高三物理一轮复习资料《曲线运动 万有引力与航天》精品复习学案(教师版含答案)

合集下载

【名师导学】高三物理一轮总复习 新课标 考点集训:第四章 曲线运动万有引力与航天【含解析】

【名师导学】高三物理一轮总复习 新课标 考点集训:第四章 曲线运动万有引力与航天【含解析】

第四章曲线运动万有引力与航天(必修2)考点集训(十五)第1节曲线运动运动的合成与分解一、选择题:1~6题为单选,7、8题为多选.1.关于曲线运动,下列说法中错误的是A.匀变速运动不可能是曲线运动B.曲线运动一定是变速运动C.匀速圆周运动是变速运动D.做曲线运动的物体受到的合力肯定不为零2.设有一冰球以速度v0沿直线在光滑无摩擦的水平面上从a点匀速运动到b点,忽略空气阻力.图(a)为俯视图.当冰球运动到b点时受到图示中黑箭头方向的快速一击,这之后冰球有可能沿如图(b)中哪一条轨迹运动3.一个物体在力F1、F2、F3等几个力的共同作用下,做匀速直线运动.若突然撤去力F1后,则物体A.可能做曲线运动B.不可能继续做直线运动C.必然沿F1的方向做直线运动D.必然沿F1的反方向做匀加速直线运动4.一小船在静水中的速度为3 m/s,它在一条河宽为150 m,水流速度为4 m/s的河流中渡河,则该小船A.能到达正对岸B.渡河的时间可能小于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短时间渡河时,位移大小为200 m5.如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连.由于B 的质量较大,故在释放B 后,A 将沿杆上升,当A 环上升至定滑轮的连线处于水平位置时,其上升速度v 1≠0,若这时B 的速度为v 2,则A .v 2=v 1B .v 2>v 1C .v 2≠0D .v 2=06.如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为vcos θD .沿A 杆斜向上,大小为v cos θ7.两个互相垂直的匀变速直线运动,初速度分别为v 1和v 2,加速度分别为a 1和a 2,它们的合运动轨迹A .如果v 1=v 2=0,那么轨迹一定是直线B .如果v 1≠0,v 2≠0,那么轨迹一定是曲线C .如果a 1=a 2,那么轨迹一定是直线D .如果a 1a 2=v 1v 2,那么轨迹一定是直线8.如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧,在t =0时刻钉子沿与水平方向成θ=30°角的斜面向右做初速度为零,加速度为a 的匀加速运动,运动中始终保持悬线竖直,则在运动过程中,下列说法正确的是A .橡皮做加速度增加的加速直线运动B .橡皮做匀加速直线运动C .橡皮的速度方向始终与水平方向成60°角D .在t 时刻,橡皮距离出发点的距离为32at 2二、计算题9.有一小船正在渡河,如图所示.在离对岸30 m 时,其下游40 m 处有一危险水域.假若水流速度为5 m/s ,为了使小船在危险水域之前到达对岸,则小船从现在起相对于静水的最小速度应是多大?10.在光滑水平面上放一滑块,其质量m =1 kg ,从t =0时刻开始,滑块受到水平力F的作用,F的大小保持0.1 N不变.此力先向东作用1 s,然后改为向北作用1 s,接着又改为向西作用1 s,最后改为向南作用1 s.以出发点为原点,向东为x轴正方向,向北为y轴正方向,建立直角坐标系.求滑块运动4 s后的位置及速度,并在图中画出其运动轨迹.考点集训(十六)第2节平抛物体的运动规律及其应用一、选择题:1~6题为单选,7、8题为多选.1.从O点抛出A、B、C三个物体,它们做平抛运动的轨迹分别如图所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体在空中运动的时间t A、t B、t C的关系分别是A.v A>v B>v C,t A>t B>t CB.v A<v B<v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C2.在空中某一高度水平匀速飞行的飞机上,每隔1 s时间由飞机上自由落下一个物体,先后释放四个物体,最后落到水平地面上,若不计空气阻力,则这四个物体A.在空中任何时刻排列在同一抛物线上,落地点间是等距离的B.在空中任何时刻排列在同一抛物线上,落地点间是不等距离的C.在空中任何时刻总是在飞机下方排成竖直的直线,落地点间是不等距离的D.在空中任何时刻总是在飞机下方排成竖直的直线,落地点间是等距离的3.甲、乙两球位于同一竖直线上的不同位置,甲比乙高出h.将甲、乙两球分别以v1、v2的速度面向同一竖直墙水平方向抛出,结果同时打在墙的同一点上,不计空气阻力,下列说法正确的是A.两球同时抛出,且v1<v2B.甲后抛出,且v1>v2C.甲先抛出,且v1>v2D.甲先抛出,且v1<v24.质量m=4 kg的质点静止在光滑水平面上的直角坐标系的原点O处,先用沿x轴正方向的力F1=8 N作用了2 s,然后撤去F1;再用沿y轴正方向的力F2=24 N作用了1 s.则质点在这3 s内的轨迹是5.如图所示,在空中某一位置P将一个小球以初速度v0水平向右抛出,它和竖直墙壁碰撞时速度方向与水平方向成45°角,若将小球从P点以2v0的初速度水平向右抛出,下列说法正确的是A.小球在两次碰墙壁前的运动过程中速度增量方向相同,大小之比为2∶1B.第二次小球碰到墙壁前瞬时速度方向与水平方向成30°角C.第二次小球碰到墙壁时的速度为第一次碰到墙壁时速度的2倍D .第二次小球碰到墙壁时的速度为第一次碰到墙壁时速度的5倍6.从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是A .小球水平抛出时的初速度大小为gt tan θB .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .若小球初速度增大,则θ减小7.如图所示,在斜面顶端a 处以速度v a 水平抛出一小球,经过时间t a 恰好落在斜面底端P 处;今在P 点正上方与a 等高的b 处以速度v b 水平抛出另一小球,经过时间t b 恰好落在斜面的中点Q 处.若不计空气阻力,下列关系式正确的是A .v a =2v bB .v a =2v bC .t a =2t bD .t a =2t b8.某物体做平抛运动时,它的速度方向与水平方向的夹角为θ,其正切值tan θ随时间t 变化的图象如图所示,则(g 取10 m/s 2)A .第1 s 物体下落的高度为5 mB .第1 s 物体下落的高度为10 mC .物体的初速度为5 m/sD .物体的初速度是10 m/s 二、填空题9.平抛运动的物体,在落地前的最后1 s 内,其速度方向由与竖直方向成60°变为与竖直方向成45°,则物体抛出时的速度为__________m/s ,物体下落的高度为________m.三、计算题10.某卡车司机在限速60 km/h 的公路上因疲劳驾驶而使汽车与路旁障碍物相撞.处理事故的警察在路旁泥中发现了卡车顶上的一个金属零件,可以判断,这是事故发生时刻该零件从卡车顶上松脱后被抛出而陷在泥地里的.警察测得该零件原位置与陷落点的水平距离为s=10.5 m,车顶距泥地的竖直高度为h=2.45 m.请你根据这些数据判断该车是否超速?11.一平板车,质量M=100 kg,停在水平路面上,车身的平板离地面的高度h=1.25 m,一质量m=50 kg的小物块置于车的平板上,它到车尾端的距离b=1.00 m,与车板间的动摩擦因数μ=0.20,如图所示.今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落.物块刚离开车板的时刻,车向前行驶的距离s0=2.0 m.不计路面与平板车间以及轮轴之间的摩擦.取g=10 m/s2.求(1)物块从车上滑落时物块的速度v1和平板车的速度v2;(2)物块从车上滑落到落地的时间t;(3)物块落地时,落地点到车尾的水平距离x.考点集训(十七)第3节圆周运动一、选择题:1~7题为单选,8、9题为多选1.关于向心力的说法中,正确的是A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体的速度C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力是不变的2.如图所示,两等高的等距轨道a、b固定于水平桌面上,当小车沿该轨道转弯时,小车会略微向轨道外侧偏移.为了顺利实现拐弯而不会出轨,你认为将小车轮子设计成以下的哪一种最好3.在汽车通过凸桥的最高点时,下列说法正确的是A.汽车对桥面的压力等于汽车的自重B.汽车对桥面的压力大于汽车的自重C.汽车对桥面的压力小于汽车的自重D.汽车对桥面的压力与车速无关4.一水平放置的圆盘,可以绕中心O点旋转,盘上放一个质量为m的铁块(可视为质点),轻质弹簧一端连接铁块,另一端系于O点,铁块与圆盘间的动摩擦因数为μ,如图所示.铁块随圆盘一起匀速转动,铁块距中心O点的距离为r,这时弹簧的拉力大小为F,重力加速度为g,已知铁块受到的最大静摩擦力等于滑动摩擦力,则圆盘的角速度可能是A .ω≥F +μmgmr B .ω≤F -μmgmrC.F -μmgmr <ω<F +μmgmr D.F -μmgmr≤ω≤F +μmgmr5.如图所示,匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,离圆盘圆心越来越远C .两物体仍随圆盘一起做匀速圆周运动,不会发生滑动D .物体B 仍随圆盘一起做匀速圆周运动,物体A 发生滑动,离圆盘圆心越来越远6.如图甲所示,一轻杆一端固定在O 点,另一端固定一小球,在竖直平面内做半径为R 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为N ,小球在最高点的速度大小为v ,N -v 2图象如乙图所示.下列说法正确的是A .当地的重力加速度大小为bRB .小球的质量为abRC .v 2=c 时,杆对小球弹力方向向上D .若c =2b ,则杆对小球弹力大小为2a7.如图所示,在光滑圆锥面上物体以速率v 绕锥体的轴线做水平面内的匀速圆周运动,θ=30°,绳长为L ,当v =32gL 时 A .绳子对物体的拉力为0B .圆锥面对物体的支持力为mg cos θC .绳子对物体的拉力为2mgD .细线与竖直方向成45°夹角8.如图所示,直径为d 的竖直圆筒绕中心轴线以恒定的转速匀速转动.一子弹以水平速度沿圆筒直径方向从左壁射入圆筒,从右侧射穿圆筒后发现两弹孔在同一竖直线上且相距为h .则A .子弹在圆筒中的水平速度为v 0=d g2h B .子弹在圆筒中的水平速度为v 0=2d g 2h C .圆筒转动的角速度可能为ω=πg 2h D .圆筒转动的角速度可能为ω=3πg 2h9.轻杆一端固定在光滑水平轴O 上,另一端固定一质量为m 的小球,如图所示.给小球一初速度,使其在竖直平面内做圆周运动,且刚好能通过最高点P ,下列说法正确的是A.小球在最高点时对杆的作用力为零B.小球在最高点时对杆的作用力为mgC.若增大小球的初速度,则在最高点时球对杆的力一定增大D.若增大小球的初速度,则在最高点时球对杆的力可能为零二、计算题10.如图所示,小球Q在竖直平面内做匀速圆周运动,半径为r,当球Q运动到与O 在同一水平线上时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点处相碰,Q球的角速度ω应满足什么条件?考点集训(十八) 第4节 万有引力定律 天体运动一、选择题:1~6题为单选,7~9题为多选. 1.下列说法中不正确的是A .第一宇宙速度是人造地球卫星绕地球做匀速圆周运动的最大线速度,也是发射卫星所需的最小发射速度B .当卫星速度达到11.2 km/s ,卫星就能脱离地球的束缚C .第一宇宙速度等于7.9km/s ,它是卫星在地球表面附近绕地球做匀速圆周运动的线速度的大小D .地球同步卫星的运行速度大于第一宇宙速度 2.关于开普勒第三定律的理解,以下说法中正确的是 A .k 是一个与行星无关的常量,可称为开普勒常量 B .T 表示行星运动的自转周期C .该定律只适用于行星绕太阳的运动,不适用于卫星绕行星的运动D .若地球绕太阳运转轨道的半长轴为R 1,周期为T 1,月球绕地球运转轨道的半长轴为R 2,周期为T 2,则R 31T 21=R 32T 223.银河系中有两颗行星绕某恒星运行,从天文望远镜中观察到它们的运转周期之比为27∶1,则它们的轨道半径的比为A .3∶1B .9∶1C .27∶1D .1∶94.在某星球表面以初速度v 0竖直上抛一个物体,若物体只受该星球引力作用,忽略其他力的影响,物体上升的最大高度为H ,已知该星球的直径为D ,如果要在这个星球上发射一颗绕它运行的近“地”卫星,其环绕速度为A.v 02H DB.v 02DHC .v 0D2HD .v 0D H5.地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上的物体“飘”起来,则地球的转速应变为原来的A.g2倍 B.g +aa倍 C.g -aa倍 D.g a倍 6.某同学设想驾驶一辆“陆地-太空”两用汽车,沿地球赤道行驶并且汽车相对于地球速度可以增加到足够大.当汽车速度增加到某一值时,它将成为脱离地面绕地球做圆周运动的“航天汽车”.不计空气阻力,已知地球的半径R =6 400 km ,地球表面重力加速度g 为10 m/s 2.下列说法正确的是A .汽车在地面上速度增加时,它对地面的压力增大B .当汽车速度增加到8.0 km/s 时,将离开地面绕地球做圆周运动C .此“航天汽车”环绕地球做圆周运动的最小周期为1 hD .在此“航天汽车”上可以用弹簧测力计测量物体的重力7.如图所示,卫星a 是近地圆轨道卫星(其轨道半径与地球半径的差异可忽略不计);卫星b 是远地圆轨道卫星;此时,两卫星恰好与地心O 处于同一直线上.除万有引力常量为G 及两卫星的周期为T a 、T b 外,其余量均未知,则下列说法正确的是A .可以由此求出地球的质量B .可以由此求出地球的平均密度C .两卫星与地心再次共线所经历的最短时间为 t =T a T b2(T b -T a )D .两卫星与地心再次共线所经历的最短时间为t =T a T bT b -T a8.在1798年英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人,若已知万有引力常量G ,地球表面处的重力加速度为g ,地球半径为R ,地球上一个昼夜的时间为T 1(地球自转周期),一年的时间T 2(地球公转的周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离为L 2.可算出A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22 C .月球的质量m 月=4π2L 31GT 21 D .可求月球、地球及太阳的密度9.如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,然后在P 点经极短时间点火变速后进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P ,远地点为同步轨道上的Q ),到达远地点时再次经极短时间点火变速后,进入同步轨道.设卫星在近地圆轨道上运行的速率为v 1,在P 点经极短时间变速后的速率为v 2,沿转移轨道刚到达远地点Q 时的速率为v 3,在Q 点经极短时间变速后进入同步轨道后的速率为v 4.下列关系正确的是A .v 1<v 3B .v 4<v 1C .v 3<v 4D .v 4<v 2 二、计算题10.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ,宇航员在该行星“北极”距该行星地面附近H 处自由释放—个小球(引力视为恒力),落地时间为t . 已知该行星半径为r ,万有引力常量为G ,求:(1)该行星的第一宇宙速度; (2)该行星的平均密度.11.在“勇气号”火星探测器着陆的最后阶段,着陆器降落到火星表面上,在经过多次弹跳才停下来,假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,已知火星的一个卫星的圆轨道的半径为r,周期T,火星可视为半径为r0的均匀球体,求:(1)火星表面的重力加速度;(2)它第二次落到火星表面时速度大小,(计算时不计大气阻力).12.我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L 1,最远距离为L 2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L 3的“绕月轨道”上飞行,如图所示.已知地球半径为R ,月球半径为r ,地球表面重力加速度为g ,月球表面的重力加速度为g6,求:(1)卫星在“停泊轨道”上运行的线速度大小; (2)卫星在“绕月轨道”上运行的线速度大小;(3)假定卫星在“绕月轨道”上运行的周期为T ,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响).第1节 曲线运动运动的合成与分解【考点集训】1.A 2.B 3.A 4.C 5.D 6.C 7.AD 8.BCD 9.【解析】设船相对于静水的速度为v 1,水速为v 2,船的合速度v 的方向(过河方向)与水速夹角为α,如图所示.由几何关系知,当v 1垂直于v 时,v 1才最小,此时v 1=v 2sin α.当航线与危险区左边界相交于岸上C 点时,α最小.由题意知sin α最小值为35,所以v 1最小值为v min =5×35 m /s =3 m /s ,故当船在静水中的速度v 1与v 垂直,且船沿图中AC 直线航行时,v 1最小,此时v 1=v min =3 m /s .10.【解析】因为力的大小不变,所以加速度的大小不变, a =Fm=0.1 m /s 2 0~1 s 内,向东匀加速运动,到达位置A ,x 1=12at 2=0.05 m ,v 1=at =0.1 m /s (向东),A的坐标为(0.05 m ,0)1 s ~2 s ,向东匀速,x 2=v 1t =0.1 m ,向北匀加速,y 2=12at 2=0.05 m ,v y =at =0.1 m /s ,到达B ,B 的坐标为(0.15 m ,0.05 m )2 s ~3 s ,向东匀减速,x 3=x 1=0.05 m ,向北匀速运动,y 3=v y ·t =0.1 m ,到达位置C ,C 的坐标为(0.20 m ,0.15 m )3 s ~4 s ,向北匀减速到速度为0,x 4=0,y 4=y 2=0.05 m ,到达位置D ,D 的坐标为 (0.20 m ,0.20 m )所以4 s 速度为0,位置坐标为(0.20 m ,0.20 m ),轨迹图如图所示.第2节 平抛物体的运动规律及其应用【考点集训】1.C 2.D 3.D 4.D 5.A 6.D 7.BD 8.AD9.23.2 27.510.【解析】h =12gt 2,时间t =0.7 s , 若以60 km /h 的速度行驶,水平位移s =vt =11.67 m >10.5 m ,没超速或算出实际车速为54 km /h .11.【解析】(1)滑落前(设滑落前经过时间为t 1)对m :a 1=μg =2 m /s 2 ①对M :F -μmg =Ma 2 ②x 1=12a 1t 21 ③ x 2=12a 2t 21=s 0 ④ 又由m 与M 位移关系知:x 2-x 1=b ⑤解①②③④⑤得a 2=4 m /s 2,t 1=1.0 s ,F =500 N速度v 1=a 1t 1=2 m /s ,速度v 2=a 2t 1=4 m /s(2)滑落后物块m 做平抛运动,则时间t =2h g=0.5 s (3)落地点到车尾水平距离x =v 2t +12F Mt 2-v 1t =1.625 m . 第3节 圆周运动【考点集训】1.C 2.A 3.C 4.D 5.D 6.A 7.C 8.ACD 9.BD10.【解析】由自由落体的位移公式h =12gt 2,可求得小球P 自由下落运动至圆周最高点的时间为t 1=2h g. 设小球Q 做匀速圆周运动的周期为T ,则有T =2πω, 由题意知,球Q 由图示位置运动至圆周最高点所用时间为t 2=(n +14)T ,式中n =0,1,2,… 要使两球在圆周最高点相碰,需使t 1=t 2.以上四式联立,解得球Q 做匀速圆周运动的角速度为ω=π(4n +1)g 8h式中n =0,1,2… 即要使两球在圆周最高点处相碰,Q 球的角速度ω应满足 ω=π(4n +1)g 8h(n =0,1,2,…). 第4节 万有引力定律天体运动【考点集训】1.D 2.A 3.B 4.B 5.B 6.B 7.BC 8.AB 9.BCD10.【解析】(1)根据自由落体运动求得星球表面的重力加速度H =12gt 2 得:g =2H t 2 mg =m v 2r星球的第一宇宙速度v =gr =2Hr t(2)由G mM r 2=mg =m 2H t 2 有:M =2Hr 2Gt2 所以星球的密度ρ=M V =3H 2πrGt 211.【解析】(1)对火星的卫星m :G Mm r 2=m 4π2T2r 对火星表面的物体m 0:G Mm 0r 20=m 0g 解得:g =4π2r 3T 2r 20(2)设落到火星表面时的竖直速度为v 1,则有:v 21=2gh又v 2=v 20+v 21所以v =8π2hr 3T 2r 20+v 20. 12.【解析】(1)GM 地m L 21=m v 21L 1 GM 地m R 2=mg ,得v 1=gR 2L 1(2)G M 月m L 23=m v 22L 3 G M 月m r 2=mg 月,解得:v 2=gr 26L 3. (3)cos α=R -r L 2-L 3cos β=r L 3 t =θω,θ=2(α-β), t =α-βπ·T =⎝ ⎛⎭⎪⎫arccos R -r L 2-L 1-arccos r L 3T π.。

