铅锌矿的浮选方法及浮选工艺流程

合集下载

铅锌矿浮选工艺流程

铅锌矿浮选工艺流程

铅锌矿浮选工艺流程
铅锌矿是一种重要的金属矿产资源,其浮选工艺流程是对铅锌矿进行提炼的关键步骤。

浮选工艺是利用物理和化学方法将有用矿物从废石中分离出来的一种矿石选矿方法,下面将详细介绍铅锌矿浮选工艺流程。

首先,铅锌矿的浮选工艺流程包括矿石破碎、矿石磨矿和矿石浮选三个主要阶段。

在矿石破碎阶段,需要通过颚式破碎机和圆锥破碎机等设备将原始矿石进行初步破碎,使其颗粒度达到磨矿的要求。

接下来是矿石磨矿阶段,矿石经过初步破碎后,需要通过球磨机等设备进行细碎,以便更好地释放矿石中的有用矿物。

最后是矿石浮选阶段,矿石经过磨矿后,需要通过浮选机进行浮选,将有用矿物从废石中分离出来。

其次,铅锌矿浮选工艺流程中的关键环节是矿石浮选。

矿石浮选是利用物理和化学方法,通过对矿石进行湿法浮选,将有用矿物与废石分离的过程。

在矿石浮选过程中,需要加入相应的药剂,如捕收剂、起泡剂等,以便提高有用矿物的浮选速度和浮选效果。

此外,浮选过程中还需要对浮选泡沫进行及时处理,以保证有用矿物的回收率和品位。

最后,铅锌矿浮选工艺流程还需要进行尾矿处理。

尾矿是指浮选过程中未被浮选出来的废石,尾矿处理是对尾矿进行再次处理,以提高资源利用率和减少环境污染。

常见的尾矿处理方法包括尾矿回收、尾矿填埋和尾矿综合利用等,通过这些方法可以有效地处理浮选过程中产生的尾矿,实现资源的最大化利用。

综上所述,铅锌矿浮选工艺流程是对铅锌矿进行提炼的重要步骤,其包括矿石破碎、矿石磨矿、矿石浮选和尾矿处理等环节。

通过科学合理地进行浮选工艺流程,可以实现对铅锌矿的高效提炼,提高有用矿物的回收率和品位,从而实现资源的可持续利用和保护环境的目的。

铅锌矿选矿工艺流程

铅锌矿选矿工艺流程

铅锌矿选矿工艺流程
《铅锌矿选矿工艺流程》
铅锌矿是常见的金属矿石,其选矿工艺流程对于提炼出纯净的铅锌金属至关重要。

下面我们来介绍铅锌矿选矿的工艺流程。

首先,铅锌矿原矿经过采集和压碎后,进行初步的矿石破碎和磨矿,然后进行浮选分离。

在浮选过程中,利用不同矿石的浮力差异,通过空气和药剂的作用使铅和锌矿石浮在水面上,并进行分离。

常用的浮选药剂有黄原胶、松馏油等。

接着,经过浮选分离后的铅锌矿石需要进行精矿处理。

精矿处理通常采用浮选法和重选法,旨在使铅和锌的品位达到更高的要求。

在精矿过程中,一般要进行多次浮选和重选,以提高金属品位。

最后,精矿通过烧结、冶炼和精炼等步骤,得到最终的纯净的铅锌金属。

烧结是将精矿在高温下进行加热,冶炼是通过高温溶解和还原使金属与杂质分离,精炼是通过电解等方法,将金属纯度进一步提高。

在整个选矿工艺流程中,需要严格控制工艺参数和加工条件,以保证铅锌矿的高效选矿和生产。

同时,无污染的环保技术也是当前铅锌矿选矿工艺的发展方向,以减少对环境的影响。

总之,铅锌矿选矿工艺流程是一个复杂的过程,需要综合利用物理、化学和冶金技术,以实现铅锌矿石的高效分离和提炼。

通过不断的技术创新和工艺改进,相信铅锌矿选矿工艺将会得到进一步提高和完善。

铅锌矿的浮选与尾渣处理工艺改进

铅锌矿的浮选与尾渣处理工艺改进
参数,提高浮选效果
