浙江省嘉兴市2017-2018学年浙教版八年级(下)期末数学试卷

合集下载

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·昆山期末) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分)下列一次函数中,y随着x增大而减小的是().A .B .C .D .3. (2分)(2018·桂林) 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A . 10和7B . 5和7C . 6和7D . 5和64. (2分)下列各组数中,以它们为边的三角形不是直角三角形的是A . 1.5,2,3B . 7,24,25C . 6,8,10D . 3,4,55. (2分) (2017八下·路南期末) 下列计算正确的是()A .B .C .D .6. (2分) (2016九上·抚宁期中) 在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A .B .C .D .7. (2分) (2017九上·河东开学考) 已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A . 5cmB . 7cmC . 10cmD . 12cm8. (2分)(2017·福田模拟) 在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF= ;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A . ①②B . ①②④C . ②③④D . ①②③9. (2分) (2019八下·南浔期末) 下列说法正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 对角线相等的平行四边形是菱形C . 三个角都是直角的四边形是矩形D . 一组邻边相等的平行四边形是正方形10. (2分) (2017八下·西城期中) 如图,在平行四边形中,,,的平分线交于点,则的长为().A .B .C .D .二、填空题 (共7题;共7分)11. (1分)已知,则的取值范围是________。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

17-18八年级下学期期末数学测试题含答案

17-18八年级下学期期末数学测试题含答案

2017—2018学年下学期期末考试八年级数学试卷试卷满分 120分 考试时间 120分钟一、选择题(3分×10=30分)1.式子2+x 在实数范围内有意义,则x 的取值范围是( ). A .x <2 B .x ≥-2 C .x ≤-2 D .x >-2 2.下列计算正确的是( ).4==112==C.5=D.312314= 3.在平面直角坐标系中有两点A(5,0)和B (0,4),则这两点之间的距离是( ). A.41 B.9 C.14 D.34.一个三角形三边的长分别为1,2,3,则这个三角形的面积是( ).A.23B. 3C. 2D.15.下列命题:(1)平行四边形的对角相等,邻角互补;(2)有三个角都相等的四边形是矩形;(3)菱形的边长为a,两对边之间的距离为h,则此菱形的面积为ah 21;(4)有两条互相垂直的对称轴,且有一个角是直角的四边形是正方形. 其中正确命题的个数是( ). A.4 B.3 C. 2 D.1 6.下列式子中的y 不是x 的函数的是( ). A.y=3x-5 B.12--=x x y C.1-=x y D. )0(≥=x x y 7. 均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( ).A B CD8. 在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:那么这50名同学读书册数的众数,中位数分别是( ). A .3,2 B .3,3 C .2,3 D .3,1第7题图9. 如图是经典手机游戏“俄罗斯方块”中的图案, 图1 中有8个矩形, 图2中有11个矩形, 图3中有15个矩形, 根据此规律, 图5中共有( )个矩形. A. 19 B. 25 C. 26 D. 3110.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( ).A.2B.3C.4D.5二、填空题(每小题3分,共18分)11.5.1化成最简二次根式为___________________.12.“全等三角形的对应边相等”的逆命题是____________________ __________________________________________.13.菱形的两条对角线的长分别是6和8,则此菱形的周长和面积分别是_________________. 14.数据分组后,小组1≤x<21的组中值为___________.15.如图,圆柱的底面半径为4,高为3π,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是____________________.16.因长期干旱,甲水库水量降到了正常水位的最低值a ,为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h 后,乙水库停止供水,甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲书库蓄水量Q (万m 3)与时间t (h )之间的函数关系,则乙水库停止供水后,经过 小时后甲水库蓄水量又降到了正常水位的最低值.三、解答题(共72分)17.(每小题4分,共8分) (1)计算:);()(681-21-24+(2)已知x=2+3,求代数式3)32(34-72+-+x x )(的值.18.(本题6分)在平面直角坐标系中,直线y=kx-4 经过点P(2,-6),求关于x 的不等式kx-6≥O 的解集.19.(本题6分)如图,在正方形ABCD 中,E 是BC 的中点,F 是AB 上一点,且BF=21BE.求证:∠DEF=90°.图1图2图3第9题图第10题图BA 第15题图第16题图A F20.(本题6分)点P(x,y)在第一象限,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S. (1)用含x 的式子表示S,并画出函数S 的图象. (2)当点P 的横坐标为3时,△OPA 的面积为多少? (3)△OPA 的面积能大于12吗?为什么?21 .(本题6分)武汉市努力改善空气质量,近年来空气质量明显好转,根据武汉市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答: (1)这五年的全年空气质量优良天数的中位数是 ___,极差是_______.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是_________年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.22.(本题8分)如图,四边形ABCD 是正方形.G 是BC 上的任意一点,DE ⊥AG 于点E,BF ∥DE,且交AG 于点F. (1)求证:AF-BF=EF; (2)已知AF=4,EF=1,求AG 的长.23.(本题10分)现从A ,B 向甲、乙两地运送西瓜,A ,B 两个西瓜市场各有西瓜13吨,其中甲地需要西瓜14吨,乙地需要西瓜12吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(2)设总运费为W 元,请写出W 与的函数关系式.(3)怎样调运西瓜才能使运费最少?B A 第22题图 第21题图24.(本题10分)问题 如图,P 是矩形ABCD 内一点,若PA=3,PB=4,PC=5, 求PD 的长. 分析 由题设知P 是矩形ABCD 内任一点,且PA,PB,PC 均已知,则PA,PB,PC,PD 四条线段间必定存在某种数量关系.猜想 (1)PA+PC=PB+PD; (2) PA 2+PC 2=PB 2+PD 2.验证 (1)当P 为矩形对角线AC,BD 的交点时,显然成立(如图2);当P 非对角线的交点时,如p '处,请补充验证过程,并对猜想(1)作出判断.聪明的你请验证(2)中的结论(如图3),并求出问题中PD 的长:结论 矩形内任一点分别到矩形一对对角顶点距离的平方和_________. 应用 掌握上述结论,解答有关问题,眼界更高,思维开阔,简便快捷,易于切题.请联系上述结论解答下面问题:如图4,M 是边长为1的正方形ABCD 内一点,若MA 2-MB 2=21, ∠CMD=90°,则∠MCD=_______.(请直接填写结果).25.(本题12分)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于F,然后展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形(2) 如图②,在矩形ABCD 中, AB=2,BC=4 .当它的“折痕△BEF ”的一个顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标; (3)如图③,在矩形ABCD 中, AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么?图2图3图4如图②如图③备用图2017—2018学年下学期期末考试八年级数学参考答案二、填空题 11.26(P10练习T2(3)) 12.三条边对应相等的三角形全等(P34T2(3)) 13.20,24 (P57T2) 14. 11 (P114探究右边卡片) 15. 5 (P39T12改编) 16. 10(仿汉中考) 三、解答题 17.(1)243-6 (P19T3(1))(2)2+ 3 (P19T6改编)18.(仿汉中考)把点P(2,-6)代人直线y=kx-4,得2k-4=-6 解得k=-1. …………………………………3分 ∴-x-6≥O…………………………………5分 ∴x ≤-6. …………………………………6分19.(P34T6改编) 设BF=x,则BE=CE=2x,CD=AD=4x,AF=3x. ∵∠B=90°, ∴EF 2 =BF 2+BE 2=x 2+(2x)2=5x 2. …………………2分同理:DE 2=20x 2, DF 2=25x 2. ∴EF 2 +DE 2= DF 2. …………………………………4分 根据勾股定理的逆定理,△DEF 为直角三角形. …………………………………5分 ∴∠DEF=90°. …………………………………6分20. (P99T9改编)(1)S=-2x+12(0<x<6) …………………………2分(解析式和画图各1分,没写取值范围不扣分) (2)6; …………………………………4分(3)不能大于12,因为0<x<6,所以0<S=-2x+12<12. …………6分 21. (广州市2012年中考题T9改编)(1)这五年的全年空气质量 优良天数按照从小到大排列如下: 333、334、345、347、357,所以中位数是345;…………………1分 极差是:357﹣333=24;……………2分(2)2007年与2006年相比,333﹣334=﹣1, 2008年与2007年相比,345﹣333=12, 2009年与2008年相比,347﹣345=2, 2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;…………………………………3分 (3)这五年的全年空气质量优良天数的平均数===343.2天.…………………………………6分22.(第1问P62T15,第2问自编)(1)提示:由△ADE ≌△BAF, ……………………2分 可得AE=BF,从而AF-BF=EF. …………………………………4分(2)∵AF=4,EF=1,∴BF=AE=3, ∴AB=2243+=5. …………………………………5分 设FG=x,在Rt △BFG 和Rt △ABG 中,BG 2=x 2+32=(4+x)2-52. 解得x=.49……………7分 ∴AG=AF+FG=4+49=425.…………………………………8分3分)(2)由题意,得W=50x+30(13﹣x )+60(14﹣x )+45(x ﹣1),整理得,W=5x+1185. ………………………………(6分) (3)∵A ,B 到两地运送的西瓜为非负数,∴⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥.010140130x x x x ,,, 解不等式组,得:1≤x ≤13,………………(8分)在W=5x+1185中,W 随x 增大而增大,…………………………(9分) ∴当x 最小为1时,W 有最小值 1190元.…………………………(10分)24.(P69T15改编)验证:(1)则p 'A+p 'C>AC=BD=p 'B+p 'D,显然不成立.综上所述,猜想(1)不具有一般性(或猜想(1)不一定成立). …………………………2分 (2)过P 点作AB 的平行线分别交AD,BC 于E,F(如图1).易证四边形ABFE 和四边形CDEF 均为矩形.设PE=a,PF=b,AE=BF=c,DE=CF=d. 易知PA 2=a 2+c 2,PC 2=b 2+d 2,PB 2=b 2+c 2,PD 2=a 2+d 2.于是PA 2+PC 2= a 2+b 2+c 2+d 2 =PB 2+PD 2. ………………………5分故PD 2=PA 2+PC 2-PB 2=32+52-42=18. 从而PD=23.…………6分 结论:相等………………………7分应用:由上述结论知MA 2+MC 2= MB 2+MD 2,∴MD 2- MC 2= MA 2-MB 2=21.…………8分C 图1又在Rt △MCD 中,MD 2+MC 2=1. ∴MD=23,MC=21.而CD=1 CD MC 21=∴.易得∠MCD=60°. ………………………10分25.(1)等腰;…………………………………(2分) (2)如图②,连接BE ,画BE 的中垂线交BC 于点F ,连接EF , △BEF 是矩形ABCD 的一个“折痕三角形”.………………(3分) ∵折痕垂直平分BE ,AB=AE=2,∴A 点在BE 的中线上,四边形ABFE 为正方形,∴AB=FB=2,则F (2,0). ………………………………(6分) (3)解法一:当F 在边BC 上时,设CF=x(x ≥0,如图③,∴S △BEF =-S △BCE =S △FCE 21SABCD矩形-SFCE△=4-x ,要S△BEF最大,则x=0,即F 点与C 点重合,由折叠可知,CE=BC, ∴ED=22CD CE -=32,则E 点坐标为E (4-23,2). ………………(9分) 当F 在边CD 上时,设AE=x(x ≥0),CF=y (y >0),如图④.∴S△BEF=SABCD矩形-SOAE△-SEFD△-SOCF△=8-x -21(4-x )(2-y )-2y=4-21xy ,要使S △BEF 最大,则x=0(y >0),即A 点与E 点重合,∴E 点坐标为E (0,2). ……………………(11分)综上所述,折痕△BEF 的最大面积为4时,点E 的坐标是E (4-23,2)或E (0,2). ……………………(12分)如图③(3)解法二:。

