DSP硬件实验报告北邮
北邮 DSP硬件实验报告
目录第三章 (2)实验一 (2)实验二 (3)实验三 (4)实验四 (5)实验五 (9)实验六 (13)实验七 (17)第四章 (35)实验一 (35)第三章实验一.mmregs ;定义存储器映像寄存器.global _main ;全局符号,可在外部定义_main:stm #3000h,sp ;设置堆栈指针寄存器的值为3000hssbx xf ;置位状态寄存器xf=1,灯亮call delay ;调用延时子程序,延时rsbx xf ;将xf置0call delay ;调用delay函数b _main ;程序跳转到"_MAIN"nopnop;延时子程序delay:stm 270fh,ar3 ;设置辅助寄存器ar3值为9999loop1:stm 0f9h,ar4 ;设置辅助寄存器ar4值为249loop2:banz loop2,*ar4- ;寄存器ar4值减一,当其值不为0时跳转到loop2 banz loop1,*ar3- ;寄存器ar3值减一,当其值不为0时跳转到loop1 ret ;可选择延迟的返回nop ;空指令nop.end.mmregs.global _main_main:;store data 存入数据stm 1000h,ar1 ;address of internal memory 寄存器ar1地址1000hrpt #07h ;循环执行下一条指令8次st 0aaaah,*ar1+ ;将数据"0AAAAH"存放到以地址1000H~1007H的八个存储单元中.;;read data then re-store 读取数据再存到别的寄存器中stm 7h,ar3 ; 寄存器ar3地址7hstm 1000h,ar1 ; 寄存器ar1地址1000hstm 1008h,ar2 ; 寄存器ar2地址1008hloop: ;循环的将1000H~1007H的八个单元中的数据COPY到1008H~100F的;八个存储单元中.ld *ar1+,t ;,把地址为ar1 的数据单元中的数据装到累加器t 中,ar1 = ar1 +1 st t,*ar2+banz loop,*ar3-here: ;死循环.b here.end.mmregs ;定义映像寄存器.global _main ;声明全局符号.text_main:stm 3100h,sp ;设置堆栈指针寄存器的值为3100hstm 1000h,ar1 ;设置辅助寄存器ar1值为1000hportr 8000h,*ar1 ;读入I/O 8000H数据,将其存储到数据空间的1000H nop ;NOP为空操作,起延时作用.nopportw *ar1,8001h ;将数据空间的1000H单元的数据,写出到I/O 8000H nopnop 5b _main ;程序跳转到"_MAIN"执行.nopnop.end.global _c_int00,_timer0 ;引用函数c_int00,引用了c中的函数.sect ".vecs" ;自定义一个已初始化段.vecsreset: b _c_int00 ;复位中断向量,跳转到主程序nopnopnmi: rete ;非屏蔽外部中断的输入引脚nopnopnop; software interruptssin17: .space 4*16 ;软件中断,内部中断,保留出中断向量的地址空间,将4*16的地址;存储在sin17~sin30sin18: .space 4*16sin19: .space 4*16sin20: .space 4*16sin21: .space 4*16sin22: .space 4*16sin23: .space 4*16sin24: .space 4*16sin25: .space 4*16sin26: .space 4*16sin27: .space 4*16sin28: .space 4*16sin29: .space 4*16sin30: .space 4*16int0: rete ;此处int0中断响应为0,设置rete响应中断并返回nopnopnopint1: rete ;此处int1中断响应为0,设置rete响应中断并返回nopnopnopint2: rete ;此处int2中断响应为0,设置rete响应中断并返回nopnopnoptint0: b _timer0 ;同步串口0(McBSP0)接受中断,直接返回nopnopbrint0: rete ;同步串口0(McBSP1)发送中断,直接返回nopnopnopbxint0: rete ;同步串口0(McBSP1)发送中断,直接返回nopnopnopdmac0: rete ;RESERVED OR DMA CHANNEL0 INTERRUPTnopnopnoptint1_dmac1: rete ;TIMER1 INTERRUPT OR DMA CHANNEL1 INTERRUPTnopnopnopint3: rete ;外部中断int3,允许中断并返回nopnopnophpint: rete ;HPI INTERRUPTnopnopnopbrint1_dmac2: rete ;McBSP1 RECEIVE INTERRUPT OR DMA CHANNEL 2 INTERRUPT nopnopnopbxint1_dmac3: rete ;McBSP1 TRANSMIT INTERRUPT OR DMA CHANNEL 3 INTERRUPT nopnopnopdmac4: rete ;DMA CHANNEL 4 INTERRUPTnopnopnopdmac5: rete ;DMA CHANNEL 5 INTERRUPTnopnopnop; ****************************结束*****************************;*************************************************************//*;* 文件名称: exp04.c;* 适用平台: EXPIII+实验系统;* CPU类型: DSP TMS320VC54X;* 软件环境: CCS3.1 (5000系列);* 试验接线: 1、实验箱的拨码开关SW2.4置OFF(54x的译码有效);54x CPU板的跳线J2的1、2短接;* (HPI 8位模式);SW1的2、6置ON,其余置OFF(HPI使能;DSP工作微处理器方式;;* CPU_CS=0);SW2全部置ON(FLASH工作在数据空间,LED灯D5的工作状态处于灭状态);;* 试验现象: LED灯(LED1~LED8)以一定的间隔时间不停闪亮变化;;*************************************************************//************************文件预处理***************************/#include "tms320uc5402.h"/*************************************************************//********************全局变量定义与初始化*********************/ioport unsigned port8001;unsigned int show=0x00aa;unsigned int num=0x0000;/*************************************************************//*******************函数、子程序声明与定义********************/void sys_ini() //系统初始化子程序{asm(" ssbx INTM"); //全局禁止所有可屏蔽中断PMST&=0x00FF; //(DRAM映射到程序空间和数据空间)向量表映射到0x0080空间SWWSR=0x7000; //io空间7个等待周期,程序与数据空间0个等待周期CLKMD=0x17FA; //CLKOUT=2*CLKIN=2*10M=20M,自动延时最长时间}void timer0_ini() //定时器0初始化子程序{TCR|=0x0010; //停止定时器0PRD=0x2710; //PRD=10000(D)TCR|=0x000A; //TDDR=10(D),所以定时器时钟=1/(20M/10/10000)=5msIMR=0x0008; //使能定时器0中断IFR=0xFFFF; //清除所有中断标志位asm(" rsbx INTM"); //全局使能可屏蔽中断TCR&=0xFFEF; //开始定时器0TCR|=0x0020; //复位定时起0}/*************************************************************//*****************中断服务子程序声明与定义********************/interrupt void timer0() //定时器0中断子程序{if(num==200) //记200次定时器中断,时间=200*5ms=1s{show=~show; //取反num=0;}elsenum++;return;}/*************************************************************//**************************主程序*****************************/ void main(void){sys_ini();timer0_ini();for(;;){port8001=show;}}/***************************结束******************************/实验五Initial.asm.mmregs.global _initial.text_initial:NOPLD #0, DP ;重置数据指针,为DP寄存器赋值0;DP是状态寄存器ST0 的低9 位,和7 位(数据存储器地址)构成16 位数据存储区地址STM #0, CLKMD ;设置时钟模式寄存器的值为0;可通过调整CLKMD 寄存器改变CPU 时钟。
北京邮电大学_dsp_matlab实验报告
数字信号处理实验报告实验名称:数字信号处理实验学生姓名:班级:班内序号:1.实验要求假设信号x(n) 由下述信号组成:请选择合适的长度N 和窗函数,用DFT 分析其频谱,得到清楚的三根谱线。
2.实验代码和实验结果N = 1000; % Length of DFTn = [0:1:N-1];xn = 0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);Xk = fft(xn,N);k=[0:1:N-1];subplot(5,1,1);stem(k,abs(Xk(1:1:N)));title('DFT x(n)');xlabel('k');axis([140,240,0,6])subplot(5,1,2);stem(k, abs(Xk(1:1:N)),'r');%画出sin(0.3npi)-cos(0.302npi-pi/4) axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,3);stem(k, 1000*abs(Xk(1:1:N)),'g');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');subplot(5,1,4);stem(k,0.01*abs(Xk(1:1:N)),'k');%画%sin(0.3npi)-cos(0.302npi-pi/4)axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,5);stem(k, 10*abs(Xk(1:1:N)),'m');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');结论:由上图及过程可知,当DFT变换长度为1000时所得到的谱线非常理想。
DSP硬件实验报告-北邮
北京邮电大学DSP硬件实验报告学院: 电子工程学院专业:姓名:学号:班级:实验一常用指令实验一、实验目的熟悉DSP开发系统的连接了解DSP开发系统的组成和结构和应用系统构成熟悉常用C54X系列指令的用法(程序寻址,寄存器,I/O口,定时器,中断控制)。
二、实验步骤与内容(一)简单指令程序运行实验源程序:;File Name:exp01.asm;the program is compiled at no autoinitialization mode --程序在非自动初始化模式下编译.mmregs --(enter memory-mapped registers into the symbol table) --进入记忆映射注册进入符号表.global _main --(identify one or more global(external)symbols)--定义一个或多个全局变量_main:stm(累加器的低端存放到存储器映射寄存器中) #3000h,sp(堆栈指针寄存器);堆栈指针的首地址设为#3000hssbx(状态寄存器位置位)xf ;状态寄存器位置位,灯亮call (非条件调用,可选择延迟)delay(存储器延时) ;调用delay函数延时rsbx(状态寄存器复位)xf ;状态寄存器位复位,灯灭call delay ;调用delay函数延时b (累加器)_main ;可选择延迟的无条件转移,循环执行nop(无操作)nop;delay .5 seconddelay: ;延迟0.5秒stm 270fh,ar3 (辅助寄存器3) ;把地址存放到存储器映射寄存器中loop1:stm 0f9h,ar4 (辅助寄存器4);把地址存放到存储器映射寄存器中loop2:banz loop2,*ar4- ;AR4不为0时转移,指针地址减一banz loop1,*ar3- ; 若不为0,ar3减1,共进行10000*250次跳转ret (可选择延迟的返回 pc=sp++) ;return,返回nopnop;stm 2 cycles;banz when TRUE 4 cycles; FALSE 2 cycles;0f9h=>249d;270fh=>9999d.end实验现象XF灯以一定频率闪烁;单击“Halt”暂停程序运行,则XF灯停止闪烁,如再单击“Run”,则“XF”灯又开始闪烁;(二)资料存储实验源程序:*File Name:exp02.asm;get some knowledge of the cmd file;the program is compiled at no autoinitialization mode.mmregs.global _main_main:;store datastm 1000h,ar1 ;ar1映射到内存1000h位; stm 5000h,ar1 ;address of exterior memoryrpt(循环执行下一条指令,计数为短立即数) #07h ;循环执行下一条指令8次st(存储T寄存器的值) 0aaaah,*ar1+ ;data 存储寄存器的值;read data then re-storestm 7h,ar3 ;设置ar3; stm 5000h,ar1 ;address of exterior memory; stm 5008h,ar2 ;address of exterior memorystm 1000h,ar1 ;设置ar1为1000hstm 1008h,ar2 ;设置ar2为1008hloop:ld *ar1+,t ;把单数据存储操作数装入T寄存器中st t,*ar2+ ;存储T寄存器的值banz loop,*ar3- ;循环7次here:b here ;可选择延迟的无条件转移,循环执行.end实验目的:;本实验程序将对0x1000开始的8个地址空间,填写入0xAAAA的数值,然后读出,并存储到0X1008开始的8个地址空间。
北邮电子DSP硬件报告
DSP硬件课程实验报告学院:电子工程学院班级: 2011211203学号: 2011210876姓名:孙月鹏班内序号: 04实验一:常规指令实验一、 实验目的1.熟悉DSP 开发系统的连接2.了解DSP 开发系统的组成和结构和应用系统构成3.熟悉常用C54X 系列指令的用法(程序寻址,寄存器,I/O 口,定时器,中断控制)。