智能诊断系统:及时发现 浮选过程中的问题,并提 出解决方案,减少停机时

04
尾渣处理工艺现状及问题
尾渣处理的意义与现状
尾渣处理是铅锌矿开采过 程中的重要环节,关系到
环境保护和资源利用。
目前,尾渣处理工艺存在 效率低、成本高、环境污
染等问题。
尾渣处理工艺的改进对于 提高资源利用率、减少环
优化浮选工艺参数,提高 浮选效果
采用自动化控制系统,提 高浮选过程的稳定性和准
确性
采用节能环保设备,降低 浮选过程中的能耗和污染
智能化技术的应用
智能控制系统:实现浮选 工艺的自动化控制,提高
生产效率
智能监测系统:实时监测 浮选过程中的关键参数,
确保工艺稳定运行
智能优化系统:根据监测 数据,自动调整浮选工艺
01
浮选工艺改进前存在的问题: 浮选效率低,尾渣处理困难, 环境污染严重
02
浮选工艺改进措施:采用先 进的浮选设备,优化浮选工 艺参数,提高浮选效率
03
尾渣处理工艺改进措施: 采用先进的尾渣处理技术, 降低尾渣排放量,提高尾 渣资源化利用率
04
改进效果:浮选效率提高,尾 渣处理困难得到解决,环境污 染得到有效控制,企业经济效 益和社会效益得到显著提升。
05
某尾渣处理企业技术升级案例
技术升级前存在的问题:尾 渣处理效率低,环境污染严 重
企业背景:某尾渣处理企业, 主要处理铅锌矿尾渣
技术升级方案:采用先进的 浮选与尾渣处理工艺
技术升级后的效果:提高了 尾渣处理效率,减少了环境
污染,降低了生产成本
技术升级对企业的影响:提 高了企业的市场竞争力,促
进了企业的可持续发展

铅锌矿的浮选工艺研究

铅锌矿的浮选工艺研究

泡沫的处理:将分离后的泡沫进行收集和处理,以回收其中的矿物颗粒
泡沫的影响:泡沫的稳定性和浮选效果密切相关,需要合理控制泡沫的生成和分离过程
浮选设备
4
磨矿设备
球磨机:用于粗磨和细磨,具有较高的效率和产量
棒磨机:用于粗磨,具有较高的效率和产量
自磨机:用于粗磨和细磨,具有较高的效率和产量
砾磨机:用于粗磨和细磨,具有较高的效率和产量
充气量的控制:根据矿石性质和浮选效果,调整充气量,保证浮选效果
充气量与搅拌强度的关系:充气量与搅拌强度相互影响,需要根据实际情况进行调整
优化方法:通过实验和模拟,确定最佳充气量和搅拌强度,提高浮选效果
实际应用案例分析
6
某铅锌矿的浮选工艺流程设计
矿石性质:铅锌矿的矿石性质对浮选工艺有重要影响
浮选药剂:选择合适的浮选药剂可以提高浮选效果
充气与搅拌
充气量:根据浮选效果和浮选时间等因素调整
搅拌速度:根据矿粒大小和浮选时间等因素调整
搅拌目的:使矿粒悬浮,提高浮选效果
充气方式:机械搅拌、压缩空气、喷射器等
泡沫的分离与处理
泡沫的产生:浮选过程中,矿物颗粒与气泡结合形成泡沫
泡沫的分离:通过调整浮选药剂和浮选条件,使泡沫中的矿物颗粒与气泡分离
铅锌矿的浮选工艺研究
,
汇报人:
铅锌矿浮选原理
浮选药剂的选择与作用
浮选工艺流程
浮选设备
浮选过程控制与优化
实际应用案例分析
目录
铅锌矿浮选原理
1
浮选原理概述
浮选原理:利用矿物表面的物理化学性质差异,通过添加浮选剂,使有用矿物颗粒吸附在气泡上,浮到矿浆表面,从而达到分离目的。
浮选剂:包括收集剂、搅拌剂、分散剂、调整剂和抑制剂等,用于改善矿物表面的物理化学性质,提高浮选效果。

