输送电线路的防雷措施完整版
输电线路防雷措施
输电线路防雷措施在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。
输电线路的防雷措施有:(1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。
35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。
(2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。
反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。
若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。
接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。
(3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。
在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。
(4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。
(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。
(6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。
能免除线路的冲击闪络,使建弧率降为零。
(7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。
送电线路运行中的防雷措施探讨
送电线路运行中的防雷措施探讨在输电线路的运行中,由于自然因素的影响,如雷击等不可预见的天气变化,容易造成线路设备的毁坏,同时也会对人们的生命财产造成威胁。
因此,防雷措施是电力系统运行中必不可少的一项重要工作。
本文将从三个方面探讨送电线路运行中的防雷措施。
一、设备保护措施在送电线路的设备保护措施方面,主要是对设备进行绝缘处理。
绝缘层可以有效地保护设备免受大气电场、雷电场以及电闪等影响。
在电力系统中,常用的绝缘材料有橡胶、塑料、纸板等,不同的绝缘材料可以在不同的电气环境下使用。
例如,在隆冬季节,由于环境温度降低,塑料绝缘材料变得比较脆弱,此时橡胶绝缘材料就更有优势。
对于高压电力设备,也应当采用金属外壳,以保护其免遭雷击等因素的破坏。
二、接地设施措施在送电线路的接地设施措施方面,主要是对不同工作状态下的设备接地进行合理的规划,以达到防止雷击的目的。
当雷电降临时,雷电流首先会进入地下,而地下接地体就成为了电流通道。
因此,在高压输电线路的建造过程中,地下接地体的设置显得尤为重要。
同时,还应留意设备的静电电荷问题,静电电荷积聚在设备表面,容易使设备充电,由于电荷过大,容易引发漏电事故。
因此,设备静电电荷期检查和处理也是必须的。
对于运行中的输电线路,要加强间隙中的放电保护工作,定期检查线路的接地情况,避免因接地电阻过大导致雷电的积聚,从而引发线路设备的毁坏。
三、预防措施在预防雷击事故中,各个方面的合作都显得尤为重要。
电力系统的管理部门应当制定规范的防雷管理制度,以保障线路的正常运行。
此外,在输电线路的建设过程中,要妥善安排线路建设时间,尽量避免在雷雨等恶劣天气下进行,减少工人的作业时间,从而降低事故发生的可能性。
另外,还应当对输电线路的周围环境进行调查和分析,了解其气象、地形等自然特点,对自然灾害和偶然事件进行充分考虑和预测,并采取相应的应急措施,以及时处理各种可能出现的问题。
综上所述,在送电线路的运行中,防雷措施不仅积极的保护了送电设备免受雷电的破坏,也充分保障了广大人民群众的生命财产安全。
输电线路的防雷措施
输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。
在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。
除架设避雷线措施之外,还应留意做好以下几项措施。
1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。
电压等级越高,降低杆塔接地电阻的作用将变得更加重要。
对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。
在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。
在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。
(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。
严格根据规程执行接地装置的开挖检查制度。
重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。
(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。
针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。
3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。
由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。
规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。
输电线路的防雷措施
5
• 避雷线的假设原则: 1). 3~10kV线路防雷保护
• 不架设避雷线,为提高供电可靠性可投入自动重合闸。 • 在雷电特强烈地区可采用高一电压等级的绝缘子,或
顶相用针式两边改用两片悬式绝缘子(不平衡绝缘)。 • 对特殊用户应用环形供电或不同杆双回路供电,必要时
改为电缆供电。
7.采用不平衡绝缘方式:
针对同杆并架的线路, 按三角形布置,在上面的线 上加间隙或管型避雷器,对 其他线起到保护作用。
8、安装线路避雷器:
把避雷器并联在线路上, 当作用电压超过避雷器的 放电电压时,避雷器先放 电,限制了过电压的发展。
习题
7.1 说明避雷线在输电线路防雷保护中的作用。对有避雷 线的线路应采取什么措施来提高耐雷水平?