2019最新高三物理复习资料《曲线运动 万有引力与航天》精品复习学案(自主学习版含答案)

2019最新高三物理复习资料《曲线运动  万有引力与航天》精品复习学案(自主学习版含答案)

2019高三物理一轮复习资料精品复习学案《曲线运动万有引力与航天》2018高考真题回顾:全国1卷第20题:20.2017年,人类第一次直接探测到来自双中子星合并的引力波。

根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度解析:依题意两颗中子星符合“双星系统模型”,根据已知条件可以求出中子星的周期T,对m1:对m2:,由几何关系:联立以上各式可解得:,,,速率之和。

正确答案:BC。

考点:万有引力定律的应用,双星系统第1节曲线运动运动的合成与分解一、曲线运动1.运动特点(1)速度方向:质点在某点的速度,沿曲线上该点的切线方向.(2)运动性质:做曲线运动的物体,速度的方向时刻改变,所以曲线运动一定是变速运动,即必然具有加速度.2.曲线运动的条件(1)从动力学角度看:物体所受合力的方向跟它的速度方向不在同一条直线上.(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上.二、运动的合成与分解1.基本概念运动的合成分运动合运动运动的分解2.分解原则根据运动的实际效果分解,也可采用正交分解.3.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.4.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.(3)等效性:各分运动叠加起来与合运动有完全相同的效果.[概念测试]1.判断正误(1)速度发生变化的运动,一定是曲线运动.(×)(2)做曲线运动的物体加速度一定是变化的.(×)(3)做曲线运动的物体速度大小一定发生变化.(×)(4)曲线运动可能是匀变速运动.(√)(5)两个分运动的时间一定与它们的合运动的时间相等.(√)(6)合运动的速度一定比分运动的速度大.(×)(7)只要两个分运动为直线运动,合运动一定是直线运动.(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则.(√)2.下列说法正确的是( )A.各分运动互相影响,不能独立进行B.合运动的时间一定比分运动的时间长C.合运动和分运动具有等时性,即同时开始、同时结束D.合运动的位移大小等于两个分运动位移大小之和解析:选C.各分运动具有独立性,A错误;合运动与分运动具有等时性,B 错误,C正确;合运动的位移与分运动的位移满足矢量合成的法则,D错误.3.(多选)某质点在光滑水平面上做匀速直线运动.现对它施加一个水平恒力,则下列说法正确的是( )A.施加水平恒力以后,质点可能做匀加速直线运动B.施加水平恒力以后,质点可能做匀变速曲线运动C.施加水平恒力以后,质点可能做匀速圆周运动D.施加水平恒力以后,质点立即有加速度,速度也立即变化解析:选AB.当水平恒力的方向与速度的方向在同一条直线上时,质点做匀变速直线运动,选项A正确;当水平恒力的方向与速度的方向不在同一条直线上时,质点做匀变速曲线运动,选项B正确;无论力的方向与速度的方向关系如何,质点都不可能做匀速圆周运动,选项C错误;速度不能发生突变,选项D 错误.4.(多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( )A.越接近河岸水流速度越小B.越接近河岸水流速度越大C.无论水流速度是否变化,这种渡河方式耗时最短D.该船渡河的时间会受水流速度变化的影响解析:选AC.由船的运动轨迹可知,小船渡河过程是先做加速运动后做减速运动.河流的中心水流速度最大,越接近河岸水流速度越小,故A正确,B 错误;由于船头垂直河岸,则这种方式过河的时间最短,C正确;船过河的时间与水流速度无关,D错误.考点一物体做曲线运动的条件与轨迹分析1.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向,图中M、N、P、Q表示物体运动的轨迹,其中正确的是( )解析:选B.物体运动的速度方向与运动轨迹一定相切,而且合外力F的方向一定指向轨迹的凹侧,故只有B正确.2.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是( )A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析:选A.质点做匀变速曲线运动,所以加速度不变;由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,所以C点速率比D点大.3.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,将F1突然增大为2F1,则此后质点( )A.不一定做曲线运动B.一定做匀变速运动C.可能做匀速直线运动D.可能做匀变速直线运动解析:选B.F1增大前,质点沿合力方向做匀加速直线运动.F1增大后,合力方向与F1增大之前的质点的速度方向不共线,因而做曲线运动.由于二力方向不变,只将F1增大为2F1,所以合力恒定,质点做匀变速曲线运动.故本题答案为B.考点二运动的合成与分解的应用1.合运动与分运动的关系(1)等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).(2)等效性:各分运动叠加起来与合运动有相同的效果.(3)独立性:一个物体同时参与几个运动,其中的任何一个都会保持其运动性质不变,并不会受其他分运动的干扰.虽然各分运动互相独立,但是它们共同决定合运动的性质和轨迹.2.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.3.合运动性质的判断⎩⎪⎨⎪⎧ 加速度⎩⎪⎨⎪⎧ 恒定:匀变速运动变化:非匀变速运动加速度方向与速度方向⎩⎪⎨⎪⎧ 共线:直线运动不共线:曲线运动题组一 合运动性质的判断 1. (2017·江苏连云港模拟)(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧沿与水平方向成30°角的斜面向右上以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( )A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析:选BC.橡皮斜向右上方运动,具有沿斜面向上的分速度,与钉子沿斜面向上的速度相等,即为v ;橡皮还具有竖直向上的分速度,大小也等于v ;其实际速度大小(合速度)是两个分速度的合成,如图所示.故橡皮的实际速度大小(合速度):v ′=2v cos 30°=3v ,且与水平方向成60°角,A 、D 错误,B 、C 正确.2.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A.西偏北方向,1.9×103 m/sB.东偏南方向,1.9×103 m/sC.西偏北方向,2.7×103 m/sD.东偏南方向,2.7×103 m/s解析:选B. 设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1v cos 30°,代入数据解得v2≈1.9×103 m/s.选项B正确.题组二与运动图象结合的合成与分解问题3.物体在直角坐标系xOy所在的平面内由O点开始运动,其沿坐标轴方向的两个分速度随时间变化的图象如图所示,则对该物体运动过程的描述正确的是( )A .物体在0~3 s 做直线运动B .物体在3 s ~4 s 做直线运动C .物体在3 s ~4 s 做曲线运动D .物体在0~3 s 做变加速运动解析:选B.物体在0~3 s 内,x 方向做匀速直线运动,y 方向做匀加速直线运动,两运动的合运动,一定是曲线运动,且加速度恒定,则A 、D 错误;物体在3 s ~4 s 内两个方向的分运动都是匀减速运动,在3 s 末,速度与x 轴的夹角tan θ=v y v x =34,加速度与x 轴的夹角tan β=a y a x=34,因此合速度与合加速度方向相反,则做直线运动,故B 正确,C 错误.4.有一个质量为2 kg 的质点在x -y 平面上运动,在x 方向的速度图象和y 方向的位移图象分别如图甲、乙所示,下列说法正确的是( )A .质点所受的合力为3 NB .质点的初速度为3 m/sC .质点做匀变速直线运动D .质点初速度的方向与合力的方向垂直解析:选A. 由题图乙可知,质点在y 方向上做匀速运动,v y =Δx Δt =-4 m/s ,在x 方向上做匀加速直线运动,a =Δv Δt =1.5 m/s 2,故质点所受合力F =ma =3 N ,A 正确;质点的初速度v =v x 02+v 2y =5 m/s ,B 错误;质点做匀变速曲线运动,C错误;质点初速度的方向与合力的方向不垂直,如图所示,θ=53°,D错误.考点三小船渡河问题1.小船渡河问题的速度(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).2.小船渡河的三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2 v1.(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.1.(2017·湖北省重点中学联考)(多选)一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m的河,河水流速为4 m/s,则这只船( )A.过河时间不可能小于10 sB.不能沿垂直于河岸方向过河C.渡过这条河所需的时间可以为6 sD.不可能渡过这条河解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30 m,而垂直河岸方向的最大分速度即船自身的速度3 m/s,所以渡河最短时间t=d3 m/s=10 s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.3.(2017·四川绵阳质检)小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10 min到达对岸下游120 m处;若船头保持与河岸成α角向上游航行,出发后12.5 min到达正对岸.求:(1)水流的速度;(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.解析:(1)船头垂直对岸方向航行时,如图甲所示.由x=v2t1得v2=xt1=120600m/s=0.2 m/s①(2)船头保持与岸成α角航行时,如图乙所示.由(1)可得d=v1t1v2=v1cos α②d=v1t2sin α③联立解得α=53°,v1=0.33 m/s,d=200 m答案:(1)0.2 m/s (2)0.33 m/s 200 m 53°(1)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关.(2)船渡河位移最小值与v船和v水大小关系有关,v船>v水时,河宽即为最小位移,v船<v水时,应利用图解法求极值的方法处理.考点四关联速度问题1.问题特点:沿绳(或杆)方向的速度分量大小相等.2.思路与原则(1)思路①明确合速度→物体的实际运动速度v;(2)原则:v1与v2的合成遵循平行四边形定则.3.解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.1.在距河面高度h =20 m 的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v =3 m/s 拉绳,使小船靠岸,那么( )A .5 s 时绳与水面的夹角为60°B .5 s 后小船前进了15 mC .5 s 时小船的速率为4 m/sD .5 s 时小船到岸边的距离为15 m解析:选D.设开始时小船距岸边为L ,则L =h tan 30°=20 3 m ,5 s 后绳端沿岸位移为x =v t =3×5 m =15 m ,设5 s 后小船前进了x ′,绳与水平面的夹角为θ,由几何关系得sin θ=h 2h -x =202×20-15=0.8,解得θ=53°,选项A 错误;由tan θ=hL -x ′,解得x ′=19.64 m ,选项B 错误;由v 船cos θ=v 可得此时小船的速率为v 船=5 m/s ,选项C 错误;5 s 时小船到岸边的距离为L -x ′=20 3 m -19.64 m =15 m ,选项D 正确.2. 如图所示,物体A 、B 经无摩擦的定滑轮用细线连在一起,A 物体受水平向右的力F 的作用,此时B 匀速下降,A 水平向左运动,可知( )A .物体A 做匀速运动B .物体A 做加速运动C .物体A 所受摩擦力逐渐增大D .物体A 所受摩擦力不变解析:选B.设系在A 上的细线与水平方向夹角为θ,物体B 的速度为v B ,大小不变,细线的拉力为F T ,则物体A 的速度v A =v B cos θ,F f A =μ(mg -F T sin θ),因物体下降,θ增大,故v A 增大,物体A 做加速运动,A 错误,B 正确;物体B 匀速下降,F T 不变,故随θ增大,F f A 减小,C 、D 均错误.3.(2017·上海四区联考) 如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αLB .v L sin α C.v cos αL D.v L cos α解析:选B.棒与平台接触点的实际运动即合运动的速度方向是垂直于棒指向左上方,合速度沿竖直向上方向上的速度分量等于v ,即ωL sin α=v ,所以ω=v L sin α.[基础巩固题]1.精彩的F1赛事相信你不会陌生吧!车王舒马赫在一个弯道上突然调整行驶的赛车致使后轮脱落,从而不得不遗憾地退出了比赛.关于脱落的后轮的运动情况,以下说法中正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.脱落时,沿着轮子前进的方向做直线运动,离开弯道D.上述情况都有可能解析:选 C.车轮被甩出后,不再受到车身的约束,被甩出的后轮沿甩出时的速度方向(即甩出点轨迹的切线方向)做直线运动,轮不可能沿车行驶的弯道运动,也不可能沿垂直于弯道的方向运动.故本题答案为C.2.某电视台举办了一期群众娱乐节目,其中有一个环节是让群众演员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球.如果群众演员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中平台内箭头指向表示投篮方向)( )解析:选 B.篮球若能被投入球筐,其合速度的方向应指向圆心,因平台逆时针旋转,所以投篮方向应是如图B所示,选项B正确.3. 跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是( )A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地时的竖直速度越大,有可能对运动员造成伤害C.运动员下落时间与风力无关D.运动员着地速度与风力无关解析:选 C.水平风力不会影响竖直方向的运动,所以运动员下落时间与风力无关,A错误,C正确;运动员落地时竖直方向的速度是确定的,水平风力越大,落地时水平分速度越大,则运动员着地时的合速度越大,有可能对运动员造成伤害,B、D错误.4.(多选)如图,在河水速度恒定的小河中,一小船保持船头始终垂直河岸从一侧岸边向对岸行驶,船的轨迹是一个弯曲的“S”形,则( )A.小船垂直河岸的速度大小恒定不变B.小船垂直河岸的速度大小先增大后减小C.与船以出发时的速度匀速过河相比,过河时间长了D.与船以出发时的速度匀速过河相比,过河时间短了解析:选BD.船在沿河岸的方向上做匀速直线运动,即在相同的时间间隔内,在河岸方向上的位移是相同的;在垂直于河岸的方向上,在相等的时间间隔内(参照船在沿河岸方向上的时间),开始时位移的变化逐渐增大再逐渐减小,所以速度先增大后减小;因中间那段时间速度较大,所以与船保持恒定的初始速度过河相比过河时间短了.选项B、D正确.5. (多选)如右图所示,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,在消防车向前前进的过程中,人同时相对梯子匀速向上运动.在地面上看消防队员的运动,下列说法中正确的是( )A.当消防车匀速前进时,消防队员一定做匀加速直线运动B.当消防车匀速前进时,消防队员一定做匀速直线运动C .当消防车匀加速前进时,消防队员一定做匀变速曲线运动D .当消防车匀加速前进时,消防队员一定做匀变速直线运动解析:选BC.当消防车匀速前进时,消防队员一定做匀速直线运动,选项A 错误,B 正确;当消防车匀加速前进时,消防队员一定做匀变速曲线运动,选项C 正确,D 错误.6.如图所示,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为( )A .v sin αB.v sin α C .v cos α D.v cos α解析:选C.人的速度为合速度,当人沿平直的河岸以速度v 行走时,可将人的速度分解为沿绳方向的分速度和垂直于绳方向的分速度,沿绳方向的分速度即为船行驶的速度,故船的速度为v cos α,选项C 正确.7.如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连.由于B 的质量较大,故在释放B 后,A 将沿杆上升,当A 环上升至与定滑轮的连线水平时,其上升速度v 1≠0,若这时B 的速度为v 2,则( )A .v 2=0B .v 2>v 1C .v 2≠0D .v 2=v 1解析:选A.环A 在虚线位置时,环A 的速度沿虚线方向的分速度为零,故物体B 的速度v 2=0,A 正确.8.(多选)一快艇要从岸边某一不确定位置处到达河中离岸边100 m 远的一浮标处,已知快艇始终与河岸垂直,其在静水中的速度v x 图象和流水的速度v y 图象分别如图甲、乙所示,则( )A .快艇的运动轨迹为直线B .快艇的运动轨迹为曲线C .能找到某一位置使快艇最快到达浮标处的时间为20 sD .快艇最快到达浮标处经过的位移为100 m解析:选BC.快艇沿河岸方向的匀速运动与垂直于河岸的匀加速运动的合运动是类平抛性质的曲线运动,A 错误,B 正确;最快到达浮标处的方式是使垂直于河岸的速度v x 保持图甲所示的加速度a =0.5 m/s 2的匀加速运动,则12at 2=x x ,代入x x =100 m 有t =20 s ,但实际位移为x =x 2x +x 2y >100 m ,C 正确,D 错误. 9.质量m =4 kg 的质点静止在光滑水平面上的直角坐标系的原点O 处,先用沿+x 轴方向的力F 1=8 N 作用了2 s ,然后撤去F 1;再用沿+y 轴方向的力F 2=24 N 作用了1 s ,则质点在这3 s 内的轨迹为( )解析:选D.由F 1=ma x 得a x =2 m/s 2,质点沿x 轴匀加速直线运动了2 s ,x 1=12a x t 21=4 m ,v x 1=a x t 1=4 m/s ;之后质点受F 2作用而做类平抛运动,a y =F 2m =6 m/s 2,质点再经过1 s ,沿x 轴再运动,位移x 2=v x 1t 2=4 m ,沿+y 方向运动位移y 2=12a y t 22=3 m ,对应图线可知D 项正确.10. 如图,船从A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出相对水流的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s解析:选 B.船参与了两个分运动,沿船头指向的分运动和顺水流而下的分运动,其中,合速度v 合方向已知,大小未知,顺水流而下的分运动速度v 水的大小和方向都已知,沿船头指向的分运动的速度v 船大小和方向都未知,合速度与分速度遵循平行四边形定则(或三角形定则),如图,当v 合与v 船垂直时,v 船最小,由几何关系得到v 船的最小值为v 船min =v 水sin 37°=2.4 m/s ,选项B 正确.11.在一个光滑水平面内建立平面直角坐标系xOy ,质量为1 kg 的物体原来静止在坐标原点O (0,0),t =0时受到如图所示随时间变化的外力作用,图甲中F x 表示沿x 轴方向的外力,图乙中F y 表示沿y 轴方向的外力,下列描述正确的是( )A .0~4 s 内物体的运动轨迹是一条直线B .0~4 s 内物体的运动轨迹是一条抛物线C .前2 s 内物体做匀加速直线运动,后2 s 内物体做匀加速曲线运动D .前2 s 内物体做匀加速直线运动,后2 s 内物体做匀速圆周运动解析:选C.0~2 s内物体沿x轴方向做初速度为零的匀加速直线运动,2 s 时受沿y轴方向的恒力作用,与速度方向垂直,故2~4 s内物体做类平抛运动,C项正确.12. (多选)如图所示,某同学在研究运动的合成时做了如图所示活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是( )A.笔尖做匀速直线运动B.笔尖做匀变速直线运动C.笔尖做匀变速曲线运动D.笔尖的速度方向与水平方向夹角逐渐变小解析:选CD.由题意知笔尖做匀变速曲线运动,A、B错误,C正确;笔尖的速度方向为合速度方向,右手沿水平方向的速度逐渐增大,则合速度方向与水平方向夹角逐渐变小,D正确.13. 如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A 物体以速度v向左运动时,系A、B的绳分别与水平方向成α、β角,此时B物体的速度大小为( )A.v sin α/sin βB.v cos α/sin βC.v sin α/cos βD.v cos α/cos β解析:选D.根据A、B两物体的运动情况,将两物体此时的速度v和v B分别分解为两个分速度v1(沿绳的分量)和v2(垂直绳的分量)以及v B1(沿绳的分量)和v B2(垂直绳的分量),由于两物体沿绳的速度分量相等,v1=v B1,即v cos α=v B cosβ,则B物体的速度方向水平向右,其大小为v B=cos αcos βv,D正确.14. 如图所示,在一次抗洪救灾工作中,一架直升机A用一长H=50 m的悬索(重力可忽略不计)系住伤员B,直升机A和伤员B一起在水平方向上以v0=10 m/s的速度匀速运动的同时,悬索在竖直方向上匀速上拉.在将伤员拉到直升机内的时间内,A、B之间的竖直距离以l=50-5t(单位:m)的规律变化,则( )A.伤员经过5 s时间被拉到直升机内B.伤员经过10 s时间被拉到直升机内C.伤员的运动速度大小为5 m/sD.伤员的运动速度大小为10 m/s解析:选B.伤员在竖直方向的位移为h=H-l=5t(m),所以伤员的竖直分速度为v1=5 m/s;由于竖直方向做匀速直线运动,所以伤员被拉到直升机内的时间为t=Hv1=505s=10 s,故A错误,B正确;伤员在水平方向的分速度为v0=10 m/s,所以伤员的速度为v=v21+v20=52+102m/s=5 5 m/s,故C、D 均错误.第2节抛体运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫平抛运动.2.性质:平抛运动是加速度恒为重力加速度g的匀变速曲线运动,轨迹是抛物线.二、平抛运动的规律以抛出点为原点,以水平方向(初速度v0方向)为x轴,以竖直向下的方向为。

