分式基础知识讲解
分式及分式的基本性质

2、分式有意义的条件:当B≠0时,分式有意义)。
3、分式的值为零的条件:当A=0,B≠0时,分式值为0。
4、有理式:整式和分式统称为有理式。
5、分式的基本性质:分式的分子、分母同乘以或除以一个不为0的整式,分式的值不变。
注:(1)约分和通分的依据都是分式的基本性质
(2)分式的约分和通分都是互逆运算过程。
①约分——最简分式②通分——最简公分母
6、分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
7、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式。
8、分式的通分步骤:
先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子。
注:最简公分母的确定方法:
系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。
初一下数学-分式的加减(基础)知识讲解+巩固练习

分式的加减(基础)【学习目标】1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法. 【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:a b a b c c c±±=. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式. 要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分. 要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母. (3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:a c ad bc ad bcb d bd bd bd±±=±=. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式. 要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度. 【典型例题】类型一、同分母分式的加减1、计算:(1)22222333a b a b a b a b a b a b +--+-; (2)222422x x x x x+-+--; 【答案与解析】 解:(1)22222333a b a b a b a b a b a b +--+-222222333a b a b a b a a b a b ab++--+===; (2)222224242222x x x x x x x x x x +-+-+=-----()222224222x x x x x x -+--===--【总结升华】本例为同分母分式加减法的运算,计算时注意运算符号,结果一定要化简. 举一反三: 【变式】计算:(1)22a b b ab a a b b a++----; (2)xx x x x x x x +---+--+++35223634222. 【答案】 解:(1)22a b b a b a a b b a ++----22a b b a b a b a b a +=-----221a b b a b a b a b a+---===--. (2)22246225333x x x x x x x x+----+-+++ ()222462253133x x x x x x x x ++-----+===++ 类型二、异分母分式的加减2、计算:(1)21132a ab +;(2)2312224x x x x +-+--;(3)211a a a ---. 【答案与解析】 解:(1)原式2222323666b a b aa b a b a b+=+=; (2)原式2312224x x x x =-++--31222(2)(2)xx x x x =-++--+3(2)(2)24(2)4(2)(2)(2)(2)2x x x x x x x x x --++-===-+-++; (3)原式222222211(1)111111111a a a a a a a a a a a a a a +----+=-=-===------. 【总结升华】(1)异分母分式的加减法关键是确定最简公分母;(2)整式和分式相加减时,把整式看作分母是1的“分式”,按异分母分式的加减法的步骤进行运算. 举一反三: 【变式】计算:(1)212293m m ---;(2)112323x y x y++-. 【答案】 解:(1)212293m m ---122(3)(3)(3)(3)(3)m m m m m +=-+--+ 12262(3)2(3)(3)(3)(3)3m m m m m m m ---===-+-+-+. (2)()()()()112323232323232323x y x yx y x y x y x y x y x y -++=++-+-+- ()()2223234232349x y x y xx y x y x y -++==+--. 类型三、分式的加减运算的应用3、( •青海)先化简再求值:,其中.【答案与解析】 解:原式=×=×=a ﹣2,当a=2+时,原式=2+﹣2=.【总结升华】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.举一反三:【变式】( •北仑区一模)先化简分式(﹣)÷,再在﹣3<x≤2中取一个合适的x ,求出此时分式的值. 【答案】解:原式=•=•=2x+4,根据﹣3<x≤2,当x=2时,原式=8. 类型四、分式的混合运算4、计算:(1)22111a b a b a b ⎛⎫÷+ ⎪-+-⎝⎭; (2)22111a b a b a b⎛⎫+÷⎪+--⎝⎭. 【答案与解析】 解:(1)22111a b a b a b ⎛⎫÷+ ⎪-+-⎝⎭1()()()()()()a b a ba b a b a b a b a b a b ⎡⎤-+=÷+⎢⎥+-+-+-⎣⎦12()()()()aa b a b a b a b =÷+-+- 1()()1()()22a b a b a b a b a a+-==+-.(2)22111a b a b a b⎛⎫+÷⎪+--⎝⎭111()()a b a b a b a b ⎛⎫=+÷ ⎪+-+-⎝⎭ 11()()a b a b a b a b ⎛⎫=++- ⎪+-⎝⎭11()()()()a b a b a b a b a b a b =+-++-+-2a b a b a =-++=.【总结升华】解决此类题的方法:首先观察混合运算的特点,当分式的加减法运算作为除式时,一定要先运算加减法,再参与乘除运算,当分式的加减运算作为因式或被除式时,可把乘除法统一为乘法并根据特点恰当运用运算律简化运算.【巩固练习】 一.选择题 1.已知=++=/xx x x 31211,0( ) A .x 21 B .x61 C .x65 D .x611 2.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22x y +3.b c aa b c-+的计算结果是( ) A .222b c a abc-+B .222b c ac a b abc--C .222b c ac a b abc-+D .b c aabc-+ 4.( •山西)化简﹣的结果是( )A. B. C. D.5.313---a a 等于( ) A .2261a a a +--B .1242-++-a a a C .1442-++-a a a D .a a -16.21111xx x x n n n +-+-+等于( ) A .11+n x B .11-n x C .21x D .1二.填空题 7.分式2222,39a bb c ac的最简公分母是______. 8.( •闸北区二模)化简﹣的结果是 .9.计算aa -+-329122的结果是____________.10.=-+abb a 6543322____________. 11.211a a a-+=+_________. 12.若ab =2,a b +=3,则ba 11+=______. 三.解答题13.( •保康县模拟)化简:+.14.已知2222222xy x y M N x y x y+==--、,用“+”或“-”连结M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.15.已知220x -=,求代数式222(1)11x x x x -+-+的值.【答案与解析】 一.选择题1. 【答案】D ; 【解析】111632112366x x x x x++++==. 2. 【答案】A ;【解析】333333x a a y x y x y y x x y+---+=+++. 3. 【答案】C ;【解析】222222b c a b c ac a b b c ac a ba b c abc abc abc abc-+-+=-+=.4. 【答案】A ; 【解析】解:原式=﹣=﹣==,故选A .5. 【答案】A ;【解析】2233332326311111a a a a a a a a a a+--++---=-==----. 6. 【答案】D ;【解析】1131112311n n n n n n n x x x x x x x x +-+++++--++==.二.填空题7. 【答案】229ab c ; 8. 【答案】.【解析】解:﹣==,故答案为:.9. 【答案】23a -+; 【解析】()()()()221223231222939333a a a a a a a a -+--+===----+-+. 10.【答案】22891012b a aa b+-; 【解析】222235891034612b a aa b ab a b+-+-=.11. 【答案】11a+; 【解析】22211111a a a a a a a --+=-=+++11a+. 12.【答案】32; 【解析】1132a b a b ab ++==. 三.解答题13.【解析】 解:原式=+=+=.14.【解析】解:M -N =()()()2222222222222x y xy x y xy x y x yx y x y x y x y x y x y-+----==-=----+-+.因为x ∶y =5∶2,设52x k y k ==, 所以原式=523527k k k k --=-+.15. 【解析】解:()22222221(1)(1)1111x x x x x x x x x ---+=+-+--因为22x=所以原式()2222221(1)21221 111xx x x xx x x---++-=+== ---.。
分式(1)(分式概念、基本性质)