根据前面对雷电产生、发展的分析,在确 定不同电压等级的输电线路防雷保护方式时, 主要应从线路的重要程度、系统的运行方式、 输电线路经过地区雷电活动的强弱、地形地 貌的特点、土壤电阻率等条件,结合当地原 有线路的运行经验,根据技术经济比较的结 果,因地制宜、全面考虑。
输电线路防雷的措施(“四道防线”):
2
输电线路防雷的措施“四道防线”的图 示
输电线路防雷的具体措施
• 架设避雷线 • 降低杆塔接地电阻 • 架设耦合地线 • 采用不平衡绝缘方式 • 装设自动重合闸 • 采用消弧线圈接地方式 • 加强绝缘 • 装设避雷器
4
1.架设避雷线
避雷线,处于导线的上方,架空的接地线。 避雷线的作用:
对导线有遮蔽作用,可避免雷直击导线。 对雷电流有分流作用,使塔顶电位下降; 对导线有耦合作用,降低雷击杆塔时绝缘子串上电压;
(1)防止雷直击导线 沿线架设避雷线,有时还要装避雷针与其配合
输电线路的防雷措施
3.5.2 降低杆塔接地电阻
土壤电阻率低的地区,可利用自然接地电阻;
高土壤电阻率地区,可利用多根放射形接地体 或连续伸长接地体,配合降阻剂使用
3.5.3 架设耦合地线
增加避雷线与导线间的耦合以降低绝缘子串上的电 压; 增加对雷电流的分流作用
3.5.4 采用不平衡绝缘方式
两回路的绝缘子串的片有差异;
3.5.8 加强绝缘
冲击电压作用下木材绝缘材料性能较好,用木横担 来提高耐雷水平和降低建弧率(我国受条件限制很少 采用)
高杆塔时增加绝缘子片数 改用大爬距悬式绝缘子
增大塔头空气间隙
返回
雷击时绝缘子片数少的先闪络,闪络后的导线相当于 地线,增加了另一回路的耦合作用,提高了另一回路 的耐雷水平,使之不发生闪络,以保证不中断供电
3.5.5 装设自动重合闸
雷击造成的闪络大多数能在线路跳闸后自行恢复绝缘 性能,重合闸成功率较高 110kV线路成功率75%-95% 35kV及以下线路成功率50%-80%
3.5 输电线路的防雷措施
输电线路的防雷措施主要做好以下“四道防线”: 防止输电线路导线遭受直击雷; 防止输电线路受雷击后绝缘发生闪络; 防止雷击闪络后建立稳定的工频电弧; 防止工频电弧后引起中断电力供应。 确定输电线路防雷方式时,还应全面考虑线路综 合因素,因地制宜地采取合理的保护措施。
3.5.1 架设避雷线
作用: 防止雷直击于导线;
对雷电流有分流作用,使塔顶电位下降;
对导线有耦合作用,降低雷击杆塔时绝缘子串上 电压; 对导线有屏蔽作用,可降低导线上感应电压
具体实施: 330kV及以上: 全线架设双避雷线,α在20度左右 500kV时α小于等于15度,甚至负保护角 220kV: 宜全线架设双避雷线,α在20左右 110kV: 一般全线架设避雷线,α取20到30度之间 35kV及以下: 一般不沿全线架设避雷线 原因:绝缘水平低,雷击时易反击; 一般中性点非有效接地,单相接地后果不 是很严重,可依靠消弧线圈和自动重合闸
输电线路的防雷措施
输电线路的防雷措施
1.架设避雷线使雷直接击在避雷线上,保护输电导线不受雷击。
减少流入杆塔的雷电流,对输电导线有耦合作用,抑制感应过电压。
2.增加绝缘子串的片数加强绝缘。
3.减低杆塔的接地电阻可快速将雷电流引泄入地。
4.装设管型避雷器或放电间隙以限制雷击形成过电压。
5.装设自动重合闸预防雷击造成的外绝缘闪络使断路器跳闸后的停电现象。
6.采用消弧圈接地方式。
7.架设耦合地线增加对雷电流的分流。
8.不同电压等级输电线路,避雷线的设置:
(1)500KV及以上送电线路,应全线装设双避雷线,且输电线路愈高,保护角愈小(有时小于20°)。
在山区高雷区,甚至可以采用负保护角。
(2)220~330KV线路,一般同样应全线装设双避雷线,一般杆塔上避雷线对导线的保护角为20~30°。
(3)110KV线路一般沿全线装设避雷线,在雷电特别强烈地区采用双避雷线。
在少雷区或运行经验证明雷电活动轻微的地区,可不沿线架设避雷线,但杆塔仍应随基础接地。
送电线路防雷措施
送电线路防雷措施随着社会的不断发展,电力在我们生活中变得越来越重要,电力行业也越来越发达,电力设备和电力设施也越来越多,这就对电力设施的安全提出了更高的要求。
其中,防雷问题是我们必须要注意的,因为电力设施一旦遭到雷击,将引起严重事故,对人民生命财产造成重大威胁。
下面将从送电线路方面为大家介绍防雷措施。
一、送电线路建设时的防雷措施1.选择合适的杆塔杆塔应该尽量选择高于周边房屋,树木的地方,因为这些地方靠近天线,并且容易成为雷电击中的对象,高的杆塔可以减少雷电对线路的影响,从而保证传输质量。
2.地线与接地网的设置线路地线是电力设施最基本的防雷措施之一,地线的设置对于保护线路具有至关重要的作用,送电线路中应该设置良好的接地网。
在地形地貌较为平坦的地区,开槽深度不应小于1.5米,宽度不应小于20厘米,每隔2-3公里设置一个接地井,提高接地性能。
3.绝缘电子器件的使用绝缘电子器件在减少雷击损伤方面起到重要作用,建议选用抗雷击等级较高的绝缘器件,且要求其绝缘度满足使用条件,这样可以有效减少雷电的危害。
二、送电线路运维时的防雷措施1.巡查保养应定期对网架将杆、地线、接地、避雷器等线路施工用设施进行巡视检查。
发现有危及线路安全的情况,如杆塔损坏、地线腐蚀、断股、接地失效、避雷器损坏或变形等,应及时修缮或更换。
