a b a x a x b x y +-++=++= 1a
x a b ++-=, 所以当0a >时是由x
a b y -=向左平移a 个单位再向上平移1个单位得到。
当0a <时是由x
a b y -=向右平移a -个单位再向上平移1个单位得到。