高考物理一轮复习:第4单元曲线运动万有引力与航天听课答案

高考物理一轮复习:第4单元曲线运动万有引力与航天听课答案

第四单元曲线运动万有引力与航天第9讲运动的合成与分解【教材知识梳理】一、1.切线2.匀变速曲线3.(1)加速度(2)合外力二、1.(1)合运动(2)分运动2.实际效果3.平行四边形辨别明理(1)(×)(2)(√)(3)(×)(4)(×)(5)(√)【考点互动探究】考点一1.D[解析]磁铁放在A处时,小铁球受力与速度共线,但为变力,所以小铁球做变加速直线运动,选项A、B错误;磁铁放在B处时,小铁球受力与速度不共线,做非匀变速曲线运动,选项C错误,D正确.2.A[解析]质点做匀变速曲线运动,加速度不变;由于质点运动到D点时,其速度方向与加速度方向垂直,则当质点在A点和C点时速度方向与加速度方向的夹角为钝角,所以质点由C点运动到D点过程中速率减小,即质点在C点时的速率比其在D点时的速率大;质点在从B点运动到E点的过程中,加速度方向与速度方向的夹角一直在减小.3.B[解析]F1、F2为恒力,质点从静止开始做匀加速直线运动,F1突变后仍为恒力,合力仍为恒力,但合力的方向与速度方向不再共线,所以质点将做匀变速曲线运动,故A、D 错误.由加速度的定义式a=知,在相等时间Δt内,Δv=aΔt一定相等,故B正确.做匀速直=0,所以质点不可能做匀速直线运动,故C错误.线运动的条件是F合1.B[解析]由合运动与分运动的等时性知,因红蜡块沿管上升的高度和速度不变,所以运动时间不变,而管向右匀速运动的速度越大,则红蜡块的合速度越大,合位移越大,选项B正确.2.B[解析]在0~3 s内,物体在x方向上做匀速直线运动,在y方向上做匀加速直线运动,两运动合成,物体一定做曲线运动,且加速度恒定,A、D错误;在3~4 s内,物体在两个方向上的分运动都是匀减速运动,在3 s末,合速度与合加速度方向相反,则做直线运动,故B正确,C错误.3.A[解析]物体在x轴方向上做初速度v x0=8 m/s、加速度a=-4 m/s2的匀减速直线运动,在y轴方向上做速度v y=-4 m/s的匀速直线运动,物体所受合外力恒为8 N(方向沿x轴负方向),初速度大小为m/s=4m/s,方向与合外力方向不在同一条直线上,故物体做匀变速曲线运动,A正确,B、D错误;2 s末,v x=0,v y=-4 m/s,则合速度为-4 m/s,C错误.考点三例1B[解析]设河宽为d,船速为u,则根据渡河时间关系得∶=k,解得u=,选项B正确.变式题BC[解析]联系“小船渡河模型”可知,射出的箭同时参与了两个运动,要想命中目标且射出的箭在空中飞行时间最短,箭射出的方向应与马运动的方向垂直,故箭射到固定目标的最短时间为t=,箭的速度v=,所以运动员放箭处离固定目标的距离为x=vt=d,选项B、C正确.例2D[解析]将B的运动沿绳子方向和垂直于绳子方向分解,沿绳子方向上的分速度等于A的速度,如图所示,根据平行四边形定则有v B cos α=v A,所以v B=,α减小,所以B的速度减小,但不是匀减速运动,选项A、B错误;分别对A、B受力分析,在竖直方向上有T=m A g,mg=F N+T sin α,α减小,则支持力增大,根据f=μF N可知,摩擦力增大,选项C错误;根据v B cos α=v A,右侧绳与水平方向成30°角时,v A∶v B=∶2,选项D正确.变式题A[解析]将A的速度沿绳子方向和垂直于绳子方向分解,拉绳子的速度等于A沿绳子方向的分速度,根据平行四边形定则得,实际速度v=,选项A正确.例3C[解析]分别将a球、b球速度沿棒的方向与垂直于棒的方向分解,对a球,有v=v a cos θ,对B球,有v=v b sin θ,则v a∶v b=tan θ,选项C正确.变式题D[解析]棒与平台接触点的实际运动即合运动,方向垂直于棒指向左上,如图所示,合速度v=ωL,竖直向上的速度分量等于平台上升的速度v,即ωL sin θ=v,所以实ω=,选项D正确.1.在长约1.0 m的一端封闭的玻璃管中注满清水,水中放一个适当的圆柱形的红蜡块,将玻璃管的开口端用胶塞塞紧,并迅速竖直倒置,红蜡块就沿玻璃管由管口匀速上升到管底.将此玻璃管倒置安装在小车上,并将小车置于水平导轨上.若细线一端连接小车,另一端绕过定滑轮悬挂小物体,小车从A位置由静止开始运动,同时红蜡块沿玻璃管匀速上升.经过一段时间后,小车运动到B位置,如图9-1所示.按照图建立坐标系,在这一过程中红蜡块实际运动的轨迹可能是图9-2中的()图9-1图9-2[解析]C红蜡块在水平方向做匀加速运动,竖直方向做匀速运动,合力水平向右,轨迹为抛物线,选项C正确.图9-32.如图9-3所示,两次渡河时船相对水的速度大小和方向都不变.已知第一次实际航线为A至B,位移为x1,实际航速为v1,所用时间为t1.由于水速增大,第二次实际航线为A 至C,位移为x2,实际航速为v2,所用时间为t2,则()A.t2>t1,v2=v1B.t2>t1,v2=v1C.t2=t1,v2=v1D.t2=t1,v2=v1[解析] C设河宽为d,船自身的速度为v,与河岸上游的夹角为θ,对垂直河岸的分运动,过河时间t=,则t1=t2;对合运动,过河时间t==,解得v2=v1,C正确.3.(多选)如图9-4所示,A、B两球分别套在两光滑的水平直杆上,两球通过一轻绳绕过一定滑轮相连,两杆和定滑轮在同一竖直面内.现在A球以速度v向左匀速移动,某时刻连接两球的轻绳与水平方向的夹角分别为α、β,则下列说法中正确的是()图9-4A.此时B球的速度为vB.此时B球的速度为vC.在β增大到90°的过程中,B球做加速运动D.在β增大到90°的过程中,B球做减速运动[解析]AC将A和B的速度分解为沿绳方向和垂直于绳方向的分速度,则沿绳方向的速度相等,即v cos α=v B cos β,则v B=v,选项A正确,B错误;在β增大到90°的过程中,绳子对B的拉力产生向右的加速度,B做加速运动,选项C正确,D错误.4.如图9-5甲所示,有一根长为L的轻杆OA,O端用铰链固定于地面,另一端固定着一个小球A,图甲中的小球A和图乙中的杆分别靠着边长为a和b的立方块.当立方块沿地面向右滑动到图示位置(杆与地面的夹角为α)时,其速度为v,则甲图中小球的速度大小v A和乙图中小球的速度大小v'A应为()图9-5A.v A=,v'A=v sin αB.v A=,v'A=v sin αC.v A=v sin α,v'A=D.v A=,v'A=sin2α[解析] D图甲中,杆绕O转动,球A的速度v A垂直于杆,将速度v A沿水平和竖直两方向正交分解,则垂直于接触面的水平分速度与立方块的速度相等,如图9-6甲所示,有v A sinα=v,故v A=,故B、C错误;图乙中,杆绕O转动,杆顶端小球的速度v'A和杆与立方块接触点的速度v1的方向都垂直于杆,杆上各点的角速度ω相同,则有=,将立方块的速度v沿杆的方向与垂直于杆的方向正交分解,如图乙所示,则杆与立方块接触点的速度v1应与立方块垂直于杆方向的分速度相等,即v1=v sin α,联立得v'A=sin2α,故A错误,D正确.图9-65.如图9-7所示,两条位于同一竖直平面内的水平轨道相距为h,轨道上有两个物体A和B(均可视为质点),它们通过一根绕过定滑轮O的不可伸长的轻绳相连接,物体A在下面的轨道上以速度v匀速运动.在绳子BO段与轨道成30°角的瞬间,BO段中点处有一与绳子相对静止的小水滴P和绳子分离.已知绳子BO段长度远大于滑轮直径,重力加速度为g,求:(1)小水滴P脱离绳子时的速度大小;(2)小水滴P脱离绳子后落到下面轨道上所需要的时间.图9-7[答案](1)v(2)[解析](1)先将B的速度分解,如图9-8所示,有v2=v图9-8v1=v tan 30°此时绳子BO段一方面向O点以速度v收缩,另一方面绕O点逆时针旋转,其角速度为ω=于是小水滴P既有沿绳子斜向下的速度v,又有垂直于绳子斜向上的转动线速度v',且v'===v,故小水滴P的速度应为v P==v.(2)小水滴P沿绳子斜向下的速度v的竖直分量为,垂直于绳子斜向上的转动线速度v'的竖直分量为,所以小水滴在竖直方向上做初速度为的竖直下抛运动,有=t+gt2即2gt2+vt-2h=0解得t=.第10讲抛体运动【教材知识梳理】一、1.重力2.抛物线3.自由落体运动4.(1)匀速直线(2)自由落体(3)g5.tan α=2tan β瞬时速度方向中点B点二、1.斜向上方斜向下方重力2.重力加速度g抛物线辨别明理(1)(√)(2)(×)(3)(√)(4)(×)(5)(√)(6)(×)(7)(×)【考点互动探究】考点一1.C[解析]飞镖做平抛运动,竖直方向上做自由落体运动,有h=gt2,得t=,因为B下落的高度较大,所以B运动的时间长,即有t A<t B;水平方向上做匀速直线运动,有x=v0t,则初速度v0==x,x相同,h越大,v0越小,所以有v A>v B,选项C正确.2.B[解析]小球做平抛运动,加速度为重力加速度,小球的速度大小和方向时刻变化,小球的加速度大小和方向均不变,故A错误.速度与加速度的夹角的正切值tan θ==,随着时间t的增大,夹角θ减小,故B正确.速度改变量Δv=gΔt,相等时间内的速度改变量相等,但速率(即速度的大小)的改变量不相等,故C错误.相等时间内动能的改变量取决于合力——重力做的功,由于相等时间内下落的高度越来越大,重力做的功越来越多,故动能的改变量越来越大,故D错误.3.AC[解析]在A点,竖直方向上的分速度v yA=v0tan 45°,抛出点到A的高度h A=;在B点,竖直方向上的分速度v yB=v0tan 60°,抛出点到B的高度h B=.根据v yB-v yA=gt,得t==s,选项A正确;A与B的高度差h=h B-h A==10 m,选项C正确.考点二例1B[解析]设斜面倾角为θ,对小球,有tan θ==,因a和b的初速度之比为1∶3,所以飞行时间之比为1∶3,选项A、C错误,B正确;设速度与水平方向的夹角为φ,有tanφ==2tan θ,所以a、b两球落到斜面上的瞬时速度方向一定相同,选项D错误.变式题BC[解析]设斜面的倾角为θ,对小球在A点的速度进行分解,有tan θ=,解得θ=30°,A错误;小球的抛出点距A点的高度为h=gt2=15 m,B正确;若小球的初速度为v'0=5 m/s,过A点作水平面,小球落到该水平面时的水平位移是小球以初速度v0=10 m/s 抛出时的一半,延长小球运动的轨迹与斜面相交,得到小球应该落在P、A之间,C正确,D 错误.例2D[解析]小球落在环上的最低点C时的下落时间最长,选项A错误.v0取值不同,则小球落到环上时的速度方向和水平方向之间的夹角不相同,选项B错误.假设小球能垂直撞击半圆环,此时速度与水平方向的夹角为θ,则落点和圆心的连线与水平方向的夹角为θ,连接抛出点和落点,其连线与水平方向的夹角为β,根据几何关系知,θ=2β,又因为平抛运动的速度与水平方向的夹角的正切值是位移与水平方向的夹角的正切值的2倍,即tan θ=2tan β,这与θ=2β相矛盾,故假设不成立,选项D正确,C错误.变式题A[解析]从A点抛出的小球做平抛运动,它运动到D点时,有R=g,R=v1t1,故R=,选项A正确,选项B错误;从C点抛出的小球也做平抛运动,它运动到D点时,有R sin 60°=v2t2,R(1-cos 60°)=g,解得v2=v1,选项C、D错误.考点三例3(1)(2)L≤v≤L(3)L=2h[解析](1)对打在AB的中点的微粒,有h=gt2解得t=(2)对打在B点的微粒,有v1=2h=g解得v1=L同理,打在A点的微粒初速度v2=L故微粒初速度范围为L≤v≤L(3)由能量关系得m+mgh=m+2mgh联立解得L=2h变式题1C[解析]因为h1-h2=h1,由t=可知=,由x=v0t可知=,则x AD=x,落点D与球网C的水平距离为x,选项A错误;球从A到D,有h1=g,x=v0t1,解得v0=x,选项B错误;任意降低击球高度(仍大于h2),会有一临界情况,此时球刚好触网又刚好压界,则有=,解得h'=h1,若小于该临界高度,速度大会出界,速度小会触网,选项C正确;若保持击球高度不变,要想球落在对方界内,要既不能出界,又不能触网,根据h1=g,得t1=,则平抛的最大速度v max==x,根据h1-h2=g,得t AC=,则平抛运动的最小速度v min==x,选项D错误.变式题2D[解析]当球落到右侧角上的时候,设飞行时间为t1,则3h=g,t1=,t1时间内的水平位移x1==,发射速度v1==;当球刚好擦网落到台面中间线上的时候,设飞行时间为t2,则3h-h=g,t2=2,t2时间内的水平位移x2=,发射速度v2==,则v2<v<v1,所以D正确.考点四例4D[解析]两石子做斜抛运动,加速度a=g,选项A错误;对竖直方向的分运动,从出发点到最高点,由H=,可知竖直方向的初速度v y0相同,从出发到落到水面,由y=v y0t-gt2,可知运动时间相等,选项B错误;对水平方向的运动,从出发点到最高点,水平位移x a<x b,由x=v x0t',因时间t'相等,则水平初速度v x0a<v x0b,而初速度v0=,则初速度v0a<v0b,选项C错误;运动的全过程,由动能定理得m+mgh=mv2,则入水时的末速度v a<v b,选项D正确.变式题AD[解析]由逆向思维,落到M点的运动可看成向左的平抛运动(设落到M 点的速度为v x),有tan θ==,在斜面底端时质点初速度与水平方向的夹角φ的正切值tan φ==2tan θ,为定值,即落到M和N两点的速度方向均为水平向右,选项D正确;在斜面底端时质点的速度v0==v x,落到M和N两点的速度之比为1∶2,选项B错误;运动时间t=,落到M和N两点所用的时间之比为1∶2,选项A正确;竖直位移y=gt2=,M和N两点距离斜面底端的高度之比为1∶4,选项C错误.1.关于平抛运动,以下判断正确的是()A.平抛运动的时间由抛出时的初速度决定B.物体在某点的速度方向仅由高度决定C.平抛运动的轨迹仅由初速度决定D.速度与初速度方向的夹角和位移与初速度方向的夹角成正比[解析] C平抛运动的时间由下落的高度决定,A错误;物体在某点的速度方向不仅与高度有关,还与初速度有关,B错误;根据平抛运动轨迹方程y=x2可知,平抛运动的轨迹仅由初速度决定,C正确;速度与初速度方向夹角的正切和位移与初速度方向夹角的正切成正比,D错误.图10-12.[2019·湖北沙市中学月考]倾角为θ的斜面长为l,在斜面顶端水平抛出一个小球,小球刚好落在斜面的底端,如图10-1所示,那么小球的初速度v0的大小是(重力加速度为g)()A.cos θ·B.cos θ·C.sin θ·D.sin θ·[解析]A小球在水平、竖直方向的位移分别满足l cos θ=v0t和l sin θ=gt2,联立解得v0=cos θ·,选项A正确.图10-23.如图10-2所示,小球甲从A点水平抛出,同时将小球乙从B点自由释放,两小球先后经过C点时速度大小相等,但其方向的夹角为30°.已知B、C高度差为h,两小球质量相等,重力加速度为g,不计空气阻力.由以上条件可知()A.小球甲做平抛运动的初速度大小为2B.甲、乙两小球到达C点所用时间之比为1∶C.A、B两点的高度差为D.两小球在C点时重力的瞬时功率大小相等[解析]C小球乙到C点的速度v=,小球甲到C点的速度大小也为v,此时小球甲的速度与竖直方向的夹角为30°,可得甲球在水平方向的分速度为v sin 30°=,选项A错误;由h=gt2得,小球乙运动到C时所用的时间为t=,而小球甲到达C点时竖直方向的速度为,则运动时间为t'=,所以甲、乙两小球到达C点所用时间之比为∶2,选项B错误;由甲、乙各自运动的时间得Δh=gt2-gt'2=,选项C正确;由于两球在竖直方向上的速度不相等,所以两小球在C点时重力的瞬时功率也不相等,选项D错误.4.[2018·浙江余姚中学模拟]一演员表演飞刀绝技,由O点先后抛出完全相同的三把飞刀,飞刀分别垂直打在竖直木板上M、N、P三点,如图10-3所示.假设不考虑飞刀的转动,并可将其看作质点,已知O、M、N、P四点距水平地面高度分别为h、4h、3h、2h,以下说法正确的是()图10-3A.三把刀在击中板时动能相同B.三次飞行时间之比为1∶2∶3C.三次初速度的竖直分量之比为3∶2∶1D.设三次抛出飞刀的初速度与水平方向夹角分别为θ1、θ2、θ3,则有θ1>θ2>θ3[解析]D把斜抛运动看成逆方向的平抛运动,由y=gt2可知,运动时间之比为∶∶1,竖直方向的初速度v y=gt,则三次初速度的竖直分量之比为∶∶1,选项B、C错误;水平方向的位移x=v x t,则三次初速度的水平分量之比为∶∶,三把刀在击中板时动能为m,不相同,选项A错误;初速度与水平方向夹角的正切值tanθ=,正切值之比为3∶2∶1,选项D正确.5.(多选)如图10-4所示为研究乒乓球发球问题的装置.设球台长为2L,网高为h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g).若从A点将球水平发出,球刚好过网,在B点水平接到球,则下列说法正确的是()图10-4A.发球时的水平初速度v0=B.发球时的水平初速度v0=LC.球落到球台上时的速度v=D.球从A运动到B所用的时间t=4[解析]AD根据运动的对称性,球运动的总时间等于单个平抛运动时间的4倍,则t==4,解得初速度v0=,选项B错误,A、D正确;球落到水平台上的竖直分速度v y=,合速度v=>,选项C错误.图10-56.[2019·厦门一中月考]一战斗机进行投弹训练,战斗机以恒定的速度沿水平方向飞行,先后释放甲、乙两颗炸弹,分别击中竖直悬崖壁上的P点和Q点.若释放两颗炸弹的时间间隔为t,击中P、Q的时间间隔为t',不计空气阻力,则以下判断正确的是() A.t'=0 B.t'>tC.t'=tD.无法比较t与t'大小[解析] A平抛运动在水平方向上为匀速直线运动,故先后释放的甲、乙两颗炸弹始终在同一竖直线上,会同时击中P、Q,即t'=0,故A正确,B、C、D错误.图10-67.(多选)[2018·西北师大附中冲刺]如图10-6所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得AB∶BC∶CD=5∶3∶1,由此可判断()A.A、B、C处三个小球运动时间之比为1∶2∶3B.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1C.A、B、C处三个小球的初速度大小之比为3∶2∶1D.A、B、C处三个小球的运动轨迹可能在空中相交[解析]BC由竖直方向的运动规律h=gt2可得,A、B、C处三个小球运动时间之比为∶∶1=3∶2∶1,选项A错误;设末速度与水平方向的夹角为φ,则tan φ==2tan θ,即A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为1∶1∶1,则末速度的切线重合,运动轨迹不可能在空中相交,A、B、C处三个小球的初速度大小之比等于时间之比,即3∶2∶1,选项B、C正确,D错误.8.[2019·江淮十校一联]某同学在操场练习投篮,设某次投篮中篮球最后正好垂直击中篮板,击中点到篮球脱手点的高度大约为0.45 m,该同学离篮板的水平距离约为3 m,忽略空气阻力的影响,g取10 m/s2,则球出手时的速度大约为()A.14.21 m/sB.6.25 m/sC.8.16 m/sD.10.44 m/s[解析] D篮球运动的逆运动是平抛运动,由x=v0t,y=gt2,可得初速度v0=10 m/s,v y=gt=3 m/s,球出手的初速度v==10.44 m/s,选项D正确.9.地面上有一个半径为R的圆形跑道,高为h的平台边缘上的P点在地面上P'点的正上方,P'与跑道圆心O的距离为L(L>R),如图10-7所示.跑道上停有一辆小车,现从P点水平抛出小沙袋,使其落入小车中.(沙袋所受空气阻力不计,重力加速度为g)图10-7(1)当小车分别位于A点和B点时(∠AOB=90°),沙袋被抛出时的初速度各为多大?(2)若小车在跑道上运动,则沙袋被抛出时的初速度v0在什么范围内?[答案](1)(L-R)(2)(L-R)≤v0≤(L+R)[解析](1)沙袋从P点被抛出后做平抛运动,设它的落地时间为t,由h=gt2解得t=当小车位于A点时,有x A=v A t=L-R解得v A=(L-R)当小车位于B点时,有x B=v B t=解得v B=.(2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v0min=v A=(L-R)当小车经过C点时沙袋刚好落入,抛出时的初速度最大,有x C=v0max t=L+R联立解得v0max=(L+R)所以沙袋被抛出时的初速度v0的范围为(L-R)≤v0≤(L+R).第11讲圆周运动【教材知识梳理】一、1.保持不变2.时刻变化3.大小不变圆心辨别明理(1)(×)(2)(×)(3)(√)(4)(×)(5)(√)(6)两个“匀速”意义不同,匀速圆周运动全称应为匀速率圆周运动,其速度、向心加速度都是变化的.(7)匀速圆周运动中不变的物理量有:角速度、周期、频率、转速、动能,变化的物理量有:线速度、向心加速度、向心力、动量.【考点互动探究】考点一例1D[解析]A、B两点角速度相同,由a n=ω2r,可知a A∶a B=R1∶R2;B、C两点线速度大小相同,由a n=,可知a B∶a C=R3∶R2,故a A∶a C=R1R3∶,D正确.变式题D[解析]A、B靠摩擦传动,则边缘上a、b两点的线速度大小相等,即v a∶v b=1∶1,选项A错误;B、C同轴转动,则边缘上b、c两点的角速度相等,即ωb=ωc,转速之比==,选项B、C错误;对a、b两点,由a n=得==,对b、c两点,由a n=ω2r得==,故a a∶a b∶a c=9∶6∶4,选项D正确.考点二例2AC[解析]a与b所受的最大静摩擦力相等,而b需要的向心力较大,所以b先滑动,A正确;在未滑动之前,a、b各自受到的摩擦力等于其向心力,因此b受到的摩擦力大于a受到的摩擦力,B错误;b处于临界状态时,有kmg=mω2·2l,解得ω=,C正确;ω=小于a的临界角速度,a所受摩擦力没有达到最大值,D错误.变式题1B[解析]两木块刚要发生滑动时,有kmg-T=mω2l,kmg+T=2mω2l,联立可得T=kmg,选项A错误;细线刚好绷紧时,有kmg=2mω2l,解得ω=,此时细线张力为0,对a,有f=mω2l=kmg,选项B正确,D错误;剪断细线后,a随圆盘一起转动,但b所受合力减小,将做离心运动,选项C错误.变式题2BC[解析]金属块Q在桌面上保持静止,根据平衡条件知,Q受到桌面的支持力等于其重力,保持不变,故D错误.设细线与竖直方向的夹角为θ,细线的拉力大小为T,桌面下方细线的长度为L,P球做匀速圆周运动时,由重力和细线拉力的合力提供向心力,如图所示,则有T=,F n=mg tan θ=mω2L sin θ,得角速度ω=,使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,则细线拉力T增大,角速度增大,A错误,B 正确.对Q,由平衡条件知,Q受到桌面的静摩擦力变大,故C正确.考点三例3A[解析]小球在最低点受重力和绳子的拉力,这两个力的合力提供向心力,由牛顿第二定律得F-mg=m,解得F=mg+v2,小球静止(速度为零)时,绳子的拉力等于重力的大小,结合图像可知mg=b,由图像的斜率可得=.由mg=可知,小球在最高点的临界速度为v'=,由机械能守恒定律得mg×2L+mv'2=mv2,解得v=,此时F=mg+v2=6mg,可得a=6mg,c=5gL.变式题CD[解析]当v0较大时,小球能够通过最高点,这时小球在最高点处需要满足的条件是mg≤,根据机械能守恒定律得mv2+2mgr=m,联立解得v0≥2m/s,C正确.当v0较小时,小球不能通过最高点,这时对应的临界条件是小球上升到与圆心等高位置处时速度恰好减为零,根据机械能守恒定律得mgr=m,解得v0≤2m/s,D正确.例4C[解析]小球从最低点Q到最高点P,由机械能守恒定律得m+2mgl=mv2,则v P=,因为0<<,所以小球能到达圆轨道的最高点P,且在P点受到轻杆对它向上的弹力,C正确.变式题C[解析]小球沿管道上升到最高点的速度可以为零,故A、B错误;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与小球重力在背离圆心方向的分力F mg的合力提供向心力,即F N-F mg=ma,因此外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.考点四例5(1)1 m/s(2)0.2[解析](1)设物块做平抛运动所用时间为t,则竖直方向上,有H=gt2水平方向上,有s=v0t联立解得v0=s=1 m/s.(2)物块离开转台时,最大静摩擦力提供向心力,有μmg=m解得μ==0.2.变式题(1)-5mg(2)(3)[解析](1)设小球到B点时速度为v,从C到B过程,根据动能定理有FL-2mgR=mv2解得v=在B点,由牛顿第二定律有F N+mg=m解得F N=-5mg(2)小球恰能运动到轨道最高点时,轨道半径有最大值,有F N=-5mg=0解得R m=(3)设小球平抛运动的时间为t,有2R=gt2解得t=水平位移x=vt=·=当2FL-4mgR=4mgR,即R=时,D到A的水平位移最大,最大距离x m=1.如图11-1所示,质量为m的物块与转轴OO'相距为R,物块随水平转台由静止开始缓慢转动,当转速增大到一定值时,物块即将在转台上滑动.在物块由静止到开始滑动图11-1前的这一过程中,转台对物块做的功为.若物块与转台之间的最大静摩擦力与滑动摩擦力相等,则物块与转台间的动摩擦因数为()A. 0.125B. 0.15C. 0.25D. 0.5[解析]C由于物块做圆周运动,物块刚开始滑动时,受到转台的摩擦力达到最大静摩擦力,有μmg=m,解得v=,设转台对物块做的功为W,根据动能定理得W=mv2=,联立解得μ=0.25,选项C正确.图11-22.(多选)如图11-2所示,在粗糙水平圆盘上,质量相等的A、B两物块叠放在一起并随圆盘一起做匀速圆周运动,则下列说法正确的是()A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB[解析]BC因A、B两物块的角速度大小相等,根据F n=mrω2,转动半径相等,质量相等,所以向心力相等,A错误;对A、B整体分析,有f B=2mrω2,对A分析,有f A=mrω2,则盘对B 的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,B有沿半径向外滑动的趋势,故C正确;对A、B整体分析,有μB·2mg=2mr,解得ωB=,对A分析,有μA mg=mr,解得ωA=,因为B先滑动,即B先达到临界角速度,B的临界角速度较小,所以μB<μA,故D错误.3.(多选)如图11-3所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径,某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动.已知重力加速。