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。

5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。

其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。

6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。

二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。

9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。

2017-2018学八年级(下)期末数学试卷(解析版)

2017-2018学八年级(下)期末数学试卷(解析版)

2017-2018学年八年级(下)期末数学试卷一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣22.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,43.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣15.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.58.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+259.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>615.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是.18.已知a=﹣,b=+,求a2+b2的值为.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣2【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子有意义的实数x的取值范围是:x≥﹣2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,4【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【解答】解:A、∵72+82≠92,∴此选项不符合题意;B、∵82+152=172,∴此选项符合题意;C、∵1.52+22=2.52,但1.5,2.5不是整数,∴此选项不符合题意;D、∵42+32≠42,∴此选项不符合题意.故选:B.【点评】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…3.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选:B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.5.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个【分析】根据菱形正方形、矩形、菱形、平行四边形、一般四边形的性质分析即可.【解答】解:由正方形、矩形、菱形、平行四边形、一般四边形的性质可知:正方形、矩形的两条对角线一定相等,而菱形的对角线只是垂直,平行四边形的对角线只是互相平分,一般四边形的对角线性质不确定,所以两条对角线一定相等的四边形个数为2个,故选:B.【点评】此题考查了正方形、矩形、菱形、平行四边形、一般四边的性质,需熟练掌握各特殊平行四边形的特点是解题关键.6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【分析】根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.【点评】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.9.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.10.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.5【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【解答】解:连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC===13,∴AE=6.5,∵点A表示的数是﹣1,∴OA=1,∴OE=AE﹣OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选:A.【点评】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.【分析】利用方差公式进而得出答案.【解答】解:这组数据的平均数为:这组数据的方差为:=,故选:D.【点评】此题主要考查了方差,正确记忆方差公式是解题关键.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.【点评】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6【分析】先把A、B点坐标代入y=kx+b计算出k、b,然后解不等式0<kx+b<x即可.【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.【点评】本题考查了一次函数与不等式(组)的关系.解决此类问题关键是利用代入法解得k,b,求得一次函数解析式,然后转化为解不等式.15.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【解答】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选:D.【点评】本题考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=﹣1.【分析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是∠B=∠D =60°.【分析】由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【解答】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:∠B=∠D=60°,【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.18.已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【解答】解:直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷【分析】(1)首先化简二次根式进而利用二次根式加减运算法则计算得出答案;(2)首先化简二次根式进而利用二次根式乘除运算法则计算得出答案.【解答】解:(1)﹣+=3﹣2+=;(2)×÷=2××=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?【分析】根据勾股定理解答即可.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC=6,∴BC2=AB2﹣AC2=36﹣9=27.【点评】此题考查勾股定理.关键是根据勾股定理解答,23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.【分析】根据平行四边形的判定和性质得出AE=DC,进而得出∠AEB=∠C,根据等腰三角形的性质得到∠B=∠AEB,进而得出∠B=∠C.【解答】证明:∵BC∥AD,AE∥DC,∴四边形AECD是平行四边形,∴AE=DC,AE∥DC,∴∠AEB=∠C,∵AB=CD,∴AB=AE,∴∠B=∠AEB,∴∠B=∠C.【点评】此题主要通过考查平行四边形判定和性质,关键是根据平行四边形的判定和性质得出AE=DC.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【解答】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点评】本题主要考查了加权平均数,本题易出现的错误是求三个数的平均数,对平均数的理解不正确.25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)把x=1代入y=2x中,得y=2,所以点B的坐标为(1,2),设一次函数的解析式为y=kx+b,把A(0,3)和B(1,2)代入,得,解得,所以一次函数的解析式是y=﹣x+3;(2)点C(4,﹣2)不在该函数的图象上.理由:当x=4 时,y=﹣1≠﹣2,所以点C(4,﹣2)不在函数的图象上.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),=×3×2=3.所以S△BOD【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),3﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.。