二、 实验设备计算机,CCS 2.0版软件,DSP 仿真器,实验箱。
三、 实验操作方法1、系统连接进行DSP 实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应点亮,否则DSP 开发系统与计算机连接有问题。
2、运行CCS 程序先实验箱上电,然后启动CCS ,此时仿真器上的“绿色小灯”应点亮,并且CCS 正常启动,表明系统连接正常;否则仿真器的连接、JTAG 接口或CCS 相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS 相关设置是否正确。
四、代码注释与实验结果1)简单指令程序运行实验①代码及注释.mmregs ;定义储存器映像寄存器.global _main ;全局符号_main:stm #3000h,sp ;3000h 放入堆栈指针寄存器的首地址中 ssbx xf ;将对外接口XF 置1,此时灯亮call delay ;调用延时子程序,延时rsbx xf ;将XF 置0,call delay ;调用延时子程序,b _main ;程序跳转到"_MAIN"nop ;无任何操作nop;延时子程序delay:PCI/USB/EPP 接口 JTAG 接口 计 算 机 仿 真 器 用户 开发板;2*16*16*16+7*16*16+15=9999loop1: ;循环1stm 0f9h,ar4 ;将ar4的值赋为15*16+9=249loop2: ;循环2banz loop2,*ar4- ;指针地址每次减1,ar4不为0时重复执行loop2 banz loop1,*ar3- ;同上ret ;可选择延迟的返回nop ;无操作nop②程序运行原理:此程序为灯闪烁程序。
北邮 DSP 实验二实验报告
实验二:数字信号的 FFT 分析题目1假设信号 x(n) 由下述信号组成:()0.001*cos(0.45)sin(0.3)cos(0.302)4x n n n n ππππ=+-- 这个信号有两根主谱线 0.3pi 和 0.302pi 靠的非常近,而另一根谱线 0.45pi 的幅度很小,请选择合适的长度 N 和窗函数,用 DFT 分析其频谱,得到清楚的三根谱线。
步骤:1.编写离散傅里叶变换DFT 函数:function [Xk] = dft(xn,N)% Computes Discrete Fourier Transform Coefficients% [Xk] = dft(xn,N)% Xk = DFT coeff. array over 0 <= k <= N-1% xn = input signal% N = length of DFTn = [0:1:N-1]; % row vector for nk = [0:1:N-1]; % row vecor for kWN = exp(-j*2*pi/N); % Wn factornk = n'*k; % creates a N by N matrix of nk valuesWNnk = WN .^ nk; % DFT matrixXk = xn * WNnk; % row vector for DFT coefficients2.代码实现:n=0:1:999;x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-0.25*pi);stem(n,x);title('signal x(n), 0<=n<=999');xlabel('n');X=dft(x,1000);% 计算1000点DFT magX=abs(X(1:1:501));% 镜像对称,只画出一半 k=0:1:500;w=2*pi*k/1000;stem(w/pi,magX);title('DTFT Magnitude');xlabel('frequency in pi units');axis([0.29,0.31,0,500]);xlabel('frequency between 0.29pi and 0.31pi');axis([0.44,0.46,0,0.5]);xlabel('frequency between 0.44pi and 0.46pi');3.图片:4.分析:x(n)由3个正弦函数叠加而成,周期分别是40, 20, 1000。
北邮信号与信息处理DSP实验二
北邮信号与信息处理DSP实验二信号与信息综合处理实验报告学院:班级:姓名:学号:实验二 FFT 实现1. 实验目的进一步熟悉CCS v5的开发环境,掌握调试的要素,并理解FFT 的过程。
2. 实验原理2.1FFT 变换(1) FFT 算法:[]122()()(/2)0,1,...,1()()(/2)N n Nx n x n x n N n x n x n x n N W =++⎧⎪=-⎨=-+⎪⎩,/2111/20/2122/20()(2)()()(21)()N nr N n N nr N n X k X r x n W X k X r x n W -=-=⎧==⎪⎪⎨⎪=+=⎪⎩∑∑(2) 蝶形运算图:(3) 实现函数:DSP_fft(w, N, x, y)。
2.2IFFT变换(1)算法实现:(2)实现流程:2.3SDRAM(1)EMIFA_Config:在csl_emifa.h中声明了一个结构体EMIFA_Config,用来配置EMIFA。
结构体中声明的12个32位无符号整形变量为EMIFA总线的12个接口寄存器;(2)指定SDRAM数据空间:#pragmaDATA_SECTION(sdram_data,".off_ram");unsigned int sdram_data[0x10000];上述代码含义为定义一个全局变量sdram_data[0x10000],将它指定到自定义的数据空间段off_ram中,其中函数具体用法为#pragma DATA_SECTION(函数名或全局变量名,"用户自定义在数据空间的段名";(3)CMD文件:DSP系统中存在大量的存储器,CMD文件描述物理存储器的管理、分配和使用情况,用于DSP 代码的定位。
3.程序功能3.1FFT变换通过给定的旋转因子,利用DSP_fft (w, N, x, y ) 函数,对给定64点序列进行FFT变换,其中N 为变换点数,具体说明如下:(1)w[64]为64点FFT的旋转因子,由tw_fft16x16.exe生成;(2)x[128]内存放原序列,即输入时域信号的实部虚部按顺序排列;(3)y[128]内存放FFT变换后的序列,实部虚部按顺序排列;(4)m[64]内存放FFT变换后64点模值的平方。
第二次DSP上机实验报告 MATLAB实验报告
第二次DSP上机实验报告 MATLAB实验报告第二次DSP上机实验报告 MATLAB实验报告北京邮电大学信息与通信工程学院DSP--MATLAB实验报告实验名称:学生姓名:班级:班内序号:学号:日期:1.实验要求与目的要求:(1)用DFT分析频谱,得到高分辨率频谱清楚的谱线;(2)利用基2时间抽选的FFT算法,计算有限点的DFT,并与理论值相比较。
目的:掌握(a)用傅立叶变换进行信号分析时基本参数的选择。
(b)经过离散时间傅立叶变换(DTFT)和有限长度离散傅立叶变换(DFT)后信号频谱上的区别,前者DTFT时间域是离散信号,频率域还是连续的,而DFT在两个域中都是离散的。
(c)离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。
(d)获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。
2关键算法分析第1页北京邮电大学信息与通信工程学院代码的重点是利用fft函数计算离散序列的DFT,难点是矩阵的加减乘除及乘方中所涉及的matlab语句的特点。
实验代码如下:(1)N=1000;n=(0:N-1);y=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);y=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);XK=fft(y,N);--fft函数两个参数分别是进行DFT变换的序列,及DFT 的长度subplot(3,1,1);stem(n,y);title("时域波形");xlabel("n");ylabel("y");subplot(3,1,2);stem(abs(XK),".");axis([0,500,0,600]);--限定x 轴与y轴的范围title("频域前500点波形");xlabel("k");ylabel("XK");subplot(3,1,3);stem(abs(XK),".");axis([800,900,0,600]);--x轴的范围很小,目的是能看到两条很近的谱线title("频域后500点部分波形");xlabel("k");ylabel("XK");(2)N=25;Q=0.9+j*0.3;n=(0:24);x=Q.^n;WN=exp(-j*2*pi/N);k=(0:24);WK=WN.^k;XK=(1-Q.^N)./(1-Q*WK);stem(XK);---理论值的计算XK1=fft(x,32);--32点基2时间抽选法的计算subplot(3,1,1);stem(n,x);title("时域波形");xlabel("n");ylabel("x");subplot(3,1,2);stem(XK);title("频域理论值");xlabel("k");ylabel("XK");subplot(3,1,3);stem(XK1);title("频域波形");xlabel("k");ylabel("XK1");第2页北京邮电大学信息与通信工程学院3.程序运行结果(1)(2)第3页北京邮电大学信息与通信工程学院4.问题分析这次实验的题目相对简单,编程过程中遇到的问题主要是矩阵的加减乘除及乘方运算所对应的matlab语句的规则和fft函数的使用,fft函数的使用方法通过help语句便可查得,其两个参数:第一个是指进行fft运算的序列,第二个值fft运算的长度。
北邮信号与信息处理DSP实验三剖析
信号与信息综合处理实验报告学院:信息与通信工程学院班级:2013211124姓名:王丹頔学号:2013210659实验三FIR滤波器实现1.实验目的进一步熟悉CCS v5的开发环境,掌握调试的要素,并理解FIR的过程。
2.实验原理2.1AIC23(1)AIC23相关介绍图1 AIC23结构图图2 AIC23编码器控制寄存器图3 AIC23寄存器集合图4 采样速率设置图5 采样率可配参数(2)void DSK6416_init()-设置所有的CPLD寄存器到上电状态,初始化内部BSL数据结构;-在使用任何BSL函数之前都必须调用。
(3)DSK6416_AIC23_openCodec函数-DSK6416_AIC23_CodecHandle DSK6416_AIC23_openCodec (int id, DSK6416_AIC23_Config *Config);-id:指定使用哪个编码器,DSK6416上为id=0;-Config:指向包含编码器寄存器值的结构,以该结构中的值初始化寄存器;-调用成功:返回编码器句柄;失败:返回INV常数(-1)。
(4)DSK6416_AIC23_write函数-Int16 DSK6416_AIC23_write(DSK6416_AIC23_CodecHandle hCodec, Int32 val);-hCodec, Val:编码器句柄,写入编码器的值;- 返回TRUE :数据成功写入; - 返回FALSE :数据端口忙。
(5) DSK6416_AIC23_closeCodec 函数- DSK6416_AIC23_closeCodec(DSK6416_AIC23_CodecHandle hCodec); - 关闭编码器。
2.2 FIR 滤波器实现(1) FIR 滤波器介绍滤波器就是在时间域或频域内,对已知激励产生规定响应的网络,使其能够从信号中提取有用的信号,抑制并衰减不需要的信号。
北邮 数字信号处理硬件实验实验报告
数字信号处理硬件实验实验报告学院:电子工程学院一、5416常规实验(一)实验一常用指令实验1.代码及注释2.代码实现过程首先,为堆栈分配地址,然后输出端口置为1,灯亮,延时,累加器对此累加,如此循环。
(二)实验二数据存储实验1.代码及注释2.代码实现过程首先设定辅助寄存器ar1的地址,然后将数据存储到ar1中,每次完成操作后ar1指向下一地址,重复8次后结束。
3.相关截图(1)查看内存单元,将之修改为“0x0000”(2)run后,内存单元全部变成了“0xAAAA”3)查看CPU Registers单元(三)实验三I/O实验1.代码及注释2.代码实现过程开始后,读入I/O数据,写出I/O数据,结束。
3.实验结果图拨动开关前拨动开关后(四)实验四定时器实验1.代码及注释exp04.c2.代码实现过程开始后,系统初始化,计时器初始化。
随后输出端口赋值,LED灯开始闪烁。
定时器中断,跳到C程序中断子函数,依次计数,判断是否达到设定的时间,若达到,灯亮灭状态相反,若没有,继续亮灭,并且再次判断。
直到达到设定时间后,重新计数,定时器中断,跳到C程序中断子函数,依次计数,如此反复。
3.实验结果图交替闪烁:(五)实验五INT2中断实验1.代码及注释int2.cPORT.ASMVECTORS.ASMINITIAL.ASM2. 代码实现过程开始后,系统初始化,并中断子程序,八个LED灯在S5的控制下亮灭。
3.实验结果图反复按S5键,灯亮灭变化(六)实验六A/D转换实验1.代码及注释2.代码实现过程开始后,系统初始化并中断子程序。
将采样数据存入数组,并读取出来。
3.相关截图断点处停止A/D转化后的数据波形变化频率调节幅度调节观察memory点击animate,数据变成红色(七)实验七D/A转换实验1.代码及注释DA7303.C/*;***********************************************************************;* 北京达盛科技有限公司;* 研发部;*;* ;*;*--------------------------------------------- 文件信息 --------------- ;*;* 文件名称 : DA7303.C;* 文件功能 : 该文件为测试AD7303的测试程序,CPU=TMS320VC5402LF2407;* 接口说明: CS = SPISTE(IOPC5)-- 配置成IO模式CLK = SPICLK -- 配置成SPI模式DATA = SPIMOSI -- 配置成SPI模式;*-------------------------------------------- 最新版本信息 ------------;* 文件作者 : 迟利刚;* 创建日期 : 2005/01/19;* 版本声明 : v1.0.0;*-----------------------------------------------------------------------//------------------头文件--------------------------------------/*******************************************************************/#include "lf2407.h"#include "math.h"/*******************************************************************///----------------------------------------------------------// --------------- 宏定义 ---------------------------------///----------------------------------------------------------#define UCHAR unsigned char#define UINT16 unsigned int#define UINT32 unsigned long#define TRUE 1#define FALSE 0#define pi 3.1415926#define LEN 