历年中考数学精选
历年中考数学试卷完整版
文山州2022七下历史期末试卷一、语言文字运用(16分)1. 下列各项中加点的字,每对读音都不相同的一组是( )(3分)a. 吟哦/嵯峨伛偻/褴褛阴坡/日薄西山b. 蜷曲/缱绻簇新/蹙眉桀纣/命运多舛c. 露珠/泄漏湖泊/淡泊纤绳/纤尘不染d. 愧怍/福祚汲水/趿拉奢靡/望风披靡2.以下对加点字词的表述全部恰当的一项就是( )(3分后)a.初至北营,抗辞慷慨(意气激昂) 至京口,得间奔真州(中间)变小姓名,诡踪迹,草行露宿(在荒草间前进) 缓急无可奈何,殆例何苦(惯例)b.且立石于其墓之门,以旌其所为(旌旗)吾社之行为士先者,为之声义(伸张正义)继而以吴民之乱可于朝(就须) 人皆以求隶并使之(奴隶)c.小子不敏,请悉论先人所次旧闻(愚钝) 堕先人所言,罪莫大焉(堕落)孔子为鲁司寇,诸侯连累之,大夫壅之(堵塞) 太史公仍父子无有纂其职(沿用)d.此两家常折券弃责(同“债”,债务) 酒阑,吕公因目固留高祖(将尽,将终)并使兵死守函谷关,并无内诸侯军(同“纳”,采纳) 项羽妒贤嫉能,有功者连累之(妒忌)3.下列各句中,没有语病的一句是( )(3分)a.真正的政绩不是gdp的增长速度存有多慢,不是搞出了多少可爱的大工程,而是若想助推社会各界农民持续增加收入、不断提升物质和文化生活水平。
b.在中国传统的艺术中,创造了民族的独特的具有现实意义的表达形式,使真和美、内容和形式高度地统一起来了。
c.具备两千多年古老历史的苏绣,以其图案明丽、色彩优雅、线条简练、缀工细致闻名于世,一直都就是崭新老顾客倍受亲睐的手工艺品。
d.无论是提高艺术品的表现力,还是判断艺术品的优劣高下,都不能靠行政命令,而要靠艰苦的艺术实践,靠平等的争鸣。
4. 以下观点不恰当的一项就是( )(3分后)a. 《史记》是我国第一部以人物为中心的纪传体通史。
共篇,包括“本纪”、“世家”、“列传”、“表”、“书”五个部分。
记事上起传说中的黄帝,下迄西汉末年。
历年中考数学试卷含答案
中考数学试卷一、选择题(每题4分,共40分)1. 若a > b,则下列不等式中正确的是()A. a^2 > b^2B. a + b > 2bC. a - b < 0D. a/b > b/a2. 下列各组数中,存在有理数x,使得方程x^2 - 3x + 2 = 0的解为x = 2的是()A. {1, 2, 3}B. {2, 3, 4}C. {1, 3, 4}D. {1, 2, 4}3. 已知函数y = 2x - 1的图象上一点P的坐标为(a,2a - 1),则a的取值范围是()A. a > 1B. a ≥ 1C. a ≤ 1D. a < 14. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = ()A. 45°B. 60°C. 75°D. 90°5. 下列关于二次函数y = ax^2 + bx + c(a ≠ 0)的说法正确的是()A. 当a > 0时,函数的图象开口向上,顶点坐标为(-b/2a,c - b^2/4a)B. 当a < 0时,函数的图象开口向下,顶点坐标为(-b/2a,c - b^2/4a)C. 函数的图象一定经过点(0,c)D. 函数的图象一定与x轴有两个交点6. 若等比数列{an}的公比为q(q ≠ 0),且a1 = 2,a2 + a3 = 18,则q的值为()A. 2B. 3C. 6D. 97. 下列关于圆的性质中,正确的是()A. 圆的直径是圆的最长弦B. 圆内接四边形的对角互补C. 圆外切四边形的对角相等D. 圆内接四边形的对角相等8. 若等差数列{an}的公差为d,且a1 + a4 = 10,a2 + a3 = 12,则d的值为()A. 1B. 2C. 3D. 49. 在平面直角坐标系中,点P(3,4)关于直线y = x的对称点坐标为()A.(4,3)B.(3,4)C.(-4,-3)D.(-3,-4)10. 若等比数列{an}的公比为q(q ≠ 0),且a1 = 3,a2 + a3 + a4 = 27,则q的值为()A. 1B. 3C. 9D. 27二、填空题(每题4分,共20分)11. 若方程2x - 3 = 5的解为x = ,则x^2 - x的值为。
历年中考数学试题题库(含解析)
历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。
往年中招数学试题及答案
往年中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.52. 如果一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 已知方程x^2 - 5x + 6 = 0,那么x的值是:A. 2B. 3C. 1和2D. 2和34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 45. 以下哪个是二次根式?A. √3B. 3√2C. √(-1)D. √(2x)6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 以下哪个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = 1/x8. 如果一个数的绝对值是2,那么这个数可以是:A. 2B. -2C. 2或-2D. 09. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 210. 下列哪个是不等式的解集?A. x > 5B. x ≤ 3C. x = 2D. x ≠ 0答案:1. B 2. A 3. C 4. A 5. D 6. B 7. B 8. C 9. A 10. B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。
12. 如果一个数的立方根是2,那么这个数是______。
13. 一个数的平方等于25,那么这个数可以是______或______。
14. 一个数的绝对值是5,那么这个数可以是______或______。
15. 一个圆的直径是10,那么它的半径是______。
16. 如果一个三角形的内角和是180°,那么一个直角三角形的两个锐角的和是______。
17. 一个数的平方根是2或-2,那么这个数是______。
18. 如果一个数的倒数是1/3,那么这个数是______。
中考数学复习专题训练精选试题及答案
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
历年全国中考数学试题及答案
历年全国中考数学试题及答案一、选择题1. 以下哪个选项是正确的整数比例?A. 3:5B. 0.6:0.4C. 1.2:2.4D. 5:02. 已知一个等差数列的前三项分别是 2x-1,3x+1,4x+3,求 x 的值。
A. 1B. 2C. 3D. 43. 一个圆的半径是 5 厘米,求这个圆的面积(圆周率取 3.14)。
A. 78.5 平方厘米B. 157 平方厘米C. 78.5 平方米D. 157 平方米4. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)5. 一个三角形的三个内角分别是 45 度、60 度和 75 度,这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题6. 若 a:b = 2:3,b:c = 5:7,则 a:b:c = _______。