2.避雷器的维护在安装避雷器后,需要进行定期的维护检查,避雷器在运作中会出现放电,若当地雷暴气候常发,避雷器就可能被破坏。
因此,维修人员应经常定期对避雷器进行必要的维护,以保证其可靠地工作。
3.隔离设备的使用隔离设备的作用就是当雷电击中杆塔后,可以隔离线路,防止过电压对电气设备产生影响。
此外,在设备进行维护时,应使用隔离设备,以保证工作人员的安全。
总之,以上就是送电线路防雷措施的一些重点,为我们防范雷电对电力设施的侵害提供了一定的参考。
当然,除了这些通常的措施外,防雷措施还需要根据不同的电线路和地理位置情况加以灵活运用。
送电线路运行中的防雷措施探讨
送电线路运行中的防雷措施探讨送电线路在遭遇雷电天气时,容易受到雷击的破坏。
因此,为保障电力设备的安全运行,必须采取一定的防雷措施。
本文将从以下几个方面探讨送电线路运行中的防雷措施。
一、防雷装置的安装为了保护送电线路不受雷击损坏,防雷装置是必不可少的。
通常情况下,防雷装置包括避雷针、避雷线、避雷网等。
在安装防雷装置时,应充分考虑线路的地形、气象条件、线路的风险等因素。
最好先进行现场勘察,针对不同线路的情况选择最适合的防雷装置。
二、保护接地系统的优化接地系统在吸收雷电能量、保护设备安全方面作用重要。
为了进一步提高接地系统的可靠性,可以采用多种方法,例如增加接地体的数量、改进接地体的结构、设置防护门槛等。
此外,要加强对接地电阻的测量和监控,确保接地系统的稳定性和安全性。
三、避免过电压和间歇性接地故障过电压和间歇性接地故障是造成送电线路损坏的主要原因之一。
因此,在设计和运行过程中,应考虑并避免这些故障的发生。
具体措施包括采用绝缘设备、提高线路的耐雷水平、增加接地体数量、加强对线路的监测等。
四、合理的运行维护对于长期运行的送电线路,必须进行定期的检修和维护,以确保设备的正常运行。
特别是在变压器、隔离开关等设备发生故障后,应及时进行检修和更换。
此外,还应加强对线路设备、绝缘件的清洗和防腐蚀措施,以延长设备的使用寿命。
综上所述,送电线路在遭遇雷电天气时,必须采取一定的防雷措施,确保设备的安全运行。
防雷装置的安装、保护接地系统的优化、避免过电压和间歇性接地故障、合理的运行维护等方面都是非常重要的。
只有在加强防雷管理、科学运维保障的基础上,才能更好地保障送电线路的安全稳定运行。
浅谈输送电线路的防雷措施
贵港避雷浅谈输送电线路的防雷措施广西新全通电子技术有限公司跟大家分享贵港避雷浅谈输送电线路的防雷措施经济的发展与电力需求的不断增长,电力生产的安全问题也越来越突出。
对于送电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠的重要因素。
由于大气雷电活动的随机和复杂,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。
地区范围内,建设了既复杂又庞大的很多电力设备构成的高低电压配电网络。
配电网络中有配电设备,又有用电设备,它们是影响电力能量的质量和重要设备。
至今,对配电线路的防雷措施主要放在:(1)雷电过电压在某条高压配电线路上发生的雷击事故的影响范围有多广以及其可能的概率;(2)确定其防雷保护的程度;(3)制定在实际的配电线路上能使用的各种防雷措施。
雷电过电压产生的火花放电不是烧坏低压配电设备的原因,该火花放电导致配电设备的端子间短路,在商用工频电压下,在端子之间流过短路电流(电弧放电),这时的大量电能是烧坏低压配电设备的主要原因。
低压配电线路发生雷电过电压的频率.低压配电线路上发生的雷电过电压的情况.从配电线路上一直防雷措施进行的研究来看,已考虑到在低压配电线路上发生雷电过电压的因素有:1直击雷(直接雷击到低压配电线路上);2感应雷(雷击到低压配电线路附近的地区时,对配电线路感应生成的感应雷);3高压侧的雷电过电压是侵入低压侧的雷电过电压的原因,由于避雷器动作使大地(接地)电位上升,从柱上变压器的高压侧过渡到低压侧的雷电过电压。
实际上,除了在低压配电线路上发生雷电过电压之外,还有雷击电流直接侵入配电线路附近的建筑物上设置的避雷针,使得大地电位上升影响到配电设备的接地系统的场合应考虑这些是产生雷电过电压的合成原因。
从高压侧过渡到低压侧的雷电过电压,压配电线路上发生雷电过电压各种情况进行一般的研究,将高压配电线路上的雷电过电压侵入低压配电线路上发生雷电过电压所产生的各种情况,进行一些试验由于配电用避雷器的放电使大地电位上升,通过柱上变压器的过渡电压,使低压配电线路上发生雷电过电压的研究。
浅析送电线路运行中的防雷措施
浅析送电线路运行中的防雷措施送电线路是电力系统中重要的组成部分,而雷电则是给送电线路带来较大安全隐患的天气因素之一。
在送电线路的设计和运行中,必须采取一系列的防雷措施,保证送电线路的安全运行。
本文将对送电线路运行中的防雷措施进行浅析。
送电线路通常采用的是高耐热、耐雷电冲击的绝缘材料,以防止在雷电天气下绝缘材料的损坏。
绝缘子是送电线路中重要的组成部分,在选用绝缘子时应根据线路的电压等级及工作环境情况来选择。
为了防止绝缘子在雷电冲击下受损,通常会采用特殊的绝缘子设计,如采用串联绝缘子或者环形绝缘子,增加绝缘子的雷电强度。
在送电线路中必须设置避雷装置。
避雷装置是一种用于导引和接地雷电的装置,常用的避雷装置有避雷针、避雷网和避雷盘等。