1024//--------------- AD7303 控制字 --------------------------------// 15--------14-------13-----12-----11-----10------9-------8-----// INT/EXT---X--------LDAC---PDB---PDA-----A/B-----CR1-----CR0---// 参考电压--保留---- -B省电--A省电----0/A-1/B-//-------------------------------------------------------------//---------------------------------------------------------/* 端口定义 *///---------------------------------------------------------ioport UINT16 port8001; //定义输出io端口为0x8001;//----------------------------------------------------------/* 全局变量定义 *///---------------------------------------------------------int data_buff[LEN]; //数据缓冲UINT16 show = 0x00aa; //LED显示的数值/************************************************************************************** 所使用的函数原型 ****************************************************************************************/void cpu_init(void); //初始化CPUvoid xint1_init(void); //外部中断1初始化子程序void iopc_init(void); //初始化IOPC设置寄存器void spi_init(void); //初始化SPI设置寄存器interrupt void PHANTOM(void); //伪中断程序interrupt void int1(void); //中断1中断子程序void delay_3us(void); //3us延迟void Delay(UINT16 numbers); //长延迟//-------------------------------------------------------------------/************************************************************************************************ 函数定义 *******************************************************************************************///--------------------------------------------------------------------// 函数名称 : void cpu_init(void)// 函数说明 : 初始化CPU// 输入参数 : 无// 输出参数 : 无//--------------------------------------------------------------------void cpu_init(){asm(" nop ");asm(" nop ");asm(" nop ");asm(" setc INTM"); //禁止所有中断 ST0.9=INTMasm(" clrc SXM"); //抑制符号位扩展asm(" clrc OVM"); //累加器中结果正常溢出asm(" clrc CNF"); //配置 B0为数据储存器/*** Configure the System Control and Status registers ***/* SCSR1=0x00FD; //配置时钟锁相为4倍频CLKOUT=4*10MHZ=40MHZ,MAX CPU freq/*bit 15 0: reservedbit 14 0: CLKOUT = CPUCLKbit 13-12 00: IDLE1 selected for low-power mode when execute IDLE instructionbit 11-9 000: PLL x1 modebit 8 0: reservedbit 7 1: 1 = enable ADC module clockbit 6 1: 1 = enable SCI module clockbit 5 1: 1 = enable SPI module clockbit 4 1: 1 = enable CAN module clockbit 3 1: 1 = enable EVB module clockbit 2 1: 1 = enable EVA module clockbit 1 0: reservedbit 0 1: clear the ILLADR bit*/*SCSR2 = (*SCSR2 | 0x000B) & 0x000F;/*bit 15-7 0's: reservedbit 6 0: Input Qualifier Clocks=5 clockbit 5 0: D'ont write this bit.allows user to disable WD through the WDDIS bit in the WDCR.bit 4 0: XMIF_HI-Z, 0=normal mode, 1=Hi-Z'dbit 3 1: disable the boot ROM, enable the FLASHbit 2 no change MP/MC* bit reflects state of MP/MC* pin bit 1-0 11: 11 = SARAM mapped to prog and data*//*** Disable the watchdog timer ***/* WDCR=0x00EF; //禁止看门狗/*bits 15-8 0's: reservedbit 7 1: clear WD flagbit 6 1: disable the dogbit 5-3 101: must be written as 101bit 2-0 111: WDCLK divider = 64 WDCLK= CLKOUT/512*//*** Setup external memory interface for LF2407 ***/WSGR = 0x001F;/*bit 15-11 0's: reservedbit 10-9 00: bus visibility offbit 8-6 111: 7 wait-state for I/O spacebit 5-3 111: 7 wait-state for data spacebit 2-0 111: 7 wait state for program space*//*** Setup shared I/O pins ***/*MCRA = 0x0000; /* group A pins *//*bit 15 0: 0=IOPB7, 1=TCLKINAbit 14 0: 0=IOPB6, 1=TDIRAbit 13 0: 0=IOPB5, 1=T2PWM/T2CMPbit 12 0: 0=IOPB4, 1=T1PWM/T1CMPbit 11 0: 0=IOPB3, 1=PWM6bit 10 0: 0=IOPB2, 1=PWM5bit 9 0: 0=IOPB1, 1=PWM4bit 8 0: 0=IOPB0, 1=PWM3bit 7 0: 0=IOPA7, 1=PWM2bit 6 0: 0=IOPA6, 1=PWM1bit 5 0: 0=IOPA5, 1=CAP3bit 4 0: 0=IOPA4, 1=CAP2/QEP2bit 3 0: 0=IOPA3, 1=CAP1/QEP1bit 2 0: 0=IOPA2, 1=XINT1bit 1 0: 0=IOPA1, 1=SCIRXDbit 0 0: 0=IOPA0, 1=SCITXD*/*MCRB = 0xFE03; /* group B pins *//*bit 15 1: 0=reserved, 1=TMS2 (always write as 1) bit 14 1: 0=reserved, 1=TMS (always write as 1) bit 13 1: 0=reserved, 1=TD0 (always write as 1) bit 12 1: 0=reserved, 1=TDI (always write as 1) bit 11 1: 0=reserved, 1=TCK (always write as 1) bit 10 1: 0=reserved, 1=EMU1 (always write as 1) bit 9 1: 0=reserved, 1=EMU0 (always write as 1) bit 8 0: 0=IOPD0, 1=XINT2/ADCSOCbit 7 0: 0=IOPC7, 1=CANRXbit 6 0: 0=IOPC6, 1=CANTXbit 5 0: 0=IOPC5, 1=SPISTEbit 4 0: 0=IOPC4, 1=SPICLKbit 3 0: 0=IOPC3, 1=SPISOMIbit 2 0: 0=IOPC2, 1=SPISIMObit 1 1: 0=IOPC1, 1=BIO*bit 0 1: 0=IOPC0, 1=W/R**/*MCRC = 0x0001; /* group C pins *//*bit 15 0: reservedbit 14 0: 0=IOPF6, 1=IOPF6bit 13 0: 0=IOPF5, 1=TCLKINBbit 12 0: 0=IOPF4, 1=TDIRBbit 11 0: 0=IOPF3, 1=T4PWM/T4CMPbit 10 0: 0=IOPF2, 1=T3PWM/T3CMPbit 9 0: 0=IOPF1, 1=CAP6bit 8 0: 0=IOPF0, 1=CAP5/QEP4bit 7 0: 0=IOPE7, 1=CAP4/QEP3bit 6 0: 0=IOPE6, 1=PWM12bit 5 0: 0=IOPE5, 1=PWM11bit 4 0: 0=IOPE4, 1=PWM10bit 3 0: 0=IOPE3, 1=PWM9bit 2 0: 0=IOPE2, 1=PWM8bit 1 0: 0=IOPE1, 1=PWM7bit 0 1: 0=IOPE0, 1=CLKOUT*//*** Configure IOPA pin as an INPUT ***/*PADATDIR = *PADATDIR & 0x00FF;/*** Configure IOPB pin as an INPUT ***/*PBDATDIR = *PBDATDIR & 0x00FF;/*** Configure IOPC pin as an INPUT ***/*PCDATDIR = *PCDATDIR & 0x00FF;/*** Configure IOPD pin as an INPUT ***/*PDDATDIR = *PDDATDIR & 0xFEFF;/*** Configure IOPE pin as an INPUT ***/*PEDATDIR = *PEDATDIR & 0x00FF;/*** Configure IOPF pin as an INPUT ***/*PFDATDIR = *PFDATDIR & 0x7FFF;/*** Setup timers 1 and 2, and the PWM configuration ***/*T1CON = 0x0000; /* disable timer 1 */*T2CON = 0x0000; /* disable timer 2 */*GPTCONA = 0x0000; /* configure GPTCONA */*GPTCONB = 0x0000; /* configure GPTCONB *//*bit 15 0: reservedbit 14 0: T2STAT, read-onlybit 13 0: T1STAT, read-onlybit 12-11 00: reservedbit 10-9 00: T2TOADC, 00 = no timerX event starts ADCbit 8-7 00: T1TOADC, 00 = no timerX event starts ADCbit 6 0: TCOMPOE, 0 = Hi-z all timer compare outputs bit 5-4 00: reservedbit 3-2 00: TXPIN, 00 = forced lowbit 1-0 00: TXPIN, 00 = forced low*/* IMR=0x0000;/*bit 15-6 0: reservedbit 5 0: Level INT6 is maskedbit 4 0: Level INT5 is maskedbit 3 0: Level INT4 is maskedbit 2 0: Level INT3 is maskedbit 1 0: Level INT2 is maskedbit 0 0: Level INT1 is masked*/* IFR=0xFFFF; //清除所有中断标志,"写1清0"}//--------------------------------------------------------------------// 函数名称 : void xint1_init(void)// 函数说明 : 初始化XINT1// 输入参数 : 无// 输出参数 : 无//--------------------------------------------------------------------void xint1_init() //外部中断1初始化子程序{* IMR=0x0001; //使能int1中断 --SPI Peripheral Interrupt Vector 0005h //when SPI INT IS high-priority mode/*bit 15-6 0: reservedbit 5 0: Level INT6 is maskedbit 4 0: Level INT5 is maskedbit 3 0: Level INT4 is maskedbit 2 0: Level INT3 is maskedbit 1 0: Level INT2 is maskedbit 0 0: Level INT1 is masked*/asm(" clrc INTM"); //开总中断}//--------------------------------------------------------------------// 函数名称 : void iopc_init(void)// 函数说明 : 初始化IOPC设置寄存器// 输入参数 : 无// 输出参数 : 无//--------------------------------------------------------------------void iopc_init(){// *MCRB = *MCRB | 0x003C; // 配置SPISTE为IO,SPICLK、SPISOMI、SPISIMO为SPI口 *MCRB = *MCRB | 0x001C;/*bit 15 1: 0=reserved, 1=TMS2 (always write as 1)bit 14 1: 0=reserved, 1=TMS (always write as 1)bit 13 1: 0=reserved, 1=TD0 (always write as 1)bit 12 1: 0=reserved, 1=TDI (always write as 1)bit 11 1: 0=reserved, 1=TCK (always