7. 一个等比数列的前三项分别是 2,6,18,这三项的和是 _______。
8. 一个正方形的边长是 6 厘米,求这个正方形的周长和面积。
周长 = _______ 厘米面积 = _______ 平方厘米9. 一个圆的直径是 10 厘米,求这个圆的半径、周长和面积。
半径 = _______ 厘米周长 = _______ 厘米面积 = _______ 平方厘米10. 已知一个三角形的两边长分别是 5 厘米和 7 厘米,夹角是 60 度,求这个三角形的面积。
面积 = _______ 平方厘米三、解答题11. 一个等差数列的前五项和是 35,首项是 3,求这个数列的公差和第五项。
12. 一个圆的半径是 8 厘米,求这个圆的周长和面积,并将结果表示为分数形式。
13. 一个三角形的三个顶点分别是 A(2,3),B(5,7),C(8,3),求这个三角形的周长和面积。
14. 一个等比数列的前三项分别是 a, ar, ar^2,其中 r 不为 1,如果这个数列的前五项的和是 31,求 a 和 r 的值。
往年的中考数学试卷及答案
一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,其图像的对称轴为:A. x = 2B. x = 1C. x = 3D. x = -12. 在等腰三角形ABC中,底边BC = 6cm,腰AB = AC = 8cm,则三角形ABC的周长为:A. 16cmB. 20cmC. 24cmD. 28cm3. 下列方程中,无实数解的是:A. x^2 - 2x + 1 = 0B. x^2 + 2x + 1 = 0C. x^2 - 4x + 4 = 0D. x^2 + 4x + 4 = 04. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式为Δ = b^2 - 4ac,则以下说法正确的是:A. Δ > 0,方程有两个不相等的实数根B. Δ = 0,方程有两个相等的实数根C. Δ < 0,方程有两个不相等的实数根D. Δ ≥ 0,方程有两个实数根5. 在平面直角坐标系中,点P(2, -3)关于y轴的对称点为:A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)6. 下列函数中,在定义域内是增函数的是:A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = -x^37. 在等边三角形ABC中,若∠BAC = 60°,则三角形ABC的面积为:A. √3B. 3C. 6D. 98. 下列各数中,不是有理数的是:A. √4B. -√9C. 0.25D. π9. 下列方程中,最简公分母是x(x - 1)(x + 1)的是:A. 2/x + 3/(x - 1) - 4/(x + 1)B. 1/x + 2/(x - 1) - 3/(x + 1)C. 3/x - 2/(x - 1) + 1/(x + 1)D. 4/x + 3/(x - 1) - 2/(x + 1)10. 下列各式中,正确的是:A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每小题4分,共40分)11. 已知方程2x - 5 = 3,则x = ________。
历年中考数学试题题库(含解析)
历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣a B.a2C.|a|D.【考点】14:相反数.【分析】直接根据相反数的定义求解.【解答】解:a的相反数为﹣a.故选:A.【点评】本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键.2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.【考点】T1:锐角三角函数的定义.【专题】24:网格型.【分析】在直角△ABC中利用正切的定义即可求解.【解答】解:在直角△ABC中,∵∠ABC=90°.∴tanA==.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(3分)下列运算正确的是()A.5ab﹣ab=4 B.+=C.a6÷a2=a4D.(a2b)3=a5b3【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;6B:分式的加减法.【专题】11:计算题.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交【考点】MJ:圆与圆的位置关系.【分析】由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm.又∵3+2<7.∴两圆的位置关系是外离.故选:A.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)计算,结果是()A.x﹣2 B.x+2 C.D.【考点】53:因式分解﹣提公因式法;66:约分.【专题】11:计算题;44:因式分解.【分析】首先利用平方差公式分解分子,再约去分子分母中得公因式.【解答】解:==x+2.故选:B.【点评】此题主要考查了约分,关键是正确把分子分解因式.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.【专题】11:计算题.【分析】由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;这组数据的平均数=(7+10+9+8+7+9+9+8)÷8=8.375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3.【解答】解:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A选项错误;B、9出现了3次,次数最多,所以众数是9,故B选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故C选项错误;D、极差是:10﹣7=3,故D选项错误.故选:B.【点评】考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】KM:等边三角形的判定与性质;KU:勾股定理的应用;LE:正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1.∵AB=BC=CD=DA,∠B=90°.∴四边形ABCD是正方形.连接AC,则AB2+BC2=AC2.∴AB=BC===.如图2,∠B=60°,连接AC.∴△ABC为等边三角形.∴AC=AB=BC=.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.9.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】F4:正比例函数的图象;F8:一次函数图象上点的坐标特征.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0.∴函数值y随x的增大而减小.∵x1<x2.∴y1>y2.∴y1﹣y2>0.故选:C.