分式(1)(分式概念、基本性质) 一、基础知识梳理:1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA做分式。
A 叫做分子,B 叫做分母. 分式的概念要注意以下几点:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式的分子可以含字母,也可以不含字母,但分母必须含有字母;(3)分式有意义的条件是分母不能为0.2.分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的整式,分式的值不变.3.分式的约分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. 4.最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 二、针对性练习: (一)、填空题: 1.对于分式122x x -+(1)当________时,分式的值为0 ;(2)当________时,分式的值为1;(3)当________时,分式无意义; (4)当________时,分式有意义.2.填充分子,使等式成立;()222(2)a a a -=++; ()22233x x x -=-+- 3.填充分母,使等式成立:()2223434254x x x x -+-=--- ; ()21a a a c ++=(a ≠0). 4.化简:233812a b c a bc =_______;6425633224a b c a b c = ;224488a ba b-=- ;223265a a a a ++=++ ;()()x y a y x a --322= . 5.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数:0.010.50.30.04x y x y -=+ ;y x y x 6.02125.054-+= ;=-+b a ba 41323121 . 6.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是正数:(1)2211x x x y +++-= ; (2)343223324x x x x -+---= .7.(1)已知:34y x =,则2222352235x xy y x xy y-++-= . (2)已知0345x y m==≠,则x y m x y m +++-= . 8.若||x x x x -+-=+123132成立,则x 的取值范围是 . (二)、选择题:9.在下列有理式221121a x x m n x y x y ya b ,,,,++-+-()()中,分式的个数是( ) A. 1B. 2C. 3D. 410.把分式xx y+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变 11.下列等式正确的是 ( )A .22b b a a =B .1a b a b -+=--C .0a b a b +=+D .0.10.330.22a b a ba b a b--=++12.与分式a ba b-+--相等的是 ( )A .a b a b +- B .a b a b -+ C .a b a b +-- D a ba b--+ 13.下列等式从左到右的变形正确的是 ( )A .b a =11b a ++B b bm a am =C .2ab b a a= D .22b b a a =14.不改变分式的值,使21233xx x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )A .22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .22133x x x --+ 15.将分式253xyx y -+的分子和分母中的各项系数都化为整数,应为 ( )A .235x y x y -+ B .151535x y x y -+ C .1530610x y x y -+ D .253x yx y-+16.下列各式正确的是 ( )A .c c a b a b -=-++ B .c c a b b a -=-+- C .c c a b a b -=-++ D .c ca b a b-=-+- 17.不改变分式的值,分式22923a a a ---可变形为 ( )A .31a a ++ B .31a a -- C .31a a +- D .31a a -+ 18.不改变分式的值,把分式23427431a a a a a a -++--+-中的分子和分母按a 的升幂排列,是其中最高项系数为正,正确的变形是 ( )A .23437431a a a a a a -++-+- B .23347413a a a a a a -+--++C .23434731a a a a a a +-+--+-D .23347413a a a a a a -++--++19.已知a b ,为有理数,要使分式ab的值为非负数,a b ,应满足的条件是( ) A. a b ≥≠00, B. a b ≤<00,C. a b ≥>00,D. a b ≥>00,,或a b ≤<00,20.已知113a b-=,求2322a ab b a ab b ----的值( ) A. 12 B. 23 C. 95D. 4(三)、解答题:21.已知:3x y -=20,求x xy y x xy y 2222323-++-的值.22.已知:x x 210--=,求x x441+的值. 23.化简:x x x x x x 32325396512++-++-. 24.把分式1882483222a b ab a b++++化为一个整式和一个分子为常数的分式的和,并且求出这个整式与分式的乘积等于多少?25. 已知:x y y y +=--=22402,,求y xy-的值.26. 已知:a b c ++=0,求a b c b c a c a b()()()1111113++++++的值. 27.已知:,ac zc b y b a x -=-=-求z y x ++的值.28.已知:,0,1=++=++z cy b x a c z b y a x 求222222cz b y a x ++的值.。
分式必考知识点

分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。
本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。
一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。
分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。
2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。
3.分式的值:分式的值等于分子除以分母的结果。
例如,1/2表示整体被分为2份,其中的1份。
二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。
例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。
2.分式的乘法:分式的乘法要求将分子与分母分别相乘。
例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。
3.分式的除法:分式的除法可以转化为乘法的倒数运算。
将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。
三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。
例如,4/8可以约分为1/2,因为4和8的最大公约数是4。
2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。
例如,2可以表示为2/1。
四、分式方程1.分式方程的定义:分式方程是含有分式的等式。
分式方程的求解过程与一元一次方程类似。
2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。
–将方程两边的分式化为最简分式。
–化简方程两边的整式,并合并同类项。
–通过移项和合并同类项,将方程化为一元一次方程。
–求解方程,得到未知数的值。
分式知识点的总结及复习