避雷针通常安装在主要设施的顶端,如变电站、电缆终端箱,其作用是通过锐利的尖端来集中电场并导引雷电到地面,以保护设施不受雷击。
避雷网则是一种通过金属导体网格来分散雷电能量的装置,常用于大型电站和变电站的防护。
避雷盘主要用于终端线路的防雷,其作用是将雷电引入接地,减少雷电对线路设备的影响。
送电线路中还应设置绝缘子串作为集中引导雷电的装置。
绝缘子串的作用是将雷电引入地面,保护线路设备免受雷电冲击。
绝缘子串通常由若干个串联的绝缘子组成,每个绝缘子上都有导线与地线相连,形成导体通路,使雷电能够顺利地通过绝缘子串导入地线。
在送电线路运行中,还需要定期对线路进行巡视和检测,及时发现和修复线路上的故障隐患。
巡视时需要检查避雷装置的安装是否正常,绝缘子是否存在破损和积尘情况,线路接地是否良好等。
如果发现问题,应及时进行修复和更换。
送电线路运行中的防雷措施主要包括采用耐雷电冲击的绝缘材料、合理选用绝缘子、设置避雷装置和绝缘子串、定期巡视和检测。
这些措施能够有效地保护送电线路不受雷电冲击的影响,保证电力系统的正常运行和供电安全。
架空输电线路防雷措施
架空输电线路防雷措施架空输电线路是电力网及电力系统的重要组成部分。
由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。
架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭受雷击的机率较大。
架空输电线路雷害事故的形成通常要经受这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。
针对雷害事故形成的四个阶段,现代输电线路在实行防雷爱护措施时,要做到“四道防线”,即:1防直击,就是使输电线路不受直击雷。
2防闪络,就是使输电线路受雷后绝缘不发生闪络。
3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。
4防停电,就是使输电线路建立工频电弧后不中断电力供应。
架空输电线路防雷的详细措施现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线架设避雷线是输电线路防雷爱护的最基本和最有效的措施。
避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;2)通过对导线的耦合作用可以减小线路绝缘子的电压;3)对导线的屏蔽作用还可以降低导线上的感应过电压。
通常来说,线路电压愈高,采纳避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。
因此,110kV及以上电压等级的输电线路都应全线架设避雷线。
同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的爱护角应做得小一些,一般采纳20°~30°。
220kV及330kV双避雷线线路应做到20°左右,500kV 及以上的超高压、特高压线路都架设双避雷线,爱护角在15°左右。
输电线路的雷电保护
输电线路的雷电保护简介雷电是一种自然灾害,可能对输电线路造成严重损坏和安全隐患。
为了保护输电线路免受雷击的影响,采取适当的雷电保护措施是必要的。
法规要求根据相关的法规和标准,输电线路必须具备有效的雷电保护系统。
这些法规和标准规定了合适的保护设备和安装要求,以确保输电线路的安全运行。
防护措施以下是几种常见的雷电保护措施,可以应用于输电线路的保护中:避雷针避雷针是一种常见的雷电保护装置。
在输电线路附近安装避雷针能够有效地引导雷电放电,并保护输电线路不受雷击的直接影响。
防雷接地系统防雷接地系统是一种重要的保护措施。
通过良好的接地系统,能够降低输电线路受雷击时的电能传递,并减少损坏和安全风险。
防雷避雷器防雷避雷器是一种被动式的保护设备。
当输电线路遭受雷击时,避雷器能够吸收大部分雷电能量,避免其通过输电线路传递,从而保护线路设备和系统。
检测和维护为了确保输电线路的雷电保护系统有效工作,定期的检测和维护是必要的。
以下是一些建议的检测和维护措施:- 定期检查避雷针是否完好,并清除可能影响其功能的障碍物;- 检查防雷接地系统是否正常工作,并修复任何接地故障;- 定期检测和测试防雷避雷器的功能,并更换损坏的部件;- 更新雷电保护系统的维护记录,包括维护日期、维护人员和维护工作的详细内容。
总结导电线路的雷电保护至关重要,可以通过安装避雷针、建立良好的接地系统和使用防雷避雷器等措施来实现。
定期检测和维护保护设备是保证系统持续有效的关键。
遵守相关法规和标准,确保输电线路的雷电保护达到要求,是确保电力系统安全运行的重要步骤。
输电线路的防雷保护与检修
输电线路的防雷保护与检修一、前言在现代社会中,电力对我们的生产和生活起着至关重要的作用。
而输电线路作为电力传输的重要设施,经常面临着雷击等自然灾害的威胁。
因此,对输电线路进行防雷保护和定期检修是必不可少的。
本文将详细探讨输电线路的防雷保护措施和检修方法,旨在提高输电线路的安全性和稳定性。
二、防雷保护措施1. 接地装置的设置将输电线路的金属结构与地面有效接地是防雷保护的基本措施之一。
通常采用接地网或接地极进行接地,确保雷电能够安全通过接地系统排除。
接地装置的设置应符合国家规范和行业标准,且接地电阻应控制在合理范围内。