【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.10.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG ≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】KD:全等三角形的判定与性质;LE:正方形的性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.【解答】证明:①∵四边形ABCD和四边形CEFG是正方形.∴BC=DC,CG=CE,∠BCD=∠ECG=90°.∴∠BCG=∠DCE.在△BCG和△DCE中..∴△BCG≌△DCE(SAS).故①正确;②延长BG交DE于点H.∵△BCG≌△DCE.∴∠CBG=∠CDE.又∵∠CBG+∠BGC=90°.∴∠CDE+∠DGH=90°.∴∠DHG=90°.∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形.∴GF∥CE.∴=.∴=是错误的.故③错误;④∵DC∥EF.∴∠GDO=∠OEF.∵∠GOD=∠FOE.∴△OGD∽△OFE.∴=()2=()2=.∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;故选:B.【点评】此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】K8:三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°.∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB.∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.13.(3分)代数式有意义时,x应满足的条件为x≠±1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0.解得x≠±1.故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6.∴圆锥的母线为:5.∴根据圆锥的侧面积公式:πrl=π×3×5=15π.底面圆的面积为:πr2=9π.∴该几何体的表面积为24π.故答案为:24π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).【考点】O1:命题与定理.【分析】交换原命题的题设和结论即可得到该命题的逆命题.【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题.故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【考点】AB:根与系数的关系;H7:二次函数的最值.【专题】16:压轴题;45:判别式法.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根.则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0.∴m≤.∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<.∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x.移项,得5x﹣3x≤2.合并同类项,得2x≤2.系数化成1,x≤1.在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD 分别相交于点E、F,求证:△AOE≌△COF.【考点】KB:全等三角形的判定;L5:平行四边形的性质.【专题】14:证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形.∴OA=OC,AB∥CD.∴∠EAO=∠FCO.在△AOE和△COF中..∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.【考点】21:平方根;4J:整式的混合运算—化简求值.【专题】11:计算题.【分析】(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2=6.∴x+1=±.∴A=3x+3=3(x+1)=±3.∴A=±3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.【考点】!6:简单的枚举法;VB:扇形统计图;X7:游戏公平性.【专题】27:图表型.【分析】(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.【解答】解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E.由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合.∴抽取的两名学生中至多有一名女生的概率为:.【点评】此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.【解答】解:(1)把x=2代入y=﹣.得:y=﹣k.把A(2,﹣k)代入y=kx﹣6.得:2k﹣6=﹣k.解得k=2.所以一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣.则A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣.解方程组.得:或.所以B点坐标为(1,﹣4).所以B点在第四象限.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】B7:分式方程的应用.【专题】127:行程问题.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米).答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3.解得:x=120.经检验x=120是原方程的解.则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中.①求证:=;②求点D到BC的距离.【考点】KU:勾股定理的应用;N3:作图—复杂作图;SA:相似三角形的应用.【专题】13:作图题;14:证明题.【分析】(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用△BDE∽△BCA求出BD,再利用余弦求出BM,用勾股定理求出DM.【解答】解:(1)如图(2)如图,连接AE.∵AC为直径.∴∠AEC=90°.∵AB=AC.∴∠DAE=∠CAE.∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M.∵AC为直径.∴∠AEC=90°.∵AB=AC=4,cosC=.∴EC=BE=4.∴BC=8.∵点A、D、E、C共圆∴∠ADE+∠C=180°.又∵∠ADE+∠BDE=180°.∴∠BDE=∠C.∴△BDE∽△BCA.∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=.