分式知识点的总结及复习分式是数学中的一个重要概念,对于理解和解决各种问题非常有帮助。
分式的概念、性质以及操作都是数学中的基础知识点,非常值得我们重视和复习。
下面给出分式的总结及复习,希望能对大家有所帮助。
一、分式的定义和表示方法1.分式是由两个整数用除号连接起来的表达式,形如a/b,其中a和b都是整数,b不等于0。
a被称为分子,b被称为分母。
分子和分母都可以为正整数、负整数或零。
2.分式也可以表示为a÷b,即a除以b。
二、分式的化简1.如果分式的分子和分母都可以被同一个非零整数整除,则可以进行约分。
约分后得到的分式与原分式的值相等。
2.两个分数相加(减)时,要先找到它们的公共分母,然后将分子相加(减),再写上公共分母。
3.两个分数相乘时,将分子相乘,分母相乘。
4.两个分数相除时,将除号转为乘号,即分子乘以分母的倒数。
5.分子和分母同时乘以一个非零整数不改变分数的值。
这也是化简分式中常用的方法。
三、分式的乘除混合运算1.分式的乘法:把分子与分子相乘,分母与分母相乘。
然后可以进行约分。
2.分式的除法:用除号变成乘号,然后求倒数,即分子和分母交换位置。
然后进行乘法运算,可以进行约分。
四、分式的加减混合运算1.分式的加法:确定两个分式的公共分母,然后将分子相加,写上公共分母。
最后可以进行约分。
2.分式的减法:确定两个分式的公共分母,然后将分子相减,写上公共分母。
最后可以进行约分。
五、分式的化简与方程的解1.在代数中,分式经常出现在方程的求解中。
如果方程中含有分式,我们需要对方程进行化简,使得分母消失,然后求解方程。
2.常用的化简方法有通分、去括号、移项等。
六、分式的应用1.在实际生活中,分式的应用非常广泛。
比如:计算机网络中的带宽分配、物资的平均分配等都涉及到分式的应用。
2.分式在商业计算、金融投资等领域也有广泛应用。
七、分式的习题练习1.简化下列分式:(a)12/30(b)-18/12(c)40/802.求下列分式的值:(a)1/4+3/8(b)5/6-2/3(c)2/3×3/4(d)1/2÷2/33.解方程:2/(x-1)-3/(x+2)=1/(x+1)以上是分式知识点的总结及复习,对于掌握分式知识以及应用都有一定的帮助。
《分式》复习课

《分式》复习课一.基础知识1. 分式的概念:如果A 、B 表示两个整式,且B 中 ,那么式子A B 叫做分式. 2. 分式有意义:分式的 不能为0,即AB 中, 时,分式有意义.3. 分式的值为0的条件:( )为0,且( )不为0,对于A B ,即00=≠⎫⎬⎭( )( )时,0A B =. 4. 分式的基本性质分式的分子、分母都乘以(或除以)同一个 的整式,分式的 不变.A B==( )( )(M 为≠0的整式) 5. 分式通分应注意(1)通分的依据是 . (2)通分后的各分式的 相同.(3)通分后的各分式分别与原来的分式 . (4)通分的关键是确定 .6. 分式通分的步骤(1)确定最简公分母①取各分母系数的 ②凡出现的字母(或式子)的因式都要取.③相同字母(或含字母的式子)的幂的因式取指数最 的.④当分母中有多项式时,要先将多项式 .(2)将各分式化成相同分母的分式.7. 分式的约分(1)约分的依据: (2)约分后不改变分式的 .(3)约分的结果:使分子、分母中没有 ,即化为最简分式.8. 分子的变号规则分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变.用式子表示为:9. 分式的乘除法则(用符号表示)乘法法则: .除法法则: .10. 分式的加减(用符号表示)(1)同分母分式相加减, .(2)异分母分式相加减, .11.分式方程定义:分母中含有 的方程叫分式方程.12. 解分式方程方法二、基础练习㈠、选择题1.在式子1a ,2xy π,2334a b c ,56x +,78x y +,2123x x =-+中,分式的个数是 ( ) A .2 B .3 C .4 D .52.如果把分式2x x y+的x 和y 都扩大2倍,那么分式的值应 ( ) A .扩大2倍 B .不变 C .扩大4倍 D .缩小到原来的 3.下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 4.分式233a a b -、222b ab-与3358c a bc -的最简公分母是 ( ) A .24a 2b 2c 2 B .24a 6b 4c 3 C .24a 3b 2c 3 D .24a 2b 3c 35.若分式22325x x -+的值是负数,则x 的取值范围是 ( ) A .23x > B .23x < C .x <0 D .不能确定 6.下列各分式中,最简分式是 ( )A .()()3485x y x y -+B .22y x x y -+C .2222x y x y xy ++ D .()222x y x y -+ 7.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、x 61 C 、x 65 D 、x611 8.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A .9696944x x +=+- B .4848944x x+=+- C .4849x += D .4848944x x +=+- ㈡填空题 9.当≠x 时,分式x -13有意义;分式392--x x 当x __________时分式的值为零. 10.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
分式压轴题解析

分式【知识脉络】【基础知识】1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
;a c ac a c a d adb d bd b d bc bc •=÷=•=()n n n a a b b =A A C B B C •=•A A C B B C ÷=÷5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a +•=;(2)幂的乘方:()m n mn a a=; (3)积的乘方:()n n nab a b =;(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0); (5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
分式函数初步

分式函数初步分式函数是一个有理函数,指分子和分母都是多项式的函数。
在高中数学的学习中,分式函数是一个重要的内容,同时也是相对难度较大的一个知识点。
本文将介绍分式函数的基础知识和相关概念。
一、分式函数的定义分式函数是指具有形式为 $f(x) = \dfrac{a(x)}{b(x)}$ 的函数,其中 $a(x)$ 和 $b(x)$ 都是多项式函数,且 $b(x) \neq 0$。
分式函数的定义域是所有能够使得分母不为零的实数。
二、分式函数的性质1. 零点和极值分式函数的零点是指使分子等于零的 $x$ 值,也就是 $a(x) = 0$ 的解。
分式函数的极值是指存在的最大值或最小值,通常是$x$ 无限趋近于某个值时,函数趋近于的值。
2. 水平渐近线和垂直渐近线分式函数的水平渐近线可以通过分式函数的通分化得到,垂直渐近线是指分母为零的直线,即 $b(x) = 0$ 的解。
3. 奇偶性分式函数的奇偶性取决于分子的奇偶性。
如果分子是偶函数,那么分式函数就是偶函数;如果分子是奇函数,那么分式函数就是奇函数。
三、分式函数的简单操作1. 通分通分是将两个分式函数化成相同的分母,这样就可以进行加减运算。
例如,若要将 $\dfrac{1}{x+2}$ 和 $\dfrac{x-1}{x+2}$ 通分,可以将第一个分式函数乘以 $\dfrac{x-1}{x-1}$,从而得到$\dfrac{x-1}{(x+2)(x-1)}$,然后将第二个分式函数乘以$\dfrac{1}{1}$,从而得到 $\dfrac{x-1}{(x+2)(x-1)}$,最后将两个分式函数相加即可。
2. 分解因式分解因式就是将一个分式函数化为两个或多个分式函数之积的形式。
例如,要将 $\dfrac{x^2-1}{x+1}$ 分解因式,可以将分子分解为 $(x+1)(x-1)$,则 $\dfrac{x^2-1}{x+1} = \dfrac{(x+1)(x-1)}{x+1} = x-1$。
七年级上册数学分式知识点