write as 1)bit 10 1: 0=reserved, 1=EMU1 (always write as 1)bit 9 1: 0=reserved, 1=EMU0 (always write as 1)bit 8 0: 0=IOPD0, 1=XINT2/ADCSOCbit 7 0: 0=IOPC7, 1=CANRXbit 6 0: 0=IOPC6, 1=CANTXbit 5 0: 0=IOPC5, 1=SPISTEbit 4 0: 0=IOPC4, 1=SPICLKbit 3 0: 0=IOPC3, 1=SPISOMIbit 2 0: 0=IOPC2, 1=SPISIMObit 1 1: 0=IOPC1, 1=BIO*bit 0 1: 0=IOPC0, 1=W/R**/*PCDATDIR = *PCDATDIR | 0x2020; /*** ConfigureSPISTE as an OUTPUT ***//****output high ******************//*bit 15-8 0: EnDIR 1 = output, 0 = inputbit 7-0 0: IOPEn in--1=high,0=low; out--1=high,0=low*/}//--------------------------------------------------------------------// 函数名称 : void spi_init(void)// 函数说明 : 初始化SPI设置寄存器// 输入参数 : 无// 输出参数 : 无//--------------------------------------------------------------------void spi_init(){* SPICCR = * SPICCR & 0xFF7F; //复位SPI/*bit 7 0: reset SPI*/* SPICCR = 0x004f;/*bit 15-8 0: reservedbit 7 0: reset SPIbit 6 1: Data is output on falling edge and input on rising edge bit 5-4 0: reservedbit 3-0 1: Character Length 16bit*/* SPICTL = 0x000e;/*bit 15-5 0: reservedbit 4 0: Disable RECEIVER OVERRUN Flag bitbit 3 1: SPICLK signal delayed by one half-cycle;bit 2 1: SPI configured as a master.bit 1 1: Enables transmissionbit 0 0: Disables interrupt*/* SPIBRR = 0x0003;/*bit 15-7 0: reservedbit 6-0 3: 10MHZ Baud-Rate*/* SPIPRI = 0x0000;/*bit 15-7 0: reservedbit 6 0: Interrupts are high-priority requestsbit 5-4 0: Immediate stop on suspendbit 3-0 0: Reserved.*/* SPICCR=* SPICCR | 0x0080; //启动spi工作/*bit 7 1: start SPI}//-------------------------------------------------------------------- // 函数名称 : void int1(void)// 函数说明 : 中断1的子程序// 输入参数 : 无// 输出参数 : 无//-------------------------------------------------------------------- interrupt void int1() //中断1中断子程序{UINT16 temp;temp = *PVIR;* IFR=0xFFFF; //清除所有中断标志,"写1清0"asm(" clrc INTM"); //开总中断return;}/************************************************************- 函数名称 : void Delay(int numbers)- 函数说明 : 延时- 输入参数 : numbers- 输出参数 : 无************************************************************/void Delay(UINT16 numbers){UINT16 i,j;for(i=0;i<40000;i++);for(j=0;j<numbers;j++);}/************************************************************- 函数名称 : interrupt void PHANTOM(void)- 函数说明 : 伪中断子程序- 输入参数 : 无- 输出参数 : 无*********************************************************** */interrupt void PHANTOM(void){* IFR=0xFFFF; //清除所有中断标志,"写1清0"asm(" clrc INTM"); //开总中断return;}/************************************************************* ****************** 主函数 ******************************************************************************* */void main(){UINT16 temp,i;//----------系统初始化-------------------------------asm(" nop ");cpu_init(); //初始化CPUasm(" nop ");iopc_init(); //初始化IOPE设置寄存器asm(" nop ");xint1_init(); //外部中断1初始化子程序asm(" nop ");spi_init(); //初始化SPI设置寄存器asm(" nop ");//----------产生正弦波的数据------------------------for(i=0; i<LEN;i++){data_buff[i] = 127 + (int)(127.0*sin(2*pi*i/(LEN-1)));data_buff[i] = data_buff[i] & 0x00ff;}asm(" nop ");//---------发送给AD7303-----------------------------for(;;){for(i=0; i<LEN;i++){*PCDATDIR = *PCDATDIR & 0xffdf; /*** ConfigureSPISTE as an OUTPUT ***//****output low ******************//*bit 15-8 0: EnDIR 1 = output, 0 = inputbit 7-0 0: IOPEn in--1=high,0=low; out--1=high,0=low*///----------------------------------------------------------------* SPITXBUF = data_buff[i] & 0x00ff; //发送控制字、数据给AD7303//AD7303的控制字高8位// 15--------14-------13-----12-----11-----10------9-------8-----// INT/EXT---X--------LDAC---PDB---PDA-----A/B-----CR1-----CR0---// 0 0 0 0 0 0 0 0//内部参考电压源,DAC-A、B DAC-A、B工作//----------------------------------------------------------------while((* SPISTS & 0x0040) == 0x0); //判断 SPISTS.6(SPI Interrupt Flag) //等于 1 ,说明SPITXBUF中数据发送完 //可以写入数据//等于0,不能再写入数据*PCDATDIR = *PCDATDIR | 0x0020; /*** ConfigureSPISTE as an an OUTPUT ***/ temp = *SPIRXBUF; // 读接收缓冲寄存器,清除SPI Interrupt Flagdelay_3us(); //延迟等待DA转换结束/****output high ******************/}} //----------- 等待SPI中断----------------------------------------while(1){port8001 = show;}}DA7303_54.c/*************************************************************;* 北京达盛科技有限公司;* 研发部;*;* ;*************************************************************//*;* 文件名称 : da7303_54.c;* 适用平台 : EXPIII+实验系统;* CPU类型 : DSP TMS320VC54X;* 软件环境 : CCS3.1 (5000系列);* 试验接线 : 1、实验箱的拨码开关SW2.4置OFF(54x的译码有效);54x CPU板的跳线J2的1、2短接;* (HPI 8位模式);SW1的2、6置ON,其余置OFF(HPI使能;DSP工作微处理器方式;;* CPU_CS=0);SW2全部置ON(FLASH工作在数据空间,LED灯D5的工作状态处于灭状态);;* 试验现象 : 用示波器检测D/A转换单元的2号孔接口"输出1"输出一个正弦波;;*************************************************************///------------------头文件--------------------------------------#include "DspRegDefine.h" //VC5402 寄存器定义#include "math.h"//---------------------------------------------------------------/* ****************** 宏定义 ****************************************************************************/#define UCHAR unsigned char#define UINT16 unsigned int#define UINT32 unsigned long#define TRUE 1#define FALSE 0#define pi 3.1415926#define LEN 256//--------------- AD7303 控制字 --------------------------------// 15--------14-------13-----12-----11-----10------9-------8-----// INT/EXT---X--------LDAC---PDB---PDA-----A/B-----CR1-----CR0---// 参考电压--保留---- -B省电--A省电----0/A-1/B-//-------------------------------------------------------------//---------------------------------------------------------/* 端口定义 *///---------------------------------------------------------ioport UINT16 port8001; //定义输出io端口为0x8001;//----------------------------------------------------------//----------------------------------------------------------/* 全局变量定义 *///---------------------------------------------------------int data_buff[LEN]; //数据缓冲UINT16 show = 0x00aa; //LED显示的数值/*********************************************************************** *************** 所使用的函数原型 *************************************************************************************** */void cpu_init(void); //初始化CPUvoid Delay(UINT16 numbers); //延迟extern void delay_3us(void); //3us延迟void mcbsp0_write_rdy(UINT16 out_data);//MCBSP0发送一个数据void mcbsp0_init_SPI(void);//MCBSP0设置为SPI模式void mcbsp0_close(void);//MCBSP0关闭//-------------------------------------------------------------------/************************************************************************************************ 函数定义 *******************************************************************************************///--------------------------------------------------------------------// 函数名称 : void cpu_init(void)// 函数说明 : 初始化CPU// 输入参数 : 无// 输出参数 : 无//--------------------------------------------------------------------void cpu_init(void){asm(" nop ");asm(" nop ");asm(" nop ");//-------------------------------------------------------------------//CLKMD DEFINITIONS:// PLLMUL (bit 15-12) - 0000 PLL multiplier = 0 (mult by 1)// PLLDIV (bit 11) - 0 PLL divider = 0 (div by 1)// PLLCOUNT (bit 10-3)- 11111111 PLL counter set to max// PLLONOFF (bit 2) - 1 PLL on// PLLNDIV (bit 1) - 1 Select PLL mode// PLLSTATUS (bit 1) - x PLL Status (read only)// ------------------// 0000011111111111 = 0x07ff CLKMD=1 X CLKIN//--------------------------------------------------------------------*(unsigned int*)CLKMD=0x0; //switch to DIV mode clkout= 1/2 clkinwhile(((*(unsigned int*)CLKMD)&01)!