∵∠B=∠C∴cos∠C=cos∠B=.∴=.∴BM=.∴DM===.【点评】本题主要考查了复杂的作图,相似三角形以及勾股定理的应用,解题的关键是运用△BDE∽△BCA求出线段的长.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx ﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题;41:待定系数法.【分析】(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B.∴.解得:.∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣.∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角.∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点.∴OP′=2.∴MP′==.∴P′在⊙M上.∴P′的对称点(3,﹣2).∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP.第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2).又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2).∵AB=5.∴P″(﹣2﹣t,﹣2).要使AC′+BP′最短,只要AC′+AP″最短即可.点C′关于x轴的对称点C″(﹣t,).设直线P″C″的解析式为:y=kx+b..解得∴直线y=x+t+.当P″、A、C″在一条直线上时,周长最小.∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值.∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小.①若抛物线向左平移,设平移t个单位.∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2).∵四边形P″ABP′为平行四边形.∴AP″=BP′.AC′+BP′最短,即AC′+AP″最短.C′关于x轴的对称点为C″(﹣t,).C″,A,P″三点共线时,AC′+AP″最短.K AC′=K AP″,.∴t=.②若抛物线向右平移,同理可得t=﹣.∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.【点评】本题考查了待定系数法求解析式,顶点坐标,二次函数的对称性,以及距离之和最小的问题,涉及考点较多,有一定的难度.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.【考点】LO:四边形综合题.【专题】152:几何综合题;16:压轴题.【分析】(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BE的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.【解答】解:(1)当点F落在梯形ABCD中位线上时.如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC.∴BN=BF.∴∠BFN=30°,∴∠FBC=60°.∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°.∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°.∴∠GCE=∠CBE.又∵∠CGE=∠ECB=90°.∴Rt△BCE∽Rt△CGE.∴.∴CE2=EG•BE ①同理可得:BC2=BG•BE ②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N.则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形.∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD.∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°.∴△OMP∽△ADH.∴,即.化简得:16﹣2x=.两边平方后,整理得:x2+64x﹣176=0.解得:x1=﹣32+20,x2=﹣32﹣20(舍去)∵0<﹣32+20<5∴x=﹣32+20符合题意.∴==139﹣80.【点评】本题是几何综合题,考查了直角梯形、相似、勾股定理、等边三角形、矩形、中位线、圆的切线、解方程、解直角三角形等知识点,考查了轴对称变换与动点型问题,涉及考点较多,有一定的难度.。
历年全国中考数学试题及答案
历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 如果a > b,那么下列哪个不等式是正确的?A. a + 3 > b + 3B. a - 3 > b - 3C. a × 3 > b × 3D. a ÷ 3 > b ÷ 3答案:A3. 一个圆的直径是14厘米,那么它的半径是多少?A. 7厘米B. 14厘米C. 28厘米D. 21厘米答案:A4. 计算下列表达式的结果:(2x - 3) + (x + 4)A. 3x + 1B. 3x - 1C. 2x + 1D. 2x - 1答案:A5. 下列哪个选项是方程3x - 5 = 11的解?A. x = 4B. x = -2C. x = 2D. x = 1答案:A6. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B7. 下列哪个选项是不等式2x + 3 > 7的解?A. x > 1B. x > 2C. x < 1D. x < 2答案:B8. 计算下列表达式的结果:\(\frac{3}{4} \times \frac{2}{3}\)A. \(\frac{1}{2}\)B. \(\frac{3}{2}\)C. \(\frac{1}{4}\)D. \(\frac{3}{4}\)答案:C9. 下列哪个选项是方程x² - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = 3答案:A10. 下列哪个选项是二次函数y = ax² + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = -a/b答案:C二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
历年全国中考数学试题及答案
历年全国中考数学试题及答案一、选择题1. 在坐标平面上,a点的坐标是(2,3),b点的坐标是(5,-2),则ab的长度是A. 2B. 3C. 5D. 7 (答案:D)2. 下列哪个数是无理数?A. 3B. 0.5C. -2D. √2 (答案:D)3. 如图,折线abcd是一个四边形,ab = 5cm,bc = 3cm,角a的度数为120°,角d的度数为90°,则ad的长度是多少?A. 4cmB. 6cmC. 8cmD. 10cm (答案:B)二、填空题1. (6 - x) ÷ 2 = 4,求x的值。