七年级上册数学分式知识点分式是数学中的一个重要概念,也是初中数学里的一大难点。
在七年级上册的数学课程中,学生需要掌握分式的基本知识点,为以后的学习打好基础。
本文将围绕七年级上册数学分式的知识点展开阐述。
一、基本概念分式是指一个整体被分成若干份,其中每一份都是整体中的一部分,它由分子和分母两个部分组成,用“分子/分母”的形式表示。
例如,1/2是一个分式,其中1为分子,2为分母。
二、分式的化简1.相除化简如果分子和分母都可以被同一个数整除,那么我们可以利用这个数来将分式进行相除化简。
例如,12/18可以化简为2/3,因为12和18都可以被2整除。
2.分子分母约分分子和分母中存在公因数时,可以将分子和分母同时除以它们的公因数,并保持等式的真实性。
例如,16/24可以化简为2/3,因为16和24都可以被8整除。
三、分式的乘法与除法1.乘法两个分式的乘积可以通过将它们的分子相乘得到新分子,将它们的分母相乘得到新分母。
例如,(2/3)×(4/5)=8/15。
2.除法两个分式的商可以通过取一个分式的倒数,再将另一个分式乘上这个分式的倒数得到。
例如,(2/3)÷(4/5)=(2/3)×(5/4) =10/12 =5/6。
四、分式的加法与减法1.通分对于两个分式,如果它们的分母不同,我们需要将它们通分,即将它们的分母化为相同的数。
例如,1/2+1/3可以化简为3/6+2/6。
在这里,我们需要将两个分式的分母化为6,然后将它们的分子相加。
2.加减通分之后,我们可以将它们的分子相加或相减,并保持相同的分母。
例如,1/2+1/3=5/6,1/2-1/3=1/6。
五、练习题1.将1/3和2/5通分并求和。
2.将2/3和5/6通分并求差。
3.将3/4和4/5相乘并化简。
解答:1. 将1/3和2/5分别乘上5/5和3/3,通分后得到:5/15+6/15=11/15。
2. 将2/3和5/6分别乘上2/2和1/1,通分后得到:4/6-5/6=-1/6。
第三章 《分式》基础知识小结—填空

第三章《分式》基础知识小结——填 空一、分式的有关概念:1、定义:整式A 除以整式B ,可以表示成BA 的形式,如果除式B 中含有 ,那么称BA 为分式。
2、分式有意义的条件:字母的取值必须使分母 ,例如:分式124x x +-,当 时,分式有意义。
分式无意义的条件:字母的取值必须使分母 ,例如:分式124x x +-,当 时,分式无意义。
3、分式值为0的条件:分式B A=0,必须 例如:分式211x x -+,当 时,分式值为0。
4、分式值为正数的条件:必须分子、分母同号,即 或 然后解不等式组。
分式值为负数的条件:必须分子、分母异号,即 或 然后解不等式组。
二、分式的基本性质:(重点)1、分式的基本性质: ,分式的值不变。
字母表示:A B= (M ≠0的整式)2、约分:把一个分式的分子和分母的 约去,这种变形我们称为分式的约分3、最简分式:分子与分母 的分式称为最简分式。
注意:⑴分式化简的要求,通常要使结果成为 或 。
⑵如果分式的分子或分母是多项式,应先将分子、分母分别 ,再约去公因式。
4、分式的符号法则: ⑴x y-=x y-=x y-; ⑵x y--=x y;注意:负号必须是整个分子和整个分母的负号!三、分式的运算:(重点) (一)、分式的乘除法:1、语言叙述:两个分式相乘, ;两个分式相除, 。
1、 字母表示:b d a c⨯= ;b d a c÷=注意:⑴分式的除法运算要转化为乘法运算;⑵式子中的a 、b 、c 、d 可以是单项式,也可以是多项式;若是多项式应先分解因式。
⑶分式乘法运算的结果能约分的一定要进行约分,把分式化为最简分式或整式。
分子A =0 分母B ≠0A >0B >0 A <0B <0A >0B <0 A <0B >0(二)、分式的加减法:1、同分母分式的加减法:同分母的分式相加减, ;字母表示:a b c c±= ;2、异分母分式的加减法:先 ,化成 的分式,然后再按同分母分式的加减法法则进行计算 字母表示:a cb d±= ;3、分式的通分:把 的分式化为 的分式,这一过程称为分式的通分。
分式(基础)知识讲解

分式(基础)知识讲解分式的概念和性质(基础)研究目标】1.理解分式的概念,能够求出使分式有意义、分式无意义、分式值为零的条件。
2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算。
要点梳理】要点一、分式的概念分式是由两个整式相除得到的商式,其中分母中含有字母。
分数是整式,不是分式。
分数的分子、分母中都不含字母。
分式与分数是相互联系的,分数是分式中字母取特定值后的特殊情况。
分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a/πx^2y是整式而不能当作分式。
要点二、分式有意义、无意义或等于零的条件1.分式有意义的条件:分母不等于零。
2.分式无意义的条件:分母等于零。
3.分式的值为零的条件:分子等于零且分母不等于零。
要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变,这个性质叫做分式的基本性质。
用式子表示是:A/M ÷ B/M = A/B,其中M是不等于零的整式。
在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化。
要点四、分式的变号法则在变形后,字母x的取值范围可能变大了。
对于分式中的分子、分母和分式本身的符号,只要改变其中任何两个,分式的值不变;但改变其中任何一个或三个,分式的值会变成原分式的相反数。
要点解释:根据分式的基本性质,我们可以得出上述结论。
同时,根据有理数除法的符号法则,我们可以知道,分式与分子、分母同号,结果为正;异号,结果为负。
分式的符号法则在分式的运算中非常重要。
要点五、分式的约分和最简分式与分数的约分类似,我们可以利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式。
要点解释:约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式。
分式的概念和性质(基础)