2017-2018学年浙教版数学初二(下册)期末考试试卷及答案

2017-2018学年浙教版数学初二(下册)期末考试试卷及答案

2017-2018学年八年级(下册)期末数学试卷一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6 3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.254.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④7.如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则秒时,直线QP将四边形ABCD截出一个平行四边形.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=,BC=.14.已知=5,则=.15.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是.16.如图,已知双曲线y1=﹣与两直线y2=﹣x,y3=﹣8x,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.三、解答题.17.计算:.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为,菱形ABCO的周长为,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个【考点】最简二次根式.【分析】根据最简二次根式的定义分别判断解答即可.【解答】解:中是最简二次根式的有,,故答案为:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解答】解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,∴(x﹣1)2=3.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【考点】根与系数的关系.【分析】根据题意,a、b可看作方程x2﹣6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.【解答】解:∵a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,∴a,b可看作方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,∴原式=(a+b)2﹣2ab=62﹣2×4=28,故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形【考点】作图—基本作图;菱形的判定.【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.【解答】解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.【点评】在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④【考点】矩形的性质.【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE 于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D 重合,得出③不正确,④正确,即可得出结论.【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:则m=ABEM,n=BCEH,p=CDEN,q=ADEG,∵四边形ABCD是矩形,∴AB=CD=GH,BC=AD=MN,∴m+p=ABMN=ABBC,n+q=(BCGH=BCAB,∴m+p=n+q;∴①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,如图2所示:则∠APB=∠CQF=90°,∵m=BEAP,n=BECQ,∵m=n,∴AP=CQ,∵AB∥CD,∴∠1=∠2,在△ABP和△CFQ中,,∴△ABP≌△CFQ(AAS),∴AB=CF,∴F与D重合,∴E一定在BD上;∴③不正确,④正确.故选:B.【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数(x >0)的图象上.若点B 的坐标为(﹣4,﹣4),则k 的值为( )A .2B .6C .2或3D .﹣1或6 【考点】反比例函数综合题.【专题】计算题.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S 四边形DEOH =S 四边形FBGO ,根据反比例函数比例系数的几何意义即可求出k 2﹣5k+10=16,再解出k 的值即可.【解答】解:如图:∵四边形ABCD 、FAEO 、OEDH 、GOHC 为矩形, 又∵AO 为四边形FAEO 的对角线,OC 为四边形OGCH 的对角线, ∴S △AEO =S △AFO ,S △OHC =S △OGC ,S △DAC =S △BCA , ∴S △DAC ﹣S △AEO ﹣S △OHC =S △BAC ﹣S △AFO ﹣S △OGC , ∴S 四边形FBGO =S 四边形DEOH =(﹣4)×(﹣4)=16,∴xy=k 2﹣5k+10=16, 解得k=﹣1或k=6. 故选:D .【点评】本题考查了反比例函数k 的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S 四边形DEOH =S 四边形FBGO .8.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .B .C .D .【考点】正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.【解答】解:延长AE 交DF 于G ,如图: ∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形【考点】平行四边形的判定;全等三角形的判定与性质;等腰三角形的性质;矩形的判定;梯形;命题与定理.【分析】已知条件应分析一组对边相等,一组对角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.【解答】解:∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,在△ADE与△DAC中,∵,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形是平行四边形说法错误;故选:C.【点评】此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组对边相等,一组对角相等的四边不是平行四边形是解题关键.10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】等腰梯形的性质.【分析】根据已知利用等腰梯形的性质对各个结论进行分析从而得出最后的答案.【解答】解:根据四边形ABCD是等腰梯形,可得出的条件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通过全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).①要证BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此结论成立;②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此结论成立.③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜边AE的中点,由于OD∥EF,因此OD就是三角形AEF的中位线,那么D就是AF的中点,因此此结论也成立.④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此结论也成立.故选D.【点评】本题主要考查了等腰梯形的性质.根据等腰梯形的性质得出的角和边相等是解题的基础.二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设三个内角都不大于60度.【考点】反证法.【分析】利用反证法证明的步骤,进而得出答案.【解答】解:用反证法证明命题“三角形中至多有两个角大于60度”,应先假设三个内角都不大于60度.故答案为:三个内角都不大于60度.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则2或3秒时,直线QP将四边形ABCD截出一个平行四边形.【考点】平行四边形的判定;梯形.【专题】动点型.【分析】设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;分两种情况:①当AP=DQ时,得出方程,解方程即可;②当BP=CQ时,得出方程,解方程即可.【解答】解:设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;∵CD∥AB,∴分两种情况:①当AP=DQ时,x=6﹣2x,解得:x=2;②当BP=CQ时,9﹣x=2x,解得:x=3;综上所述:当2秒或3秒时,直线QP将四边形ABCD截出一个平行四边形;故答案为:2或3.【点评】本题考查了梯形的性质、平行四边形的判定、解方程等知识;熟练掌握梯形的性质和平行四边形的判定方法是解决问题的关键.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=12,BC=8.【考点】三角形中位线定理.【专题】计算题.【分析】根据中位线定理得:DE=BC,根据梯形中位线定理得FG=(DE+BC),由FG=6求得DE+BC的值即可.【解答】解:∵点F、G分别为BD、CE的中点,∴FG=(DE+BC),∵FG=6,∴DE+BC=2FG=2×6=12;∵D、E分别是AB、AC的中点,∴DE=BC,∴DE+BC=BC+BC=BC=12,∴BC=8.故答案为:12;8.【点评】本题考查了梯形的中位线与三角形的中位线的性质,是一道不错的几何综合题.14.已知=5,则=﹣4或﹣1.【考点】二次根式的化简求值.【分析】利用完全平方公式得出=6,即可求出=2,=3或=3,=2.分别代入求解即可.【解答】解:∵ =5,∴()2=25,解得=6,∴解得=2,=3或=3, =2.∴=﹣4或﹣1,故答案为:﹣4或﹣1.【点评】本题主要考查了二次根式的化简求值,解题的关键是求出与的值.15.已知:如图,平面直角坐标系xOy 中,正方形ABCD 的边长为4,它的顶点A 在x 轴的正半轴上运动(点A ,D 都不与原点重合),顶点B ,C 都在第一象限,且对角线AC ,BD 相交于点P ,连接OP .设点P 到y 轴的距离为d ,则在点A ,D 运动的过程中,d 的取值范围是 2<d ≤2.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质.【分析】根据垂线段最短,A 、O 重合时,点P 到y 轴的距离最小,为正方形ABCD 边长的一半,OA=OD 时点P 到y 轴的距离最大,为PD 的长度,即可得解.【解答】解:当A 、O 重合时,点P 到y 轴的距离最小,d=×4=2,当OA=OD 时,点P 到y 轴的距离最大,d=PD=2,∵点A ,D 都不与原点重合,∴2<d ≤2,故答案为2<d ≤2.【点评】本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,(2)作辅助线构造出全等三角形是解题的关键,(2)根据垂线段最短判断出最小与最大值的情况是解题的关键.16.如图,已知双曲线y 1=﹣与两直线y 2=﹣x ,y 3=﹣8x ,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为 2.【考点】反比例函数与一次函数的交点问题.【分析】y 始终取三个函数的最小值,y 最大值即求三个函数的公共部分的最大值.【解答】解:联立y 1、y 2可得,解得或,∴A (﹣2,),B (2,),联立y 1、y 3可得,解得或,∴C (﹣,2),D (,﹣2), ∵无论x 取何值,y 总取y 1,y 2,y 3中的最小值, ∴y 的最大值为A 、B 、C 、D 四点中的纵坐标的最大值,∴y 的最大值为C 点的纵坐标,∴y的最大值为2,故答案为:2.【点评】本题主要考查一次函数与反比例函数的交点问题,确定出y的最大值为三个函数公共部分的最大值是解题的关键.三、解答题.17.计算:.【考点】二次根式的混合运算.【分析】根据二次根式的性质,先化简,再进一步按照运算顺序计算合并即可.【解答】解:原式=3﹣+2(﹣)=3﹣+6﹣4=5﹣.【点评】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】先找到矩形和平行四边形的中心,然后过中心作直线即可.【解答】解:如图所示:【点评】本题考查了作图﹣应用与设计作图,用到的知识点有中心对称及矩形、平行四边形的性质,有一定难度,注意掌握中心与中心对称点之间的关系.19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 740乙77.5 5.4 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.【考点】折线统计图;算术平均数;中位数;方差.【专题】图表型.【分析】(1)分别利用中位数以及方差和平均数求法得出即可;(2)利用方差的意义,分析得出答案即可.【解答】解:(1)甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图,根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),方差为:[(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.方差为:[(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.…(8分)(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.【点评】此题主要考查了中位数以及方差和平均数求法,正确记忆相关定义是解题关键.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.【考点】一元二次方程的应用.【专题】压轴题.【分析】根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,可得出y的最小值.【解答】解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.【点评】本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为32,菱形ABCO的周长为32,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.【考点】四边形综合题.【分析】(1)根据坐标与图形的关系求出OF,AF的长,根据勾股定理求出菱形的边长,根据菱形的性质求出周长;(2)根据直角三角形的斜边的中线是斜边的一半求出MD的值,计算得到MA+MD的值;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,作出MA+MD的值最小时的点M,根据菱形的性质和坐标与图形的关系求出AD′的长,得到答案.【解答】解:(1)∵点A的坐标为(4,4),∴OF=4,AF=4,由勾股定理得,OA==8,∴菱形ABCO的周长为32;(2)当t=4时,点M与对角线的交点F重合,则MA=4,在Rt△AMB中,AB=8,点D为AB的中点,∴MD=AB=4,∴MA+MD=4+4;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,则此时MA+MD的值最小,由题意和菱形的性质可知,点D的坐标为(6,2),则D′的坐标为(6,﹣2),设直线AD′的解析式为:y=kx+b,,解得,,则直线AD′的解析式为:y=﹣3x+16,﹣3x+16=0,x=,点M的坐标为(,0),即OM=,则当t=时,MA+MD的值最小,作D′E⊥AC于E,由菱形的性质可知,D′为BC的中点,∴D′E=2,EF=2,则AE=6,在Rt△AED′中,AE=6,D′E=2,AD′==4,则MA+MD的最小值为4.【点评】本题考查的是菱形的性质、勾股定理和轴对称﹣最短路径问题以及待定系数法求一次函数解析式,灵活应用待定系数法求函数解析式、掌握直角三角形的斜边的中线是斜边的一半,作出对称点得到最短路径是解题的关键.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.【考点】一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)因为使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,所以y=xw=x(10x+90);要求前几个月的利润和=700万元,可令y=700,利用方程即可解决问题;(2)因为原来每月利润为120万元,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等,所以有y=120x,解之即可求出答案;(3)因为使用回收净化设备后第一、二年的利润=12×(10×12+90),求出它们的和即可.【解答】解:(1)y=xw=x(10x+90)=10x2+90x,10x2+90x=700,解得:x1=5或x2=﹣14(不合题意,舍去),答:前5个月的利润和等于700万元;(2)10x2+90x=120x,解得:x1=3,x2=0(不合题意,舍去),答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;(3)第一年全年的利润是:12(10×12+90)=2520(万元),前11个月的总利润是:11(10×11+90)=2200(万元),∴第12月的利润是2520﹣2200=320(万元),第二年的利润总和是12×320=3840(万元),2520+3840=6360(万元).答:使用回收净化设备后两年的利润总和是6360万元.【点评】本题需正确理解题意,找出数量关系,列出函数关系式进一步求解.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.【分析】(1)由矩形的性质结合角平分线的定义可证得∠ADF=∠BEF=∠CDF=∠F,可证明BE=BF;(2)连接BG,可证明△AGF≌△CGB,可证得AG=CG,进一步可证明∠AGC=90°,可判定△AGC为等腰直角三角形.【解答】(1)证明:∵四边形ABCD为矩形,∴AB∥CD,AD∥BC,∴∠F=∠CDF,∠ADF=∠BEF,∵DF平分∠ADC,∴∠CDF=∠ADF,∴∠F=∠BEF,∴BE=BF;(2)解:△AGC为等腰直角三角形,理由如下:如图,连接BG,由(1)可知BE=BF,且∠FBE=90°,∴∠F=45°,∴AF=AD=BC,∵G为EF中点,∴BG=FG,∠EBG=45°,在△AGF和△CGB中,,∴△AGF≌△CGB(SAS),∴AG=CG,∠AGF=∠BGC,∴∠BGF+∠AGB=∠AGB+∠AGC,∴∠AGC=∠BGF=90°,∴△AGC为等腰直角三角形.【点评】本题主要考查全等三角形的判定和性质和矩形的性质,在(1)中充分利用矩形的对边分别平行是解题的关键,在(2)构造三角形全等是解题的关键.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.【考点】反比例函数综合题;解分式方程;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;平行四边形的性质;相似三角形的判定与性质.【专题】综合题.【分析】(1)先求出点P的坐标,再从条件OP=2OQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.(3)以点A、B、C、D为顶点的四边形为平行四边形可分成两类:①AC为平行四边形的一边,②AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.【解答】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.。