=0);*(unsigned int*)CLKMD=0x37ff; //switch to PLL X 4 mode//--------------------------------------------------------------------// ST0 DEFINITIONS:// ARP (bit 15-13) - 000 Auxiliary register pointer// TC (bit 12) - 1 Test/control flag// C (bit 11) - 1 Carry is set to 1 if the result of an addition generates a carry; it is cleared to 0 if the// result of a subtraction generates a borrow.// OVA (bit 10) - 0 Overflow flag for accumulator A// OVB (bit 9) - 0 Overflow flag for accumulator B// DP (bit 8-0) - 00000000 Data-memory page pointer// --------------------// 0001 1000 0000 0000 =0x1800 Reset value//--------------------------------------------------------------------// *(unsigned int*)ST0=0x1800;//--------------------------------------------------------------------// ST1 DEFINITIONS:// BRAF (bit 15) - 0 Block-repeat active flag// CPL (bit 14) - 1 Compiler mode CPL=0 DP;CPL=1 SP// XF (bit 13) - 1 XF status// HM (bit 12) - 0 Hold mode// INTM (bit 11) - 1 Interrupt mode INTM=0,All unmasked interrupts are enabled// Reser (bit 10) - 0 Always read as 0// OVM (bit 9) - 0 Overflow mode// SXM (bit 8) - 1 Sign-extension mode// C16 (bit 7) - 0 Dual 16-Bit/double-precision arithmetic mode// FRCT (bit 6) - 0 Fractional mode// CMPT (bit 5) - 0 Compatibility mode// ASM (bit 4-0) - 00000 Accumulator shift mode// --------------------// 0110 1001 0000 0000 =0x2900 Reset value//--------------------------------------------------------------------// *(unsigned int*)ST1=0x6900;//--------------------------------------------------------------------//IPTR DEFINITIONS?// IPTR (bit 15-7) - 001111111 Run-time Interrupt vector location = 0x3f80 (for now)// MP/~MC (bit 6) - 1 Turn off internal Instruction ROM (use RAM)// OVLY (bit 5) - 1 Turn on internal RAM// AVIS (bit 4) - 1 Address visibility on// DROM (bit 3) - 0 Data ROM of FF00~FFFF is external// CLKOFF (bit 2) - 0 Clockout enabled,only for use clkout=cpu clock// SMUL (bit 1) - 1 Saturate before multiply on MAC// SST (bit 0) - 0 Do not saturate before store// -----------------// 0011 1111 1111 0010 = 0x3ff2/*---------------------------------------------------------------------*/*(unsigned int*)PMST=0x3FF2;//---------------------------------------------------------------------// SWWSR DEFINITIONS?// XPA (bit 15) - 0 Extended program address control bit. XPA is used in conjunctionwith the program space fields// (bits 0 through 5) to select the address range for program spacewait states// I/O (bits 14-12) - 111 set to max wait states for seven// Data1 (bits 11-9) - 111 Seven Wait state for Upper data space(0x8000-0xFFFF)// Data2 (bits 8-6) - 111 Seven Wait states for Lower data space (0x0000 - 0x7FFF)// Prog1 (bits 5-3) - 111 Seven Wait state for Upper program space. (xx8000-xxFFFF)// Prog2 (bits 2-0) - 111 Seven Wait states for Program space. (xx0000-xx7FFF)// -----------------// 1 111 111 111 111 111 - 0x7fff/*--------------------------------------------------------------------*/*(unsigned int*)SWWSR=0x7fff;//--------------------------------------------------------------------//SWCR DEFINITIONS?// Reserved (bits 15-1)// SWSM (bit 0) - 1 wait-state base values are mulitplied by 2// for a maximum of 14 wait states.// --------------------------// 0000 0000 0000 0001//--------------------------------------------------------------------*(unsigned int*)SWCR=0x0001;//--------------------------------------------------------------------//BSCR DEFINITIONS?// BNKCMP (bit 15-12) - 1111 Bank compare. Determines the external memory-bank size. BNKCMP is used to maskthe four MSBs of// an address.// 1111 4k// 1110 8k// 1100 16k// 1000 32k// 0000 64k// PS-DS (bit 11) - 1 One extra cycle is inserted between consecutive data and program reads. // Reserved (bits 10-3) - 00000000// HBH (bit 2) - 0 The hpi bus holder is disabled// BH (bit 1) - 0 The data bus holder is disabled// EXIO (bit 0) - 0 The external bus interface functions as usual// ------------------------------------// 1111 1000 0000 0000//--------------------------------------------------------------------*(unsigned int*)BSCR=0xf800;//--------------------------------------------------------------------asm(" ssbx intm "); //Disable all mask interrupts//--------------------------------------------------------------------// IMR DEFINITIONS// Writing a 1 to any IMR bit position enables the corresponding interrupt (when INTM = 0)// Reserved (bits 15-14) - xx// DMAC5 (bit 13) - 0 DMA channel 5 interrupt mask bit// DMAC4 (bit 12) - 0 DMA channel 4 interrupt mask bit// BXINT1/DMAC3 (bit 11) - 0 McBSP1 transmit interrupt mask bit, or the DMA channel 3// BRINT1/DMAC2 (bit 10) - 0 McBSP1 receive interrupt mask bit, or the DMA channel 2// HPINT (bit 9) - 0 Host to ’54x interrup /mask// INT3 (bit 8) - 0 External interrupt 3 mask// TINT1/DMAC1 (bit 7) - 0 timer1 interrupt mask bit, or the DMA channel 1 interrupt mask bit// DMAC0 (bit 6) - 0 reserved, or the DMA channel 0 interrupt mask bit// BXINT0 (bit 5) - 0 McBSP0 transmit interrupt mask bit// BRINT0 (bit 4) - 0 McBSP0 receive interrupt mask bit// TINT0 (bit 3) - 0 Timer 0 interrupt mask bit// INT2 (bit 2) - 0 External interrupt 2 mask bit// INT1 (bit 1) - 0 External interrupt 1 mask bit// INT0 (bit 0) - 0 External interrupt 0 mask bit// ------------------------------// 0000 0000 0000 0000//--------------------------------------------------------------------*(unsigned int*)IMR=0x0;//--------------------------------------------------------------------// IFR DEFINITIONS// Writing a 1 to any IFR bit position clear the corresponding interrupt mask ,when corresponding interrupt occur IFR corresponding bit=1// Reserved (bits 15-14) - xx// DMAC5 (bit 13) - 1 DMA channel 5 interrupt flag bit// DMAC4 (bit 12) - 1 DMA channel 4 interrupt flag bit// BXINT1/DMAC3 (bit 11) - 1 McBSP1 transmit interrupt flag bit, or the DMA channel 3// BRINT1/DMAC2 (bit 10) - 1 McBSP1 receive interrupt flag bit, or the DMA channel 2// HPINT (bit 9) - 1 Host to ’54x interrutpflak// INT3 (bit 8) - 1 External interrupt 3 flag// TINT1/DMAC1 (bit 7) - 1 timer1 interrupt flag bit, or the DMA channel 1 interrupt mask bit// DMAC0 (bit 6) - 1 reserved, or the DMA channel 0 interrupt flag bit// BXINT0 (bit 5) - 1 McBSP0 transmit interrupt flag bit// BRINT0 (bit 4) - 1 McBSP0 receive interrupt flag bit// TINT0 (bit 3) - 1 Timer 0 interrupt flag bit// INT2 (bit 2) - 1 External interrupt 2 flag bit// INT1 (bit 1) - 1 External interrupt 1 flag bit// INT0 (bit 0) - 1 External interrupt 0 flag bit// ------------------------------// 1111 1111 1111 1111/*--------------------------------------------------------------------*/ *(unsigned int*)IFR=0xffff;//--------------------------------------------------------------------asm(" nop ");asm(" nop ");asm(" nop ");}/************************************************************- 函数名称 : void Delay(int numbers)- 函数说明 : 延时- 输入参数 : numbers- 输出参数 : 