铅锌矿矿石浮选与脱泥技术

铅锌矿矿石浮选与脱泥技术

PART 03
铅锌矿矿石脱泥 技术
脱泥原理
脱泥剂的作用:通过添加脱泥剂,改变矿物表面的电荷性质,使泥质颗粒与矿 物颗粒分离。
脱泥剂的选择:根据矿石性质和脱泥效果选择合适的脱泥剂,如聚丙烯酰胺、 淀粉等。
脱泥工艺:采用合适的脱泥工艺,如搅拌、过滤、浓缩等,以达到最佳的脱泥 效果。
脱泥效果评价:通过观察脱泥后矿石的外观、粒度分布、浮选效果等指标,评 价脱泥效果。
磨矿:将破碎后的矿石磨成细粉,增加表面积, 提高浮选效果
浮选:在浮选机中加入药剂,使铅锌矿颗粒附 着在气泡上,浮到矿浆表面,形成泡沫层
泡沫收集:将浮选后的泡沫层收集起来,得到 铅锌矿精矿
脱水:将收集到的泡沫层进行脱水处理,得到 干燥的铅锌矿精矿
品位调整:根据市场需求,对铅锌矿精矿的品 位进行调整,得到符合标准的产品
较与选择
技术特点比较
浮选技术:利用矿物表面的物理化学性质差异,实现矿物与脉石的分离 脱泥技术:通过去除矿石中的泥质矿物,提高矿石品质 浮选与脱泥技术的结合:提高浮选效率,降低浮选成本 浮选与脱泥技术的选择:根据矿石性质、选矿工艺和设备条件等因素进行综合考虑
应用场景选择
根据矿石性质 选择:如矿石 粒度、硬度、
脱泥药剂
脱泥药剂的作用:提高浮选 效果,降低浮选成本
脱泥药剂的种类:阳离子型、 阴离子型、非离子型
脱泥药剂的选择:根据矿石 性质、浮选工艺和设备等因 素选择
脱泥药剂的添加方式:连续 添加、间歇添加、多点添加
脱泥工艺流程
矿石破碎:将大块矿石破碎成小颗粒,便于后续处理 磨矿分级:将破碎后的矿石进行磨矿和分级,提高后续浮选效果 浮选:在浮选机中加入药剂,使铅锌矿与杂质分离 脱水:将浮选后的矿浆进行脱水处理,得到铅锌精矿 干燥:将脱水后的精矿进行干燥,得到最终产品