分式的概念和性质(基础)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件;●掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.学习策略:●类比分数,理解分式有意义的条件;●掌握分式的基本性质.二、学习与应用1. 长方形的面积为10cm2,长为7cm,宽应为 cm;长方形的面积为S2,长为a,宽应为 cm.2. 把体积为200cm3的水倒入底面积为33 cm3的圆柱形容器中,水面高度为 cm;把体积为Vcm3的水倒入底面积为S 的圆柱形容器中,水面高度为 .知识点一、分式的概念一般地,如果A、B表示两个,并且B中含有,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记.要点梳理——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID:#32821#400221知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?式不能先化简,如2x y x 是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果.知识点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母 零.2.分式无意义的条件:分母 零.3.分式的值为零的条件:分子 零且分母 零.要点诠释:(1)分式有无意义与 有关但与 无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取那些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.知识点三、分式的基本性质分式的分子与分母同乘(或除以)一个 的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M ⨯÷==⨯÷,(其中M 是不等于零的整式).要点诠释:(1)基本性质中的A 、B 、M 表示的是整式.其中B ≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.知识点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值 ;改变其中任何一个或三个,分式成为原分式的 .要点诠释:根据分式的基本性质有b b a a -=-,b ba a -=-.根据有理数除法的符号法则有b bba a a -==--.分式ab 与ab -互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.知识点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的 ,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做 .要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是使分子、分母的系数的 与相同因式 次幂的积;当分式的分子、分母中含有多项式时,要先将其 ,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.知识点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的 ,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.类型一、分式的概念例1、下指出下列各式中的整式与分式?2a,3x,1mm+,23x+,5π,2aa,23-.点评:类型二、分式有意义,分式值为0例2、下列各式中,m取何值时,分式有意义?(1)2mm+;(2)1||2m-;(3)239mm--.点评:举一反三:【变式1】在什么情况下,下列分式没有意义?(1)3(7)xx x+;(2)21xx+;(3)222xx++.【变式2】当x为何值时,下列各式的值为0.典型例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID:#32832#400221(1)2132x x +-;(2)221x x x +-;(3)224x x +-.类型三、分式的基本性质例3、不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x y x y +-; (2)11341123x y x y+-.点评:举一反三:【变式1】如果把分式y x x 232-中的y x ,都扩大3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 扩大2倍【变式2】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c --=----.例4、不改变分式的值,使下列分式的分子和分母不含“-”号.(1)2a b -;(2)45x y --;(3)3m n -;(4)23bc --.点评:类型四、分式的约分、通分例5、 将下列各式约分:(1)23412ax x ;(2)243153n n x y x y +-;(3)211a a --;(4)321620m m m m -+-.点评:【变式】通分:(1)4b ac ,22a b c ;(2)22x x +,211x -. (3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.三、测评与总结 要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.知识点:分式的概念和性质(基础)测评系统分数: 模拟考试系统分数: 如果你的分数在85分以下,请进入网校资源ID :#32853#400221进行巩固练习,如果你的分数在85分以上,请进入网校资源ID :#32881#400226 进行能力提升.我的收获习题整理题目或题目出处 所属类型或知识点 分析及注意问题 成果测评 现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的测试.自我反馈 学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.好题错题注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.○网○校○重○要○资○源知识导学:分式的概念和性质(基础)(#400221)若想知道北京四中的同学们在学什么,请去“四中同步”看看吧!和四中的学生同步学习,同步提高! 更多资源,请使用网校的学习引领或搜索功能来查看使用.对本知识的学案导学的使用率:□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上) □ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)□ 弱(仅作一般参考,使用率在50%以下)学生:_______________ 家长:______________ 指导教师:_________________请联系北京四中网校当地分校以获得更多知识点学案导学.。
分式运算初中数学知识点之分式的四则运算法则

分式运算初中数学知识点之分式的四则运算法则初中数学中,分式是一个重要的知识点,它在数学运算中起到了重要的作用。
分式的四则运算法则是我们学习分式运算的基础,掌握了这些法则,我们就能够正确地进行分式的加减乘除运算。
下面我们将详细介绍分式的四则运算法则。
一、分式的加法和减法假设我们有两个分式,分别为a/b和c/d,它们的分子分别为a和c,分母分别为b和d。
那么它们的加法运算可以通过以下步骤进行:1. 找到两个分式的公共分母,记为m;2. 将两个分式的分子分别乘以m/b和m/d,得到分子为am/b,cm/d的两个分式;3. 将两个新分式的分子相加,即(am/b) + (cm/d);4. 分子的和除以公共分母m,即[(am/b) + (cm/d)] / m。
同样地,分式的减法运算也可以按照上述步骤进行,只需要将第3步的相加改为相减即可。
二、分式的乘法分式的乘法运算较为简单,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的乘法运算可以用以下公式表示:(a/b) * (c/d) = (a * c) / (b * d)。
三、分式的除法分式的除法与乘法类似,只需要将两个分式的分子相乘,分母相乘即可。
假设我们有两个分式,分别为a/b和c/d,那么它们的除法运算可以用以下公式表示:(a/b) / (c/d) = (a * d) / (b * c)。
需要注意的是,除法的时候我们需要将第二个分式取倒数后再进行乘法运算。
以上就是分式的四则运算法则,通过掌握这些法则,我们可以正确地进行分式的加减乘除运算。
在实际运算中,我们还需要注意约分的情况和分母为0的特殊情况。
当分式中的分子和分母有公因子时,我们需要将其约分为最简形式,即分子和分母没有共同的约数。
而当分式的分母为0时,这个分式是无定义的,因为在数学中,除数不能为0。
通过不断的练习和运用,我们可以更好地掌握分式的四则运算法则,为更复杂的数学运算打下坚实的基础。
55分式方程的解法及应用(基础)知识讲解