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。

浙江省嘉兴市数学八年级下学期期末考试试卷

浙江省嘉兴市数学八年级下学期期末考试试卷

浙江省嘉兴市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在式子,,,中,分式的个数是()A . 4B . 3C . 2D . 12. (2分)(2014·北海) 甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:甲乙丙丁方差0.2930.3750.3620.398由上可知射击成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁3. (2分)已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A . x<0B . ﹣1<x<1或x>2C . x>﹣1D . x<﹣1或1<x<24. (2分)如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A .B .C .D . 85. (2分) (2019九上·海淀期中) 已知水平放置的圆柱形排水管道,管道截面半径是1 m,若水面高0.2 m. 则排水管道截面的水面宽度为()A . 0.6 mB . 0.8 mC . 1.2 mD . 1.6 m6. (2分) (2018八上·罗山期末) 如图,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光()A . 3mB . 4mC . 5mD . 7m7. (2分)在反比例函数图像上有两个点A(x1 ,-1)和B(x2 , 2),则()A . x1>x2B . x1<x2C . x1=x2D . x1与x2大小不能确定8. (2分)如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A . 3cmB . 6cmC . 9cmD . 12cm二、填空题 (共8题;共9分)9. (2分) (2017九下·张掖期中) 函数y= 中自变量x的取值范围是________.10. (1分)(2017·五莲模拟) 如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y= 的图象交于B、A两点,则tanA=________.11. (1分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和5的两部分,则平行四边形ABCD 周长是________.12. (1分) (2019八下·莲都期末) 一组数据:8,1,4,3,x的平均数为x,则这组数据的众数是________.13. (1分) (2020八下·阿城期末) 已知△ABC中AB=4 ,AC=5,BC上的高为4,则BC=________.14. (1分)如果一组数据:5,x,9,4的平均数为6,那么x的值是________15. (1分)纳米是非常小的长度单位,已知1纳米=10﹣6毫米,某种病毒的直径为100纳米,用科学记数法可表示为________毫米.16. (1分) (2019八下·历下期末) 如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为________.三、综合题 (共10题;共90分)17. (5分)解方程:.18. (5分)(2016·广元) 先化简,再求值:,其中x=﹣4.19. (5分) (2019八下·北海期末) 如图,在△ABC中,AB=13,BC=21,AD=12,且AD⊥BC,垂足为点D,求AC的长.20. (15分)(2016·黄冈) 望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1) m=________%,n=________%,这次共抽查了________名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?21. (5分) (2019八下·江阴期中) 某品牌牛奶专营店销售一款牛奶,售价是在进价的基础上加价a%出售,每月的销售额可以达到9.6万元,但每月需支出2.45万元的固定费用及进价的2.5%的其它费用.如果该款牛奶每月所获的利润要达到1万元,那么a的值是多少?(利润=售价-进价-固定费用-其它费用)22. (5分) (2019八下·大连月考) 如图,在平行四边形ABCD中,E、F分别为BC、AD上的点,且∠1=∠2.求证:AF=CE.23. (15分) (2019七下·赣县期末) 如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD , AC与BD相交于点O ,限用无刻度直尺完成以下作图:(1)在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F ,使EF∥BC .24. (5分)(2019·花都模拟) 如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.求BD的长度.25. (15分)(2017·新泰模拟) 已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1) k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y= 图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.26. (15分)(2017·淮安模拟) 如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q以相同的速度在x 轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中,设△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、综合题 (共10题;共90分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.505.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2. 5 B.3,4,5 C.5,12,13 D.20,30,406.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.97.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.510.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1y2(选择“>”、“<”、=”填空).13.(3分)一直角三角形两条边长分别是12和5,则第三边长为.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)17.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式,故选:B.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.50【解答】解:这组数据中105出现的次数最多,则众数为105.故选:A.5.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.6.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.9【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差S12= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,现在的方差S22= [(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x n﹣5﹣+5)2]= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,所以方差不变.故选:C.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.8.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S【解答】解:∵=(173+175+175+175+177)÷5=175(cm),=(170+171+175+179+180)÷5=175(cm),∴=,∵S2甲= [(173﹣175)2+3×(175﹣175)2+(175﹣177)2]=1.6,S2乙= [(170﹣175)2+(171﹣175)2+(175﹣175)2+(179﹣175)2+(180﹣175)2]=16.4,∴S2甲<S2乙,故选:B.9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.5【解答】解:连接AP,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠BAC=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1>y2(选择“>”、“<”、=”填空).【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.13.(3分)一直角三角形两条边长分别是12和5,则第三边长为13或.【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为=.故答案为:13或.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)【解答】(1)解:(+3﹣2)×2=(+)×2=6+6.(2)解:(﹣1)2+(+2)2﹣2(﹣1)(+2)=[(﹣1)﹣(+2)]2=917.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是75g;乙厂抽取质量的众数是75g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)甲厂处在中间位置的数为第8个,为75克,故甲厂质量中位数为75克;乙厂75克出现了6次,故乙厂众数为75克.故答案为75,75.(2)根据=×[(73﹣75)2×2+(74﹣75)2×4+(75﹣75)2×4+(76﹣75)2×3+(77﹣75)2×1+(78﹣75)2×1)]≈1.87.∵>,∴快餐公司应选购甲加工厂的鸡腿.19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.【解答】解:∵直线y=ax﹣1经过点(4,3),∴4a﹣1=3,解得a=1,此直线解析式为y=x﹣1.∵直线y=﹣0.5x+b交y轴于点B(0,1),∴b=1,此直线解析式为y=﹣0.5x+1,∴,解得,∴点C(,),∴△ABC的面积=×(|1|+|﹣1|)×||=20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.【解答】证明:(1)∵AF⊥BE∴∠EAF+∠AEB=90°又∵正方形ABCD,∴∠ABE+∠AEB=90°,∴∠EAF=∠ABE,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=AF,即AF=BE;(2)MP与NQ相等,理由:作AF∥PM,BE∥NQ,∵正方形ABCD,∴AM∥FP,BN∥EQ,∴四边形AMPF和四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,又∵MP⊥QN,∴BE⊥AF,∵(1)结论知AF=BE,∴MP=NQ.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,w随x的增大而减少,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。

嘉兴市八年级下学期期末数学试卷

嘉兴市八年级下学期期末数学试卷

嘉兴市八年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是()A . 负数没有倒数B . 正数的倒数比自身小C . 任何有理数都有倒数D . 的倒数是2. (2分) (2020七下·宝安期中) 某学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度1020304050607080小车下滑的时间 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是()A . 当h=60cm时,t=1.71sB . 随着h逐渐升高,t逐渐变小C . h每增加10cm,t减小1.23sD . 随着h逐渐升高,小车下滑的平均速度逐渐加快3. (2分) (2017八下·三门期末) 以下是期中考试后,八(1)班里两位同学的对话,小辉:“我们小组成绩是85分的人最多。

”小聪:“我们小组7位同学成绩排在最中间的恰好也是85分。

”以上两位同学的对话反映出的统计量是()A . 众数和方差B . 平均数和中位数C . 众数和平均数D . 众数和中位数4. (2分) (2017八下·三门期末) 某地需要开辟一条隧道,隧道AB长度无法直接测量。

如图所示,在地面上取一点C,使点C均可直接到达A、B两点,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB 的长度为()A . 3300mB . 2200mC . 1100mD . 550m5. (2分) (2017八下·三门期末) 在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a=10,b=8,c=6;②a2=3,b2=4,c2=5;③a2=(b+c)(b-c);④∠A=2∠B=2∠C。

其中能判断△ABC是直角三角形的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2017八下·三门期末) 方程经过配方后,其结果正确的是()A .B .C .D .7. (2分) (2017八下·三门期末) 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A . 平行四边形B . 矩形C . 菱形D . 正方形8. (2分) (2017八下·三门期末) 如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A . m>0,n>0B . m>0,n<0C . m<0,n>0D . m<0,n<09. (2分) (2017八下·三门期末) 如图,△ABC中,∠ACB=90°,∠A=25°,点D为斜边AB上的中点,DE⊥CD 交AC于点E,则∠AED的度数为()A . 105°B . 110°C . 115°D . 125°10. (2分) (2017八下·三门期末) 如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深间的函数关系的图象可能是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019七上·溧水期末) 某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,则这种服装的成本价为________元.12. (1分)(2016·内江) 任取不等式组的一个整数解,则能使关于x的方程:2x+k=﹣1的解为非负数的概率为________.13. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.14. (1分) (2017八下·三门期末) 某中学规定学生的学期体育总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小彤的三项成绩依次为95,90,88,则小彤这学期的体育总评成绩为________。

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列图形中,不是中心对称图形的是()A .B .C .D .2. (2分) (2018七下·黑龙江期中) 在△ABC中,∠A+∠B=90°,则△ABC是()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 钝角三角形或直角三角形3. (2分) (2019八上·融安期中) 如图,小陈在木门板上钉了一个加固板,从数学的角度看,这样做的道理是()A . 利用四边形的不稳定性B . 利用三角形的稳定性C . 三角形两边之和大于第三边D . 四边形的外角和等于360°4. (2分) (2019八下·天台期中) 如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于()A . 15°B . 25°C . 35°D . 65°5. (2分)(2018·柳州) 如图,在中,,,,则()A .B .C .D .6. (2分) (2018八下·宁波期中) 为了了解某校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算仰卧起坐次数在25~30次的频率是()A . 0.1B . 0.2C . 0.3D . 0.47. (2分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象如图所示,则下列结论中正确的是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<08. (2分) (2020八下·正安月考) 如图,在矩形ABCD中,E,F,G,H分别为边AB,DA,CD,BC的中点.若AB=2,AD=4,则图中阴影部分的面积为()A . 3B . 4C . 6D . 8二、填空题 (共8题;共8分)9. (1分) (2020九上·淅川期末) 如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)10. (1分) (2018八下·东台期中) 如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=________.11. (1分) (2017八下·宜兴期中) 已知平行四边形ABCD中,∠C=2∠B,则∠A=________度.12. (1分) (2019八下·柳州期末) 直角三角形的两直角边是3和4,则斜边是________13. (1分)(2019·南平模拟) 一个多边形的每个外角都等于72°,则这个多边形的边数为________.14. (1分) (2020八上·吴兴期末) 已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式为 ________.15. (1分)如图,反比例函数(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=________ .16. (1分)(2017·吉林模拟) 如图,这四边行ABCD中,点M、N分别在AB,CD边上,将四边形ABCD沿MN 翻折,使点B、C分别在四边形外部点B1 , C1处,则∠A+∠B1+∠C1+∠D=________.三、解答题 (共8题;共71分)17. (10分) (2019八上·诸暨期末) 已知直线经过点和.(1)求该直线的函数表达式;(2)求该直线与x轴,y轴的交点坐标.18. (5分)如图,O是平行四边形ABCD对角线的交点,过点O的直线EF分别交AD、BC于F、E两点.求证:四边形AECF是平行四边形.19. (10分) (2017八下·君山期末) 在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.20. (10分)(2018·福建) 已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.21. (10分)(2016·陕西) 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22. (11分)(2017·温州模拟) 中考前的模拟考试对于学生来说具有重大的指导意义,现抽取m名学生的数学一模成绩进行整理分组,形成如下表格(x代表成绩,规定x>140为优秀),并绘制出扇形统计图和频数分布直方图(横坐标表示成绩,单位:分).A组140<x≤150B组130<x≤140C组120<x≤130D组110<x≤120E组100<x≤110(1) m的值为________;扇形统计图中D组对应的圆心角是________°.(2)若要从成绩优秀的学生甲、乙、丙、丁中,随机选出2人介绍经验,求甲、乙两人中至少有1人被选中的概率(通过画树状图或列表法进行分析).23. (10分) (2018八下·江都月考) 如图,在四边形ABCD中,AB=BC ,对角线BD平分∠ABC , P是BD 上一点,过点P作PM⊥AD ,PN⊥CD ,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.24. (5分)(2016·益阳) 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共71分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、。