2. 避雷器的应用避雷器是防雷保护中非常关键的装置,用于防止雷电冲击进入输电线路。
避雷器通过与输电线路并联放置,在遭遇过电压时能够迅速导流,保护输电线路不受损害。
避雷器的选择应结合输电线路的特点和工作电压,在设计和安装时要注意与其他防雷设备的协调配合。
3. 停电装置的设置为了确保人身安全,输电线路上应配备停电装置。
当发生雷电及其他灾害时,及时切断电源,保护工作人员的安全。
停电装置应具备快速、灵敏的切断电源功能,并能够迅速恢复正常供电,减少用户的停电时间。
三、检修方法1. 定期巡检定期巡检是保证输电线路正常运行的重要手段之一。
巡检人员应按照规定的时间和路线,对输电线路的避雷器、接地装置、绝缘子等进行清洁和检测,以保证其性能良好。
巡检过程中应注意安全,合理安排巡检时间,防止人为疏忽导致事故的发生。
2. 精确测量输电线路的防雷保护和检修中,精确测量是非常重要的环节。
通过科学、准确的测量,可以获取到输电线路的电气参数和工作状态,从而评估其安全性和稳定性。
常用的测量方法包括绝缘电阻测量、接地电阻测量、避雷器性能测试等。
3. 故障排除当输电线路发生故障时,需要采取及时有效的措施进行排除。
故障排除的过程中,应先确认故障的具体位置和性质,然后有针对性地维修和更换配件。
在进行故障排除时要注意操作规范,防止二次事故的发生。
35kV输电线路雷击及防雷建议-最新文档
35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。
而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。
1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。
按雷击的性质可分为直击雷和感应雷:1)直击雷。
当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。
雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。
当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。
根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。
2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。
3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。
高压输电线路防雷措施分析及改进方法
高压输电线路防雷措施分析及改进方法高压输电线路是一个重要的能源输送通道,但由于其工作环境的特殊性,常常会受到雷击的影响。
雷击不仅会给输电线路带来损坏,还会对整个输电系统产生严重的影响。
对高压输电线路进行防雷措施分析并采取改进方法显得尤为重要。
1.1 防雷设施问题高压输电线路的防雷设施是保证输电系统正常运行的重要组成部分。
目前国内外的高压输电线路上普遍采用的防雷设施主要有避雷针、避雷带、避雷网等。
这些传统的防雷设施在抗雷击能力上存在一定的缺陷,尤其是在极端天气条件下,传统的防雷设施可能无法有效地保护输电线路免受雷击的影响。
1.2 大气环境影响大气环境是导致高压输电线路受雷击影响的主要因素之一。
在雷雨天气条件下,大气中存在着大量的电荷,极易导致雷击发生。
而传统的防雷设施在面对这种大气环境时,往往难以起到有效的防雷作用。
1.3 人为因素除了大气环境外,人为因素也是造成高压输电线路受雷击影响的重要原因之一。
在高压输电线路的建设和维护过程中,如果工作人员没有严格按照要求进行操作,很容易导致防雷设施的缺陷,从而使输电线路更加容易受到雷击的影响。
二、改进方法2.1 引进先进的防雷技术为了提高高压输电线路的抗雷击能力,可以引进一些先进的防雷技术。
可以引进新型的避雷针、避雷带等设备,这些设备在抗雷击能力上相对传统设施更加强大,可以更好地保护输电线路免受雷击的影响。
2.2 完善防雷设施在已有的高压输电线路上,可以对防雷设施进行全面的检测和改进。
对于已损坏或老化的防雷设施,应及时更换或修复,以确保其正常运行。
可以增加防雷设施的密度和覆盖范围,以提高整个输电系统的防雷能力。
2.3 加强人员培训在高压输电线路的建设和维护过程中,应加强对相关人员的培训。
通过培训,员工可以更加深入地了解防雷设施的重要性和使用方法,从而减少人为因素对输电线路的影响。
2.4 加强监测和预警在高压输电线路上可以安装雷雨监测设备,通过实时监测天气条件的变化,及时预警雷雨天气的到来。
输电线路防雷技术及措施(正式)
编订:__________________单位:__________________时间:__________________输电线路防雷技术及措施(正式)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-5508-62 输电线路防雷技术及措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
随着国民经济的发展与电力需求的不断增长,电力生产的安全运行问题也越来越突出。
对于输电线路来讲,雷击跳闸一直是影响高压输电线路供电可靠性的重要因素。