高三物理一轮二轮复习曲线运动教案讲义(含答案)

高三物理一轮二轮复习曲线运动教案讲义(含答案)

第四章 曲线运动 万有引力定律第1课时 运动的合成与分解一、曲线运动1.曲线运动的特点(1)速度方向:质点在某点的速度,沿曲线上该点的________方向.(2)运动性质:做曲线运动的物体,速度的________时刻改变,所以曲线运动一定是________运动,即必然具有__________. 2.曲线运动的条件(1)从动力学角度看:物体所受的__________方向跟它的速度方向不在同一条直线上.(2)从运动学角度看:物体的________方向跟它的速度方向不在同一条直线上.3.质点做曲线运动的轨迹在________________________之间,且弯向______的一侧.如图所示.思考:变速运动一定是曲线运动吗?曲线运动一定是变速运动吗?曲线运动一定不是匀变速运动吗?请举例说明. 二、运动的合成与分解 1.基本概念2.分解原则根据运动的____________进行分解,也可采用____________的方法. 3.遵循的规律位移、速度、加速度都是矢量,故它们的合成与分解都遵循________________.所示,v 1、v 2的合速度为v .思考:两个直线运动的合运动一定是直线运动吗?考点一 物体做曲线运动的条件及轨迹分析 1.做曲线运动的物体速度方向始终沿轨迹的切线方向,速度时刻在变化,加速度一定不为零,故曲线运动一定是变速运动.当加速度与初速度不在一条直线上,若加速度恒定,物体做匀变速曲线运动,若加速度变化,物体做非匀变速曲线运动. 2.做曲线运动的物体,所受合外力一定指向曲线的凹侧,曲线运动的轨迹不会出现急折,只能平滑变化,轨迹总在力与速度的夹角中,若已知物体的运动轨迹,可判断出合外力的大致方向;若已知合外力方向和速度方向,可知道物体运动轨迹的大致情况.3.做曲线运动的物体其合外力可沿切线方向与垂直切线方向分解,其中沿切线方向的分力只改变速度的大小,而垂直切线方向的分力只改变速度的方向.【典例剖析】例1.一辆汽车在水平公路上转弯,沿曲线由M 向N 行驶,速度逐渐减小。

2023届高考物理一轮复习:曲线运动、万有引力与航天 Word版含解析

2023届高考物理一轮复习:曲线运动、万有引力与航天 Word版含解析

2023届高考物理一轮复习:曲线运动、万有引力与航天(含答案)一、选择题。

1、如图所示,一工人利用定滑轮和轻质细绳将货物提升到高处.已知该工人拉着绳的一端从滑轮的正下方水平向右匀速运动,速度大小恒为v,直至绳与竖直方向夹角为60°.若滑轮的质量和摩擦阻力均不计,则该过程()A.货物也是匀速上升B.绳子的拉力大于货物的重力C.末时刻货物的速度大小为v 2D.工人做的功等于货物动能的增加量2、(多选)一质点在xOy平面内运动轨迹如图所示,下列判断正确的是( )A.质点沿x方向可能做匀速运动B.质点沿y方向可能做变速运动C.若质点沿y方向始终匀速运动,则x方向可能先加速后减速D.若质点沿y方向始终匀速运动,则x方向可能先减速后加速3、(双选)“嫦娥五号”将发射,它将着陆在月球正面吕姆克山脉,为中国取回第一杯月壤.若“嫦娥五号”在着月前绕月球沿椭圆轨道顺时针运动,如图所示,P为近月点,Q为远月点,M、N为轨道短轴的两个端点.只考虑“嫦娥五号”和月球之间的相互作用,则“嫦娥五号”()A .在Q 点的速率最小B .在P 点时受到的万有引力最大C .从P 到M 阶段,机械能逐渐变大D .从Q 到N 阶段,机械能逐渐变大4、如图所示,天花板上有一可自由转动的光滑小环Q ,一轻绳穿过Q ,两端分别连接质量为m 1、m 2的A 、B 小球.两小球分别在各自的水平面内做圆周运动,它们周期相等.则A 、B 小球到Q 的距离l 1、l 2的比值l 1l 2为( )A.m 21m 22B.m 22m 21C.m 1m 2D. m 2m 15、(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。

将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度6、关于物体的受力和运动,下列说法中正确的是( )A .物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B .物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C .物体受到变化的合力作用时,它的速度大小一定改变D .做曲线运动的物体,一定受到与速度不在同一直线上的外力作用7、一个半径为R 的半圆柱体沿水平方向向右以速度v 匀速运动.在半圆柱体上搁置一根竖直杆,此杆只能沿竖直方向运动,如图所示.当杆与半圆柱体的接触点P 与柱心的连线与竖直方向的夹角为θ时,竖直杆运动的速度为( )A.vtan θB.v tan θC.v cos θD.v sin θ8、如图所示,从倾角为θ且足够长的斜面的顶点A,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v1,小球落到斜面上前一瞬间的速度方向与斜面的夹角为φ1,第二次初速度为v2,小球落在斜面上前一瞬间的速度方向与斜面间的夹角为φ2,若v2>v1,则φ1和φ2的大小关系是()A.φ1>φ2B.φ1<φ2 C.φ1=φ2D.无法确定9、如图所示,用一小车通过轻绳提升一滑块,滑块沿竖直光滑杆上升,某一时刻,两段绳恰好垂直,且拴在小车一端的绳与水平方向的夹角为θ,此时小车的速度为v,则此时滑块竖直上升的速度为( )A.v0B.vsinθC.vcosθ D.10、(双选)长征三号乙运载火箭以“—箭双星”的形式将北斗三号第五颗、第六颗全球组网导航卫星成功送入预定轨道,这两颗卫星属于中圆地球轨道卫星,即采用圆轨道,轨道高度低于同步卫星的轨道高度,万有引力常量为已知,下列说法正确的是()A.这两颗卫星在其轨道上运行的速率小于同步卫星的速率B.这两颗卫星在其轨道上运行的速率小于第一宇宙速度的大小C.如果已知这两颗卫星在其轨道上运行的周期与轨道半径可以计算出地球质量D.如果已知这两颗卫星在其轨道上运行的周期与轨道半径可以计算出地球密度11、如图,小球甲从A 点水平抛出,同时将小球乙从B 点自由释放,两小球先后经过C 点时速度大小相等,方向夹角为30°,已知B 、C 高度差为h ,两小球质量相等,不计空气阻力,由以上条件可知( )A .小球甲做平抛运动的初速度大小为2gh 3B .甲、乙两小球到达C 点所用时间之比为1: 3 C .A 、B 两点高度差为h 4D .两小球在C 点时重力的瞬时功率大小相等12、如图是自行车传动机构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A.πnr 1r 3r 2 B .πnr 2r 3r 1 C.2πnr 2r 3r 1 D .2πnr 1r 3r 213、某机器的齿轮系统如图所示,中间的轮叫做太阳轮,它是主动轮。