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·海门期末) 若式子在实数范围内有意义,则x的取值范围是()A . x≤﹣3B . x≥﹣3C . x<﹣3D . x>﹣32. (2分) (2017八下·临洮期中) 下列运算中错误的是()A . • =B . ÷ =2C . + =D . (﹣)2=33. (2分)某校九年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,10,13.则这组数据的()A . 众数是10.5B . 中位数是10C . 平均数是11D . 极差64. (2分)(2017·温州) 已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1 , y2 , 0的大小关系是()A . 0<y1<y2B . y1<0<y2C . y1<y2<0D . y2<0<y15. (2分)下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A . a= b=2 c=3B . a=7 b=24 c=5C . a=6 b=8 c=10D . a=3 b=4 c=56. (2分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A . (1,1)B . (, 1)C . (1,)D . (, 2)7. (2分)(2011·梧州) 若一个菱形的一条边长为4cm,则这个菱形的周长为()A . 20cmB . 18cmC . 16cmD . 12cm8. (2分) (2014九上·宁波月考) 如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则图中阴影部分的面积为()A .B .C .D .9. (2分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A . 20kgB . 25kgC . 28kgD . 30kg10. (2分)(2017·通州模拟) 一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A . 1.5cmB . 7.5cmC . 1.5cm或7.5cmD . 3cm或15cm二、填空题 (共5题;共5分)11. (1分)化简:﹣=________ .12. (1分) (2020八下·通州月考) 已知点M(1,n)和点N(-2,m)是正比例函数y=﹣x图象上的两点,则m与n较大的是________.13. (1分) (2018八下·兴义期中) 有一个边长为2m的正方形洞口,想用一个圆形盖去盖住这个洞口,圆形盖的半径至少是________ m.14. (1分)(2016·高邮模拟) 如图,若用若干个全等的等腰梯形拼成了一个平行四边形,则一个等腰梯形中,最大的内角是________.15. (1分)(2017·太和模拟) 如图,D为△ABC中边BC中点,E为CD上一点,将△ACE沿AE折叠时C与D 重合,F为AB上一点,FB=FC,FC与AD、AE分别交于P、Q点,下列结论①AE∥DF;②△APQ≌△DPF;③AF=DF;④ .其中正确的有________.三、解答题 (共8题;共83分)16. (15分) (2019八上·民勤月考) 计算(1)(2)(3) .17. (5分)为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?18. (10分)(2018·遵义模拟) 如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.19. (10分) (2016九上·岳池期末) 如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,AC平分∠BAD,CD⊥AD 于D,AD交⊙O于E.(1)求证:CD为⊙O的切线;(2)若⊙O的直径为8cm,CD=2 cm,求弦AE的长.20. (10分)(2014·茂名) 2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.21. (15分)如图,直线y=﹣x+6交直线y=x+6于点A,直线y=﹣x+6与直线y=2x相交于点B,直线y=x+6与直线y=2x相交于点C.(1)求点B的坐标;(2)求三角形ABC的面积;(3)若点P是直线y=2x上的动点,当△ABP的面积等于△AOC的面积时,求点P的坐标.22. (9分) (2017七下·东港期中) 如图,表示甲、乙两人沿同一条路长跑,两人的行程y(千米)与时间x(时)变化的图象(全程)如图所示,根据图象回答问题:(1)乙的速度为________千米/小时;两人是否同时到达终点________(填“是”或“不是”);(2)甲第一段的速度为________千米/时;第二段的速度为________千米/时;(3) b、c表示的数字分别为________、________;(4)若两人在相遇后1小时乙到达终点,则a表示的数字为________;甲的行程是________千米,乙的行程是________千米.23. (9分)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x 的函数关系式为________.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共83分)16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、23-3、。

2017-2018学年浙教版八年级数学(下册)期末测试卷及答案

2017-2018学年浙教版八年级数学(下册)期末测试卷及答案

2017-2018学年八年级(下册)期末数学试卷一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.32.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+154.下列二次根式是最简二次根式的是()A. B.C. D.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=06.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.﹣()2=.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为.13.若整数x满足|x|≤2,则使为整数的x的值是.14.若关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,则m=.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是 千克.16.如图是由射线AB ,BC,CD,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长为 m .18.如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .19.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE +FC ,则边BC 的长为 .20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题21.计算:(1)﹣()2(2)÷﹣.22.解方程:(1)x2=2x(2)x2﹣4x+1=0.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.3【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x的取值范围,进而得出答案.【解答】解:∵二次根式有意义,∴x﹣3≥0,解得:x≥3,故字母x可以取的是:3.故选:D.2.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解答.【解答】解:A、C、D都不是中心对称图形,只有C是中心对称图形.故选:C.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+15【考点】算术平均数.【分析】根据数据a1+1,a2+2,a3+3,a4+4,a5+5比数据a1、a2、a3、a4、a5的和多15,可得数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数比a多3,据此求解即可.【解答】解:a+[(a1+1+a2+2+a3+3+a4+4+a5+5)﹣(a1+a2+a3+a4+a5)]÷5=a+[1+2+3+4+5]÷5=a+15÷5=a+3故选:B.4.下列二次根式是最简二次根式的是()A. B.C. D.【考点】最简二次根式.【分析】根据最简二次根式满足的两个条件进行判断即可.【解答】解:=4,被开方数中含能开得尽方的因数,不是最简二次根式;,被开方数含分母,不是最简二次根式;是最简二次根式;被开方数含分母,不是最简二次根式,故选:C.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=0【考点】根的判别式.【分析】直接利用根的判别式分别分析各选项,即可求得答案.【解答】解:A、∵a=1,b=0,c=1,∴△=b2﹣4ac=02﹣4×1×1=﹣4<0,∴此一元二次方程无实数根;B、∵a=1,b=4,c=﹣4,∴△=b2﹣4ac=42﹣4×1×(﹣4)=32>0,∴此一元二次方程有两个不相等的实数根;C、∵a=1,b=1,c=,∴△=b2﹣4ac=12﹣4×1×=0,∴此一元二次方程有两个相等的实数根;D、∵a=1,b=﹣1,c=,∴△=b2﹣4ac=(﹣1)2﹣4×1×=﹣1<0,∴此一元二次方程无实数根.故选C.6.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.【考点】正方形的性质;三角形中位线定理.【分析】连接MN,由三角形中位线定理可求得EH=MN,则可求得正方形EFGH 的面积.【解答】解:连接MN,∵M、N分别是AB、CD的中点,∴MN=AD=2,∵E、H分别是PM、PN的中点,∴EH=MN=1,=EH2=1,∴S正方形EFGH故选B.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C【考点】反证法.【分析】根据反证法的一般步骤解答即可.【解答】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”,第一步应是假设∠B=∠C,故选:C.9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α【考点】翻折变换(折叠问题).【分析】根据四边形内角和为360°可得∠A+∠B=360°﹣a,进而可得∴∠AEF+∠BFE=a,再根据折叠可得:∠3+∠4=a,再由平角定义可得答案.【解答】解:∵∠A+∠B+∠C+∠D=360°,∠C+∠D=a,∴∠A+∠B=360°﹣a,∵∠A+∠B+∠AEF+∠AFE=360°,∴∠AEF+∠BFE=360°﹣(∠A+∠B)=a,由折叠可得:∠3+∠4=a,∴∠1+∠2=360°﹣2a,故选:C.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB ≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a 的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题(每小题3分,共30分)11.﹣()2=﹣3.【考点】实数的运算.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为﹣4.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣2,m)代入反比例函数y=,求出m的值即可.【解答】解:∵点A(﹣2,m)是反比例函数y=的图象上的一点,∴m==﹣4.故答案为:﹣4.13.若整数x 满足|x |≤2,则使为整数的x 的值是 ﹣2 . 【考点】实数.【分析】先求出x 的取值范围,再根据算术平方根的定义解答.【解答】解:∵|x |≤2,∴﹣2≤x ≤2,∴当x=﹣2时,==3, 故使为整数的x 的值是﹣2.故答案为:﹣2.14.若关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,则m= ±2 .【考点】一元二次方程的解.【分析】根据关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,将x=0代入即可求得m 的值,本题得以解决.【解答】解:∵关于x 的一元二次方程x 2+mx +m 2﹣4=0有一根为0,∴m 2﹣4=0,解得,m=±2,故答案为:±2.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是 6 千克.【考点】众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图表可知,6千克出现了15次,次数最多,所以众数为6千克.故答案为6.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为7m.【考点】一元二次方程的应用.【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故答案是:7.18.如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA ⊥OP交x轴于点A,△POA的面积为2,则k的值是2.【考点】反比例函数系数k的几何意义;等腰直角三角形.【分析】过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA=S△POA=×2=1,然后根据反比例为等腰直角三角形,所以OB=AB,于是S△POB函数y=(k≠0)系数k的几何意义即可得到k的值.【解答】解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,=S△POA=×2=1,∴S△POB∴k=1,∴k=2.故答案为2.19.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为3.【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【解答】解:∵四边形ABCD是矩形,四边形BEDF是菱形,∴∠A=90°,AD=BC,DE=BF,OE=OF,EF⊥BD,∠EBO=FBO,∴AE=FC.又EF=AE+FC,∴EF=2AE=2CF,又EF=2OE=2OF,AE=OE,∴△ABE≌OBE,∴∠ABE=∠OBE,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故答案为:3.20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题21.计算:(1)﹣()2(2)÷﹣.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)﹣()2=4﹣5=﹣1(2)÷﹣=2﹣=22.解方程:(1)x2=2x(2)x2﹣4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)移项然后提公因式可以解答此方程;(2)根据配方法可以解答此方程.【解答】解:(1)x2=2xx2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0,解得,x1=0,x2=2;(2)x2﹣4x+1=0x2﹣4x=﹣1(x﹣2)2=3x﹣2=,∴.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?【考点】众数;加权平均数;中位数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8和8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.【考点】矩形的性质.【分析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后求出DE,即可得出结果.【解答】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,BD=BE,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,∴△BED的周长=BD+BE+DE=8+8+8=24..25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=3.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据新定义运算的法则进行计算即可;(2)根据max{,k2x+b}=,得出≥k2x+b,再结合图象进行判断即可;(3)分两种情况进行讨论:①﹣3x﹣1≥﹣2x+3时;②﹣3x﹣1<﹣2x+3时,分别求得x的值,并检验是否符合题意即可.【解答】解:(1)∵<3,∴max{,3}=3,故答案为:3;(2)∵max{,k2x+b}=,∴≥k2x+b,∴从图象可知,x的取值范围为﹣3≤x<0或x≥2;(3)①当﹣3x﹣1≥﹣2x+3时,解得x≤﹣4,此时,﹣3x﹣1=x2+x+3,解得x1=x2=﹣2(不合题意)②当﹣3x﹣1<﹣2x+3时,解得x>﹣4,此时,﹣2x+3=x2+x+3,解得x1=0,x2=﹣3(符合题意)综上所述,x的值为0或﹣3.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别令直线y=﹣x+3中的x=0,y=0即可求得A、B两点的坐标;(2)根据对称点的性质即可;(3)分两种情况:①当点P在点B的上方时,即:m>3,延长AO′于PQ相交于点M,设P(0,m),由面积关系可求;②当点P在点B的上方时,即:0<m <3,方法同上.【解答】解:(1)A(3,0),B(0,3)(2)如图①图①∵点O 与O′关于直线AB 对称,∴由题意可得四边形OAO′B 为正方形,∴O′(3,3)则 k=3×3=9即:k 的值为9(3)设P (0,m ),显然,点P 与点B 不重合①当点P 在点B 的上方时,即:m >3,延长AO′于PQ 相交于点M ,如图②所示:则:Q (,m ),M (3,m )∴PM=3,AM=m ,MO′=m ﹣3,QM=3﹣,∴S=S △PMA ﹣S △QMO′==×=∴﹣(3﹣m )(m +3)=, 解之得:m=6②当点P 在点B 的上方时,即:0<m <3,如图③所示:显然,PQ⊥AO′,∴S=•PQ•AO′=×3×=,∴m=2∴P(0,2)或(0,6)四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.【考点】平行四边形的性质.【分析】(1)由已知条件得出∠BEC=90°,∠BCE=30°,得出BE=BC=4,由勾股定理求出CE即可;(2)取BC的中点G,连接FG交CE于O,证出四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,得出∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,得出∠EFG=∠CFG,因此∠EFD=3∠AEF,得出∠FAE=∠EFD﹣∠AEF=2∠AEF,即可得出结论.【解答】解:(1)∵CE⊥AB,∴∠BEC=90°,∵∠B=60°,∴∠BCE=30°,∴BE=BC=4,∴CE===4;(2)取BC的中点G,连接FG交CE于O,连接CF,如图所示:∵BC=8,AB=4,四边形ABCD是平行四边形,∴四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,∴∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,∴EF=CF,∴∠EFG=∠CFG,∴∠EFD=3∠AEF,∴∠FAE=∠EFD﹣∠AEF=2∠AEF,∴∠AEF:∠EAF:∠EFD=1:2:3.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)作CN⊥x轴于点N,通过角的计算得出∠NAC=∠OBA,结合相等的直角以及AC=AB即可证出Rt△CNA≌Rt△AOB(AAS),进而得出ON和CN的长度,此题得解;(2)设反比例函数解析式为y=,C′(c,2),根据平移的性质结合点B、C的坐标即可得出点B′的坐标,再根据反比例函数图象上点的坐标特征即可得出关于k、c的二元一次方程组,解方程组即可得出k、c值,由此即可得出反比例函数解析式与点B′、C′坐标,根据点B′、C′坐标利用待定系数法即可求出直线B′C′的解析式;(3)假设存在,根据直线B′C′的解析式即可求出点G的坐标,设点M(t,0),根据平行四边形的性质即可得出点P的坐标,再利用反比例函数图象上点的坐标特征即可得出关于t的分式方程,解方程即可得出t值,将t值代入点M、P的坐标即可得出结论.【解答】解:(1)作CN⊥x轴于点N,如图1所示.∵∠BAC=90°,∴∠NAC+∠OAB=90°,∵∠OAB+∠OBA=90°,∴∠NAC=∠OBA.在Rt△CNA和Rt△AOB中,,∴Rt△CNA≌Rt△AOB(AAS),∴AN=BO=1,NO=NA+AO=3,CN=AO=2,∴C点坐标为(﹣3,2).(2)设反比例函数解析式为y=,∵C(﹣3,2),B(0,1),∴设C′(c,2),则B′(c+3,1).∵点B′和C′在反比例函数图象上,∴,解得:,∴反比例函数解析式为y=.∵c=3,∴C′(3,2),B′(6,1),设直线B′C′的解析式为y=mx+n,则,解得:,∴直线B′C′的解析式位y=﹣x+3.(3)假设存在,令y=﹣x+3中x=0,则y=3,∴G(0,3),设点M(t,0),则P(0+3﹣t,3+2﹣0),即(3﹣t,5),∵点P在反比例函数y=的图象上,∴5=,解得:t=,经检验t=是方程5=的解,∴M(,0),P(,5).故存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,点M的坐标为(,0),点P的坐标为(,5).2017年2月26日。