铅锌矿浮选工艺流程

铅锌矿浮选工艺流程

铅锌矿浮选工艺流程铅锌矿是一种重要的金属矿石,其浮选工艺流程是将这种矿石中的有用矿物与杂质通过浮选方法分离开来。

下面将详细介绍铅锌矿的浮选工艺流程。

首先,铅锌矿在矿山中经过采矿过程得到矿石,这些矿石需要经过破碎和磨矿的过程将其变成适合浮选的粒度。

然后,将矿石送入浮选机械,经过颗粒矿浮选机理将其中的有用矿物与杂质分离。

在浮选的过程中,需要添加一些药剂来改变矿石中矿物和杂质的浮选特性。

一般来说,先添加捕收剂,比如黄原胶,来增加有用矿物与气泡的结合能力。

然后,添加起泡剂,比如黄原胶、二甲基二硫基草酸盐,来产生气泡,使有用矿物与气泡结合并上浮。

在浮选过程中,气泡在浮选槽中形成并上升,将有用矿物带上来。

然后,通过调整浮选槽的水流速度和气泡大小,使有用矿物上浮到矿浆的表面,形成浮选精矿。

而杂质和未结合的颗粒矿物则沉入底部,形成浮选尾矿。

接下来,将浮选精矿进行脱水和脱硫的处理。

一般来说,浮选精矿含有一定的水分和硫化物,需要通过脱水和脱硫的过程去除。

脱水可以采用离心机和过滤机进行,将水分去除后得到干燥的浮选精矿。

脱硫可以采用氧化法和还原法进行,将硫化物转化为氧化物或硫酸盐,以降低尾矿中的硫含量。

最后,将干燥的浮选精矿进行炼制和提纯处理,得到最终的铅和锌金属产品。

炼制过程中主要包括熔炼和精炼。

熔炼将铅锌精矿加热熔化,将其中的杂质和氧化物去除,得到铅锌合金。

精炼则通过进一步的处理,如蒸馏和电解,将铅锌合金分离为纯铅和纯锌。

综上所述,铅锌矿的浮选工艺流程包括矿石的破碎和磨矿、浮选机械的操作和调整、浮选精矿的脱水和脱硫以及最后的炼制和提纯处理。

通过这些步骤,可以将有用矿物与杂质进行有效分离,实现铅锌矿石的资源利用。

铅锌矿的浮选试验及工艺条件优化

铅锌矿的浮选试验及工艺条件优化

优化效果的评估:通过对比优化前后的浮选效果,评估优化方案的实际效果
优化方案的调整:根据实际生产情况,对优化方案进行适当调整,以适应生产需求
应用效果和经济效益分析
提高浮选效率:优化工艺条件后,浮选效率得到显著提高
降低生产成本:通过优化工艺条件,降低了生产成本,提高了经济效益
提高产品质量:优化工艺条件后,产品质量得到提高,满足了市场需求
优化浮选工艺条件,降低生产成本
促进铅锌矿行业法和步骤
添加标题
样品采集:选择合适的铅锌矿样品进行试验
添加标题
磨矿:将样品进行磨矿处理,达到合适的粒度
添加标题
浮选:在浮选机中加入药剂,进行浮选试验
添加标题
分析:对浮选后的产物进行化学分析,确定铅锌矿的含量和品位
添加标题
优化:根据试验结果,调整浮选工艺条件,以提高铅锌矿的回收率
添加标题
讨论:浮选试验过程中存在的问题及改进措施
添加标题
结论:浮选试验结果对工艺条件优化具有重要意义
Part Four
铅锌矿浮选工艺条件优化
工艺条件优化方案
浮选药剂的选择:根据矿石性质选择合适的浮选药剂
浮选效果的评价:根据浮选效果选择合适的浮选工艺条件和优化方案
浮选时间的控制:根据矿石性质和浮选药剂选择合适的浮选时间
添加标题
Part Six
结论
总结试验结果和结论
试验目的:优化铅锌矿的浮选工艺条件
添加标题
试验方法:采用单因素试验和正交试验
添加标题
试验结果:确定了最佳浮选工艺条件
添加标题
结论:优化后的浮选工艺可以提高铅锌矿的回收率和产品质量
添加标题
对未来研究和发展的建议和展望

选铅锌矿的工艺流程

选铅锌矿的工艺流程

选铅锌矿的工艺流程
根据矿石类型不同,则选择不同的选矿方法,也就需要不同的铅锌矿选矿设备。

硫化矿石通常用浮选方法。

氧化矿石用浮选或重选与浮选联合选矿,或硫化焙烧后浮选,或重选后用硫酸处理再浮选。

对于含多金属的铅锌矿石,一般用磁—浮、重—浮、重—磁—浮等联合选矿方法。

1、铅锌矿选矿设备浮选工艺
铅锌矿选矿设备具体浮选工艺如下:A、将泥质氧化锌矿进行磨矿,使粒度为-0.1mm的占50%~80%;B、将磨细的矿浆分级溢流进行氧化铅的浮选;C、将铅浮选的尾矿送入搅拌桶内,控制矿浆浓度在25~35%,加入浮选剂,控制矿浆pH值9-11,搅拌
6-15min;D、铅锌矿选矿设备--将上述矿浆送入浮选槽进行1-3级细粒粗选,每级粗选精矿进行1-3次精选,粗选中矿进入下一级粗选,含泥小于16%的矿浆进行一级6-8min的粗选,粗选精矿进行1-3次且每次1-2min的精选,得精矿产品,1次精选中矿及粗选中矿进入脱泥;含泥17-21%的矿浆进行二级且每级5-7min的粗选,每级粗选精矿进行1-3次且每次1-2min的精选得精矿产品,第二级1次精选中矿及第二级粗选中矿进入脱泥;含泥22-26%的矿浆进行三级且每级4-6min的粗选,每级粗选精矿进行1-3次且每次1-2min 的精选,得精矿产品,第三级1次精选中矿及第三级粗选中矿进入脱泥;E、铅锌矿选矿设备--将D步骤细粒浮选后的中矿送Φ150mm以
下的水力旋流器组或高频细筛进行脱泥,脱除-0.074mm以下的细泥,送搅拌桶,控制矿浆浓度25 -35%,补充浮选剂,控制矿浆pH值
9-11,搅拌5-12min,送入浮选槽。