2021高考物理一轮复习第四章曲线运动万有引力与航天从教材走向高考学案+作业含解析2

2021高考物理一轮复习第四章曲线运动万有引力与航天从教材走向高考学案+作业含解析2

第四章曲线运动万有引力与航天
【迁移深化】
1-1。

C [由h=错误!gt2得
l AB sin 30°=错误!gt2
l AB cos 30°=v0t
解得t=错误!tan 30°=错误!v0
v y=gt,v=错误!,
代入数据解得v=错误!m/s,
故选项C正确.]
1-2。

A [小球做平抛运动,其运动轨迹如图所示。

设斜面的倾角为θ。

平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,x=v0t,h=错误!gt2,由图中几何关系,可得tan θ=错误!,解得t=错误!;
从抛出到落到斜面上,由动能定理可得:
mgh=错误!mv′2-错误!mv错误!,可得:
v′=错误!=错误!·v0,
则错误!=错误!=错误!=错误!,选项A正确。


2-1。

D [由万有引力定律提供向心力知G错误!=m错误!r,联立M=ρ·错误!πR3和r=R,解得ρ=错误!,3π为一常数,设为k,故选项D正确.]
2-2.C [毫秒脉冲星稳定自转时由万有引力提供其表面物体做圆
周运动的向心力,根据G Mm
R2=m错误!,M=ρ·错误!πR3,得ρ=错误!,
代入数据解得ρ≈5×1015 kg/m3,C正确。

]。

高考物理大一轮复习 第4章 第4讲 万有引力与航天精练(含解析)-人教版高三全册物理试题

高考物理大一轮复习 第4章 第4讲 万有引力与航天精练(含解析)-人教版高三全册物理试题

第4讲 万有引力与航天◎根底巩固练1.某人造地球卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球运转半径的19,设月球绕地球运动的周期为27天,如此此卫星的运转周期大约是( )A.19天B.13天 C .1天D .9天解析: 由于r 卫=19r 月,T 月=27天,由开普勒第三定律可得r 3卫T 2卫=r 3月T 2月,如此T 卫=1天,故C 正确。

答案: C 2.如下列图是在同一轨道平面上的三颗不同的人造地球卫星,关于各物理量的关系,如下说法正确的答案是( )A .线速度v A <vB <vC B .万有引力F A >F B >F C C .角速度:ωA >ωB >ωCD .向心加速度a A <a B <a C解析: 因为卫星的质量大小关系不知,所以卫星的万有引力大小关系无法判断,B 错误;卫星绕地球做圆周运动,有G Mm r 2=m v 2r =mrω2=ma 向,得v =GMr ,ω=GM r 3,a 向=GMr2,由于r A <r B <r C ,如此v A >v B >v C ,ωA >ωB >ωC ,a A >a B >a C ,故A 、D 错误,C 正确。

答案: C3.(多项选择)美国宇航局发射的“好奇号〞火星车发回的照片显示,火星外表曾经有水流过,使这颗星球在人们的心目中更具吸引力。

火星的质量约为地球质量的19,火星的半径约为地球半径的12。

如下关于人类发射的关于火星探测器的说法正确的答案是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23解析: 根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;M 火=M 地9,R火=R 地2,如此v 火v 地=GM 火R 火∶GM 地R 地=23,选项D 正确。

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与天体运动教学案(含解析)

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与天体运动教学案(含解析)

第4讲 万有引力与天体运动➢ 教材知识梳理一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个________上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的________相等.3.开普勒第三定律:所有行星的轨道的________的三次方跟________的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成________,与它们之间距离的二次方成________.2.公式:________(其中引力常量G =6.67×10-11 N ·m 2/kg 2). 3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r 是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成________运动.2.动力学分析:(1)万有引力提供________,即F 向=G Mm r 2=ma =m v 2r =mω2r =m 2πT2r .(2)在星球表面附近的物体所受的万有引力近似等于________,即G Mm r 2=mg (g 为星球表面的重力加速度).四、三个宇宙速度1.第一宇宙速度(环绕速度):v 1=7.9 km/s ,是人造地球卫星的________,也是人造卫星绕地球做匀速圆周运动的________.2.第二宇宙速度(逃逸速度):v 2=11.2 km/s ,是卫星挣脱地球引力束缚的________.3.第三宇宙速度:v 3=16.7 km/s ,是卫星挣脱太阳引力束缚的________.答案:一、1.焦点 2.面积 3.半长轴 公转周期二、1.正比 反比 2.F =G m 1m 2r 2 三、1.匀速圆周 2.(1)向心力 (2)物体的重力四、1.最小发射速度 最大运行速度2.最小发射速度 3.最小发射速度【思维辨析】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.( )(2)两物体间的距离趋近于零时,万有引力趋近于无穷大.( )(3)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.( )(4)近地卫星距离地球最近,环绕速度最小.( )(5)地球同步卫星根据需要可以定点在北京正上空.( )(6)极地卫星通过地球两极,且始终和地球某一经线平面重合.( )(7)发射火星探测器的速度必须大于11.2 km/s.( )答案:(1)(×) (2)(×) (3)(√) (4)(×) (5)(×)(6)(×) (7)(√)【思维拓展】为了验证地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律,牛顿做了著名的“月-地”实验.请阐述“月-地”实验思路.答案:由于月球绕地球运行的周期T =27.3 d ≈2.36×106 s ,月球的轨道半径r =60R 地=3.84×108 m ,故从运动学角度可计算出月球的向心加速度为a n1=4π2T 2r =2.72×10-3 m/s 2① 牛顿设想,把一个物体放到月球轨道上,让它绕地球运行,地球对它的引力减小到F ,它的向心加速度减小到a n2,既然物体在地面上受到的重力G 和在月球轨道上运行时受到的引力F 都是来自地球引力,那么在引力与轨道半径的二次方成反比的关系成立的情况下,物体在月球轨道上的向心加速度a n2和在地面上的重力加速度g 的关系应为a n2g 地=F G =R 2地r 2=1602=13600, 进而从动力学角度可计算出月球轨道上的向心加速度为a n2=13600g 地=2.72×10-3 m/s 2②①式与②式的计算结果完全一致,从而证明了物体在地面上所受重力与地球吸引月球的力是同一性质的力、遵循同样规律的上述设想.需要说明的是,月球绕地球的向心加速度a n2=13600g 地与通常所说月球表面的重力加速度g 月=16g 地并不矛盾. 已知M 地=81M 月,R 地=113R 月,r =60R 地,由天文学黄金代换公式GM =gR 2可知g 月g 地=M 月R 2地M 地R 2月=121729≈16, 即g 月=16g 地③ 又有a n2=GM 地r 2=81GM 月3600R 2地=81g 月R 2月3600×113R 月2≈1600g 月④ 由③、④式可得a n2=13600g 地. ➢ 考点互动探究考点一 开普勒行星运动1 [2016·全国卷Ⅲ] 关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律 答案:B[解析] 开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B 正确.(多选)[2016·武汉调研] 水星或金星运行到地球和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星凌日”.已知地球的公转周期为365天,若将水星、金星和地球的公转轨道视为同一平面内的圆轨道,理论计算得到水星相邻两次凌日的时间间隔为116天,金星相邻两次凌日的时间间隔为584天,则下列判断合理的是( )A .地球的公转周期大约是水星的2倍B .地球的公转周期大约是金星的1.6倍C .金星的轨道半径大约是水星的3倍D .实际上水星、金星和地球的公转轨道平面存在一定的夹角,所以水星或金星相邻两次凌日的实际时间间隔均大于题干所给数据答案:BD [解析] 设水星、地球、金星的公转周期分别为T 水、T 地和T 金,水星两次凌日时间差为t 水,金星两次凌日时间差为t 金,由题意可知,2πT 水-2πT 地t 水=2π,2πT 金-2πT 地t 金=2π,解得T 水=88天,T 金=225天,所以地球公转周期大约是水星公转周期的4倍,大约是金星公转周期的1.6倍,A 错误,B 正确;由开普勒第三定律可知,R 3金T 2金=R 3水T 2水,解得R 金R 水=32252882≈36.5<3,C 错误;理论上发生凌日时,金星(或水星)、地球、太阳三者共线,如果金星(或水星)公转转道与地球公转轨道存在一定夹角,此时并不能产生凌日现象,所以金星(或水星)相邻两次凌日的实际时间间隔应大于理论上的时间间隔,D 正确.■ 要点总结对开普勒行星运动定律的理解:(1)行星绕太阳的运动通常按圆轨道处理,若按椭圆轨道处理,则利用其半长轴进行计算.(2)开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.(3)开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体对应的k 值不同.考点二 万有引力及其与重力的关系1.万有引力的特点:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向相反且沿两物体的连线,分别作用在两个物体上,其作用效果一般不同.2.万有引力的一般应用:主要涉及万有引力的基本计算、天体质量和密度的计算等.在这类问题的分析中应注意:(1)万有引力公式F =G m 1m 2r2中的r 应为两物体球心间距,如果某一物体内部存在球形空腔,则宜采取“割补法”分析;(2)对于万有引力提供向心力情景下的天体运动,根据万有引力定律和牛顿第二定律有G m 1m 2r 2=m 1a ,且a =ω2r =v 2r =⎝ ⎛⎭⎪⎫2πT 2r . 3.在地球或其他天体表面及某一高度处的重力加速度的计算:设天体表面重力加速度为g ,天体半径为R ,忽略天体自转,则有mg =G Mm R 2,得g =GM R 2或GM =gR 2;若物体距天体表面的高度为h ,则重力mg ′=G Mm (R +h )2,得g ′=GM (R +h )2=R 2(R +h )2g . ] 据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在地球表面附近以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后以线速度v ′在火星表面附近环绕火星飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7.设火星与地球表面的重力加速度分别为g ′和g .下列结论正确的是( )A .g ′∶g =1∶4B .g ′∶g =7∶10C .v ′∶v =528 D .v ′∶v =514答案:C[解析] 在地球表面附近,万有引力等于重力,即G MmR 2=mg ,解得g =GM R 2,在火星表面附近,万有引力等于重力,即G M ′m R ′2=mg ′,解得g ′=GM ′R ′2,又知M =ρV =ρ·43πR 3=43ρπR 3,火星与地球密度之比ρ′∶ρ=5∶7,半径之比R ′∶R =1∶2,联立解得g ′∶g =5∶14,选项A 、B 错误;探测器在火星表面附近环绕火星飞行的线速度与探测器在地球表面附近环绕地球飞行的线速度之比v ′∶v =g ′R ′gR =514·12=528,选项C 正确,选项D 错误. 1 “神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2 D.GM h2 答案:B [解析] 由题意知,飞船处于完全失重状态,飞船所受的重力等于万有引力,即G Mm (R +h )2=mg ,约去m ,得B 正确. 2 (多选)[2016·新疆适应性检测] 月球是离地球最近的天体.已知月球质量为M ,半径为R ,引力常量为G ,若忽略月球的自转,则关于在月球表面所做的实验,以下叙述正确的是( ) A .把质量为m 的物体竖直悬挂在弹簧测力计下,静止时弹簧测力计的示数为GMm R2B .以初速度v 0竖直上抛一个物体,则物体经时间2πR GM落回原处C .把羽毛和铁锤从同一高度同时释放,则铁锤先落地D .用长为l 的细绳拴一质量为m 的小球在竖直平面内做圆周运动,则小球的最小动能为GMml 2R2 答案:AD [解析] 在月球表面,月球对物体的引力等于物体的重力,即mg =G Mm R 2,选项A 正确;在月球表面,g =G M R2,以初速度v 0竖直上抛的物体落回原处的时间为t =2v 0g =2v 0R 2GM,选项B 错误;月球周围没有空气阻力,羽毛和铁锤从同一高度被释放后,同时落地,选项C 错误;小球在竖直面内做圆周运动,在最高点时,若mg =m v 2l ,则其动能最小,为E k =12mv 2=G Mml 2R2,选项D 正确. ■ 要点总结1.对万有引力和重力的关系要注意以下几点:(1)在地面上,忽略地球自转时,认为物体的向心力为零,各位置均有mg ≈GMm R2;(2)若考虑地球自转,对在赤道上的物体,有GMm R2-F N =F 向,其中F N 大小等于mg ,对处于南北两极的物体,则有GMm R2=mg . 2.在地球上所有只在重力作用下的运动形式,如自由落体运动、竖直上抛运动、平抛运动、斜抛运动等,其运动规律和研究方法同样适用于在其他星球表面的同类运动的分析,只是当地重力加速度取值不同而已.考点三 天体质量及密度的计算1.利用(卫)行星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mm r 2=m 4π2T 2r ,解得M =4π2r 3GT 2;ρ=M V =M 43πR 3=3πr 3GT 2R 3,R 为中心天体的半径,若为近地卫星,则R =r ,有ρ=3πGT 2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r 及运行周期T ,就可以算出中心天体的质量M .若再知道中心天体的半径,则可算出中心天体的密度.2.利用天体表面的重力加速度g 和天体半径R ,可得天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR . 3 [2016·济南模拟] “嫦娥五号”探测器预计2017年在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2 kg 月球样品.某同学从网上得到一些信息,如下表中所示.根据表格中数据,可以计算出地球和月球的密度之比为( ) 月球半径 R 0A.3∶2 B .2∶3 C .4∶1 D .6∶1 答案:A[解析] 在星球表面附近,万有引力等于重力,即G MmR 2=mg ,解得星球质量M =gR 2G .地球和月球的质量之比M 地M 月=g g 0·R 2R 20=961,由密度公式ρ=M V ,体积公式V =43πR 3,联立解得地球和月球的密度之比ρ地ρ月=M 地M 月·R 30R 3=32,选项A 正确. [2015·江苏卷] 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕. “51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4 天,轨道半径约为地球绕太阳运动半径的120.该中心恒星与太阳的质量比约为( )A. 110B .1C .5D .10答案:B [解析] 题中这颗行星绕其中心天体做圆周运动,其向心力是由中心天体与行星间的万有引力提供,即G M 中心m 行r 2行=m 行ω2行r 行=m 行4π2r 行T 2行,可得M 中心=4π2r 3行GT 2行;同理,地球绕太阳运动,有M 太阳=4π2r 3地GT 2地;那么,中心天体与太阳的质量之比为M 中心M 太阳=4π2r 3行GT 2行4π2r 3地GT 2地=⎝ ⎛⎭⎪⎫r 行r 地3·⎝ ⎛⎭⎪⎫T 地T 行2=⎝ ⎛⎭⎪⎫1203·⎝ ⎛⎭⎪⎫36542≈1,选项B 正确.■ 规律总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r 和周期T ,可得中心天体的质量为M =4π2r 3GT2,并据此进一步得到该天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3(R 为中心天体的半径),尤其注意当r =R时,ρ=3πGT2.(2)利用天体表面的重力加速度g 和天体半径R ,可得天体质量M =gR 2G ,天体密度ρ=M V =M 43πR3=3g4πGR.热点四 宇宙速度 黑洞与多星系统 1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视星体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力另外三星球对其万有引力的合力4 [2015·安徽卷改编] 由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图4­12­1为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,则下列说法正确的是( )图4­12­1A .A 星体所受合力大小F A =2G m 2a 2B .B 星体所受合力大小F B =7G m 2a2C .C 星体的轨道半径R C =72aD .三星体做圆周运动的周期T =2πa 3GM答案:B[解析] 由万有引力定律可知,A 星体所受B 、C 星体的引力大小为F BA =G m A m B r 2=G 2m 2a 2=F CA ,方向如图所示,则合力大小为F A =23G m 2a 2;同理,B 星体所受A 、C 星体的引力大小分别为F AB =G m A m B r 2=G 2m 2a 2,F CB =G m C m B r 2=G m 2a 2,方向如图所示,由F Bx =F AB cos 60°+F CB =2G m 2a2,F By =F AB sin 60°=3G m 2a 2,可得F B =F 2Bx +F 2By =7G m 2a2;通过分析可知,圆心O 在中垂线AD 的中点,R C =34a 2+12a 2,可得R C =74a ;三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m ⎝ ⎛⎭⎪⎫2πT 2R C ,可得T =πa 3Gm,只有选项B 正确. 多选)[2016·武汉武昌区调研] 太空中存在一些离其他恒星很远的、由三颗星体组成的三星系统,可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是直线三星系统——三颗星体始终在一条直线上;另一种是三角形三星系统——三颗星体位于等边三角形的三个顶点上.已知某直线三星系统A 每颗星体的质量均为m ,相邻两颗星体中心间的距离都为R ;某三角形三星系统B 的每颗星体的质量恰好也均为m ,且三星系统A 外侧的两颗星体与三星系统B 每颗星体做匀速圆周运动的周期相等.引力常量为G ,则( )A .三星系统A 外侧两颗星体运动的线速度大小为v =Gm RB .三星系统A 外侧两颗星体运动的角速度大小为ω=12R 5GmRC .三星系统B 的运动周期为T =4πRR 5GmD .三星系统B 任意两颗星体中心间的距离为L =3125R答案:BCD[解析] 三星系统A 中,三颗星体位于同一直线上,外侧两颗星体围绕中央星体在半径为R 的同一圆轨道上运行,外侧的其中一颗星体由中央星体和另一颗外侧星体的万有引力的合力提供向心力,有G m 2R 2+G m 2(2R )2=m v 2R,解得v =5Gm4R,A 错误;三星系统A 中,周期T =2πRv=4πRR 5Gm ,则其角速度为ω=2πT =12R5GmR,B 正确;由于两种系统周期相等,即T =4πRR5Gm,C 正确;三星系统B 中,三颗星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,对其中一颗星体,由万有引力定律和牛顿第二定律,有2Gm 2L 2cos 30°=m L 2cos 30°4π2T2,解得L=3125R,D正确.[2016·兰州诊断考试] 北京时间2016年2月1日23∶40左右,激光干涉引力波天文台(LIGO)负责人宣布,人类首次发现了引力波.它来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并的过程.合并前两个黑洞互相绕转形成一个双星系统,关于此双星系统,下列说法正确的是( )A.两个黑洞绕行的角速度相等B.两个黑洞绕行的线速度相等C.两个黑洞绕行的向心加速度相等D.质量大的黑洞旋转半径大答案:A [解析] 对于两个黑洞互相绕转形成的双星系统,其角速度ω相等,周期相等,选项A正确;由于两个黑洞的质量不等,两个黑洞旋转的半径不等,质量较小的黑洞旋转半径较大,质量较大的黑洞旋转半径较小,选项D错误;由v=ωr可知,两个黑洞绕行的线速度不等,质量小的黑洞线速度较大,选项B错误;两个黑洞绕行时其向心力由两个黑洞之间的万有引力提供,向心力相等,而由于两个黑洞的质量不等,由牛顿第二定律可知,两个黑洞绕行的向心加速度不等,质量较小的黑洞向心加速度较大,选项C错误.■ 方法技巧多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动,向心力往往是由多个星的万有引力的合力提供.(3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.【教师备用习题】1.[2013·福建卷] 设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r3T 2B .GM =4π2r2T 2 C .GM =4π2r2T3 D .GM =4πr3T2[解析] A 行星绕太阳公转,由万有引力提供向心力,即G Mmr2=m ⎝ ⎛⎭⎪⎫2πT 2r ,解得GM =4π2r3T2,A 正确.2.“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127 min.已知引力常量G =6.67×10-11N ·m 2/kg 2,月球半径约为1.74×103km ,利用以上数据估算出月球的质量约为( )A .8.1×1010kg B .7.4×1013kg C .5.4×1019kg D .7.4×1022kg[解析] D 由万有引力充当向心力,有G Mm (r +h )2=m 4π2T 2(r +h ),可得月球质量M =4π2(r +h )3GT2=7.4×1022kg ,选项D 正确.3.我国志愿者王跃曾与俄罗斯志愿者一起进行“火星­500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,火星的质量是地球质量的19.已知地球表面的重力加速度为g ,地球的半径为R ,王跃在地面上能向上竖直跳起的最大高度为h ,忽略自转的影响,引力常量为G ,下列说法正确的是( )A .火星的密度为2g3πGRB .火星表面的重力加速度是29gC .火星的第一宇宙速度与地球的第一宇宙速度之比为23D .王跃以与在地球上相同的初速度在火星上起跳后,能达到的最大高度是92h[解析] A 对地球表面上质量为m 的物体,由牛顿第二定律,有G Mm R 2=mg ,则M =gR 2G ,火星的密度为ρ=19M 4π3⎝ ⎛⎭⎪⎫R 23=2g3πGR ,选项A 正确;对火星表面上质量为m ′的物体,由牛顿第二定律,有GM9m ′R 22=m ′g ′,则g ′=49g ,选项B 错误;火星的第一宇宙速度与地球的第一宇宙速度之比v ′1v 1=g ′R2gR=23,选项C 错误;王跃跳高时,分别有h =v 202g 和h ′=v 202g ′,所以在火星上能达到的最大高度为94h ,选项D 错误. 4.[2014·北京卷] 万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.① 若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);② 若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式.(2)设想地球绕太阳公转的圆周轨道半径r 、太阳的半径R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长.[答案] (1)①F 1F 0=R 2(R +h )20.98②F 2F 0=1-4π2R 3GMT 2(2)1年[解析] (1)设小物体质量为m . ①在北极地面G MmR2=F 0 在北极上空高出地面h 处G Mm (R +h )2=F 1 F 1F 0=R 2(R +h )2当h =1.0%R 时F 1F 0=11.012≈0.98. ②在赤道地面,小物体随地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有G Mm R 2-F 2=m 4π2T 2R 得F 2F 0=1-4π2R 3GMT 2. (2)地球绕太阳做匀速圆周运动,受到太阳的万有引力,设太阳质量为M S ,地球质量为M ,地球公转周期为T E ,有G M S M r 2=Mr 4π2T 2E得T E =4π2r 3GM S =3πr 3G ρR 3S .其中ρ为太阳的密度.由上式可知,地球公转周期T E 仅与太阳的密度、地球公转轨道半径与太阳半径之比有关.因此“设想地球”的1年与现实地球的1年时间相同.5.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯舱沿着这条缆绳运行,如图所示,实现外太空和地球之间便捷的物资交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转角速度为ω,地球半径为R .(2)当电梯舱停在距地面高度h 2=4R 的站点时,求舱内质量m 2=50 kg 的人对水平地板的压力大小.地面附近重力加速度g 取10 m/s 2,地球自转角速度ω=7.3×10-5 rad/s ,地球半径R =6.4×103km.[答案] (1)12m 1ω2(R +h 1)2 (2)11.5 N [解析] (1)设货物相对地心的距离为r 1,线速度为v 1,则 r 1=R +h 1v 1=r 1ω货物相对地心的动能为E k =12m 1v 21 联立解得E k =12m 1ω2(R +h 1)2. (2)设地球质量为M ,人相对地心的距离为r 2,向心加速度为a n ,受地球的万有引力为F ,则r 2=R +h 2a n =ω2r 2F =GMm 2r 22g =GM R 2 设水平地板对人的支持力大小为F N ,人对水平地板的压力大小为F ′N ,则F -F N =m 2a nF′N=F N联立解得N′=11.5 N.。