分式方程的解法及应用(基础)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】类型一、判别分式方程1、下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数) 【答案】B ;【解析】A 、C 两项中的方程尽管有分母,但分母都是常数;D 项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B 项中的方程符合分式方程的定义.【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数.类型二、解分式方程 2、 解分式方程(1)10522112x x +=--;(2)225103x x x x -=+-. 【答案与解析】解:(1)10522112x x+=--, 将方程两边同乘(21)x -,得10(5)2(21)x +-=-.解方程,得74x =. 检验:将74x =代入21x -,得52102x -=≠. ∴ 74x =是原方程的解. (2)225103x x x x-=+-, 方程两边同乘以(3)(1)x x x +-,得5(1)(3)0x x --+=.解这个方程,得2x =.检验:把2x =代入最简公分母,得2×5×1=10≠0.∴ 原方程的解是2x =.【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根.举一反三:【变式】解方程:21233x x x-=---. 【答案】解:21233x x x-=---, 方程两边都乘3x -,得212(3)x x -=---,解这个方程,得3x =,检验:当3x =时,30x -=,∴ 3x =是增根,∴ 原方程无解.类型三、分式方程的增根3、(2015春•安岳县期中)若解关于x 的分式方程会产生增根,求m 的值.【思路点拨】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m 的值.【答案与解析】解:方程两边都乘(x+2)(x ﹣2),得2(x+2)+mx=3(x ﹣2)∵最简公分母为(x+2)(x ﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.【总结升华】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.举一反三:【变式】如果方程11322x x x-+=--有增根,那么增根是________. 【答案】2x =;提示:因为增根是使分式的分母为零的根,由分母20x -=或20x -=可得2x =.所以增根是2x =.类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.【答案与解析】解:设甲班每小时种x 棵树,则乙班每小时种()2x +棵树.由题意可得60662x x =+,解这个方程,得20x =. 经检验20x =是原方程的根且符合题意.所以222x+=(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含x的分式表示甲、乙两班种树所用的时间.举一反三:【变式】(2016•淮安)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【答案】解:设原计划每小时检修管道x米.由题意,得60060021.2x x-=.解得50x=.经检验,50x=是原方程的解.且符合题意.答:原计划每小时检修管道50米.。
分式的概念和性质(基础)答案