2、选铅锌矿设备
公司配套产品:破碎机烘干机磁选机浮选机跳汰机球磨机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铅锌矿的浮选方法及浮选工艺流程铅锌是人类从铅锌矿石中提炼出来的较早的金属之一。

铅锌广泛用于电气工业、机械工业、军事工业、冶金工业、化学工业、轻工业和医药业等领域。

此外,铅金属在核工业、石油工业等部门也有较多的用途。

在铅锌矿中铅工业矿物有11种,锌工业矿物有6种,以方铅矿、闪锌矿最为重要。

方铅矿的化学式为PbS,晶体结构为等轴晶系,硫离子成立方最紧密堆积,铅离子充填在所有的八面体空隙中。

新鲜的方铅矿表面具有疏水性,未氧化的方铅矿很易浮选,表面氧化后可浮性降低。

黄药或黑药是方铅矿的典型的捕收剂,黄药在方铅矿表面发生化学吸附,白药和乙硫氮也是常用捕收剂,其中丁铵黑药对方铅矿有选择性捕收作用。

重铬酸盐是方铅矿的有效抑制剂,但对被Cu2+活化的方铅矿,其抑制效果下降。

被重铬酸盐抑制过的方铅矿,很难活化,要用盐酸或在酸性介质中,用氯化钠处理后才能活化。

氰化物不能抑制它的浮选,硫化钠对方铅矿的可浮性很敏感,过量硫离子的存在可抑制方铅矿的浮选;二氧化硫、亚硫酸及其盐类、石灰、硫酸锌或与其它药剂配合可以抑制方铅矿的浮选。

闪锌矿的化学式为ZnS,晶体结构为等轴晶系, Zn离子分布于晶胞之角顶及所有面的中心。

S位于晶胞所分成的八个小立方体中的四个小立方体的中心。

高锰酸钾浓度为4~6×10-5摩尔/升时对活化的闪锌矿有较强的抑制作用,浓度偏高时却使其良好浮游。

其作用机理为:高锰酸钾浓度低时与闪锌矿表面活化膜及表面晶格离子反应生成的金属羟基化合物起抑制作用并使黄药脱附,浓度高时则在矿物表面发生氧化还原反应生成大量元素硫。

氰化物可以强烈的抑制闪锌矿,此外硫酸锌、硫代硫酸盐等都可以抑制闪锌矿的浮选。

黄铁矿是地壳中分布最广的硫化物,形成于各种不同的地质条件下,与其他矿物共生。

黄铁矿能在多种稳定场中存在是因为Fe2+的电子构型,使它进入硫离子组成的八面体场中获得了较大的晶体场稳定能及附加吸附能。

因此,黄铁矿可形成并稳定于各种不同的地质条件下。

除了黄铁矿的晶体结构、化学组成、表面构造等因素对其可浮性有影响之外,许多研究也表明,黄铁矿的矿床成矿条件、矿石的形成特点、矿石的结构构造等因素也有影响。

石透原对日本十三个不同矿床的黄铁矿的化学分析结果指出,各矿样的S/Fe比值大都在1.93~2.06范围内波动,S/Fe比愈接近理论值2,则黄铁矿可浮性愈好。

陈述文等对八种不同产地的黄铁矿的可浮性进行了研究,认为单纯用硫铁比来判断其可浮性有一定的局限性,黄铁矿的可浮性还与其半导体性质及化学组成有关。

两者的关系为:S/Fe比高的黄铁矿为N型半导体,其温差电动势为负值,可浮性差,易被Na2S、Ca2+等离子抑制;S/Fe比接近理论值2者既可能是P型也可能是N型半导体,在酸性介质中可浮性好,在碱性介质中可浮性差;S/Fe比值低的黄铁矿为P型半导体,温差电动势大,在碱性介质中可浮性好,难以被Na2S、Ca2+等抑制,但在酸性介质中可浮性差。