由于大气雷电活动的随机性和复杂性,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。
进行高压输电线路设计时要全面考虑,综合分析每一条线路的具体情况,通过安全、经济、质量比较,选取有针对性的防雷设计技术措施,以达到提高供电可靠性的目的。
一防雷的原则线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用得好,仍然是可以信赖的。
对已投运的线路,应结合地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平给出正确的评价,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。
二雷击跳闸分析高压输电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。
高压输电线路各种防雷措施都有其针对性,因此,在进行高压输电线路设计时,我们选择防雷方式首先要明确高压输电线路遭雷击跳闸原因。
输电线路雷击原因与防雷措施
输电线路雷击原因与防雷措施一、雷击原因雷电是一种自然现象,由于地球表面和云层之间电位差的存在,当电位差达到一定程度时,空气中的电荷会产生强烈的电弧放电。
输电线路在这种强电场的作用下,可能发生雷击。
1.1 天气因素天气是导致输电线路雷击的一个主要原因。
当遇到雷暴天气时,地球表面电势将会产生明显的变化,同时云层中的电荷分布也会非常不稳定,这些天气因素都可能造成雷电现象的发生,对输电线路带来影响。
1.2 空气湿度当空气湿度较大时,空气中的氧分子与水分子往往会被电场电离,释放出自由电子和空穴,这会导致电势在输电线路上的不均匀分布,从而容易引发雷击。
1.3 输电线路结构和形状输电线路的结构和形状对雷电的感应也有很大的影响。
若线路较长且周边的杂物较少,那么雷电流就比较容易进入导线内部,此时输电线路就比较容易受到雷击。
二、防雷措施为了防止输电线路发生雷击,可以采取以下几种防雷措施。
2.1 安装避雷针在输电线路上方安装避雷针是防雷措施的一种有效方法。
避雷针能够分散雷暴电流,减轻雷击对输电线路的影响。
2.2 使用雷电保护器在输电线路中安装雷电保护器可将雷电感应的电荷导向地线,最大程度保护输电线路的安全。
2.3 增加地网通过在输电线路安装大规模的地网,可以有效将雷击感应电荷导向地面,避免对输电线路造成过大影响。
2.4 降低线路电位通过在输电线路上引入降压变压器等装置,减缓输电线路的电位差,有效避免线路雷击。
总的来说,输电线路防雷措施涉及到许多领域,这需要广泛的基础知识和实践经验。
只要掌握了相关技术和方法,就能够有效地防止输电线路发生雷击现象,保证人们生活和工作的正常进行。
送电线路的防雷措施
(5)土壤电阻率在750~1200欧·米的杆塔:采用八根放射线不小于198米的φ8圆钢进行敷设并焊接。
(6)土壤电阻率在500~750欧·米的杆塔:采用八根放射线不小于138米的φ8圆钢进行敷设并焊接。
2.降低杆塔的接地电阻。杆塔接地电阻增加主要有以下原因:
(1)接地体的腐蚀,特别是污染严重的子牙地区,或风化后土壤中,最容易发生电化学腐蚀和吸氧腐蚀,最容易发生腐蚀的部位是接地引下线与水平接地体的连接处,由腐蚀电位差不同引起的电化学腐蚀。有时会发生因腐蚀断裂而使杆塔“失地”的现象。还有就是接地体的埋深不够,或用碎石、砂子回填,土壤中含氧量高,使接地体容易发生吸氧腐蚀,由于腐蚀使接地体与周围土壤之间的接触电阻变大,甚至使接地体在焊接头处断裂,导致杆塔接地电阻变大,或失去接地。
1.设计接地网改造型式。方案:利用绝缘摇表采用四极法进行土壤电阻率的测试,以及采用智能接地电阻测试仪,直测土壤电阻率。根据测试的土壤电阻率的结果进行比较再根据设计时所给予的接地装置的型式,确定最终的接地体的敷设方案。
有架空地线路的线路杆塔的接地电阻
接地放射线
本文主要对安装线路避雷器、降低杆塔的接地电阻两
方面进行分析:
1.安装线路避雷器。运用高压送电线路避雷器。由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。我们在雷击跳闸较频繁的高压送电线路上选择性安装避雷器。
线路避雷器一般有两种:一种是无间隙型;避雷器与导线直接连接,它是电站型避雷器的延续,具有吸收冲击能量可靠,无放电时延、串联间隙在正常运行电压和操作电压下不动作,避雷器本体完全处于不带电状态,排除电气老化问题;串联间隙的下电极与上电极(线路导线)呈垂直布置,放电特性稳定且分散性小等优点;另一种是带串联间隙型,避雷器与导线通过空气间隙来连接,只有在雷电流作用时才承受工频电压的作用,具有可靠性高、运行寿命长等优点。一般常用的是带串联间隙型,由于其间隙的隔离作用,避雷器本体部分(装有电阻片的部分)基本上不承担系统运行电压,不必考虑长期运行电压下的老化问题,且本体部分的故障不会对线路的正常运行造成隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:TQC/K279输送电线路的防雷措施完整版Through the proposed methods and Countermeasures to deal with, common types such as planning scheme, design scheme, construction scheme, the essence is to build accessible bridge between people and products, realize matching problems, correct problems.