(答案:2)2. 化简下列代数式:3x + 2y - x + 5y - 4z。
(答案:2x + 7y - 4z)3. 若一个三角形的两个内角的度数分别是56°和74°,则第三个内角的度数为多少?(答案:50°)三、解答题1. 计算:2/3 + 3/4 - 5/6。
(答案:1/12)2. 小华去商场买东西,花了300元。
比去年多花了40%。
去年小华花了多少钱?(答案:214.29元)3. 小明家的房子长12米,宽8米。
计算小明家的门面积和窗户面积之和。
(答案:112平方米)四、解析选择题部分的答案都已给出,填空题和解答题的答案则需要参考具体计算过程。
在解答题时,需要将所使用的计算方法写清楚,并给出最终结果,以便读者理解和参考。
对于计算题,可使用等式或算式进行计算,并列出所有步骤和运算过程,确保答案的准确性。
对于问题分析题,需要明确解题思路和方法,并正确应用相关的数学知识进行解答。
总结本文列举历年全国中考数学试题及答案,考察了选择题、填空题和解答题。
在解答题时,需要清晰地呈现解题过程和答案,以方便读者理解。
希望本文对中考数学复习有所帮助。
往年中考数学试题及答案
往年中考数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 0.33333(无限循环)B. πC. √2D. 1/3答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么这个三角形的周长可能是多少?A. 7B. 8C. 9D. 10答案:B3. 以下哪个表达式的结果不是整数?A. (-2)^2B. 3 * 4C. 5 - 3D. √9答案:A4. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为2, 4, 8,这个数列是等比数列,那么第四项是多少?A. 16B. 24C. 32D. 64答案:A二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。
答案:57. 一个数的平方根是4,那么这个数是________。
答案:168. 如果一个数的绝对值是5,那么这个数可能是________或________。
答案:5 或 -59. 一个正整数的最小公倍数是它本身,这个数是________。
答案:110. 一个圆的直径是14,那么这个圆的半径是________。
答案:7三、解答题(每题10分,共20分)11. 解方程:2x + 5 = 13。
解:首先将常数项移到等号右边,得到 2x = 13 - 5,即 2x = 8。
然后将两边除以2,得到 x = 4。
12. 证明:如果一个角是直角,那么它的余角也是直角。
证明:设∠A为直角,根据直角的定义,我们知道∠A = 90°。
根据余角的定义,∠A的余角∠B满足∠A + ∠B = 90°。
将∠A的值代入,得到90° + ∠B = 90°,从而得出∠B = 0°。
但根据余角的定义,∠B应该是一个小于90°的角,这里出现了矛盾。
因此,如果一个角是直角,它的余角不可能也是直角。
历年全国中考数学试题及答案(完整详细版)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
历届中考试题及答案数学
历届中考试题及答案数学一、整数运算1.已知整数a=337,b=384,求满足a+b=721的整数a的值。
答案:a=3372.已知整数a=-519,b=284,求满足a+b=-235的整数a的值。
答案:a=2843.已知整数a=-173,b=-612,求满足a+b=-785的整数a的值。
答案:a=-6124.已知整数a=-819,b=291,求满足a+b=-528的整数a的值。
答案:a=-8195.已知整数a=628,b=125,求满足a+b=753的整数a的值。
答案:a=628二、分数运算1.已知分数a=3/4,b=1/2,求满足a+b=7/8的真分数a的值。
答案:a=3/82.已知分数a=5/6,b=2/3,求满足a+b=4/3的真分数a的值。
答案:a=1/23.已知分数a=7/8,b=1/4,求满足a+b=5/8的真分数a的值。
答案:a=1/84.已知分数a=2/5,b=3/10,求满足a+b=3/5的真分数a的值。
答案:a=1/105.已知分数a=5/7,b=1/3,求满足a+b=4/7的真分数a的值。
答案:a=1/7三、代数运算1.已知代数表达式a=2x-3,b=-x+5,求满足a+b=0的代数表达式a 的值。
答案:a=x-22.已知代数表达式a=3x+2,b=-2x+4,求满足a+b=5的代数表达式a 的值。
答案:a=5x+23.已知代数表达式a=7x-5,b=3x+4,求满足a+b=3的代数表达式a 的值。
答案:a=10x-14.已知代数表达式a=4x+3,b=-x+2,求满足a+b=-3的代数表达式a 的值。
答案:a=3x-15.已知代数表达式a=x^2+3x+4,b=-x^2+x+6,求满足a+b=10的代数表达式a的值。
答案:a=2x^2+4x-2四、几何运算1.已知三角形ABC,角A=45°,角B=60°,求满足角A+角B+角C=180°的角C的度数。
近十年的中考数学试卷真题
一、选择题(本大题共10小题,每小题3分,共计30分)1. 已知方程x^2 - 5x + 6 = 0的解为()A. x = 2, x = 3B. x = 1, x = 4C. x = 2, x = 4D. x = 1, x = 32. 若a、b、c是等差数列,且a + b + c = 9,a + c = 7,则b =()A. 2B. 3C. 4D. 53. 在△ABC中,∠A = 60°,∠B = 45°,则∠C =()A. 75°B. 45°C. 90°D. 30°4. 已知一次函数y = kx + b的图象经过点(2,-3),则k + b =()A. -1B. 1C. 0D. 25. 若等比数列{an}的公比为q,且a1 = 2,a3 = 8,则q =()A. 2B. 4C. 1/2D. 1/46. 已知一元二次方程x^2 - 3x + 2 = 0的两个根为x1、x2,则x1 x2 =()A. 1B. 2C. 3D. 47. 在△ABC中,若a = 3,b = 4,c = 5,则sinA =()A. 3/5B. 4/5C. 5/4D. 5/38. 若等差数列{an}的前n项和为Sn,且a1 = 1,公差d = 2,则S10 =()A. 55B. 60C. 65D. 709. 在△ABC中,若∠A = 90°,∠B = 30°,则BC = AC的()A. 2/3B. 3/2C. 1/2D. 210. 若等比数列{an}的公比为q,且a1 = 1,a3 = 27,则q =()A. 3B. 6C. 9D. 12二、填空题(本大题共6小题,每小题4分,共计24分)11. 计算:(-2)^3 (-1)^2 = ()12. 若等差数列{an}的前n项和为Sn,且a1 = 1,公差d = 2,则S10 = ()13. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = ()14. 已知一次函数y = kx + b的图象经过点(2,-3),则k + b = ()15. 若等比数列{an}的公比为q,且a1 = 2,a3 = 8,则q = ()16. 在△ABC中,若a = 3,b = 4,c = 5,则sinA = ()三、解答题(本大题共4小题,每小题12分,共计48分)17. 解一元二次方程x^2 - 5x + 6 = 0。