短链黄药是黄铁矿的传统捕收剂,其疏水产物为双黄药。

在黄药作用下,黄铁矿在pH小于6的酸性介质中易浮,但pH为6~7间有不同研究表明其可浮性变差或更好浮。

凌竞宏等研究则表明这一现象和矿样处理方式有关。

在碱性条件下,黄铁矿可浮性随着pH值的升高而下降。

黄铁矿的活化剂一般使用硫酸,此外也可用Na2CO3或CO2来活化。

作用机理为:其一是降低溶液pH值,使黄铁矿表面Ca2+、Fe2+、Fe3+等离子形成络合物或难溶盐从黄铁矿表面脱附而进入溶液,恢复黄铁矿的新鲜表面;其二是由于活化剂的存在使黄铁矿表面难以被氧化,从而被抑制的黄铁矿得以活化而上浮。

当黄铁矿表面氧化较深时,可被Cu2+活化。

其机理为Cu2+可取代黄铁矿晶格中的Fe2+使表面生成含铜硫化膜从而增强对黄药的吸附作用;但当黄铁矿吸附捕收剂或受到石灰抑制较深时,则需在酸性介质中或经酸清洗后方可被CuSO4活化。

3.2铅锌浮选捕收剂铅锌矿的常用捕收剂有:1、黄药类这类药剂包括黄药、黄药酯等。

2.硫氮类,如乙硫氮,其捕收能力较黄药强。

它对方铅矿、黄铜矿的捕收能力强,对黄铁矿捕收能力校弱,选择性好,浮选速度较快,用途比黄药少。

对硫化矿的粗粒这生体有较强的捕收比它用于铜铅硫比矿分选时,能够得到比黄药更好的分选效果。

3.黑药类黑药是硫化矿的有效捕收剂,其捕收能力较黄药弱,同一金属离子的二烃基二硫代磷酸盐的溶解度积均较相应离子的黄原酸盐大。

黑药有起泡性。

工业常用黑药有:25号黑药、丁铵黑药、胺黑药、环烷黑药。

其中丁铵黑药(二丁基二硫代磷酸铵)为白色粉末,易溶于水,潮解后变黑,有一定起泡性,适用于铜、铅、锌、镍等硫化矿的浮选。

弱碱性矿浆中对黄铁矿和磁黄铁矿的捕收能力较弱,对方铅矿的捕收能力较强。

3.3铅锌浮选调整剂调整剂按其在浮选过程中的作用可分为:抑制剂、活化剂、介质pH 调节剂、矿泥分散剂、凝结剂和续凝剂。

调控剂包括各种无机化合物(如盐、碱和酸)、有机化合物。

同一种药剂,在不同的浮选条件下,往往起不同的作用。

一、抑制剂1.石灰石灰(CaO)有强烈的吸水性,与水作用生成消石灰Ca(0H)2。

它难溶于水,是一种强碱,加入浮选矿浆中的反应如下:CaO+H2O=Ca(OH)2Ca(OH)2=CaOH++OH- CaOH+=Ca2++0H- 石灰常用于提高矿浆PH值,抑制硫化铁矿物。

在硫化铜、铅、锌矿石中,常伴生有硫化铁矿(黄铁矿、磁黄铁矿和白铁矿、硫砷铁矿(如毒砂),为了更好处浮选铜、铅、锌矿物,常要加石灰抑制硫化铁矿物。

石灰对方铅矿,特别是表面略有氧化的方铅矿,有抑制作用。

因此,从多金属硫化矿中浮选方铅矿时,常采用碳酸钠调节矿浆pH。

如果由于黄铁矿含量较高,必须用石灰调节矿浆pH时,应注意控制石灰的用量。

石灰对起泡剂的起泡能力有影响,如松醉油类起袍剂的起泡能力,随PH的升高而增大,酚类起泡剂的起泡能力,则随pH的升高而降低。

石灰本身又是一种凝结剂,能使矿桨中微细颗粒凝结。

因而,当石灰用最适当时,浮选泡沫可保持一定的粘度;当用量过大时,将促使微细矿粒凝结,而使泡沫粘结膨胀,影响浮选过程的正常进行。

2.氰化物(NaCN、KCN)氰化物是铅锌分选时的有效抑制剂。

氰化物主要是氰化钠和氰化钾,也有用氰化钙的。

氰化物是强碱弱酸生成的盐,它在矿浆个水解,生成HCN和CN- KCN=K++CN- CN+H2O=HCN++OH- 由上述平衡式看出,碱性矿浆中,CN-浓度提高,有利于抑制。