高考物理一轮复习 第四章 曲线运动 万有引力与航天基础学案

高考物理一轮复习 第四章 曲线运动 万有引力与航天基础学案

第四章曲线运动万有引力与航天第1节曲线运动运动的合成与分解[精题对点诊断]1.[对曲线运动的理解]下面说法中正确的是( )A.做曲线运动的物体速度方向必定变化B.速度变化的运动必定是曲线运动C.加速度恒定的运动不可能是曲线运动D.加速度变化的运动必定是曲线运动【解析】做曲线运动的物体速度大小不一定变化,但速度方向必定变化,A项正确;速度变化的运动可能是速度大小在变,也可能是速度方向在变化,不一定是曲线运动,B项错误;加速度恒定的运动可能是匀变速直线运动,也可能是匀变速曲线运动,C项错误;加速度变化的运动可能是直线运动,也可能是曲线运动,D项错误.【答案】 A2.[运动合成的判断与计算](多选)如图4-1-1所示,一块橡皮用细线悬挂于O点,现用一支铅笔贴着细线的左侧水平向右以速度v 匀速移动,运动过程中保持铅笔的高度不变,悬挂橡皮的那段细线保持竖直,则在铅笔未碰到橡皮前,橡皮的运动情况是( )图4-1-1A.橡皮在水平方向上做匀速运动B.橡皮在竖直方向上做加速运动C.橡皮的运动轨迹是一条直线D.橡皮在图示虚线位置时的速度大小为v cos2θ+1【解析】悬挂橡皮的细线一直保持竖直,说明橡皮水平方向具有和铅笔一样的速度,A正确;在竖直方向上,橡皮的速度等于细线收缩的速度,把铅笔与细线接触的地方的速度沿细线方向和垂直细线方向分解,沿细线方向的分速度v1=vsin θ,θ增大,沿细线方向的分速度增大,B正确;橡皮的加速度向上,与初速度不共线,所以做曲线运动,C错误;橡皮在题图虚线位置时的速度v t=v21+v2=v sin2θ+1,D错误.【答案】AB3.[运动合成分解的应用]降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞( )A .下落的时间越短B .下落的时间越长C .落地时速度越小D .落地时速度越大【解析】 风沿水平方向吹,不影响竖直速度,故下落时间不变,A 、B 两项均错;风速越大时合速度越大,故C 项错误、D 项正确. 【答案】 D[基础知识回顾]一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件(1)动力学角度:物体所受合外力的方向跟它的速度方向不在同一条直线上 (2)运动学角度:物体的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.基本概念分运动运动的合成运动的分解合运动2.分解原则:根据运动的实际效果分解,也可用正交分解.3.遵循规律:位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 4.合运动与分运动的关系等时性:合运动和分运动经历的时间相等,即同时开始,同时进行,同时停止. 独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响. 等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.[基本能力提升]一、判断题(1)做曲线运动的物体速度大小一定发生变化.(×) (2)做曲线运动的物体加速度一定是变化的.(×) (3)曲线运动一定是变速运动.(√)(4)合运动的速度一定比每一个分运动的速度都大.(×) (5)两个分运动的时间一定与它们合运动的时间相等.(√) (6)只要两个分运动是直线运动,合运动一定是直线运动.(×) 二、选择题在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力.下列描绘下落速度的水平分量大小v x 、竖直分量大小v y 与时间t 的图象,可能正确的是( )【解析】跳伞运动员在空中受到重力,其大小不变且方向竖直向下,还受到空气阻力,其始终与速度反向,大小随速度的增大而增大,反之则减小.在水平方向上,运动员受到的合力是空气阻力在水平方向上的分力,故可知运动员在水平方向上做加速度逐渐减小的减速运动.在竖直方向上运动员在重力与空气阻力的共同作用下先做加速减小的加速度运动,后做匀速运动.由以上分析结合v-t图象的性质可知只有B选项正确.【答案】 B第2节抛体运动的规律及其应用[精题对点诊断]1.[对平抛运动的理解](多选)对平抛运动,下列说法正确的是( )A.平抛运动是加速度大小、方向不变的曲线运动B.做平抛运动的物体,在任何相等的时间内位移的增量都是相等的C.平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D.落地时间和落地时的速度只与抛出点的高度有关【解析】平抛运动的物体只受重力作用,其加速度为重力加速度,故A项正确;做平抛运动的物体,在任何相等的时间内,其竖直方向位移增量Δy=gt2,水平方向在任何相等的时间内位移的增量都是相等的,故B项错误;平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,且落地时间t=2hg,落地速度为v=v2x+v2y=v20+2gh,所以C项正确,D项错误.【答案】AC2.[对斜抛运动的理解]做斜抛运动的物体,到达最高点时( )A.速度为零,加速度向下B.速度为零,加速度为零C.具有水平方向的速度和竖直向下的加速度D.具有水平方向的速度和加速度【解析】斜抛运动可以分解为水平方向的匀速直线运动和竖直上抛运动.因物体只受重力,且方向竖直向下,所以水平方向的分速度不变,竖直方向上的加速度也不变,所以只有C 选项正确.【答案】 C3.[对平抛运动规律的认识](多选)如图4-2-1所示,滑板运动员以速度v 0从离地高度为h 的平台末端水平飞出,落在水平面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )图4-2-1A .v 0越大,运动员在空中运动时间越长B .v 0越大,运动员落地瞬间速度越大C .运动员落地瞬间速度与高度h 有关D .运动员落地位置与v 0大小无关【解析】 在平抛运动中,飞行时间仅由高度决定,所以A 错误;水平位移、落地速度(末速度)由高度和初速度共同决定,所以B 、C 正确,D 错误.【答案】 BC[基础知识回顾]一、平抛运动 1.性质加速度为重力加速度g 的匀变速曲线运动,运动轨迹是抛物线. 2.基本规律以抛出点为原点,水平方向(初速度v 0方向)为x 轴,竖直向下方向为y 轴,建立平面直角坐标系,则: (1)水平方向:做匀速直线运动,速度v x =v 0,位移x =v 0t. (2)竖直方向:做自由落体运动,速度v y =gt ,位移y =12gt 2.(3)合速度:v =v 2x +v 2y ,方向与水平方向的夹角为θ,则tan θ=v y v x =gt v 0.(4)合位移:s =x 2+y 2,方向与水平方向的夹角为α,tan α=y x =gt 2v 0.二、斜抛运动图4-2-21.运动性质加速度为g 的匀变速曲线运动,轨迹为抛物线. 2.基本规律(以斜向上抛为例说明,如图4-2-2所示) (1)水平方向:v 0x =v 0_cos_θ,F 合x =0. (2)竖直方向:v 0y =v 0sin_θ,F 合y =mg.[基本能力提升]一、判断题(1)以一定的初速度水平抛出的物体的运动是平抛运动.(×)(2)平抛运动的轨迹是抛物线,速度方向时刻变化,加速度方向也可能时刻变化.(×) (3)从同一高度水平抛出的物体,不计空气阻力,初速度越大,落地速度越大.(√) (4)斜抛运动到最高点时,速度为零,加速度向下(×) (5)斜抛运动到最高点时,具有水平方向的速度和加速度.(×) (6)斜抛运动可看成水平方向的匀速运动和竖直上抛运动的合运动.(√) 二、选择题(多选)如图4-2-3所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上.已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是( )图4-2-3A .球的速度v 等于Lg 2HB .球从击出至落地所用时间为2H gC .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关【解析】 球做平抛运动,则其在竖直方向做自由落体运动,H =12gt 2得t =2Hg,故B 正确;水平方向做匀速运动,L =v 0t 得v 0=L t=L g 2H,可知A 正确;球从击球点到落地点的位移s =H 2+L 2与m 无关,可知C 、D 错误. 【答案】 AB第3节 圆周运动 [精题对点诊断]1.[对匀速圆周运动的理解](多选)质点做匀速圆周运动时,下列说法正确的是( ) A .速度的大小和方向都改变B .匀速圆周运动是匀变速曲线运动C .物体所受合力全部用来提供向心力D .向心加速度大小不变,方向时刻改变【解析】 匀速圆周运动的速度的大小不变,方向时刻变化,A 错;它的加速度大小不变,但方向时刻改变,不是匀变速曲线运动,B 错,D 对;由匀速圆周运动的条件可知,C 对.【答案】 CD2.[圆周运动的物理量及相互关系]某型石英表中的分针与时针可视为做匀速转动,分针的长度是时针长度的1.5倍,则下列说法中正确的是( )A .分针的角速度与时针的角速度相等B .分针的角速度是时针的角速度的60倍C .分针端点的线速度是时针端点的线速度的18倍D .分针端点的向心加速度是时针端点的向心加速度的1.5倍【解析】 分针的角速度ω1=2πT 1=π30 rad/min ,时针的角速度ω2=2πT 2=π360 rad/min.ω1∶ω2=12∶1,v 1∶v 2=ω1r 1∶ω2r 2=18∶1, a 1∶a 2=ω1v 1∶ω2v 2=216∶1,故只有C 正确. 【答案】 C图4-3-13.[弯道离心运动](多选)(2013·课标全国卷Ⅱ)公路急转弯处通常是交通事故多发地带.如图4-3-1,某公路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高内侧低B .车速只要低于v c ,车辆便会向内侧滑动C .车速虽然高于v c ,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v c 的值变小【解析】 汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A 正确,选项D 错误;当v<v c 时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v>v c 时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B 错误,选项C 正确.【答案】 AC[基础知识回顾]一、描述圆周运动的物理量1.线速度:描述物体圆周运动快慢的物理量.v =Δs Δt =2πr T. 2.角速度:描述物体绕圆心转动快慢的物理量. ω=ΔθΔt =2πT.3.周期和频率:描述物体绕圆心转动快慢的物理量. T =2πr v ,T =1f.4.向心加速度:描述速度方向变化快慢的物理量. an =r ω2=v 2r =ωv =4π2T2r.5.向心力:作用效果产生向心加速度,Fn =man. 6.相互关系:(1)v =ωr =2πTr =2πrf. (2)a =v 2r =ωv =4π2T2r =4π2f 2r.(3)Fn =man =m v 2r =m ω2r =mr4π2T 2=mr4π2f 2.二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)定义:线速度大小不变的圆周运动.(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动. (3)质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心. 2.非匀速圆周运动(1)定义:线速度大小、方向均发生变化的圆周运动. (2)合力的作用①合力沿速度方向的分量Ft 产生切向加速度,Ft =mat ,它只改变速度的大小. ②合力沿半径方向的分量Fn 产生向心加速度,Fn =man ,它只改变速度的方向. 三、离心运动1.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 2.图4-3-2受力特点(如图4-3-2所示)(1)当F =mrω2时,物体做匀速圆周运动. (2)当F =0时,物体沿切线方向飞出.(3)当F<mrω2时,物体逐渐远离圆心,F 为实际提供的向心力. (4)当F>mrω2时,物体逐渐向圆心靠近,做近心运动.[基本能力提升]一、判断题(1)做匀速圆周运动的物体向心加速度与半径成反比.(×) (2)做匀速圆周运动的物体角速度与转速成正比.(√) (3)匀速圆周运动物体的向心力是产生向心加速度的原因.(√) (4)离心现象是物体惯性的表现.(√)(5)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.(√)(6)摩托车转弯时,如果超过一定速度,摩托车将发生滑动,这是因为摩托车受到沿半径方向向外的离心力作用.(×) 二、选择题(2014·陕西名校质检)如图4-3-3所示,“小飞侠”科比在带球过人时身体与地面的夹角为60°,为保持身体稳定,地面对运动员的力必须与身体平行.若其转弯半径约为5 m ,重力加速度g =10 m/s 2,则“小飞侠”此时运动的速度大小约为( )图4-3-3A .2 m/sB .5 m/sC .9 m/sD .12 m/s【解析】 运动员此时受到重力、地面弹力和地面摩擦力作用,3个力的合力提供向心力.根据题设条件,地面弹力和地面摩擦力的合力必须与身体平行,可得mgtan 30°=m v2R,代入题设数据解得v≈5 m/s,B 正确.【答案】 B第4节 万有引力与航天[精题对点诊断]1.[对万有引力定律的理解]关于万有引力公式F =Gm 1m 2r2,以下说法中正确的是( ) A .公式只适用于星球之间的引力计算,不适用于质量较小的物体 B .当两物体间的距离趋近于0时,万有引力趋近于无穷大 C .两物体间的万有引力也符合牛顿第三定律 D .公式中引力常量G 的值是牛顿规定的【解析】 万有引力公式F =G m 1m 2r,虽然是牛顿由天体的运动规律得出的,但牛顿又将它推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的,故正确选项为C.【答案】 C2.[对行星运行规律的理解](2013·江苏高考)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【解析】 根据开普勒行星运动定律,火星和木星沿各自的椭圆轨道绕太阳运行时,太阳位于椭圆的一个焦点上,选项A 错误;行星绕太阳运行的轨道不同,周期不同,运行速度大小也不同,选项B 错误;火星与木星运行的轨道半长轴的立方与周期的平方之比是一个常量,选项C 正确;火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,选项D 错误.【答案】 C3.[万有引力定律在天体中的应用](2013·福建高考)设太阳质量为M ,某行星绕太阳公转周期为T ,轨道可视作半径为r 的圆.已知万有引力常量为G ,则描述该行星运动的上述物理量满足( )A .GM =4π2r3T 2B .GM =4π2r2T 2C .GM =4π2r2T3D .GM =4πr3T2【解析】 对行星有:GMm r 2=m 4π2T 2r ,故GM =4π2r3T 2,选项A 正确.【答案】 A[基础知识回顾]一、万有引力定律 1.内容自然界中任何两个物体都是相互吸引的,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2,叫引力常量.3.适用条件两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离.(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为质点到球心间的距离. 二、宇宙速度 1.环绕速度(1)第一宇宙速度又叫环绕速度.(2)第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. (4)第一宇宙速度的计算方法. ①由G Mm R 2=m v2R得v =GMR. ②由mg =m v2R得v =gR.2.第二宇宙速度和第三宇宙速度(考纲要求Ⅰ)(1)第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. (2)第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. 三、经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的. 2.相对论时空观(1)在狭义相对论中,物体的质量是随物体运动速度的增大而增大的,用公式表示为m =m 01-v 2c2. (2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的. 3.经典力学有它的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.[基本能力提升]一、判断题(1)只有天体之间才存在万有引力.(×)(2)只要已知两个物体的质量和两个物体之间的距离,就可以由F =G MmR 2计算物体间的万有引力.(×)(3)当两物体间的距离趋近于0时,万有引力趋近于无穷大.(×)(4)第一宇宙速度是人造地球卫星的最小发射速度,也是贴近地面运行的卫星的运行速度,即人造地球卫星的最大运行速度.(√) (5)地球同步卫星的运行速度大于第一宇宙速度.(×)(6)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.(√) 二、选择题美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒-226”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于( )A .3.3×103m/s B .7.9×103m/s C .1.2×104 m/sD .1.9×104m/s【解析】 设地球的密度为ρ,半径为R ,第一宇宙速度为v 1,“开普勒-226”的第一宇宙速度为v 2,则有G ρ43 πR 3m R 2=mv 21R , G ρ43π 2.4R 3m 02.4R 2=m 0v 222.4R, 得v 2=2.4v 1=1.9×104 m/s ,故D 正确.【答案】 D。