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷

浙江省嘉兴市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020七下·武鸣期中) 如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A . (2020,1)B . (2020,0)C . (1010,1)D . (1010,0)2. (2分)(2018·台州) 在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A .B .C .D .3. (2分)在Rt△A BC中,∠C=90°,AB=10,tanA= ,则AC的长是()A . 3B . 4C . 6D . 84. (2分)如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6,则PF的长为()A . 2B . 4C . 6D . 85. (2分)(2016·达州) 如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A . 2B . 3C . 4D . 56. (2分)(2019·澧县模拟) 如图,在中,延长至使得,过中点作(点位于点右侧),且,连接 .若,则的长为()A .B .C .D .7. (2分)下列哪一个度数可以作为某一个多边形的内角和()A . 240°B . 600°C . 540°D . 2180°8. (2分)不能判定四边形ABCD是平行四边形的是()A . AB=CD,AD=BCB . AB∥CD,AB=CDC . AD∥BC,AB=CDD . AB∥CD,AD∥BC9. (2分)(2020·北京模拟) 新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:抽检数量n/个205010020050010002000500010000合格数量m/个194693185459922184045959213口罩合格率0.9500.9200.9300.9250.9180.9220.9200.9190.921下面四个推断合理的是()A . 当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B . 由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C . 随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D . 当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.10. (2分) (2020八下·南昌期中) 一次函数与正比例函数、常数,且,在同一坐标系中的大致图象是()A .B .C .D .11. (2分)(2017·天桥模拟) 函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A . x>0B . x<0C . x<2D . x>212. (2分)已知在函数y=kx+b,其中常数k>0、b<0,那么这个函数的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共6分)13. (1分) (2019八下·句容期中) 如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D 在y轴上,则点C的坐标是________.14. (1分) (2019八上·大连期末) 若点的坐标是,则点关于轴对称的点的坐标是________ .15. (1分) (2019七上·威海期末) 把直线y=2x﹣1向上平移三个单位,则平移后直线与x轴的交点坐标是________.16. (1分) (2018八上·颍上期中) 甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确的序号是________.17. (1分) (2019八上·如皋期末) 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是18cm2 , AB=10cm,AC=8cm,则DE=________.18. (1分) (2016八下·罗平期末) 如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于________.三、解答题 (共8题;共92分)19. (10分)(2017·徐州模拟) 如图,已知AD=BC,AC=BD=10.(1)求证:△ADB≌△BCA;(2)若OD=4,求OA的长.20. (11分) (2017八上·无锡期末) 在△ABC中, AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:________.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,请利用第2小题解题方法求六边形花坛ABCDEF的面积.21. (10分)(2019·南关模拟) 某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取名学生的成绩,数据如下:七年级八年级整理数据按如下分段整理本数据并补全表格:人数成绩年级七年级八年级分析数据补全下列表格中的统计量:统计量年级平均数中位数众数方差七年级八年级得出结论【答案】1|1|94|93.5(1)估计该校八年级参加这次“汉字听写”大赛成绩低于分的人数.(2)你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(写一条即可)22. (15分) (2020八下·武城期末) 将一个正方形纸片AOBC放置在平面直角坐标系中,点A(0,4),点O(0,0),B(4,0),C(4,4)点.动点E在边AO上,点F在边BC上,沿EF折叠该纸片,使点O的对应点M始终落在边AC上(点M不与A,C重合),点B落在点N处,MN与BC交于点P。

2017~2018第二学期八年级数学期末试卷

2017~2018第二学期八年级数学期末试卷

2017~2018学年第二学期期末考试卷 八年级数学试题 2018.6一、选择题(本大题共10小题,每题3分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请把正确现象前的字母代号填涂在答题卷相应位置..........) 1.下列图形中,既是轴对称图形,又是中心对称图形的是……………………………………………( ▲ )A.C.D.2.下列各式: a -b2,x -3x ,5+y π ,a +b a -b ,1n(x -y )中,是分式的共有…………………………( ▲ ) A.1个B.2个C.3个D.4个3.下列式子从左到右变形一定正确的是 ………………………………………………………………( ▲ )A. a b =a 2b 2B. a b =a +1b +1C. a b =a -1b -1D. a 2 ab =a b4.若2x -1 在实数范围内有意义,则x 的取值范围是………………………………………………( ▲ ) A.x ≥12B. x ≥-12C.x >12D.x ≠125.下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)( 2-3)=-1,其中结果正确的个数为 …………………………………………………………………………………………( ▲ ) A.1B.2C.3D.46.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是………… ……………………………………………………………………………( ▲ )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球7.已知P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)是反比例函数y =6x的图像上三点,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是 …………………………………………………………………………………………( ▲ ) A. x 1<x 2<x 3B. x 3<x 2<x 1C. x 2<x 1<x 3D. x 2<x 3<x 18.关于x 的分式方程7x x -1 +5=2m -1x -1 有增根,则m 的值为 ……………( ▲ ) A.5B.4C.3D.19.如图,在菱形ABCD 中,∠BCD =110°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 等于 …………………………………………( ▲ ) A.15° B.25° C.45° D.55°10.如图,在平面直角坐标系中,直线y =33x +2与x 轴交于点A ,与y 轴交于点B ,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y =kx(k ≠0)上,则k 的值为……( ▲ ) A.-4B.-2C. -2 3D. -3 3二、填空题:(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置.......上.) 11.若分式x -3x值为0,则x 的值为 ▲ . 12.若最简二次根式 2a -3 与5是同类二次根式,则a 的值为 ▲ . 13.若反比例函数y =k -2x的图像经过第二、四象限,则k 的取值范围是 ▲ . 14.关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是 ▲ . 15.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =2,BC =6,则OB 的长为 ▲ .16.如图,正方形ABCD 的边长为6,点G 在对角线BD 上(不与点B 、D 重合),GF ⊥BC 于点F ,连接AG ,若∠AGF =105°,则线段BG = ▲ .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC =90°,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75°,若点C 的对应点E 恰好落在y 轴上,则边AB 的长为 ▲ .18.如图,已知点A 是一次函数y =23x (x ≥0)图像上一点,过点A 作x 轴的垂线,B 是上一点(B 在A上方),在AB 的右侧以AB 为斜边作等腰三角形ABC ,反比例函数y =kx(x >0)的图像过点B 、C ,若△OAB 的面积为5,则△ABC 的面积是 ▲ .CF EDBA(第9题)(第10题)三、解答题(本大题共8小题,共计74分.解答需写出必要的文字说明或演算步骤.) 19.(本题满分16分)计算:(1)6×33-(12)-2+|1-2|;(2)(312-213+48)÷3;(3)1m -2-4m 2-4; (4)解方程:1x -2-1-x 2-x=-3.20.(本题满分4分)先化简,再求值:x -1x ÷(x - 1x),其中x =3-1.21.(本题满分8分)今年4月23日是第23个“世界读书日”.某校围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少? (2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计我市12000名初二学生中日均阅读时间在0.5~1.5小时的有多少人.22.(本题满分8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE =∠DCF . 求证:BF =DE.日人均阅读时间各时间段人数所占的百分比FEABCDMDABOCADGBFC(第15题)(第16题)(第17题)23.(本题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度.Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2). (1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出的图形△A1B1C.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2.(3)请用无刻度的直尺在第一、四象限内画出一个以A1B2为边,面积是7的矩形A1B1EF.(保留作图痕迹,不写作法)(4)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.24.(本题满分8分)某公司在工程招标时,接到甲、乙两个工程队的投标书.工程领导小组根据甲、乙两队的投标书测算:每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.甲队单独完成此工程刚好如期完工,乙队单独完成此工程要比规定工期多用5天,若甲、乙两队合作4天,剩下的工程由乙独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需要多少天?(2)由于任务紧迫,公司要求工程至少提前7天完成,问怎样安排甲、乙两个工程队施工所付施工费最少?最少施工费是多少万元?(施工天数不满一天以一天计)25.(本题满分10分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =k x (k >0,x >0)的图像上,点D 的坐标为(2,32),设AB 所在直线解析式为y =kx +b(a ≠0), (1)求k 的值,并根据图像直接写出不等式ax +b >kx的解集; (2)若将菱形ABCD 沿x 轴正方向平移m 个单位,① 当菱形的顶点B 落在反比例函数的图像上时,求m 的值;② 在平移中,若反比例函数图像与菱形的边AD 始终有交点,求m 的取值范围.26.(本题满分12分)在矩形ABCD 中,AB =4,AD =3,现将纸片折叠,点D 的对应点记为点P ,折痕为EF (点E 、F 是折痕与矩形的边的交点),再将纸片还原.(1)若点P 落在矩形ABCD 的边AB 上(如图1).① 当点P 与点A 重合时,∠DEF = ▲ °,当点E 与点A 重合时,∠DEF = ▲ °.② 当点E 在AB 上时,点F 在DC 上时(如图2),若AP =72,求四边形EPFD 的周长.(2)若点F 与点C 重合,点E 在AD 上,线段BA 与线段FP 交于点M (如图3),当AM =DE 时,请求出线段AE 的长度. (3)若点P 落在矩形的内部(如图4),且点E 、F 分别在AD 、DC 边上,请直接写出AP 的最小值.A PB C F D E A E P D F CB DC E MAP BD F C EP AB(图1)(图2) (图3)(图4)。