如pH降低,形成HCN(氢氰酸)使抑制作用降低。

因此,使用氰化物,必须保持矿浆的碱性。

氰化物是剧毒的药剂,多年来一直在进行无氰或少氰抑制剂的研究。

3.硫酸锌硫酸锌其纯品为白色晶体,易溶于水,是闪锌矿的抑制剂,通常在碱性矿浆中它才有抑制作用,矿浆pH愈高,其抑制作用愈明显。

硫酸锌在水中产生下列反应:ZnSO4=Zn2++SO42- Zn2++2H20=Zn(OH)2+2H+ Zn(OH)2为两性化合物,溶于酸生成盐Zn(OH)2+H2S04=ZnSO4+2H2O 在碱性介质中,得到HZnO2-和ZnO22-。

它们吸附于矿物增强了矿物表面的亲水性。

Zn(OH)2+NaOH=NaHZnO2+H2O Zn(OH)2+2NaOH=Na2ZnO2+2H2O 硫酸锌单独使用时,共抑制效果较差,通常与氰化物、硫化钠、亚硫酸盐或硫代硫酸盐、碳酸钠等配合使用。

硫酸锌和氰化物联合使用,可加强对闪锌矿的抑制作用。

一般常用的比例为:氰化物:硫酸锌=1:2—5。

此时,CN-和Zn2+形成胶体Zn(CN)2沉淀。

4.亚硫酸、亚硫酸盐、S02气体等亚硫酸、亚硫酸盐、二氧化硫气体这类药剂包括二氧化硫(SO2)、亚硫酸(H2S03)、亚硫酸钠和硫代硫酸钠等。

二氧化硫溶于水生成亚硫酸:S02十H2O=H2S03 二氧化硫在水中的溶解度随温度的升高而降低,18℃时,用水吸收,其中亚硫酸的浓度为1.2%;温度升高到30℃时,亚硫酸的浓度为0.6%。

亚硫酸及其盐具有强还原性,故不稳定。

亚硫酸可以和很多金属离子形成酸式盐、亚硫酸氢盐或正盐(亚硫酸盐),除碱金属亚硫酸正盐易溶于水外,其他金属的正盐均微溶于水。

亚硫酸在水中分二步解离,溶液中H2SO3、HSO3-和SO32-的浓度,取决于溶液的pH值。

使用亚硫酸盐浮选时,矿桨PH 常控制在5—7的范围内。

此时,起抑制作用的主要是HSO3-。

二氧化硫及亚硫酸(盐)主要用于抑制黄铁矿、闪锌矿。

用溶解有二氧化硫的石灰造成的弱酸性矿桨(pH=5—7),或者使用二氧化硫与硫酸锌、硫酸亚铁、硫酸铁等联合作抑制剂。

此时方铅矿、黄铁矿、闪锌矿受到抑制,被抑制的闪锌矿,用少量硫酸铜即可活化。

还可以用硫代硫酸钠、焦亚硫酸钠代替亚硫酸盐),抑制闪锌矿和黄铁矿。

对于被铜离子强烈活化的闪锌矿,只用亚硫酸盐其抑制效果较差。

此时,如果同时添加硫酸锌,硫化钠或氰化物,则能够增强抑制效果。

亚硫酸盐在矿浆中易于氧化失效,因而,其抑制作用有时间性。

为使过程稳定,通常采用分段添加的方法。

5.起泡剂起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上产生定向排列,大部分起泡剂是表面活性物质,能够强烈地降低水的表面张力。

同一系列的有机表面活性剂表顶活性按“三分之一”的规律递增,此即所谓“特芳贝定则”。

起泡剂应有适当的溶解度。

起泡剂的溶解度,对起泡性能及形成气泡的特性有很大的影响,如溶解度很高,则耗药量大,或迅速发生大量泡沫,但不能耐久,当溶解度过低冰来不及溶解,随泡沫流失,或起泡速度缓慢,延续时间校长,难于控制。

相关链接:反击式破碎机鄂式破碎机振动筛破石机细碎机打砂机河卵石制砂机以上方法在实际操作过程中,会有适当偏差或不同,请谅解。

感谢您的支持与配合,我们会努力把内容做得更好!。

相关文档
最新文档