无************************************************************/void Delay(UINT16 numbers){UINT16 i,j;for(i=0;i<4000;i++)for(j=0;j<numbers;j++);}/************************************************************************** - 函数名称 : void mcbsp0_write_rdy(UINT16 out_data);- 函数说明 : MCBSP0发送一个数据- 输入参数 : data- 输出参数 : 无- 补充说明 : 内部带是否发送完成的判断************************************************************************** */void mcbsp0_write_rdy(UINT16 out_data){UINT16 j;*(unsigned int*)McBSP0_SPSA=0x0001; //McBSP0_SPSA 指向 SPCR2while ((*(unsigned int *)McBSP0_SPSD&0x0002)==0);//mask XRDY bit,XRDY = 1 Transmitter is ready for new data in DXR[1,2].for(j=0;j<20;j++); //delay*(unsigned int *)McBSP0_DXR1= out_data;}/**************************************************************************- 函数名称 : void mcbsp0_init_SPI(void);- 函数说明 : MCBSP0设置为SPI模式- 输入参数 : 无- 输出参数 : 无- 补充说明 :***************************************************************************/void mcbsp0_init_SPI(void){//--------------------------------------------------------//复位 McBSP0*(unsigned int*)McBSP0_SPSA=0x0000;//SPCR1*(unsigned int*)McBSP0_SPSD=0x0000;//设置SPCR1.0(RRST=0)*(unsigned int*)McBSP0_SPSA=0x0001;//SPCR2*(unsigned int*)McBSP0_SPSD=0x0000;//设置SPCR1.0(XRST=0)//---------------------------------------------------------//延迟Delay(0); //延迟 4000*CPU 时钟周期//等待复位稳定//--------------------------------------------------------- //配置 McBSP0为 SPI 模式*(unsigned int*)McBSP0_SPSA=0x0000;//SPCR1*(unsigned int*)McBSP0_SPSD=0x1800;//DLB (bit 15) 0 Digital loop back mode disabled//RJUST (bit 14-13) 00 Right-justify and zero-fill MSBs in DRR[1,2] //CLKSTP (bit 12-11) 11//X (bit 10-8) 000 Reserved//DXENA (bit 7) 0 data transmit delay bit.DX enabler is off//ABIS (bit 6) 0 A-bis mode is disabled//RINTM (bit 5-4) 00 RINT driven by RRDY。
Dsp硬件实验报告
Dsp硬件实验报告:专业:班级:班序号:第一部分.常规实验指导-----------------------------------------------------------------------------第一题.常用指令实验一.实验目的1.熟悉DSP开发系统的连接2.了解DSP开发系统的组成和结构和应用系统构成3.熟悉常用C54X系列指令的用法(程序寻址,寄存器,I/O口,定时器,中断控制)。
二.实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。
三.实验步骤与容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:在硬件安装完成后,接通仿真器电源或启动计算机,此时,仿真盒上的“红色小灯”应点亮,否则DSP开发系统与计算机连接有问题。
2、运行CCS程序先实验箱上电,然后启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG接口连接,或检查CCS相关设置是否正确。
四.实验结果:试验箱的“CPLD单元”的指示灯D3以一定频率闪烁,单击“halt”暂停程序运行,则指示灯D3停止闪烁,如再点击“halt”,指示灯D3又开始闪烁五.实验流程图:六.实验代码:;**************************************************************;* 达盛科技;* 研发部;*;* .techshine.;*************************************************************/;*;* 文件名称: xf.asm;* 适用平台: EXPIII+实验系统;* CPU类型: DSP TMS320VC54X;* 软件环境: CCS3.1 (5000系列);* 试验接线: 1、实验箱的拨码开关SW2.4置OFF(54x的译码有效);54x CPU板的跳线J2的1、2短接;* (HPI 8位模式);SW1的2、6置ON,其余置OFF(HPI使能;DSP工作微处理器方式;;* CPU_CS=0);SW2全部置ON(FLASH工作在数据空间,LED灯D5的工作状态处于灭状态);;* 试验现象: 可以观察到实验箱CPLD右上方的D3按一定频率闪烁。
北邮dsp实验一
信号与信息处理综合实验DSP实验一:HELLO和LED实验报告学院:信息与通信工程学院班级:姓名:学号:实验一HELLO和LED一、实验目的:熟悉CCS v5的开发流程,了解各个菜单功能。
二、程序功能:1、在控制台中显示Hello World。
在运行程序后,在控制台显示Hello World。
2、控制LED灯的亮灭情况。
三、程序基本信息:1、基本语句:DSK6416_init() 初始化板子的库DSK6416_LED_init() 初始化板子的LED情况DSK6416_DIP_init() 初始化DIP开关DSK6416_rest(DSK6416_USER_REG,0xFF) 调用寄存器及赋值DSK6416_waitusec(100000) 程序延时2、具体程序:#include "dsk6416.h"#include "dsk6416_led.h"#include "dsk6416_dip.h"void main(){DSK6416_init();DSK6416_LED_init();DSK6416_DIP_init();while(1){if (DSK6416_DIP_get(0)==1){DSK6416_LED_off(3);DSK6416_LED_off(2);DSK6416_LED_off(1);DSK6416_LED_off(0);}else if (DSK6416_DIP_get(3)==0){{DSK6416_rset(DSK6416_USER_REG, 0x0f);DSK6416_waitusec(50000);DSK6416_rset(DSK6416_USER_REG, 0x00);DSK6416_waitusec(150000);}if (DSK6416_DIP_get(3)==1){DSK6416_rset(DSK6416_USER_REG, 0xf1);DSK6416_waitusec(50000);DSK6416_rset(DSK6416_USER_REG, 0xf2);DSK6416_waitusec(50000);DSK6416_rset(DSK6416_USER_REG, 0xf4);DSK6416_waitusec(50000);DSK6416_rset(DSK6416_USER_REG, 0xf8);DSK6416_waitusec(50000);}}四、功能测试记录:1、Hello World:2、LED:运行结果是:按下键3LED不工作,再按下键0LED进入闪烁功能,再抬起键3LED 进入跑马灯功能。
DSP软件实验MATLAB----北邮
MATLAB仿真实验报告学院:电子工程学院专业:电子科学与技术班级:2011211207学号:2011211077姓名:班内序号:MatLab 仿真试验实验一:数字信号的 FFT 分析1.实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。
(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT )后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。
s(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。
(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。
(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。
2.实验内容及要求(1) 离散信号的频谱分析:设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。
设计思路:输入x(n)表达式,利用fft(x(n),N)函数进行傅里叶变换,再用subplot 函数进行图形绘制。
本题的关键在于N 的确定,只有合适的大小才能满足题目要求,本题中取N=5000。
代码:clear;close all ;N=5000;n=1:1:N;x=0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4); y=fft(x,N);a=abs(y(1:1:N/2+1));%取绝对值k=0:1:N/2;w=2*pi/N*k;%w 与k 的关系stem(w/pi,a);%绘制火柴杆图axis([0.29,0.46,0,10]);%设置坐标轴范围实验结果:00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--(2) DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF)拨号数字0~9的数据,采用快速傅立叶变换(FFT)分析这10个号码DTMF拨号时的频谱。
北邮dsp实验报告
北邮dsp实验报告北邮DSP实验报告一、引言数字信号处理(Digital Signal Processing,简称DSP)是一门研究如何对数字信号进行分析、处理和合成的学科。
作为一门重要的电子信息科学与技术专业的实验课程,北邮DSP实验旨在让学生通过实践掌握DSP的基本理论和实际应用。
本实验报告将对北邮DSP实验进行详细介绍和总结。
二、实验目的北邮DSP实验的主要目的是让学生通过实际操作,深入理解数字信号处理的基本概念和方法,并掌握DSP实验的基本流程和技巧。
具体目标包括:1. 熟悉DSP实验平台的硬件结构和软件环境;2. 掌握数字信号的采样、量化和编码方法;3. 学习常见的数字滤波器设计和实现方法;4. 理解信号频谱分析和频域滤波的原理和应用;5. 实现音频信号的处理和效果增强。
三、实验内容北邮DSP实验主要包括以下内容:1. DSP实验平台的介绍:包括硬件结构和软件环境的说明,学生需要了解DSP实验平台的基本构成和使用方法。
2. 数字信号的采样与重构:学生需要通过实际操作,了解采样定理的原理和应用,以及数字信号的重构方法。
3. 数字信号的量化与编码:学生需要学习数字信号的量化误差和编码方法,并通过实验验证量化误差的影响。
4. FIR数字滤波器设计与实现:学生需要学习FIR滤波器的设计原理和方法,并通过实验实现低通、高通和带通滤波器。
5. IIR数字滤波器设计与实现:学生需要学习IIR滤波器的设计原理和方法,并通过实验实现巴特沃斯和切比雪夫滤波器。
6. 音频信号的处理与效果增强:学生需要学习音频信号的基本特性和处理方法,包括均衡器、混响器和压缩器等效果器的实现。
四、实验过程北邮DSP实验的具体过程如下:1. 实验准备:学生需要提前熟悉实验平台的硬件结构和软件环境,并准备好实验所需的音频信号和滤波器设计参数。
2. 实验操作:学生按照实验指导书的步骤进行实验操作,包括采样与重构、量化与编码、滤波器设计与实现等。
北邮信息工程信号与信息处理综合实验DSP实验二报告(FFT实现)
北邮信息工程信号与信息处理综合实验DSP实验二报告(FFT实现)信息与通信工程学院信号与信息处理综合实验报告(DSP部分)班级:姓名:学号:序号:日期:信号与信息处理综合实验报告实验二 FFT实现一、实验目的进一步熟悉CCS v5的开发环境,掌握调试的要素,并理解FFT的过程。
二、程序功能1、基本功能本程序的基本要求是:将FFT结果写入SDRAM后,并读取出来。
2、拓展功能(1)其他点数的FFT;(2)FFT后再进行IFFT,验证是否与原数据一致。
三、程序基本信息(一)、程序模块描述:1、FFT程序(实现基本功能):(1)FFT部分:1?主函数(main):初始化输入序列、旋转因子、FFT点数,负责其它功能函数的调用,并完成一些基本操作。
2?void DSP_radix2(int n, short *restrict xy, const short *restrict w):完成FFT运算(基2频域抽选)。
参数说明:n是输入序列的长度,short xy是输入序列(复数),const short w为旋转因子。
3? void bitrev_index(short *index, int n):计算得到重新排序表,n 为序列长度。
4? void DSP_bitrev_cplx(int *x, short *index, int nx):根据bitrev_index计算的排序表,把FFT输出的复数序列x重新排序为自然顺序。
DSP_bitrev_cplx:(2)SDRAM配置与写入部分:主函数(main):负责其它功能的调用,执行SDRAM写入、读取和检测,并点亮对应的LED。
EMIFA_config(&MyEmifaConfig):实现对EMIFA总线的12个接口寄存器的配置。
具体配置信息在MyEmifaConfig结构体中。
第1页信号与信息处理综合实验报告 #pragmaDATA_SECTION(sdram_data,".off_ram");数据段定义,定义要写入的数据位置,需要在CMD文件中建立对应的section。
北邮 DSP 实验一
6.1
使用printf语句输出 。
6.2
首先初始化板子初始函数以及LED及DIP,然后设置while循环,在循环之中读取CPLD寄存器的八比特数值。若检测到数值为0XE0,即表示只有DIP0按下,则设置CPLD寄存器八比特数值为0XEF,即表示四盏灯全亮,延迟一段时间之后,设置CPLD寄存器八比特数值为0XE0,即表示四盏灯全灭,并延迟相同时间;否则设置CPLD寄存器八比特数值为0XE0,即表示四盏灯全灭。
3)跑马灯顺序亮灭
只按下DIP1并如上图所示设置断点,单步运行后查看寄存器的值,低八位的值为D1,与所赋的值相同,此时第一盏灯亮,如下图所示:
4)跑马灯加速亮灭
同时按下DIP1及DIP2并如上图所示设置断点,单步运行后查看寄存器的值,低八位的值为90,与所赋的值相同,此时四盏灯全灭,如下图所示:
九.