2017-2018学年度最新浙教版八年级数学下册期末考试模拟试题及答案解析三精品试卷

2017-2018学年度最新浙教版八年级数学下册期末考试模拟试题及答案解析三精品试卷

浙教版2017-2018学年度下学期期末模拟试题八年级数学试卷(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有( B )A.1个B.2个C.3个D.4个2.下列计算错误的是( D )A.14×7=7 2B.60÷30= 2C.9a+25a=8 a D.32-2=33.多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有( B ) A.8条B.9条C.10条D.11条4.顺次连结矩形ABCD各边的中点,所得四边形必定是( D )A.邻边不等的平行四边形B.矩形C.正方形D.菱形5.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC 段是双曲线y =kx (k ≠0)的一部分,则当x=16时,大棚内的温度约为( C )A .18 ℃B .15.5 ℃C .13.5 ℃D .12 ℃,第5题图) ,第9题图),第10题图)6.已知四边形ABCD ,下列说法正确的是( B )A .当AD =BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD =BC ,AB =DC 时,四边形ABCD 是平行四边形 C .当AC =BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC =BD ,AC ⊥BD 时,四边形ABCD 是正方形7.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是10户居民今年4月份用电量的调查结果:居民(户) 1 3 2 4 月用电量(度/户)40505560那么关于这10户居民月用电量(单位:度),下列说法错误的是( C ) A .中位数是55 B .众数是60 C .方差是29 D .平均数是548.关于x 的方程mx 2-(m +2)x +2=0只有一解(相同解算一解),则m 的值为( D ) A .0 B .2 C .1 D .0或29.如图,矩形AOBC 的面积为4,反比例函数y =kx 的图象的一支经过矩形对角线的交点P ,则该反比例函数的表达式是( A )A .y =1xB .y =2xC .y =4xD .y =12x10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EP 重叠,点B 恰好落在AD 边上的点P 处,连结BP 交EF 于点Q.对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( D )A .①②B .②③C .①③D .①④ 二、细心填一填(每小题3分,共24分)11.如图,在Rt △ABC 中,∠ACB =90°,点D ,E ,F 分别为AB ,AC ,BC 的中点,若CD =5,则EF 的长为__5__.,第11题图) ,第16题图) ,第17题图),第18题图)12.已知xy >0,化简二次根式x-yx 2的结果为__--y__.13.如果一组数据x 1,x 2,…,x n 的方差是2,那么一组新数据2x 1-1,2x 2-1,…,2x n -1的标准差是__22__.14.某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁) 12 13 14 15 人数1441则这10名同学年龄的平均数是__13.5岁__,中位数是__13.5岁__,众数是__13岁和14岁__.15.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则m 2-mn +n 2=__25__. 16.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,BD =6,OE ⊥BC ,垂足为点E ,则OE =__125__.17.如图,直线y =kx(k >0)与双曲线y =4x 交于A(x 1,y 1),B(x 2,y 2),则2x 1y 2-7x 2y 1=__20__.18.如图,在平面直角坐标系中,正方形的中点在原点O ,且正方形的一组对边与x 轴平行,点P(3a ,a)是反比例函数y =kx (k >0)的图象与正方形的一个交点.若图中阴影部分的面积等于9,则k =__3__.三、耐心做一做(共66分)19.(5分)解方程:(x +3)(x -3)=23x.解:x 1=33,x 2=-320.(8分)设α,β是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得αβ>α+β成立?请说明理由.解:不存在.理由:由Δ=16-4(k+1)≥0,得k≤3,由α+β=4,αβ=k+1,αβ>α+β,得k+1>4,∴k>3,∴不存在实数k,使得αβ>α+β成立21.(7分)已知x=22-2,求代数式x2+2x+1x2-1-xx-1的值.解:x=2+2,原式=1x-1,当x=2+2时,原式=2-122.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?解:设购买了x件这种服装,根据题意得出:[80-2(x-10)]x=1 200,解得x1=20,x2=30,当x=30时,80-2(30-10)=40(元)<50不合题意舍去.答:她购买了20件这种服装23.如图,在平面直角坐标系中,直线y =-3x +3与x 轴,y 轴分别交于A ,B ,两点,以AB 为边在第一象限内作正方形ABCD ,点D 在反比例函数y =kx(k ≠0)的图象上.(1)求k 的值;(2)若将正方形沿x 轴负方向平移m 个单位长度后,点C 恰好落在该反比例函数的图象上,则m 的值是多少?解:(1)如图,作DF ⊥x 轴于点F.在y =-3x +3中,令x =0,解得:y =3,即B 的坐标是(0,3).令y =0,解得x =1,即A 的坐标是(1,0).则OB =3,OA =1.∵∠BAD =90°,∴∠BAO +∠DAF =90°,又∵∠BAO +∠OBA =90°,∴∠DAF =∠OBA ,又AB =AD ,∠BOA =∠AFD =90°,∴△OAB ≌△FDA(AAS),∴AF =OB =3,DF =OA =1,∴OF =4,∴点D 的坐标是(4,1),将点D 的坐标(4,1)代入y =kx得:k =4(2)如图,作CE ⊥y 轴于点E ,交反比例函数图象于点G.与(1)同理可证,△OAB ≌△EBC ,∴OB =EC =3,OA =BE =1,则可得OE =4,∴点C 的坐标是(3,4),则点G 的纵坐标是4,把y =4代入y =4x得:x =1.即点G 的坐标是(1,4),∴OG =2,即m =224.(8分)某校九年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)1号 2号 3号 4号 5号 总分 甲班 100 98 110 89 103 500 乙班891009511997500统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率; (2)求两班比赛数据的中位数; (3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.解:(1)甲班的优秀率是35×100%=60%;乙班的优秀率是25×100%=40% (2)甲班5名学生比赛成绩的中位数为100(个);乙班5名学生成绩的中位数为97(个) (3)x 甲=15×500=100(个),x 乙=15×500=100(个);S 甲2=15[(100-100)2+(98-100)2+(110-100)2+(89-100)2+(103-100)2]=46.8,S乙2=15[(89-100)2+(100-100)2+(95-100)2+(119-100)2+(97-100)2]=103.2,甲班的方差小 (4)因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,应该把冠军奖状发给甲班25.(10分)如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB.(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的反比例函数表达式.解:(1)∵BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形,∵四边形OABC 是矩形,∴DA =12AC ,DB =12OB ,AC =OB ,∴DA =DB ,∴四边形AEBD 是菱形 (2)连结DE ,交AB于F ,如图所示,∵四边形AEBD 是菱形,∴AB 与DE 互相垂直平分,∵OA =3,OC =2,∴EF =DF =12OA =32,AF =12AB =1,3+32=92,∴点E 坐标为(92,1),设经过点E 的反比例函数表达式为y =k x ,把点E(92,1)代入得k =92,∴经过点E 的反比例函数表达式为y =92x26.(12分)正方形ABCD中,M,N分别是直线CB,DC上的动点,∠MAN=45°.(1)如图①,当∠MAN交边CB,DC于点M,N时,线段BM,DN和MN之间有怎样的数量关系?请证明;(2)如图②,当∠MAN分别交边CB,DC的延长线于点M,N时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16 cm,DN=4 cm,请利用(1)中的结论,试求MN 的长.解:(1)BM+DN=MN.证明:延长CD至点Q,使DQ=BM,连结AQ,易证△ADQ≌△ABM(SAS),∴AQ=AM,∠DAQ=∠BAM,∴∠QAN=∠DAN+∠DAQ=∠DAN+∠BAM =90°-∠MAN=45°=∠MAN,∴△AQN≌△ANM(SAS),∴MN=QN=DN+DQ=BM+DN (2)DN-BM=MN.证明:在DN上截取DK=BM,连接AK,易证△ADK≌△ABM,∴AK=AM,∠DAK=∠BAM,∵∠MAN=∠BAM+∠BAN=∠DAK+∠BAN=45°,即∠DAK+∠BAN =45°,∴∠KAN=90°-(∠DAK+∠BAN)=90°-45°=45°,∴∠KAN=∠MAN=45°,∴△KAN≌△MAN(SAS),∴MN=KN=DN-DK=DN-BM (3)设MN=x,则BM=MN-DN =x-4,CM=BC-BM=16-(x-4)=20-x,在Rt△CMN中,由勾股定理得(16-4)2+(20-x)2=x2,解得x=13.6,∴MN=13.6 cm。

浙江省嘉兴市八年级(下)期末考试数学试卷(含解析)

浙江省嘉兴市八年级(下)期末考试数学试卷(含解析)