届高考一轮物理:曲线运动、万有引力与航天含答案

届高考一轮物理:曲线运动、万有引力与航天含答案

2021届高考一轮物理:曲线运动、万有引力与航天含答案专题:曲线运动、万有引力与航天一、选择题1、(双选)2018年2月12日13时03分,我国在西昌卫星发射中心成功发射第五、六颗北斗三号全球组网卫星,完成了农历鸡年中国航天的“收官之战”.北斗导航系统中,某颗卫星绕地球做圆周运动,其向心加速度大小为a,线速度大小为v,万有引力常数为G,由以上数据可知()A.该卫星轨道半径为av2B.该卫星角速度大小为avC.该卫星周期大小为2πva D.该卫星的质量为v4Ga2、假设火星探测器在火星表面附近圆轨道运行的周期为T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为P,火星半径与地球半径之比为q,则T1与T2之比为( )A. B. C. D.3、(多选)运动轨迹既不是抛物线也不是圆周的曲线运动,称为一般的曲线运动,研究一般的曲线运动,可以把曲线分隔成许多小段,分析质点在每一小段的运动时,下列方法错误的是()A.每一小段的运动可以看成直线运动B.每一小段运动中物体受到的合力为零C.每一小段运动中物体受到恒力的作用D.每一小段运动可以看成圆周运动的一部分4、(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。

将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A.质量之积B.质量之和C.速率之和D.各自的自转角速度5、质点做曲线运动,从A到B速率逐渐减小,如图所示,有四位同学用示意图表示A到B的轨迹及速度方向和加速度的方向,其中正确的是()A B C D6、(双选)如图甲是古代一种利用抛出的石块打击敌人的装置,图乙是其工作原理的简化图.将质量为m=10 kg的石块装在距离转轴L=4.8 m的长臂末端口袋中.发射前长臂与水平面的夹角α=30°.发射时对短臂施力使长臂转到竖直位置时立即停止,石块靠惯性被水平抛出.若石块落地位置与抛出位置间的水平距离为s=19.2 m.不计空气阻力,g=10 m/s2.则以下判断正确的是()A.石块被抛出瞬间速度大小为12 m/sB.石块被抛出瞬间速度大小为16 m/sC.石块落地瞬间速度大小为20 m/sD.石块落地瞬间速度大小为16 m/s7、在地面上方某点将一小球以一定的初速度沿水平方向抛出,不计空气阻力,则小球在随后的运动中()A.速度和加速度的方向都在不断改变B.速度与加速度方向之间的夹角一直减小C.在相等的时间间隔内,速率的改变量相等D.在相等的时间间隔内,动能的改变量相等8、如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力()A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心*9、甲、乙两颗卫星绕地球做圆周运动,轨道在同一平面内,甲的轨道半径是乙轨道半径的k(k>1)倍,两卫星的绕行方向相同,某时刻两卫星相距最近,经过t 时间两卫星再次距离最近,已知地球的质量为M ,引力常量为G ,则乙的轨道半径为 ( ) A. B. C. D.*10、小赵同学在研究某物体运动时,正确地画出了右图的运动轨迹图象,经判断轨迹为二次函数图象.已知该物体在某方向做匀速直线运动,则下列关于物体可能的运动情况描述(图线),正确的是( )11、(双选)如图所示,有一皮带传动装置,A 、B 、C 三点到各自转轴的距离分别为R A 、R B 、R C ,已知R B =R C =R A 2,若在传动过程中,皮带不打滑。

「精品」高考物理一轮复习第四章曲线运动万有引力与航天学案(1)

「精品」高考物理一轮复习第四章曲线运动万有引力与航天学案(1)

第四章曲线运动万有引力与航天第1节曲线运动__运动的合成与分解(1)速度发生变化的运动,一定是曲线运动。

(×)(2)做曲线运动的物体加速度一定是变化的。

(×)(3)做曲线运动的物体速度大小一定发生变化。

(×)(4)曲线运动可能是匀变速运动。

(√)(5)两个分运动的时间一定与它们的合运动的时间相等。

(√)(6)合运动的速度一定比分运动的速度大。

(×)(7)只要两个分运动为直线运动,合运动一定是直线运动。

(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则。

(√)突破点(一) 物体做曲线运动的条件与轨迹分析1.运动轨迹的判断(1)若物体所受合力方向与速度方向在同一直线上,则物体做直线运动。

(2)若物体所受合力方向与速度方向不在同一直线上,则物体做曲线运动。

2.合力方向与速率变化的关系[题点全练]1.关于物体的受力和运动,下列说法中正确的是( )A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B.物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的外力作用解析:选D 如果合力与速度方向不垂直,必然有沿速度方向的分力,速度大小一定改变,故A错误;物体做曲线运动时,某点的速度方向就是通过这一点的曲线的切线方向,而不是加速度方向,故B错误;物体受到变化的合力作用时,它的速度大小可以不改变,比如匀速圆周运动,故C错误;物体做曲线运动的条件是一定受到与速度不在同一直线上的外力作用,故D正确。

2.[多选](2018·南京调研)如图所示,甲、乙两运动物体在t1、t2、t3时刻的速度矢量分别为v1、v2、v3和v1′、v2′、v3′,下列说法中正确的是( )A.甲做的不可能是直线运动B.乙做的可能是直线运动C.甲可能做匀变速运动D.乙受到的合力不可能是恒力解析:选ACD 甲、乙的速度方向在变化,所以甲、乙不可能做直线运动,故A正确,B 错误;甲的速度变化量的方向不变,知加速度的方向不变,则甲的加速度可能不变,甲可能作匀变速运动,选项C正确;乙的速度变化量方向在改变,知加速度的方向改变,所以乙的合力不可能是恒力,故D正确。

高考物理专题复习:《曲线运动、万有引力与航天》习题课教案

高考物理专题复习:《曲线运动、万有引力与航天》习题课教案

高考物理专题复习:《曲线运动、万有引力与航天》习题课教学设计 ( 附参照答案 ) 【学习目标】◆掌握连结体中运动与分解思想的使用方法和办理技巧◆掌握剖析单物体多过程运动的剖析方法和办理技巧◆娴熟运用天体运转的基本规律解题【要点难点】◆灵巧运用曲线运动基本知识娴熟解题◆物理过程的剖析和方法的总结【学习方法】◆议论学习、自主研究、思想拓展、思想分解研究法、课件展现【学习过程】●★近两年相关《曲线运动万有引力与航天》高考题展现(课件展现)总结:经过剖析我们能够发现《曲线运动万有引力与航天》在高考取的重要性、必考性和出题的表现形式:一般万有引力都出一个选择题且都出在18 题的地点,而曲线运动的圆周和(类)平抛运动形式常常不会独自出题,而是联合其余知识点表此刻多过程的运动之中,使问题更为复杂化,且难度较大,常在“最高点”和“最低点”等临界问题上作文章。

●★多物体多运动过程的剖析方法◆例 1:如图,半径为R的1/4圆弧支架竖直搁置,支架底AB离地的距离为2R,圆弧边沿C处有一小定滑轮,一轻绳两头系着质量分别为m1与 m 2的物体,挂在定滑轮两边,且 m 1> m 2,开始时 m 1、 m 2均静止, m 1、 m 2可视为质点,不计一O C切摩擦。

m1求: m1开释后经过圆弧最低点 A 时的速度;A B2R m2▼思想拓展①:若 m 1到最低点时绳忽然断开,求m1落地址离A点水平距离;地面▼思想拓展②:为使m1能抵达A点,m1与m2之间一定知足什么关系?◆研究训练 1.如图重物 M 沿竖直杆下滑,并经过绳带动小车m 沿斜面高升。

则:当滑轮右边的绳与竖直方向成角,且重物下滑的速率为v 时,小车的速度为多少?v'θmv M ◆总结:这部分多物体多运动过程的问题常常是连结体问题,不单要注意运使劲学知识:牛顿第二定律或动能定理来解答,还要注意能否使用物体运动的合成与分解的思想,不然就会出现知识性剖析错误。

能够娴熟运用运动合成与分解的思想剖析两个物体的速度关系,进而为正确的采用物理规律解决各阶段的物理问题打下了坚固的基础。

高中物理高考一轮复习 第四章 曲线运动 万有引力与航天 课后习题 (Word版含解析 )

高中物理高考一轮复习 第四章 曲线运动 万有引力与航天  课后习题  (Word版含解析 )

单元质检四曲线运动万有引力与航天(时间:45分钟满分:100分)一、单项选择题(本题共5小题,每小题6分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.野外骑行在近几年越来越流行,越来越受到人们的青睐,对于自行车的要求也在不断地提高,很多都是可变速的。

不管如何变化,自行车装置和运动原理都离不开圆周运动。

下面结合自行车实际情况与物理学相关的说法正确的是()A.图乙中前轮边缘处A、B、C、D四个点的线速度相同B.大齿轮与小齿轮的齿数如图丙所示,则大齿轮转1圈,小齿轮转3圈C.图乙中大齿轮边缘处E点和小齿轮边缘处F点角速度相同D.在大齿轮处的角速度不变的前提下,增加小齿轮的齿数,自行车的速度将变大2.(2021四川南充三模)右图为某公园水轮机的示意图,水平管中流出的水流直接冲击到水轮机圆盘边缘上的某小挡板时,其速度方向刚好沿圆盘边缘切线方向,水轮机稳定转动时的角速度为ω,圆盘的半径为R,冲击挡板时水流的速度是该挡板线速度的2倍,该挡板和圆盘圆心连线与水平方向夹角为30°,不计空气阻力,则水从管口流出速度的大小为()A. B.ωRC.2ωRD.4ωR3.2021年央视春节晚会采用了无人机表演。

现通过传感器获得无人机水平方向速度v x、竖v y(取竖直向上为正方向)与飞行时间的关系如图所示,则下列说法正确的是()A.无人机在t1时刻上升至最高点B.无人机在t2时刻处于超重状态C.无人机在0~t1时间内沿直线飞行D.无人机在t1~t3时间内做匀变速运动4.(2021安徽定远中学高三模拟)如图,一个人拿着一个小球想把它扔进前方一堵竖直墙的洞里,洞比较小,球的速度必须垂直于墙的方向才能进入,洞离地面的高度H=3.3 m,人抛球出手时,球离地面高度h0=1.5 m,人和墙之间有一张竖直网,网高度h=2.5 m,网离墙距离L=2 m,不计空气阻力,g取10 m/s2,下列说法正确的是()A.只要人调整好抛球速度大小以及抛射角度,不管人站在离网多远的地方,都可以把球扔进洞B.要使球扔进洞,人必须站在离网距离至少1 m处C.要使球扔进洞,人必须站在离网距离至少1.5 m处D.要使球扔进洞,人必须站在离网距离至少2 m处5.图甲所示为球形铁笼中进行的摩托车表演,已知同一辆摩托车在最高点A时的速度大小为8 m/s,在最低点B时的速度大小为16 m/s,铁笼的直径为8 m,取重力加速度g取10 m/s2,摩托车运动时可看作质点。

(新课标)高考物理总复习第四章曲线运动万有引力与航天教师用书(含解析)

(新课标)高考物理总复习第四章曲线运动万有引力与航天教师用书(含解析)

曲线运动万有引力与航天点点通(一) 物体做曲线运动的条件与轨迹分析1.曲线运动(1)速度的方向:质点在某一点的速度,沿曲线在这一点的切线方向。

(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动是变速运动。

(3)物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上。

2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧。

3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大。

(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小。

(3)当合外力方向与速度方向垂直时,物体的速率不变。

[小题练通]1.一个物体在力F1、F2、F3、…、F n共同作用下做匀速直线运动,若突然撤去F2,而其他力不变,则该物体( )A.可能做曲线运动B.不可能继续做直线运动C.一定沿F2的方向做直线运动D .一定沿F 2的反方向做匀减速直线运动解析:选A 根据题意,物体开始做匀速直线运动,物体所受的合力一定为零,突然撤去F 2后,物体所受其余力的合力与F 2大小相等、方向相反,而物体速度的方向未知,故有多种可能情况:若速度的方向和F 2的方向在同一直线上,物体做匀变速直线运动,若速度的方向和F 2的方向不在同一直线上,物体做曲线运动,A 正确。

2.(2019·金华联考)春节期间人们放飞孔明灯表达对新年的祝福。

如图所示,孔明灯在竖直Oy 方向做匀加速运动,在水平Ox 方向做匀速运动,孔明灯的运动轨迹可能为图中的( )A .直线OAB .曲线OBC .曲线OCD .曲线OD解析:选D 孔明灯在竖直Oy 方向做匀加速运动,在水平Ox 方向做匀速运动,则合外力沿Oy 方向,所以合运动的加速度方向沿Oy 方向,但合速度方向不沿Oy 方向,故孔明灯做曲线运动,结合合力指向轨迹凹侧可知轨迹可能为题图中的曲线OD ,故D 正确。

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学案作业(含解析)新人教版

高考物理一轮复习 第四章 曲线运动 万有引力与航天 第4讲 万有引力与航天学案作业(含解析)新人教版

第4讲 万有引力与航天知识排查开普勒三定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

2.开普勒第二定律:对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比。

2.表达式:F =Gm 1m 2r 2G 为引力常量:G =6.67×10-11 N·m 2/kg 2。

3.适用条件(1)公式适用于质点间的相互作用。

当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。

(2)公式适用于质量分布均匀的球体之间的相互作用,r 是两球心间的距离。

环绕速度1.第一宇宙速度又叫环绕速度,其数值为7.9__km/s 。

2.特点(1)第一宇宙速度是人造卫星的最小发射速度。

(2)第一宇宙速度是人造卫星的最大环绕速度。

3.第一宇宙速度的计算方法(1)由G Mm R 2=m v 2R 得v =GMR=7.9 km/s(2)由mg =m v 2R得v =gR =7.9 km/s第二、三宇宙速度 时空观1.第二宇宙速度:v 2=11.2 km/s ,是卫星挣脱地球引力束缚的最小发射速度。

2.第三宇宙速度:v 3=16.7 km/s ,是卫星挣脱太阳引力束缚的最小发射速度。

3.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。

(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

4.相对论时空观在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。

小题速练1.思考判断(1)地面上的物体所受地球的引力方向一定指向地心。

高考物理第一轮复习教案 第四章 曲线运动 万有引力与航天

高考物理第一轮复习教案    第四章  曲线运动 万有引力与航天

第四章 曲线运动 万有引力与航天一、知识网络1.运动的合成和分解 Ⅱ 2.抛体运动 Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度 Ⅰ 4.匀速圆周运动的向心力 Ⅱ 5.离心现象 Ⅰ 6.万有引力定律及其应用 Ⅱ 7.环绕速度 Ⅱ 8.第二宇宙速度和第三宇宙速度 Ⅰ 9.经典时空观和相对论时空观 Ⅰ 三、复习提要本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。