【适用制定规则/统一目标/规范行为/增强沟通等场景】编写:________________________审核:________________________时间:________________________部门:________________________输送电线路的防雷措施完整版下载说明:本解决方案资料适合用于解决各类问题场景,通过提出的方法与对策来应付,常见种类如计划方案、设计方案、施工方案、技术措施,本质是人和产品之间建立可触达的桥梁,实现匹配问题,修正问题,预防未来出现同类问题。
可直接应用日常文档制作,也可以根据实际需要对其进行修改。
摘要:本文通过分析高压送电线路雷击闪络跳闸产生的原因,在进行线路防雷工作时,提出一些合理的防雷方式,以提高送电线路耐雷水平。
关键词:送电线路雷击跳闸防雷措施概述随着国民经济的发展与电力需求的不断增长,电力生产的安全问题也越来越突出。
对于送电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠性的重要因素。
由于大气雷电活动的随机性和复杂性,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。
架空输电线路和雷击跳闸一直是困扰安全供电的一个难题,雷害事故几乎占线路全部跳闸事故1/3或更多。
因此,寻求更有效的线路防雷保护措施,一直是电力工作者关注的课题。
桐庐电网处于浙西北山区,地形复杂,山峦起伏,线路雷击跳闸是整个电网跳闸的重要原因,经常占到跳闸总数的80%~90%。
降低雷击跳闸率对于日常线路设备的运行维护人员来说将大大降低劳动强度,且效益是不仅仅是金钱可以衡量的。
目前输电线路本身的防雷措施主要依靠架设在杆塔顶端的架空地线,其运行维护工作中主要是对杆塔接地电阻的检测及改造。
由于其防雷措施的单一性,无法达到防雷要求。
而推行的安装耦合地线、增强线路绝缘水平的防雷措施,受到一定的条件限制而无法得到有效实施,如通常采用增加绝缘子片数或更换为大爬距的合成绝缘子的方法来提高线路绝缘,对防止雷击塔顶反击过电压效果较好,但对于防止绕击则效果较差,且增加绝缘子片数受杆塔头部绝缘间隙及导线对地安全距离的限制,因此线路绝缘的增强也是有限的。
而安装耦合地线则一般适用于丘陵或山区跨越档,可以对导线起到有效的屏蔽保护作用,用等击距原理也就是降低了导线的暴露弧段。
但其受杆塔强度、对地安全距离、交叉跨越及线路下方的交通运输等因素的影响,因此架设耦合地线对于旧线路不易实施。
因此研究不受条件限制的线路防雷措施就显得十分重要。
将安装线路避雷器、降低杆塔接地电阻进行综合分析运用,从它们对防止雷击形式的针对性出发,真正做到切实可行而又能收到实际效果。
雷击线路跳闸原因高压送电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。
高压送电线路各种防雷措施都有其针对性,因此,在进行高压送电线路设计时,我们选择防雷方式首先要明确高压送电线路遭雷击跳闸原因。
1.高压送电线路绕击成因分析。
根据高压送电线路的运行经验、现场实测和模拟试验均证明,雷电绕击率与避雷线对边导线的保护角、杆塔高度以及高压送电线路经过的地形、地貌和地质条件有关。
山区高压送电线路的绕击率约为平地高压送电线路的3倍。
山区设计送电线路时不可避免会出现大跨越、大高差档距,这是线路耐雷水平的薄弱环节;一些地区雷电活动相对强烈,使某一区段的线路较其它线路更容易遭受雷击。
2.高压送电线路反击成因分析。
雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。
如果升高塔体电位和相导线感应过电压合成的电位差超过高压送电线路绝缘闪络电压值,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。
理论分析可以得出,降低杆塔接地电阻、提高耦合系数、减小分流系数、加强高压送电线路绝缘都可以提高高压送电线路的耐雷水平。
在实际实施中,我们着重考虑降低杆塔接地电阻和提高耦合系数的方法作为提高线路耐雷水平的主要手段。
三、高压送电线路防雷措施清楚了送电线路雷击跳闸的发生原因,我们就可以有针对性的对送电线路所经过的不同地段,不同地理位置的杆塔采取相应的防雷措施。
目前线路防雷主要有以下几种措施:1.加强高压送电线路的绝缘水平。
高压送电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压送电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。
2.降低杆塔的接地电阻。
高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。
3.根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。