浙江省嘉兴市八年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列各式中,正确的是()A.=﹣2B.﹣=﹣2C.(﹣)2=﹣2D.=±2 3.(3分)如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.34.(3分)方程(x﹣1)(x+2)=x﹣1的解是()A.x=﹣2B.x1=1,x2=﹣2C.x1=﹣1,x2=1D.x1=﹣1,x2=3 5.(3分)某企业1~5月份利润的变化情况如图所示,则以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的方差与1~5月份利润的方差相同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元6.(3分)利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设()A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角7.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)如图,将平行四边形纸片ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM.下列说法正确的是()A.①②都错B.①对②错C.①错②对D.①②都对9.(3分)已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或310.(3分)如图,正方形ABCD在平面直角坐标系中的点a和点b的坐标为A(1,0)、B (0,3),点D在双曲线y=(k≠0)上.若正方形沿x轴负方向平移m个单位长度后,点C恰好落在该双曲线上,则m的值是()A.1B.2C.3D.4二、填空题(共10题,共30分)11.(3分)一组数据为:1,2,3,4,5,6,则这组数据的中位数是.12.(3分)化简:4=.13.(3分)若某多边形的内角和比外角和大900°,则这个多边形的边数为.14.(3分)已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x 轴正半轴上一点,连接AO、AB且AO=AB,则S△AOB=.15.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为3cm和4cm两部分,则该平行四边形的周长为.16.(3分)关于x的一元二次方程x2+2x﹣=0有实数根,则a的取值范围是.17.(3分)准备在一块长为30米,宽为24米的长方形花埔内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为米.18.(3分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.19.(3分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.20.(3分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共6题,共40分)21.(1)计算:﹣(2﹣)(2+)﹣;(2)解方程:x2+6x+8=0.22.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2])(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?24.图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,A,C两点都在格点上,连结AC,请完成下列作图:(1)以AC为对角线在图1中作一个正方形,且正方形各顶点均在格点上.(2)以AC为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.(3)以AC为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.25.如图,在平面直角坐标系中,O是原点,▱ABCO的顶点A、C的坐标分别为A(﹣3,0)、C(1,2),反比例函数y=的图象经过点B.(1)求点B的坐标;(2)求k的值;(3)将▱ABCO沿x轴翻折,点C落在点C′处.判断点C′是否落在反比例函数y=的图象上,请通过计算说明理由.26.如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t=以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)浙江省嘉兴市八年级(下)期末数学试卷参考答案与试题解析一、单选题(共10题,共30分)1.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.2.【解答】解:A、=﹣2,故错误;B、﹣=﹣2,故正确;C、(﹣)2=﹣2,故错误;D、=±2,故错误;故选:B.3.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.4.【解答】解:方程整理得:(x﹣1)(x+2)﹣(x﹣1)=0,分解因式得:(x﹣1)(x+1)=0,解得:x1=﹣1,x2=1,故选:C.5.【解答】解:A、根据折线图1~2月以及2~3月的倾斜程度可以得出:2~3月份利润的增长快于1~2月份利润的增长;故本选项错误;B、1~4月份利润的平均数为:(100+110+130+115)÷4=113.75,方差为:[(100﹣113.75)2+(110﹣113.75)2+(130﹣113.75)2+(115﹣113.75)2]=117.1875,1~5月份利润的平均数为:(100+110+130+115+130)÷5=117,方差为:[(100﹣117)2+(110﹣117)2+2×(130﹣117)2+(115﹣117)2]=136,所以1~4月份利润的方差小于1~5月份利润的方差,故本选项错误;C、由图可知130出现次数最多,所以130万元是众数,故本选项正确;D、1~5月份利润的中位数是:从小到大排列后115万元位于最中间,所以1~5月份利润的中位数为115万元,故本选项错误.故选:C.6.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中所有内角都是锐角.故选:B.7.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.8.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选:D.9.【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.10.【解答】解:过点D作DE⊥x轴,垂足为E,过点C作CF⊥y轴,垂足为F,交反比例函数的图象于点G,∵A(1,0)、B(0,3),∴OA=1,OB=3,∵ABCD是正方形,∴AB=BC=AD,∠BAD=∠ABC=90°,∴∠OAB=∠ADE=∠BFC=90°,∵∠AOB=∠AED=∠FBC,∴△AOB≌△DEA≌△BFC(AAS),∴DE=OA=BF=1,AE=OB=CF=3,OF=OB+BF=4,∴C(3,4)∴D(4,1)代入y=得,k=3,∴反比例函数的关系式为:y=,当y=4时,x=1,∴G(1,4)因此点C平移到点G的距离为:3﹣1=2,故选:B.二、填空题(共10题,共30分)11.【解答】解:题目中数据共有6个,故中位数是按从小到大排列后第3、第4两个数的平均数,故这组数据的中位数是×(3+4)=3.5.故填3.5.12.【解答】解:原式=4﹣7×2+2×4=4﹣14+8=﹣2.故答案为:﹣2.13.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=900°,解得n=9.故答案为:9.14.【解答】解:过点A作AC⊥OB于点C,∵AO=AB,∴CO=BC,∵点A在其图象上,∴AC×CO=3,∴AC×BC=3,∴S△AOB=6.故答案为:6.15.【解答】解:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=4cm,AB=3cm,则周长为20cm;②当BE=4cm时,CE=3cm,AB=4cm,则周长为22cm.故答案为:20cm或22cm.16.【解答】解:根据题意得△=22﹣4×(﹣)≥0,解得a>0或a≤﹣1.故答案为a>0或a≤﹣1.17.【解答】解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(30+4x+24+4x)x=80整理得:4x2+27x﹣40=0解得x1=﹣8(舍去),x2=.故答案为:.18.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.19.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.20.【解答】解:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(﹣,﹣),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k===.故答案为:.三、解答题(共6题,共40分)21.【解答】解:(1)原式=3﹣1﹣2=2﹣2;(2)分解因式得:(x+2)(x+4)=0,解得:x1=﹣2,x2=﹣4.22.【解答】解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③选乙参加.理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.故答案为:(1)1.2,7,7.5;(2)①甲;②乙.23.【解答】解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.24.【解答】解:(1)如图1,正方形ABCD为所求作的正方形.(2)如图2所示,矩形ABCD为所求作的矩形.(3)如图3所示,平行四边形ABCD为所求作的平行四边形.25.【解答】解:(1)∵四边形ABCO是平行四边形,∴OA=BC.∵点A的坐标为(﹣3,0),∴BC=OA=3.∵点C的坐标为(1,2),∴点B的坐标为(﹣2,2).(2)将B(﹣2,2)代入y=得:2=,∴k=﹣4.(3)点C′不落在反比例函数y=﹣的图象上,理由如下:∵将▱ABCO沿x轴翻折,点C落在点C′处,∴点C′的坐标为(1,﹣2).当x=1时,y=﹣=﹣4≠﹣2,∴点C′不落在反比例函数y=﹣的图象上.26.【解答】解:(1)如图1,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4cm.∴S==5cm2.答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,CQ=t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=,,,.故答案为:,,,.。

2017-2018学年八年级(下)期末数学试卷含答案解析

2017-2018学年八年级(下)期末数学试卷含答案解析

2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省嘉兴市2017-2018学年八年级(下)期末数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确.请把正确选项的代码填入答题卷的相应空格,每小题3分,共30分)
1.方程①=1;②x2=7;③x+y=1;④xy=3.其中为一元二次方程的序号是()A.①B.②C.③D.④
2.下列图案中,中心对称图形的是()
A.B.
C.D.
3.如图,矩形ABCD中,AC,BD相交于点O,下列结论中不正确的是()
A.∠ABC=90°B.AC=BD C.∠OBC=∠OCB D.AO⊥BD
4.化简(﹣)2的结果是()
A.±3B.﹣3C.3D.9
5.某校田径运动会上,参加男子跳高的16名运动员成绩如下表:
则这些运动员成绩的中位数是()
A.1.5B.1.55C.1.60D.1.65
6.一元二次方程x2﹣4x﹣6=0经过配方可变形为()
A.(x﹣2)2=10B.(x+2)2=10C.(x﹣4)2=6D.(x﹣2)2=2 7.如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为()
A.1B.1.5C.2D.3
8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,首先应假设这个直角三角形中()
A.两个锐角都大于45°B.两个锐角都小于45
C.两个锐角都不大于45°D.两个锐角都等于45°
9.反比例函数y=,当x的值由n(n>0)增加到n+2时,y的值减少3,则k的值为()A.B.C.﹣D.
10.下列关于一元二次方程x2+bx+c=0的四个命题
①当c=0,b≠0时,这个方程一定有两个不相等的实数根;
②当c≠0时,若p是方程x2+bx+c=0的一个根,则是方程cx2+bx+1=0的一个根;
③若c<0,则一定存在两个实数m<n,使得m2+mb+c<0<n2+nb+c;
④若p,q是方程的两个实数根,则p﹣q=,
其中是假命题的序号是()
A.①B.②C.③D.④
二、填空题(本题有10小题,每小题3分,共30分)
11.二次根式中字母x的取值范围是.
12.一元二次方程x2﹣4=0的解是.
13.在四边形ABCD中,AB=CD,请添加一个条件,使得四边形ABCD是平行四边形.
14.一组数据﹣1,0,1,2,3的方差是.
15.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=.
16.已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是.
17.若某多边形有5条对角线,则该多边形内角和为.
18.某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x,根据题意可列方程为.
19.如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为.
20.平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C 的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标.三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分)21.(6分)(1)计算:﹣.
(2)解方程:x2﹣5x=0
22.(6分)如图,已知BD是▱ABCD对角线,AE⊥BD于点E,CF⊥BD于点F.(1)求证:△ADE≌△CBF;
(2)连结CE,AF,求证:四边形AFCE为平行四边形.
23.(6分)如图,平面直角坐标系中,反比例函数y1=,k图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
24.(8分)嘉兴某校组织了“垃圾分类”知识竞赛活动,获奖同学在竞赛中的成绩绘成如下图表,
根据图表提供的信息解答下列问题:
垃圾分类知识竞赛活动成绩统计表
(1)求本次获奖同学的人数;
(2)求表中x,y的数值:并补全频数分布直方图.
25.(6分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).
(1)求每个月的销售利润;(用含有x代数式表示)
(2)若每个月的利润为2250元,定价应为多少元?
26.(8分)如图,边长为2的正方形纸片ABCD中,点M为边CD上一点(不与C,D重
合),将△ADM沿AM折叠得到△AME,延长ME交边BC于点N,连结AN.
(1)猜想∠MAN的大小是否变化,并说明理由;
(2)如图1,当N点恰为BC中点时,求DM的长度;
(3)如图2,连结BD,分别交AN,AM于点Q,H.若BQ=,求线段QH的长度.。

相关文档
最新文档