中考数学经典试题100例答案)
中考数学经典试题100例参考答案1.D设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,∵圆锥的主视图是边长为4cm的正三角形,∴圆锥的母线长为4cm,底面圆的半径为2cm,故圆锥底面圆的周长为4πcm,故圆锥侧面展开图的面积为S=×4×4π=8π(cm2).故选C.3.C设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°。
解得n=6.故选C.4.B由被开方数越大算术平方根越大,得2<<3,由不等式的性质得:-1<2-<0.故选B.5.B解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=∠BOD.6.Cy=-2(x-3)2-4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,-4).7.C解:将数据从小到大排序为:173,176,178,180,181,所以中位数为178.8.A 由题意得:=,解得:a=6,9.A∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),10.C解:如图,∵DE//BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】11.D解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.12.C科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:4 400 000 000=4.4×109,故选B.13.B 解:∵()×()=1,∴的倒数是,14.D由图知A(4,4),B(6,2)根据旋转中心P点,旋转方向顺时针,旋转角度90°,画图如下,从而得A′点坐标为(5,-1).15.B解:AB=AC,,16.D连接OB,∵点B是弧AC的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°17.C【详解】(a2)3-5a3•a3=a6-5a6=-4a6.18.A作CH⊥AB于H交⊙O于E、F.连接BC.∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5.∵S△ABC= AB•CH=AC•OB,∴AB•CH=AC•OB,∴5CH=(4+1)×3,解得:CH=3,∴EH=3﹣1=2.当点P与E重合时,△PAB的面积最小,最小值5×2=5.19.C【详解】∵∠AOD=130°,∴∠BOD=50°,∴∠C=25°.故选C.20.C∵抛物线开口向上,∴a>0,①是真命题;对称轴为直线x=1,②是真命题;当x>1时,y随x的增大而增大,∴抛物线经过(2,y1),(4,y2)两点,则y1<y2,③是假命题;顶点坐标是(1,﹣3),④是真命题;∴真命题的概率.21.B【详解】∵AB∥CD,∴∠EHD=∠EGB=25°.又∵∠PHD=60°,∴∠PHG=60°﹣25°=35°.22.D该空心圆柱体的俯视图是:23.C16.2亿=162000 0000=1.62×109.24.CA.x2+x2=2x2,故本选项不符合题意;B.x2•x3=x5,故本选项不符合题意;C.(x2)3=x6,故本选项符合题意;D.(2x2)3=8x6,故本选项不符合题意.25.A根据三角形数阵可知,第n行奇数的个数为n个,则前n-1行奇数的总个数为1+2+3+…+(n-1)=个,则第25行(n≥3)从左向右的第20个数为为第=320个奇数,所以此数是:320×2-1=639.26.D如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.,,,在Rt△ADB中,,∴AC=BC=2,,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵,.27.B解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,∵AC=30,∠CAB=30°∠ACB=15°,∴∠ABC=135°,又∵BE=CE,∴∠ACB=∠EBC=15°,∴∠ABE=120°,又∵∠CAB=30°∴BA=BE,AD=DE,设BD=x,在Rt△ABD中,∴AD=DE= x,AB=BE=CE=2x,∴AC=AD+DE+EC=2x+2x=30,∴x== ≈5.49,28.A设底面圆的半径为R,则,解得R=5,圆锥的母线长,所以圆锥的侧面积;圆柱的侧面积,所以需要毛毡的面积=(30+5) πm2.29.B如图,分别过A、B作x轴的垂线,垂足分别为C、D,∵A(3,4),∴OC=3,AC=4,∵把点A(3,4)逆时针旋转90°得到点B,∴OA=OB,且∠AOB=90°,∴∠BOD+∠AOC=∠AOC+∠CAO=90°,∴∠BOD=∠CAO,在△AOC和△OBD中,∴△AOC≌△OBD(AAS),∴OD=AC=4,BD=OC=3,∴B(-4,3),【点睛】30.D、不是中心对称图形,故此选项错误;、不是中心对称图形,故此选项错误;、不是中心对称图形,故此选项错误;、是中心对称图形,故此选项正确;31.CA、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;32.C∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,33.D(﹣2018)0=1,故选D.34.C ∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=->1,∴b<0,b<-2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∵x=1时,y<0,∴a+b+c<0.35.B解:∵半径OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4 ∴OD=OC-CD=3,∵AO=OE,AD=DB, ∴BE=2OD=636.A解:当1<x<3时,y1>y2.37.C解:该扇形的面积.故选:C.38.B解:A、有两条边和一个角对应相等的两个三角形全等,错误,必须是两边及其夹角分别对应相等的两个三角形全等;B、正方形既是轴对称图形又是中心对称图形,正确;C、矩形的对角线相等且互相平分,故此选项错误;D、六边形的内角和是720°,故此选项错误.故选:B.39.B,①+②得:3x=6,即x=2,把x=2代入①得:y=0,则方程组的解为,40.C解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10-4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(-a+b)(-a-b)=a2-b2,故此选项错误;41.B设EF=a,BC=b,AB=c,则PQ=a-c,RQ=b-a,PQ=RQ∴a=,∵▱ALMN的面积为50,∴bc+a2+(a-c)2=50,把a=代入化简求值得b+c=10, ∴a=5, ∴正方形EFGH的边长为5,∴正方形EFGH的面积为25,42.A解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.43.C解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,AC1=AC=6,在RtBAC1中,∠BAC=90°,AB=8,AC1=6,∴,44.