分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算. 【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如aπ是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】类型一、分式的概念1、下列式子中,哪些是整式?哪些是分式? 2a ,3x ,1m m +,23x +,5π,2a a ,23-. 【思路点拨】3x ,5π,23-虽具有分式的形式,但分母不含字母,其中5π的分母中π表示一个常数,因此这三个式子都不是分式.【答案与解析】解:整式:3x ,23-,5π,23x +,分式:2a ,1m m+,2a a . 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.类型二、分式有意义,分式值为02、下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239m m --. 【答案与解析】解:(1)由20m +=得2m =-,故当2m ≠-时分式2m m +有意义. (2)由||20m -=得2m =±,故当2m ≠±时分式1||2m -有意义. (3)由229(9)0m m --=-+<,即无论m 取何值时29m --均不为零,故当m 为任意实数时分式239m m --都有意义. 【总结升华】首先求出使分母等于零的字母的值,然后让未知数不等于这些值,便可使分式有意义.这是解答这类问题的通用方法.举一反三:【变式1】在什么情况下,下列分式没有意义?(1)3(7)x x x +;(2)21x x +;(3)222x x ++. 【答案】解:分式没有意义的条件是分式的分母等于0.(1)由(7)0x x +=,得0x =或7x =-,∴ 当0x =或7x =-时,原分式没有意义.(2)由20x =,得0x =,∴ 当0x =时,原分式没有意义.(3)由2x ≥0得,220x +>,即220x +≠,∴ 当x 取一切实数,原分式都有意义,即没有x 值能使分式没有意义.【变式2】当x 为何值时,下列各式的值为0. (1)2132x x +-;(2)221x x x +-;(3)224x x +-.【答案】解:(1)由210x +=得12x =-, 当12x =-时,1323()202x -=⨯--≠, ∴ 当12x =-时,分式2132x x +-的值为0. (2)由20x x +=得0x =或1x =-,当0x =时,21010x -=-≠,当1x =-时,221(1)10x -=--=, ∴ 当0x =时,分式221x x x +-的值为0. (3)由20x +=得2x =-,当2x =-时,224(2)40x -=--=,∴ 在分式有意义的前提下,分式224x x +-的值永不为0. 类型三、分式的基本性质3、不改变分式的值,将下列分式的分子、分母中的系数化为整数. (1)0.20.020.5x y x y +-; (2)11341123x y x y +-. 【思路点拨】将(1)式中分子、分母同乘50,(2)式的分子、分母同乘12即可.【答案与解析】解:(1)0.20.020.5x y x y +-(0.2)501050(0.020.5)5025x y x y x y x y +⨯+==-⨯-. (2)11341123x y x y +-1112433411641223x y x y x y x y ⎛⎫+⨯ ⎪+⎝⎭==-⎛⎫-⨯ ⎪⎝⎭. 【总结升华】利用分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.举一反三:【变式1】如果把分式yx x 232-中的y x ,都扩大3倍,那么分式的值( ) A 扩大3倍 B 不变 C 缩小3倍 D 扩大2倍【答案】B ;【变式2】填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c--=----. 【答案】2()x y -;1;解:(1)先观察分子,等式左边分式的分子为x y +,而等式的右边分式的分子为22x y -,由于22()()x y x y x y +-=-,即将等式左边分式的分子乘以x y -,因而分母也要乘以x y -,所以在?处应填上2()x y -.(2)先观察分母,等式左边的分母为()()()a c a b b c ---,等式右边的分母为a c -,根据分式的性质可知应将等式左边分式的分子、分母同时除以()()a b b c --,因为()()[()()]1b a c b a b b c --÷--=,所以在?处填上1.4、 不改变分式的值,使下列分式的分子和分母不含“-”号.(1)2a b -;(2)45x y --;(3)3m n -;(4)23b c--. 【答案与解析】解:(1)22a a b b -=- (2)4455x x y y -=- (3)33m m n n =-- (4)2233b b c c-=-. 【总结升华】在分子、分母、分式本身中,只有任意两个同时改变符号时,才能保证分式的值不变.一般地,在分式运算的最后结果中,习惯于只保留一个负号,写在分式的前面. 类型四、分式的约分、通分5、 将下列各式约分:(1)23412ax x ;(2)243153n n x y x y +-;(3)211a a --;(4)321620m m m m -+-. 【答案与解析】解:(1)22324412433ax x a a x x x x==g g . (2)243223315355331n n n n x y x y x y x y x y x y +--==-g g . (3)21111(1)(1)1a a a a a a --==--++. (4)32216(4)(4)420(5)(4)5m m m m m m m m m m m m --+-+==-+-+-+. 【总结升华】当分子、分母都是单项式时,分子、分母的公因式即是分子、分母的字母系数的最大公约数与分子、分母的相同因式最低次幂的乘积.举一反三:【高清课堂403986 分式的概念和性质 例6(2)】【变式】通分:(1)4b ac ,22a b c ;(2)22x x +,211x -. (3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -. 【答案】 解:(1)最简公分母为24ab c ,2322444b b b b ac ab c ab c ==g ,222222244a a a a b c ab c ab c==g . (2)222(1)x x x x =++,2111(1)(1)x x x =-+-, 最简公分母为2(1)(1)x x +-,2(1)222(1)(1)2(1)(1)x x x x x x x x x x --==++-+-g . 2112212(1)(1)2(1)(1)x x x x x ⨯==-+-+-. (3)最简公分母是222a b c . 2222333222bc bc a b a b bc a b c ==g g ,22222()22222a b a b a a ab ab c ab c a a b c---==g g . (4)最简公分母是(2)(2)x x +-,21222(2)(2)4x x x x x x --==++--,224444x x x x =--,222(2)242(2)(2)4x x x x x x ++==--+-. 【巩固练习】一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个B.3个C.4个D.5个 2.使分式5+x x 值为0的x 值是( ) A .0 B .5C .-5D .x ≠-5 3. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22ab a b -有意义 C .当21-=x 时,分式214x x +值为0 D .当x y ≠时,分式22x y y x--有意义 4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+ B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx y x ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变 6.下列各式中,正确的是( )A .a m a b m b+=+ B .0a b a b +=+ C .1111ab b ac c +-=-- D .221x y x y x y -=-+ 二.填空题7.当x =______时,分式632-x x 无意义. 8.若分式67x--的值为正数,则x 满足______.9.(1)112()x x x --=- (2).y x xy x 22353)(= 10.(1)22)(1y x y x -=+ (2)⋅-=--24)(21y y x 11.分式2214a b 与36x ab c的最简公分母是_________. 12. 化简分式:(1)3()x y y x -=-_____;(2)22996x x x-=-+_____. 三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---. 14.已知分式,y a y b-+当y =-3时无意义,当y =2时分式的值为0, 求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y-- (2)2b a a -- (3)2211x x x x---+ (4)2231m m m ---【答案与解析】一.选择题1. 【答案】B ; 【解析】21325,,42x x x x++是分式. 2. 【答案】A ;【解析】050x x =+≠且.3. 【答案】B ;【解析】a b ≠±,22ab a b-有意义. 4. 【答案】D ;【解析】无论x 为何值,21x +都大于零.5. 【答案】D ;【解析】102010(2)2101010()x y x y x y x y x y x y+++==+++. 6. 【答案】D ;【解析】利用分式的基本性质来判断.二.填空题7. 【答案】2;【解析】由题意,360,2x x -==.8. 【答案】7x >;【解析】由题意70,7x x -<>∴.9. 【答案】(1)2x -;(2)5y ;10.【答案】(1)x y -;(2)22xy x y +--;【解析】221(1)(2)22244x x y xy x y y y y --++--==---. 11.【答案】2312a b c ;【解析】最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积.12.【答案】(1)()21x y --;(2)33x x +-. 【解析】()()()222339963x x x x x x +--==-+-33x x +-. 三.解答题13.【解析】解:(1)由分母20x -≠,得2x ≠.∴ 当2x ≠时,原分式有意义.(2)由分母410x +≠,得14x ≠-.∴ 当14x ≠-时,原分式有意义. (3)∵ 不论x 取什么实数,都有210x +>.∴ x 取一切实数,原分式都有意义.(4)∵ 20x ≥,∴ 211x +≥,∴ 2(1)1x -+≤-即211x --≤- ∴ x 取一切实数,分式2211x x ---都有意义. 14.【解析】解:由题意:30b -+=,解得3b =2023a -=+,解得2a = 所以分式为23y y -+,当y =-7时,2729937344y y ----===+-+-.。
分式基础知识讲解

分式基础知识讲解分式,也称为有理数,是指一个整数除以另一个非零整数所得的数。
在数学中,分式是一个重要的概念,它在各种数学问题中都有广泛的应用。
本文将对分式的基础知识进行讲解。
一、分式的定义和表示方式分式可以看作是两个整数的比值,其中一个整数作为分子,另一个整数作为分母。
分式的一般表示方式为“a/b”,其中a为分子,b为分母。
例如,2/3、5/8都是分式。
分式可以用于表示一个数量相对于另一个数量的比值,比如“5个苹果中有3个是红色的”,可以表示为分式5/3。
二、分式的性质和运算法则1. 分式的相等性质对于任意两个分式a/b和c/d,如果ad=bc,则a/b=c/d,即分式相等性质。
2. 分式的相反数和倒数对于任意一个分式a/b,它的相反数是- a/b,它的倒数是b/a。
3. 分式的加减法当两个分式的分母相同时,可以直接对分子进行加减运算,并保持分母不变。
例如,对于分式a/b和c/b,它们的和为(a+c)/b,差为(a-c)/b。
当两个分式的分母不同时,可以通过求公共分母的方法将它们进行相加或相减。
具体方法可以参考通分的原理。
4. 分式的乘除法两个分式相乘时,只需将它们分子相乘得到新的分子,分母相乘得到新的分母。
例如,分式a/b和c/d的乘积为ac/bd。
两个分式相除时,可以将第二个分式的倒数乘以第一个分式。
即,分式a/b和c/d的商为(a/b) * (d/c) = (ad)/(bc)。
三、分式的简化和约分当一个分式的分子和分母有公约数时,可以进行约分,即将分子和分母同时除以它们的最大公约数。
约分后的分式与原分式表示相同的数。
四、分式的应用1. 倒数的表示当需要表示一个数的倒数时,可以使用分式。
例如,数x的倒数可以表示为1/x。
倒数在分数的求解和比较中起到重要作用。
2. 比例问题在比例问题中,分式被广泛使用。
比如“苹果的单价是2元/个,芒果的单价是3元/个,求苹果和芒果价格的比值”,可以表示为2/3这个分式。
华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质

x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2
③
1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b
与
ab ab2c
分式初步(基础版)