十.心得体会
总体来说第一次DSP实验比较简单,主要是学习DSP芯片的基本知识,熟悉DSK开发板以及Code Composer Studio v5集成开发环境,掌握利用CPLD的USER_REG寄存器配置LED和DIP开关的方法,了解程序优化的原理和基本操作。感觉编程能力方面要求不高,在原来的编程基础上需要掌握DSK6416相关函数、LED相关函数和4DIP开关相关函数的使用就可以。除了在熟悉软件和开发板上遇到了一些问题以外,实验的其他方面进行得非常顺利,在基本功能实现后我们很快就完成了其他扩展功能,比如实现了LED全亮全灭,跑马灯及变速等功能。另外根据实验课件教程,我们进行了多次的断点调试,使用软件更加熟练,为之后的实验做充足的准备。
DSK6416_waitusec(delay1);
}
else
{
DSK6416_rset(DSK6416_USER_REG,0XE0);
北邮dsp实验一报告
DSP实验报告
1.实验要求
●(1) 常用数字信号序列的产生:
●熟悉 Matlab 产生数字信号的基本命令,加深对数字信号概念的理解,并能够
用 Matlab 产生和绘制出一些常用离散信号序列。
请用Matlab画出下列序列的波形(-10<n<10):
●a) δ(n)
●b) 单位阶跃序列 2 u(n-5)
●c) 矩形序列 R(n)
●d)y(n)=2sin(0.3πn)+ 0.5cos2(0.6πn)
●(2)加、减、尺度(乘除)和移位是数字信号处理中最基本的算术运算,将
上述基本序列进行这些基本运算,得到多个序列构成的组合序列。
●(3)请用您的计算机声卡采用一段您自己的声音 x(n),长度为 45秒,单声道,
取样频率 44.1kHz,16bit/样值,然后与给定的一段背景音乐 y(n) 按下式叠加为一个声音信号 z(n):z(n) = 0.7x(n) + 0.3y(n)
●要求在同一个 Figure 中,画出采集声音 x(n)、背景音乐 y(n)和混音 z(n) 的时域波
形;
2.实验代码
实验图像见文件夹中的JPG图片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学DSP硬件实验报告学院: 电子工程学院专业:姓名:学号:班级:实验一常用指令实验一、实验目的熟悉DSP开发系统的连接了解DSP开发系统的组成和结构和应用系统构成熟悉常用C54X系列指令的用法(程序寻址,寄存器,I/O口,定时器,中断控制)。
二、实验步骤与内容(一)简单指令程序运行实验源程序:;File Name:exp01.asm;the program is compiled at no autoinitialization mode --程序在非自动初始化模式下编译.mmregs --(enter memory-mapped registers into the symbol table) --进入记忆映射注册进入符号表.global _main --(identify one or more global(external)symbols)--定义一个或多个全局变量_main:stm(累加器的低端存放到存储器映射寄存器中) #3000h,sp(堆栈指针寄存器);堆栈指针的首地址设为#3000hssbx(状态寄存器位置位)xf ;状态寄存器位置位,灯亮call (非条件调用,可选择延迟)delay(存储器延时) ;调用delay函数延时rsbx(状态寄存器复位)xf ;状态寄存器位复位,灯灭call delay ;调用delay函数延时b (累加器)_main ;可选择延迟的无条件转移,循环执行nop(无操作)nop;delay .5 seconddelay: ;延迟0.5秒stm 270fh,ar3 (辅助寄存器3) ;把地址存放到存储器映射寄存器中loop1:stm 0f9h,ar4 (辅助寄存器4);把地址存放到存储器映射寄存器中loop2:banz loop2,*ar4- ;AR4不为0时转移,指针地址减一banz loop1,*ar3- ; 若不为0,ar3减1,共进行10000*250次跳转ret (可选择延迟的返回 pc=sp++) ;return,返回nopnop;stm 2 cycles;banz when TRUE 4 cycles; FALSE 2 cycles;0f9h=>249d;270fh=>9999d.end实验现象XF灯以一定频率闪烁;单击“Halt”暂停程序运行,则XF灯停止闪烁,如再单击“Run”,则“XF”灯又开始闪烁;(二)资料存储实验源程序:*File Name:exp02.asm;get some knowledge of the cmd file;the program is compiled at no autoinitialization mode.mmregs.global _main_main:;store datastm 1000h,ar1 ;ar1映射到内存1000h位; stm 5000h,ar1 ;address of exterior memoryrpt(循环执行下一条指令,计数为短立即数) #07h ;循环执行下一条指令8次st(存储T寄存器的值) 0aaaah,*ar1+ ;data 存储寄存器的值;read data then re-storestm 7h,ar3 ;设置ar3; stm 5000h,ar1 ;address of exterior memory; stm 5008h,ar2 ;address of exterior memorystm 1000h,ar1 ;设置ar1为1000hstm 1008h,ar2 ;设置ar2为1008hloop:ld *ar1+,t ;把单数据存储操作数装入T寄存器中st t,*ar2+ ;存储T寄存器的值banz loop,*ar3- ;循环7次here:b here ;可选择延迟的无条件转移,循环执行.end实验目的:;本实验程序将对0x1000开始的8个地址空间,填写入0xAAAA的数值,然后读出,并存储到0X1008开始的8个地址空间。
在CCS 中可以观察DATA内存空间地址0X1000~0X100F值的变化。
实验现象:在CCS的“View”下拉菜单中的Memory窗口中查找C5410各个区段的数据存储器地址,在可以改变的存储器内容的地方,选定地址随意改变其中内容并观察结果;本实验要查看0x1000H~0x100FH单元的数值变化,输入地址0x1000H;查看0x1000H~0x100FH单元的初始值,单击“Run”运行程序,也可以“单步”运行程序;单击“Halt”暂停程序运行。
(三):I/O实验源程序:;File Name :exp03.asm;learn how to operate the I/O ports;get some knowledge of the rts.lib file;in the I/O space 0x0000=>8 switches; 0x0001=>8 LEDs.mmregs.global _main.text_main:stm 3100h,sp ;堆栈指针的首地址设为#3100hstm 1000h,ar1 ;define the address,定义ar1的地址;define the addressportr 00h,*ar1 ;从端口00h读出开关状态,存入ar1中。
*ar1=port(00h)nopnopportw *ar1,01h ;将ar1的内容(开关状态)写入到led灯上(输入到01h),控制灯的亮灭nopnopb _main ;寻循环执行nopnop.end;实验现象;任意调整K0—K7开关,可以观察到对应LP0—LP7灯“亮”或“灭”(四):定时器实验源程序【初始化程序】.mmregs.global _initial_initial:stm 300h,ar1 ;初始化300h 数据地址,设置ar1的地址st #00h,*ar1 ;辅助寄存器ar1指向#00hstm 302h,ar1 ;初始化 302h 数据地址,设置ar2的地址st #00h,*ar1 ;辅助寄存器ar1指向#00hstm 200h,ar1st #5555h,*ar1stm 201h,ar1st #0aaaah,*ar1stm 202h,ar1st #400h,*ar1ssbx 1,11 ;将ST1.INTM置为1,停止所有中断stm 0ffffh,ifr ;清除所有中断标识 ifr:中断标志寄存器stm 00h,imr ;将立即数寄存器(imr)置为0,停止所有中断stm 410h,tcr ;停止计时器tcr:发送控制寄存器stm 4e1fh,prd ;将初始时间设为4e1fhstm 420h,tcr ;开始计时器stm 08h,imr ;允许计时器中断rsbx 1,11 ;将ST1.INTM置为0,开始所有中断ret【端口程序】(定义管脚).mmregs.global _porta.global _portb_porta:stm 304h,ar1 ;设置ar1地址st 5555h,*ar1 ;辅助寄存器ar1指向5555hportw *ar1,01h ;ar1的值做输出控制小灯亮灭ret_portb:stm 304h,ar1 ;设置ar1地址st 0aaaah,*ar1 ;辅助寄存器ar1指向0aaaahportw *ar1,01h ;ar1的值控制亮灭ret【向量程序】.sect ".vectors".ref _c_int00 ;C程序入口.ref _timer ;时间中断点.align 0x80 ; 必须被连结到页边界RESET: ; 重设向量BD _c_int00 ;到C入口点的分支STM #200,SP ;堆栈大小为200 SP:堆栈寄存器nmi: RETE ;启动中断并从一个返回NOPNOPNOP; 软件中断sint17 .space 4*16sint18 .space 4*16sint19 .space 4*16sint20 .space 4*16sint21 .space 4*16sint22 .space 4*16sint23 .space 4*16sint24 .space 4*16sint25 .space 4*16sint26 .space 4*16sint27 .space 4*16sint28 .space 4*16sint29 .space 4*16sint30 .space 4*16int0: RETENOPNOPNOPint1: RETENOPNOPNOPint2: RETENOPNOPNOPtint: b _timer ;设置实用time中断 NOPNOPrint0: RETENOPNOPNOPxint0: RETENOPNOPNOPrint1: RETENOPNOPNOPxint1: RETENOPNOPNOPint3: RETENOPNOPNOP.end实验现象单击“Run”运行,可观察到LED灯(LP0—LP7)以一定的间隔时间不停摆动;单击“Halt”,暂停程序运行,LED灯停止闪烁;.单击“Halt”,暂停程序运行,LED灯停止闪烁。