由题意可知:△=4m2−2(1−4m)=4m2+8m−2=0,∴m2+2m=,∴(m−2)2−2m(m−1)=−m2−2m+4=−+=,45.②解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.46.130∵∠AOB=40°,OP平分∠AOB,∴∠AOC=∠BOC=20°,又∵CD⊥OA于点D,CE∥OB,∴∠DCP=90°+20°=110°,∠PCE=∠POB=20°,∴∠DCE=∠DCP+∠PCE=110°+20°=130°.47.【详解】连接OD,AD,∵BC=CD,BO=DO,∴∠1=∠2,∠3=∠DBO,∴∠1+∠3=∠2+∠DBO,∴∠CDO=∠CBO,∵OC=OB=OD,∴∠BCO=∠DCO,∴CO为等腰△BCD的角平分线,∴CO⊥BD,∵AB为直径,∴∠ADB=90°,∴∠3+∠5=∠3+∠4=90°,∴∠4=∠5,∴AD//CO,∵AE=AO=2,∴AD=CO=1,在Rt△ABD中,BD=.【点睛】48.解:∵点A,B的坐标分别为(3,5),(6,1),∴C的坐标为(4,2.5),则直线l经过点C.设直线l的函数解析式为y=kx,依题意有 2.5=4k,解得k=.故直线l的函数解析式为y=x.故答案为:y=x.49.2或2.5解:如图∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB或BC=CD,∴BC=2或BC=2.5,50.3解:原式=,∵m+n=3mn,∴原式==3.51.∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OAD中,∵OD=3,OA=4,∴AD==5,∵OE⊥AD,∴OE•AD=OA•OD,∴OE==.∴EF=2OE=.52.k<0解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,∴k<0,故答案为:k<0.53.π∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π54.甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:.55.22﹣1×+2cos30°==+=2,56.∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.57.2∵▱ABCD的面积为16cm2,∴S△PBC S▱ABCD=8.∵E、F分别是PB、PC的中点,∴EF∥BC,且EF BC,∴△PEF∽△PBC,∴)2,即,∴S△PEF=2.58.,由图象,得:y=﹣x+b与反比例函数y(k≠0)的图象相交于点P(1,2),把P点坐标带入函数解析式,得:﹣1+b=2,k=1×2=2,解得:b=3,k=2.关于x的方程﹣x+b,即﹣x+3,解得:x1=1,x2=2.59.设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为:5.60.3∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为:3.61.解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4,BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.62.y(x++2y)(x-2y)原式.故答案是:y(x+2y)(x-2y).63.(,0)解:作点A关于x轴的对称点A',连接A'B,则A'B与x轴的交点即为所求,∵抛物线y=ax2-4x+c(a0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C (0,6),∴点B(3,3),∴解得,∴y=x2-4x+6=(x-2)2+2 ∴点A的坐标为(2,2),∴点A'的坐标为(2,-2),设过点A'(2,-2)和点B(3,3)的直线解析式为y=mx+n∴∴直线A'B的函数解析式为y=5x-12,令y=0,则0=5x-12得x=,64.(2,6)∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).65.﹣4≤m≤4解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,66.(1)证明见解析;(2);(3)【详解】(1)证明:如图1,由旋转得:,,四边形是正方形,,,,即,,在和中,,,;(2)解:如图2,过作的垂线,交的延长线于,是的中点,且,,,三点共线,,由勾股定理得:,,,由(1)知:,,,,,,,,,设,则,由勾股定理得:,或(舍,,,由勾股定理得:,(3)解:如图3,由于,所以点可以看作是以为圆心,2为半径的半圆上运动,延长到点,使得,连接,,,,,当最小时,为、、三点共线,,,的最小值是.【点睛】67.(1);(2)k>1;(3)1或3.解:(1)把点代入抛物线,得解得(2)把点代入抛物线,得把点代入抛物线,得解得(3)抛物线解析式配方得将抛物线向右平移1个单位长度得到新解析式为当时,对应的抛物线部分位于对称轴右侧,随的增大而增大,时,,,解得,都不合题意,舍去;当时,,解得;当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,时,,解得,(舍去)综上,或3.68.(1)A种商品的单价为20元,B种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A商品8件,B商品4件.解:(1)设种商品的单价为元,种商品的单价为元,根据题意可得:,解得:,答:种商品的单价为20元,种商品的单价为15元;(2)设第三次购买商品种件,则购买种商品件,根据题意可得:,得:,当时所花钱数最少,即购买商品8件,商品4件.69.(1)证明见解析;(2)10.(1)证明:,,,,,,;(2)为的直径,,,四边形是矩形,,,,,,,设的为,,,即,解得,,,70.(1)-8;(2)解:(1)原式;(2)原式.71.(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.(1)将、代入,得:,解得:,二次函数解析式为.(2)为直角三角形,理由如下:,顶点的坐标为.当时,,点的坐标为.点的坐标为,,,.,,为直角三角形.(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为.联立新直线与抛物线的解析式成方程组,得:,解得:,,点的坐标为,,点的坐标为,.点的坐标为,,,.为直角三角形,分三种情况考虑:①当时,有,即,整理,得:,解得:,(不合题意,舍去);②当时,有,即,整理,得:,解得:,(不合题意,舍去);③当时,有,即,整理,得:.,该方程无解(或解均为增解).综上所述:当为直角三角形时,的值为1或4.72.(1)证明见解析;(2证明见解析;(3)BD=1.