分式初步(一)1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 叫分子,B 叫分母且B≠0(1)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况(2)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(3)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.②分式有意义(或分式存在)的条件:分式的分母不等于零即AB中B≠0 。
(1)分式有意义的条件:分母不等于零.(2)分式无意义的条件:分母等于零.③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。
即当 A=0 且B≠0 时,AB=0。
【例1】⑴若分式2x−5有意义,则x的取值范围是( )⑵分式x 2−1x−1的值为0,则x的值为()【例2】⑴下列式子1x ,2aa−3b,x+y3,4−2aπ,x2−xx,其中是分式的有( )A.1 个 B.2 个 C.3 个 D.4 个(2)当x =()时,分式2x+2有意义;当x =()时,分式1x2+1有意义;(3)当x为何值是,下列分式的值为0?①2x−1x+3; ②|x|−6x2−5x−6③x2−16x2+3x−4④8xx2+8⑤25−x2(x−5)22.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于 0 的整式,分式的值不变。
A B =A×MB×M=A÷MB÷M(M≠0)②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。
分子分母中没有公因式的分式叫做最简分式③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式.为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。
分式知识点总结

分式知识点总结分式是小学数学中一个重要的知识点,也是高中数学的基础。
分式的概念和应用广泛,是解决实际问题中常用的方法之一。
本文将从分式的定义、基本性质、运算法则以及应用等方面进行总结。
一、分式的定义分式是两个整数的比,由分子和分母两部分构成。
分子表示被除数,分母表示除数。
通常用a/b的形式表示,其中a为分子,b为分母。
二、分式的基本性质1. 分式的值可以是整数、小数、真分数或假分数,分式可以化简为最简形式。
2. 分式的值与分子和分母的关系密切相关,当分子增大而分母不变时,分式的值增大;当分子减小而分母不变时,分式的值减小。
3. 分式的值可以用图形来表示,例如在数轴上表示为一个点。
三、分式的运算法则1. 分式的加法和减法:分式的加法和减法归结为求他们的公共分母,将分子相加或相减即可。
例如:a/b + c/d = (ad+bc)/bda/b - c/d = (ad-bc)/bd2. 分式的乘法和除法:分式的乘法和除法的规则较为简单,直接将分子相乘或相除,分母相乘或相除即可。
例如:(a/b) × (c/d) = ac/bd(a/b) ÷ (c/d) = ad/bc3. 分式的混合运算:分式的混合运算可以结合加减乘除的运算法则来进行。
在计算过程中,首先进行括号内的运算,然后进行乘除运算,最后进行加减运算。
四、分式的应用分式可以应用于实际问题中,例如在计算比例、百分比、利润和折扣等方面。
1. 比例问题:比例可以表示为分式的形式,通过求解分式可以得到两个量的比值。
例如:甲乙两个人的身高比为3/5,已知甲的身高为150cm,求乙的身高。
2. 百分比问题:百分比可以表示为分式的形式,通过分式可以求解出百分比的具体数值。
例如:某商店举办打折促销活动,原价为120元的商品现在打8折,求折后的价格。
3. 利润和折扣问题:利润和折扣可以表示为分式的形式,通过求解分式可以得到具体的数值。
例如:某商品的进价为180元,利润率为20%,求售价;或者某商店举办折扣促销活动,折扣率为30%,求折后价格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的概念和性质(基础)【学习目标】1.理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2 •掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子-叫做分式.其中AB叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2 )分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但n表示圆周率,是一个常数,不是字母,如-是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如疋分式,与xy有区别,xy疋整式,即只看形式,x不能看化简的结果要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是: A AM,A AM (其中M是不等于零的整式)B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B M 0是已知条件中隐含着的条件,一般在解题过程中不另强调;博0是在解题过程中另外附加(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化•例如:——,在变形后,字母x的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有—b,亠—.根据有理数除法的符号法则有a a a a——b.分式a与a互为相反数.分式的符号法则在以后关于分式的运算中起着重a a ab b要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幕的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.分式的乘除(基础)【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则•2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算•【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母用字母表示为:-—兰,其中a、b、c、d是整式,bd 0 . b d bd2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘-—-—,其中a、b c d 是整式,bcd 0. b d b c bc用字母表示为:要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式•(2)分式与分式相乘,右分子和分母是多项式,则先分解因式,看能否约分, 然后再乘•(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变•当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:n na a-(n为正整数).b b nnn nn要点诠释:(1)分式乘方时,一定要把分式加上括号•不要把- 冷写成- —b b n b b(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如a b 2 a b a2b2〒b2b2.分式的加减(基础)【学习目标】1•能利用分式的基本性质通分.2•会进行同分母分式的加减法.3•会进行异分母分式的加减法.【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:a b a bc c c要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误•(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幕的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幕的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言•要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减上述法则可用式子表为:要点诠释:(1)异分母的分式相加减,先通分是关键•通分后,异分母的分式加减法变成 同分母分式的加减法•(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化 成最简分式• 要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序 计算.分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式 •要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正 确进行分式运算的基础,要牢牢掌握..(2) 运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的(3) 运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度• 分式方程的解法及应用(基础)【学习目标】b a db bd1.了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2.会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程. 转化方法是方程两边都乘以最简公分母,去掉分母. 在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根. 因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:( 1 )方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式时,先分解因式,再找出最简公分母)?方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的. 根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0 的数,所得方程是原方程的同解方程. 如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1 •分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子-叫做分式•其中AB叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B H 0时,分式A才有意义.B2.分式的基本性质匸上--匕(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3 •基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下(1)加减运算同分母的分式相加减,分母不变,把分子相加减异分母的分式相加减,先通分,变为同分母的分式,再加减a c ac⑵乘法运算bc bc ,其中a 、bc 、d 是整式,bd 0.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母(3)除法运算 a — a d -ad ,其中a b 、c 、d 是整式,bcd 0.b d bc bc两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘 .分式的乘方,把分子、分母分别乘方4. 分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的 要点三、分式方程1 •分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法hd (4)乘方运算解分式方程的关键是去分母, 即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0 的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。