(五):INT2中断实验源程序【初始化程序】.mmregs.global _initial.text_initial:stm 300h,ar3 ;初始化数据 300h ar3:辅助寄存器st #00h,*ar3 ;辅助寄存器ar3指向#00hstm 302h,ar4 ;初始化数据 300h ar4:辅助寄存器st #00h,*ar4ssbx 1,11 ;将st1.intm置为1,停止所有中断stm 00h,imr ;将立即数置0,停止所有中断 imr:立即数寄存器stm 0ffffh,ifr ;清除所有中断标志 ifr:中断标志寄存器stm 04h,imr ;允许int2 中断rsbx 1,11 ;允许所有中断ret.end【端口程序】与【向量程序】参见实验四。
.实验现象单击“Run”运行程序,反复拨动开关K0,观察LP1—LP7 LED灯亮灭变化;单击“Halt”暂停程序运行,反复拨动开关K0,LP1—LP7 LED灯亮灭不发生变化。
实验二:A/D采样实验实验目的1.掌握利用TLV320AD50实现A/D转换的技术基本原理和常用方法。
2.学会DSP的多信道缓冲串口的应用方法。
3.掌握并熟练使用DSP和AD50的接口及其操作。
4.通过实验加深对DSP系统频谱混叠认识.源程序:【C程序】extern void InitC5402(void); /*创建初始化C5402的函数,返回值为空*/extern void OpenMcBSP(void); /*创建打开McBSP端口的函数,返回值为空;*/extern void CloseMcBSP(void); /*创建关闭McBSP端口函数*/extern void READAD50(void); /*创建从AD50的数据流中读取数据的函数;AD50:硬件端口*/void main(void) /*主函数开始*/{InitC5402(); /* 初始化 C5402 DSP */OpenMcBSP(); /*调用函数,打开McBSP端口*/while (1){READAD50(); /*从AD50的数据流中读取数据,完成AD转换 */}}【汇编程序】.global _InitC5402 ;全局符号定义_InitC5402(初始化C5402).global _OpenMcBSP ;全局符号定义_OpenMcBSP(打开McBSP).global _CloseMcBSP ;全局符号定义_CLoseMcBSP(关闭McBSP).global _READAD50 ;全局符号定义_READAD50(读取AD50数据流).global _WRITEAD50 ;全局符号定义_WRITEAD50(向AD50写入数据流).include MMRegs.h ;引入头文件MMRegs.h _InitC5402:NOPLD #0, DP ; 重置数据存储器页指针STM #0, CLKMD ; 对DSP时钟进行软件设置STM #0, CLKMD ; (在设置之前转到分线规模式)STM #0x4007, CLKMD ; 将C5402 DSP时钟设置到40Hz******* Configure C5402 System Registers *******;配置C5402系统寄存器STM #0x2000, SWWSR ; 为IO空间设置两个等待周期;SWWSR:外部总线S/W等待状态寄存器;为数据和监督空间设置0个等待周期STM #0x0000,BSCR ; 为堆栈转换寄存器设置等待状态; BSCR:外部总线块转换控制寄存器; 堆栈空间为64k,之间没有多余的循环; 连续的监督/数据读取STM #0x1800,ST0 ; 为状态寄存器0进行预设值STM #0x2900,ST1 ; 为状态寄存器1进行预设值(note:INTX=1)STM #0x00A0,PMST ; PMST:处理器方式状态寄存器;OVLY=1,向量指向0080h******* Set up Timer Control Registers *******;(设置时钟控制寄存器)STM #0x0010, TCR ; 停止on–chip计时T C R定时器控制寄存器; 计时器0用作主循环的计时器******* Initialize McBSP2 Registers *******;(初始化 McBSP2 (用来创建设备配置)寄存器)STM SPCR1, McBSP2_SPSA ; 设置SPCR1的寄存器地址STM #0000h, McBSP2_SPSD ; McBSP2 recv = left–justify ; 通过框架同步产生接受中断STM SPCR2, McBSP2_SPSA ; 设置SPCR2的寄存器地址; 通过框架同步产生传输中断STM #0000h, McBSP2_SPSD ; McBSP2 Tx(异步传输); 在SW断点之后运行STM RCR1, McBSP2_SPSA ; 设置RCR1的寄存器地址 ;RCR1:接收控制寄存器STM #0040h, McBSP2_SPSD ; 接收框架1长度=16 bitsSTM RCR2, McBSP2_SPSA ; 设置RCR2的寄存器地址STM #0040h, McBSP2_SPSD ; 接收相位=1; 设置框架2长度为16bitsSTM XCR1, McBSP2_SPSA ; 设置XCR1的寄存器地址STM #0040h, McBSP2_SPSD ; 设置与接收(recv)相同STM XCR2, McBSP2_SPSA ; 设置XCR2的寄存器地址STM #0040h, McBSP2_SPSD ; 设置与接收(recv)相同STM PCR, McBSP2_SPSA ; 设置PCR的寄存器地址STM #000eh, McBSP2_SPSD ; 时钟和框架从外部产生(slave) ******* Finish DSP Initialization *******;(结束DSP初始化)STM #0x0000, IMR ; 关闭外围中断STM #0xFFFF, IFR ; 清除中断的标志RET ; 返回主程序NOPNOP******* Waiting for McBSP0 RX Finished *******;(等待McBSP0异步接收结束)IfRxRDY1:NOPSTM SPCR1, McBSP2_SPSA ; 启动 McBSP2 RxLDM McBSP2_SPSD, AAND #0002h, A ; 隐藏已经接受到的bit(可以用来代替系列端口中断)BC IfRxRDY1, AEQ ; 继续寄存(checking)NOPNOPRET ; 返回NOPNOP******* Waiting for McBSP0 TX Finished *******;(等待McBSP0异步传输结束)IfTxRDY1:NOPSTM SPCR2, McBSP2_SPSA ; 启动 McBSP2 TxLDM McBSP2_SPSD, AAND #0002h, A ; 隐藏已经传输的bitBC IfTxRDY1, AEQ ; 继续寄存NOPNOPRET ; 返回NOPNOP******************************************_OpenMcBSP:rsbx xf ;寄存器xf复位为0call wait ;非条件调用等待状态NOPSTM SPCR1, McBSP2_SPSA ; 启动 McBSP0 RX 以读入 AD 数据LDM McBSP2_SPSD,AOR #0x0001, ASTLM A, McBSP2_SPSD ;隐藏已经接受到的bitSTM SPCR2, McBSP2_SPSA ; 启动 McBSP0 TX 以 DTMF 输出LDM McBSP2_SPSD,AOR #0x0001, ASTLM A, McBSP2_SPSD ;隐藏已经输出的bitLD #0h, DP ; 装载数据页0rpt #23 ;循环执行NOPssbx xf ;寄存器xf置位为1NOPNOPCALL IfTxRDY1 ;非条件调用 IfTxRDY1 STM #0x0001, McBSP2_DXR1 ;请求二级传送NOPCALL IfTxRDY1 ; 非条件调用 IfTxRDY1STM #0100h, McBSP2_DXR1 ;将00h写入到寄存器1CALL IfTxRDY1 ;非条件调用 IfTxRDY1STM #0000h, McBSP2_DXR1;NOPNOPrpt #20hnopCALL IfTxRDY1 ;非条件调用 IfTxRDY1STM #0x0001, McBSP2_DXR1 ;请求二级传送CALL IfTxRDY1 ;非条件调用 IfTxRDY1STM #0200h, McBSP2_DXR1 ;将00h写入到寄存器2CALL IfTxRDY1STM #0000h, McBSP2_DXR1CALL IfTxRDY1STM #0x0001, McBSP2_DXR1 ;请求二级传送CALL IfTxRDY1STM #0300h, McBSP2_DXR1 ;将00h写入到寄存器3CALL IfTxRDY1STM #0000h, McBSP2_DXR1CALL IfTxRDY1STM #0x0001, McBSP2_DXR1 ;请求二级传送CALL IfTxRDY1STM #0490h, McBSP2_DXR1 ;将00h写入到寄存器4;通过内部DPLL bypass internal DPLL;并且选择抽样频率and select the Sample FrequencyCALL IfTxRDY1STM #0000h, McBSP2_DXR1RETNOPNOP*********************_CloseMcBSP:STM SPCR1, McBSP2_SPSA ; 关闭 McBSP0 RXLDM McBSP2_SPSD,AAND #0xFFFE, ASTLM A, McBSP2_SPSDSTM SPCR2, McBSP2_SPSA ; 关闭 McBSP0 TXLDM McBSP2_SPSD,AAND #0xFFFE, ASTLM A, McBSP2_SPSDRPT #5RETNOPNOP_READAD50:stm 0x00ff,ar3stm 0x1000,ar2loopa:CALL IfRxRDY1ldm McBSP2_DRR1,bstl b,*ar2+banz loopa,*ar3-nopnopretnopnop_WRITEAD50:stm 0x037b,ar3stm 0x38a3,ar2loopb:CALL IfTxRDY1ldu *ar2+,Band #0fffeh,b ;mask the LSBstlm B, McBSP2_DXR1banz loopb,*ar3-nopnopretnopnopwait:stm 20h,ar3loop1:stm 020h,ar4loop2:banz loop2,*ar4-banz loop1,*ar3-retnopnopnopnop.end************************************************************* ************* End of File –– InitC5402.asm************************************************************* **在图形编辑窗口观察到的A/D转化后的采样波形实验分析:频谱混叠产生的原因:根据抽样定理,当取样频率fs大于等于两倍的频谱最高频率分量fm的两倍时,就可以从离散序列中准确的回复出信号,但当取样频率fs小于于频谱最高频率分量fm的两倍时,就会发生频谱混叠现象。