由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压送电线路的耐雷水平。
4.适当运用高压送电线路避雷器。
由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。
根据实际运行经验,在雷击跳闸较频繁的高压送电线路上选择性安装避雷器可达到很好的避雷效果。
目前在全国范围已使用一定数量的高压送电线路避雷器,运行反映较好,但由于装设避雷器投资较大,设计中我们只能根据特殊情况少量使用。
本文主要对安装线路避雷器、降低杆塔的接地电阻两方面进行分析:1.安装线路避雷器。
运用高压送电线路避雷器。
由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。
我们在雷击跳闸较频繁的高压送电线路上选择性安装避雷器。
线路避雷器一般有两种:一种是无间隙型;避雷器与导线直接连接,它是电站型避雷器的延续,具有吸收冲击能量可靠,无放电时延、串联间隙在正常运行电压和操作电压下不动作,避雷器本体完全处于不带电状态,排除电气老化问题;串联间隙的下电极与上电极(线路导线)呈垂直布置,放电特性稳定且分散性小等优点;另一种是带串联间隙型,避雷器与导线通过空气间隙来连接,只有在雷电流作用时才承受工频电压的作用,具有可靠性高、运行寿命长等优点。
一般常用的是带串联间隙型,由于其间隙的隔离作用,避雷器本体部分(装有电阻片的部分)基本上不承担系统运行电压,不必考虑长期运行电压下的老化问题,且本体部分的故障不会对线路的正常运行造成隐患。
线路避雷器防雷的基本原理:雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。
雷击杆塔时塔顶电位迅速提高,其电位值为Ut=iRd+L.di/dt (1) 式中i——雷电Rd——冲击接地电阻L.di/dt ——暂态分量当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50%的放电电压时,将发生由塔顶至导线的闪络。
即Ut-U1>U50,如果考虑线路工频电压幅值Um的影响,则为Ut-U1+Um>U50。
因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的50%放电电压、雷电流强度和塔体的冲击接地电阻。
一般来说,线路的50%放电电压是一定的,雷电流强度与地理位置和大气条件相关,不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的接地电阻,在山区,降低接地电阻是非常困难的,这也是为什么输电线路屡遭雷击的原因。
加装线路避雷器以后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。
大部分的雷电流从避雷器流入导线,传播到相临杆塔。
雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。
因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络,因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。
但由于其费用较高,故综合考虑后未进行行推广运用。
2.降低杆塔的接地电阻。
杆塔接地电阻增加主要有以下原因:(1)接地体的腐蚀,特别是在山区酸性土壤中,或风化后土壤中,最容易发生电化学腐蚀和吸氧腐蚀,最容易发生腐蚀的部位是接地引下线与水平接地体的连接处,由腐蚀电位差不同引起的电化学腐蚀。
有时会发生因腐蚀断裂而使杆塔“失地”的现象。
还有就是接地体的埋深不够,或用碎石、砂子回填,土壤中含氧量高,使接地体容易发生吸氧腐蚀,由于腐蚀使接地体与周围土壤之间的接触电阻变大,甚至使接地体在焊接头处断裂,导致杆塔接地电阻变大,或失去接地。
(2)在山坡坡带由于雨水的冲刷使水土流失而使接地体外露失去与大地的接触。
(3)在施工时使用化学降阻剂,或性能不稳定的降阻剂,随着时间的推移降阻剂的降阻成分流失或失效后使接地电阻增大。
(4)外力破坏,杆塔接地引下线或接地体被盗或外力破坏。
高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。
针对桐庐县供电局部分线路接地电阻值长期以来偏大,降低了线路的耐雷水平。
为确保线路安全运行,对不同的杆塔型式我们采用φ8的园钢进行了接地网统一设计、统一加工,避免了高山大岭上进行施工焊接造成工艺质量不合格等的可能,同时也减少了野外工作量,大大降低劳动强度,加快改造速度。
通地改造使杆塔地网的接地电阻值大幅度降低,从而使线路的耐雷水平从理论上得到大大提高。
1.设计接地网改造型式。
方案:利用绝缘摇表采用四极法进行土壤电阻率的测试,以及采用智能接地电阻测试仪,直测土壤电阻率。
根据测试的土壤电阻率的结果进行比较再根据设计时所给予的接地装置的型式,确定最终的接地体的敷设方案。
有架空地线路的线路杆塔的接地电阻、接地放射线①土壤电阻率在10000欧•米及以上的杆塔:采用八根放射线不小于518米的φ8圆钢进行敷设并焊接。
②土壤电阻率在2300~3200欧•米的杆塔:采用八根放射线不小于518米的φ8圆钢进行敷设并焊接。