(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。

(3)万有引力定律及其运用。

(4)运动的合成与分解。

注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。

近几年对人造卫星问题考查频率较高,它是对万有引力的考查。

卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。

本章内容常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。

四、命题热点与展望本章内容在高考题中常有出现,考查重点是对概念和规律的理解和运用。

内容主要集中在平抛运动和天体运动、人造卫星的运动规律等方面,且均有一定难度。

本章的圆周运动经常与电磁场、洛仑兹力等内容结合起来考查。

§1 运动的合成与分解 平抛物体的运动一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。

当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动 ,如平抛运动。

当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动。

如果物体受到约束,只能沿圆形轨道运动,而速率不断变化,是变速率圆周运动。

合力的方向并不总跟速曲线运动万有引力与航天度方向垂直。

2.曲线运动的特点:(1)曲线运动中速度的方向沿曲线的切线方向,在曲线运动中速度方向是时刻改变的,所以曲线运动一定是变速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理一轮复习资料精品复习学案《曲线运动万有引力与航天》第1节曲线运动运动的合成与分解一、曲线运动1.运动特点(1)速度方向:质点在某点的速度,沿曲线上该点的切线方向.(2)运动性质:做曲线运动的物体,速度的方向时刻改变,所以曲线运动一定是变速运动,即必然具有加速度.2.曲线运动的条件(1)从动力学角度看:物体所受合力的方向跟它的速度方向不在同一条直线上.(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上.二、运动的合成与分解1.基本概念运动的合成合运动分运动运动的分解2.分解原则根据运动的实际效果分解,也可采用正交分解.3.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.4.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响.(3)等效性:各分运动叠加起来与合运动有完全相同的效果.[概念测试]1.判断正误(1)速度发生变化的运动,一定是曲线运动.(×)(2)做曲线运动的物体加速度一定是变化的.(×)(3)做曲线运动的物体速度大小一定发生变化.(×)(4)曲线运动可能是匀变速运动.(√)(5)两个分运动的时间一定与它们的合运动的时间相等.(√)(6)合运动的速度一定比分运动的速度大.(×)(7)只要两个分运动为直线运动,合运动一定是直线运动.(×)(8)分运动的位移、速度、加速度与合运动的位移、速度、加速度间满足平行四边形定则.(√)2.下列说法正确的是( )A.各分运动互相影响,不能独立进行B.合运动的时间一定比分运动的时间长C.合运动和分运动具有等时性,即同时开始、同时结束D.合运动的位移大小等于两个分运动位移大小之和解析:选C.各分运动具有独立性,A错误;合运动与分运动具有等时性,B 错误,C正确;合运动的位移与分运动的位移满足矢量合成的法则,D错误.3.(多选)某质点在光滑水平面上做匀速直线运动.现对它施加一个水平恒力,则下列说法正确的是( )A.施加水平恒力以后,质点可能做匀加速直线运动B.施加水平恒力以后,质点可能做匀变速曲线运动C.施加水平恒力以后,质点可能做匀速圆周运动D.施加水平恒力以后,质点立即有加速度,速度也立即变化解析:选AB.当水平恒力的方向与速度的方向在同一条直线上时,质点做匀变速直线运动,选项A正确;当水平恒力的方向与速度的方向不在同一条直线上时,质点做匀变速曲线运动,选项B正确;无论力的方向与速度的方向关系如何,质点都不可能做匀速圆周运动,选项C错误;速度不能发生突变,选项D 错误.4.(多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( )A.越接近河岸水流速度越小B.越接近河岸水流速度越大C.无论水流速度是否变化,这种渡河方式耗时最短D.该船渡河的时间会受水流速度变化的影响解析:选AC.由船的运动轨迹可知,小船渡河过程是先做加速运动后做减速运动.河流的中心水流速度最大,越接近河岸水流速度越小,故A正确,B 错误;由于船头垂直河岸,则这种方式过河的时间最短,C正确;船过河的时间与水流速度无关,D错误.考点一物体做曲线运动的条件与轨迹分析1.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向,图中M、N、P、Q表示物体运动的轨迹,其中正确的是( )解析:选B.物体运动的速度方向与运动轨迹一定相切,而且合外力F的方向一定指向轨迹的凹侧,故只有B正确.2.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是( )A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析:选A.质点做匀变速曲线运动,所以加速度不变;由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,所以C点速率比D点大.3.一个质点受到两个互成锐角的力F1、F2的作用,由静止开始运动,若保持二力方向不变,将F1突然增大为2F1,则此后质点( )A.不一定做曲线运动B.一定做匀变速运动C.可能做匀速直线运动D.可能做匀变速直线运动解析:选B.F1增大前,质点沿合力方向做匀加速直线运动.F1增大后,合力方向与F1增大之前的质点的速度方向不共线,因而做曲线运动.由于二力方向不变,只将F1增大为2F1,所以合力恒定,质点做匀变速曲线运动.故本题答案为B.考点二 运动的合成与分解的应用1.合运动与分运动的关系(1)等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).(2)等效性:各分运动叠加起来与合运动有相同的效果.(3)独立性:一个物体同时参与几个运动,其中的任何一个都会保持其运动性质不变,并不会受其他分运动的干扰.虽然各分运动互相独立,但是它们共同决定合运动的性质和轨迹.2.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵守平行四边形定则.3.合运动性质的判断⎩⎪⎨⎪⎧ 加速度⎩⎪⎨⎪⎧ 恒定:匀变速运动变化:非匀变速运动加速度方向与速度方向⎩⎪⎨⎪⎧ 共线:直线运动不共线:曲线运动题组一 合运动性质的判断1. (2017·江苏连云港模拟)(多选)如图所示,一块橡皮用细线悬挂于O 点,用钉子靠着线的左侧沿与水平方向成30°角的斜面向右上以速度v 匀速运动,运动中始终保持悬线竖直,下列说法正确的是( )A .橡皮的速度大小为2vB .橡皮的速度大小为3vC .橡皮的速度与水平方向成60°角D .橡皮的速度与水平方向成45°角解析:选BC.橡皮斜向右上方运动,具有沿斜面向上的分速度,与钉子沿斜面向上的速度相等,即为v;橡皮还具有竖直向上的分速度,大小也等于v;其实际速度大小(合速度)是两个分速度的合成,如图所示.故橡皮的实际速度大小(合速度):v′=2v cos 30°=3v,且与水平方向成60°角,A、D错误,B、C正确.2.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A.西偏北方向,1.9×103 m/sB.东偏南方向,1.9×103 m/sC.西偏北方向,2.7×103 m/sD.东偏南方向,2.7×103 m/s解析:选B. 设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1v cos 30°,代入数据解得v2≈1.9×103 m/s.选项B正确.题组二与运动图象结合的合成与分解问题3.物体在直角坐标系xOy所在的平面内由O点开始运动,其沿坐标轴方向的两个分速度随时间变化的图象如图所示,则对该物体运动过程的描述正确的是( )A.物体在0~3 s做直线运动B.物体在3 s~4 s做直线运动C.物体在3 s~4 s做曲线运动D.物体在0~3 s做变加速运动解析:选B.物体在0~3 s内,x方向做匀速直线运动,y方向做匀加速直线运动,两运动的合运动,一定是曲线运动,且加速度恒定,则A、D错误;物体在3 s~4 s内两个方向的分运动都是匀减速运动,在3 s末,速度与x轴的夹角tan θ=v yv x=34,加速度与x轴的夹角tan β=a ya x=34,因此合速度与合加速度方向相反,则做直线运动,故B正确,C错误.4.有一个质量为2 kg的质点在x-y平面上运动,在x方向的速度图象和y 方向的位移图象分别如图甲、乙所示,下列说法正确的是( )A .质点所受的合力为3 NB .质点的初速度为3 m/sC .质点做匀变速直线运动D .质点初速度的方向与合力的方向垂直解析:选A. 由题图乙可知,质点在y 方向上做匀速运动,v y =Δx Δt =-4 m/s ,在x 方向上做匀加速直线运动,a =Δv Δt =1.5 m/s 2,故质点所受合力F =ma =3 N ,A 正确;质点的初速度v =v x 02+v 2y =5 m/s ,B 错误;质点做匀变速曲线运动,C 错误;质点初速度的方向与合力的方向不垂直,如图所示,θ=53°,D 错误.考点三 小船渡河问题1.小船渡河问题的速度(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).2.小船渡河的三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽). (2)过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1. (3)过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.1.(2017·湖北省重点中学联考)(多选)一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m的河,河水流速为4 m/s,则这只船( )A.过河时间不可能小于10 sB.不能沿垂直于河岸方向过河C.渡过这条河所需的时间可以为6 sD.不可能渡过这条河解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30 m,而垂直河岸方向的最大分速度即船自身的速度3 m/s,所以渡河最短时间t=d3 m/s=10 s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.3.(2017·四川绵阳质检)小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10 min到达对岸下游120 m处;若船头保持与河岸成α角向上游航行,出发后12.5 min到达正对岸.求:(1)水流的速度;(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.解析:(1)船头垂直对岸方向航行时,如图甲所示.由x=v2t1得v2=xt1=120600m/s=0.2 m/s①(2)船头保持与岸成α角航行时,如图乙所示.由(1)可得d=v1t1v2=v1cos α②d=v1t2sin α③联立解得α=53°,v1=0.33 m/s,d=200 m答案:(1)0.2 m/s (2)0.33 m/s 200 m 53°(1)渡河时间只与船垂直于河岸方向的分速度有关,与水流速度无关.(2)船渡河位移最小值与v船和v水大小关系有关,v船>v水时,河宽即为最小位移,v船<v水时,应利用图解法求极值的方法处理.考点四关联速度问题1.问题特点:沿绳(或杆)方向的速度分量大小相等.2.思路与原则(1)思路①明确合速度→物体的实际运动速度v;(2)原则:v1与v2的合成遵循平行四边形定则.3.解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图所示.1.在距河面高度h=20 m的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°.人以恒定的速率v=3 m/s拉绳,使小船靠岸,那么( ) A.5 s时绳与水面的夹角为60°B.5 s后小船前进了15 mC.5 s时小船的速率为4 m/sD.5 s时小船到岸边的距离为15 m解析:选D.设开始时小船距岸边为L ,则L =h tan 30°=20 3 m ,5 s 后绳端沿岸位移为x =v t =3×5 m =15 m ,设5 s 后小船前进了x ′,绳与水平面的夹角为θ,由几何关系得sin θ=h 2h -x =202×20-15=0.8,解得θ=53°,选项A 错误;由tan θ=hL -x ′,解得x ′=19.64 m ,选项B 错误;由v 船cos θ=v 可得此时小船的速率为v 船=5 m/s ,选项C 错误;5 s 时小船到岸边的距离为L -x ′=20 3 m -19.64 m =15 m ,选项D 正确.2. 如图所示,物体A 、B 经无摩擦的定滑轮用细线连在一起,A 物体受水平向右的力F 的作用,此时B 匀速下降,A 水平向左运动,可知( )A .物体A 做匀速运动B .物体A 做加速运动C .物体A 所受摩擦力逐渐增大D .物体A 所受摩擦力不变解析:选B.设系在A 上的细线与水平方向夹角为θ,物体B 的速度为v B ,大小不变,细线的拉力为F T ,则物体A 的速度v A =v B cos θ,F f A =μ(mg -F T sin θ),因物体下降,θ增大,故v A 增大,物体A 做加速运动,A 错误,B 正确;物体B 匀速下降,F T 不变,故随θ增大,F f A 减小,C 、D 均错误.3.(2017·上海四区联考) 如图所示,长为L 的直棒一端可绕固定轴O 转动,另一端搁在升降平台上,平台以速度v 匀速上升,当棒与竖直方向的夹角为α时,棒的角速度为( )A.v sin αL B.vL sin αC.v cos αL D.vL cos α解析:选B.棒与平台接触点的实际运动即合运动的速度方向是垂直于棒指向左上方,合速度沿竖直向上方向上的速度分量等于v,即ωL sin α=v,所以ω=vL sin α.[基础巩固题]1.精彩的F1赛事相信你不会陌生吧!车王舒马赫在一个弯道上突然调整行驶的赛车致使后轮脱落,从而不得不遗憾地退出了比赛.关于脱落的后轮的运动情况,以下说法中正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.脱落时,沿着轮子前进的方向做直线运动,离开弯道D.上述情况都有可能解析:选 C.车轮被甩出后,不再受到车身的约束,被甩出的后轮沿甩出时的速度方向(即甩出点轨迹的切线方向)做直线运动,轮不可能沿车行驶的弯道运动,也不可能沿垂直于弯道的方向运动.故本题答案为C.2.某电视台举办了一期群众娱乐节目,其中有一个环节是让群众演员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球.如果群众演员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中平台内箭头指向表示投篮方向)( )解析:选 B.篮球若能被投入球筐,其合速度的方向应指向圆心,因平台逆时针旋转,所以投篮方向应是如图B所示,选项B正确.3. 跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是( )A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地时的竖直速度越大,有可能对运动员造成伤害C.运动员下落时间与风力无关D.运动员着地速度与风力无关解析:选 C.水平风力不会影响竖直方向的运动,所以运动员下落时间与风力无关,A错误,C正确;运动员落地时竖直方向的速度是确定的,水平风力越大,落地时水平分速度越大,则运动员着地时的合速度越大,有可能对运动员造成伤害,B、D错误.4.(多选)如图,在河水速度恒定的小河中,一小船保持船头始终垂直河岸从一侧岸边向对岸行驶,船的轨迹是一个弯曲的“S”形,则( )A.小船垂直河岸的速度大小恒定不变B.小船垂直河岸的速度大小先增大后减小C.与船以出发时的速度匀速过河相比,过河时间长了D .与船以出发时的速度匀速过河相比,过河时间短了解析:选BD.船在沿河岸的方向上做匀速直线运动,即在相同的时间间隔内,在河岸方向上的位移是相同的;在垂直于河岸的方向上,在相等的时间间隔内(参照船在沿河岸方向上的时间),开始时位移的变化逐渐增大再逐渐减小,所以速度先增大后减小;因中间那段时间速度较大,所以与船保持恒定的初始速度过河相比过河时间短了.选项B 、D 正确.5. (多选)如右图所示,在灭火抢险的过程中,消防队员有时要借助消防车上的梯子爬到高处进行救人或灭火作业.为了节省救援时间,在消防车向前前进的过程中,人同时相对梯子匀速向上运动.在地面上看消防队员的运动,下列说法中正确的是( )A .当消防车匀速前进时,消防队员一定做匀加速直线运动B .当消防车匀速前进时,消防队员一定做匀速直线运动C .当消防车匀加速前进时,消防队员一定做匀变速曲线运动D .当消防车匀加速前进时,消防队员一定做匀变速直线运动解析:选BC.当消防车匀速前进时,消防队员一定做匀速直线运动,选项A 错误,B 正确;当消防车匀加速前进时,消防队员一定做匀变速曲线运动,选项C 正确,D 错误.6.如图所示,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳与河岸的夹角为α时,船的速率为( )A .v sin α B.v sin αC.v cos α D.v cos α解析:选C.人的速度为合速度,当人沿平直的河岸以速度v行走时,可将人的速度分解为沿绳方向的分速度和垂直于绳方向的分速度,沿绳方向的分速度即为船行驶的速度,故船的速度为v cos α,选项C正确.7.如图所示,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A环上升至与定滑轮的连线水平时,其上升速度v1≠0,若这时B的速度为v2,则( )A.v2=0 B.v2>v1C.v2≠0 D.v2=v1解析:选A.环A在虚线位置时,环A的速度沿虚线方向的分速度为零,故物体B的速度v2=0,A正确.8.(多选)一快艇要从岸边某一不确定位置处到达河中离岸边100 m远的一浮标处,已知快艇始终与河岸垂直,其在静水中的速度v x图象和流水的速度v y 图象分别如图甲、乙所示,则( )A.快艇的运动轨迹为直线B.快艇的运动轨迹为曲线C.能找到某一位置使快艇最快到达浮标处的时间为20 sD.快艇最快到达浮标处经过的位移为100 m解析:选BC.快艇沿河岸方向的匀速运动与垂直于河岸的匀加速运动的合运动是类平抛性质的曲线运动,A错误,B正确;最快到达浮标处的方式是使垂直于河岸的速度v x 保持图甲所示的加速度a =0.5 m/s 2的匀加速运动,则12at 2=x x ,代入x x =100 m 有t =20 s ,但实际位移为x =x 2x +x 2y >100 m ,C 正确,D 错误. 9.质量m =4 kg 的质点静止在光滑水平面上的直角坐标系的原点O 处,先用沿+x 轴方向的力F 1=8 N 作用了2 s ,然后撤去F 1;再用沿+y 轴方向的力F 2=24 N 作用了1 s ,则质点在这3 s 内的轨迹为( )解析:选D.由F 1=ma x 得a x =2 m/s 2,质点沿x 轴匀加速直线运动了2 s ,x 1=12a x t 21=4 m ,v x 1=a x t 1=4 m/s ;之后质点受F 2作用而做类平抛运动,a y =F 2m =6 m/s 2,质点再经过1 s ,沿x 轴再运动,位移x 2=v x 1t 2=4 m ,沿+y 方向运动位移y 2=12a y t 22=3 m ,对应图线可知D 项正确.10. 如图,船从A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出相对水流的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s解析:选 B.船参与了两个分运动,沿船头指向的分运动和顺水流而下的分运动,其中,合速度v 合方向已知,大小未知,顺水流而下的分运动速度v 水的大小和方向都已知,沿船头指向的分运动的速度v 船大小和方向都未知,合速度与分速度遵循平行四边形定则(或三角形定则),如图,当v 合与v 船垂直时,v 船最小,由几何关系得到v船的最小值为v船min=v水sin 37°=2.4 m/s,选项B正确.11.在一个光滑水平面内建立平面直角坐标系xOy,质量为1 kg的物体原来静止在坐标原点O(0,0),t=0时受到如图所示随时间变化的外力作用,图甲中F x表示沿x轴方向的外力,图乙中F y表示沿y轴方向的外力,下列描述正确的是( )A.0~4 s内物体的运动轨迹是一条直线B.0~4 s内物体的运动轨迹是一条抛物线C.前2 s内物体做匀加速直线运动,后2 s内物体做匀加速曲线运动D.前2 s内物体做匀加速直线运动,后2 s内物体做匀速圆周运动解析:选C.0~2 s内物体沿x轴方向做初速度为零的匀加速直线运动,2 s 时受沿y轴方向的恒力作用,与速度方向垂直,故2~4 s内物体做类平抛运动,C项正确.12. (多选)如图所示,某同学在研究运动的合成时做了如图所示活动:用左手沿黑板推动直尺竖直向上运动,运动中保持直尺水平,同时用右手沿直尺向右移动笔尖.若该同学左手的运动为匀速运动,右手相对于直尺的运动为初速度为零的匀加速运动,则关于笔尖的实际运动,下列说法中正确的是( )A.笔尖做匀速直线运动B.笔尖做匀变速直线运动C.笔尖做匀变速曲线运动D.笔尖的速度方向与水平方向夹角逐渐变小解析:选CD.由题意知笔尖做匀变速曲线运动,A、B错误,C正确;笔尖的速度方向为合速度方向,右手沿水平方向的速度逐渐增大,则合速度方向与水平方向夹角逐渐变小,D正确.13. 如图所示,A、B两物体系在跨过光滑定滑轮的一根轻绳的两端,当A 物体以速度v向左运动时,系A、B的绳分别与水平方向成α、β角,此时B物体的速度大小为( )A.v sin α/sin βB.v cos α/sin βC.v sin α/cos βD.v cos α/cos β解析:选D.根据A、B两物体的运动情况,将两物体此时的速度v和v B分别分解为两个分速度v1(沿绳的分量)和v2(垂直绳的分量)以及v B1(沿绳的分量)和v B2(垂直绳的分量),由于两物体沿绳的速度分量相等,v1=v B1,即v cos α=v B cosβ,则B物体的速度方向水平向右,其大小为v B=cos αcos βv,D正确.14. 如图所示,在一次抗洪救灾工作中,一架直升机A用一长H=50 m的悬索(重力可忽略不计)系住伤员B,直升机A和伤员B一起在水平方向上以v0=10 m/s的速度匀速运动的同时,悬索在竖直方向上匀速上拉.在将伤员拉到直升机内的时间内,A、B之间的竖直距离以l=50-5t(单位:m)的规律变化,则( )A.伤员经过5 s时间被拉到直升机内B.伤员经过10 s时间被拉到直升机内C.伤员的运动速度大小为5 m/sD .伤员的运动速度大小为10 m/s解析:选B.伤员在竖直方向的位移为h =H -l =5t (m),所以伤员的竖直分速度为v 1=5 m/s ;由于竖直方向做匀速直线运动,所以伤员被拉到直升机内的时间为t =H v 1=505 s =10 s ,故A 错误,B 正确;伤员在水平方向的分速度为v 0=10 m/s ,所以伤员的速度为v =v 21+v 20=52+102 m/s =5 5 m/s ,故C 、D均错误. 第2节 抛体运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫平抛运动.2.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.二、平抛运动的规律以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则1.水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .2.竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 23.合运动(1)合速度:v =v 2x +v 2y =v 20+(gt )2,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. (2)合位移:s =x 2+y 2=(v 0t )2+⎝ ⎛⎭⎪⎫12gt 22,方向与水平方向夹角为α,则tan α=y x =gt 2v 0. 三、斜抛运动1.定义:将物体以一定的初速度沿斜向上或斜向下抛出,物体仅在重力的作用下所做的运动,叫做斜抛运动.。

相关文档
最新文档