(1)证明:如图1中,,,,,,,,.(2)解:结论:.理由:如图2中,在上取一点,使得,连接..,.,,,,,,,,.(3)如图3中,过点作交于点.,,,设,则,,,.,在中,,解得或(舍弃)73.(1)见解析;(2)AC=2.(1)是的直径;,,,,,点在上,是的切线(2),,,,,,,,,.74.(1)y=x+2;(2)6.(1)反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=-2,则-2=,解得:x=-4,∴点B的坐标为(-4,-2).∵一次函数过A、B两点,∴解得:.∴一次函数的解析式为y=x+2.(2))令y=x+2中x=0,则y=2∴点C的坐标为(0,2),∴S△AOB=OC•(x A-x B)=×2×[2-(-4)]=6.75.(1)50,18;(2)选择的市民均来自甲区的概率为.(1)解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数为:20÷40%=50(人);此次调查中结果为非常满意的人数为:50×36%=18(人);(2)画树状图得:共有12种等可能的结果,选择的市民均来自甲区的有2种情况,选择的市民均来自甲区的概率为:=.76.m<1.解:∵方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4×1×m=4-4m>0,解得:m<1.77.(1)AP= 10﹣2t;(2)S=t2﹣12t+78;(3)当t=s时,PQ⊥BD;(4)存在.当t=s时,点E在∠ABD的平分线.理由见解析.【详解】(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣12t+78(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.本78.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.79.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.80.(1)m=1;(2)点P坐标为(﹣2m,0)或(6m,0).(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).81.(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.(1)参与问卷调查的学生人数为(8+2)÷10%=100人,(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.82.(1)﹣1<x<5;(2).(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.83.(1)2;(2)DM=DN;(3)(1)如图1.在Rt△ABC中,∵BC=2,∠B=60°,∴AC=BC•tan60°=6,AB=2BC=4.∵DF是线段AB的垂直平分线,∴AD=BD=2.在Rt△ADG中,AG4,∴CG=AC=AG=6﹣4=2.(2)如图2中,结论:DM=DN.理由:∵△ABC为直角三角形,D为斜边AB的中点,∴CD=BD=AD.又∠B=60°,∴△BDC为等边三角形,∴∠CDB=60°.又∠EDF=90°,∴∠HDA=30°.∵∠A=90°﹣∠B=30°,∴AH=HD,又HM⊥AD,∴MD=AM.在等边三角形BCD中,CN⊥BD,∴ND=NB.又AD=BD,∴MD=ND.(3)如图3中,作GK∥DE交AB由K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG•cos30°=2,可得AK=2AH=4,此时K与B重合,∴DD′=DB=2.84.(1);(2)△ABC是直角三角形;(3)存在,、、.(1)将该抛物线向上平移2个单位,得:y x2x+2.故答案为:y x2x+2;(2)当y=0时,x2x+2=0,解得:x1=﹣4,x2=1,即B(﹣4,0),A(1,0).当x=0时,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)y x2x+2的对称轴是x,设P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,n2=5,方程无解;②当AP=CP时,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③当AC=CP时,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).85.(1)证明见解析(2)(1)连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接OE,OE交AD于K.∵,∴OE⊥AD.∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE22.86.(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件(1)观察表格数据,可知:第三次购买的A、B两种商品均比头两次多,总价反而少,∴第三次购买有折扣.故答案为:三.(2)设A商品的原价为x元/件,B商品的原价为y元/件,根据题意得:解得:.答:A商品的原价为30元/件,B商品的原价为40元/件.(3)设折扣数为z,根据题意得:5×307×40258 解得:z=6.(4)设购买A商品m件,则购买B商品(10﹣m)件,根据题意得:30m+40(10﹣m)≤200 解得:m.∵m为整数,∴m的最小值为7.87.(1)答案见解析(2)95% (3)(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是100%=95%.故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为.88.(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)(1)把,和点,代入抛物线得:,解得:,,则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;(3)在中,,,根据勾股定理得:,,,,边上的高为,过作,截取,过作,交轴于点,如图所示:在中,,即,过作轴,在中,,,即,,设直线解析式为,把坐标代入得:,即,即,联立得:,解得:或,即,或,,则抛物线上存在点,使得,此时点的坐标为,或,.89.(1)证明见解析;(2)sin∠ACO=.(1)证明:连接,如图,、为的切线,,,,,,,,,,;(2)解:作于,如图,设的半径为,,,四边形为矩形,而,四边形为正方形,,易得和都为等腰直角三角形,,,在中,,在中,,即的值为.【90.(1)y=;(2)最小值即为,P(0,).(1)反比例函数的图象过点,过点作轴的垂线,垂足为,面积为1,,,,故反比例函数的解析式为:;(2)作点关于轴的对称点,连接,交轴于点,则最小.由,解得,或,,,,最小值.设直线的解析式为,则,解得,直线的解析式为,时,,点坐标为.91.(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).(1)抛物线的对称轴是直线,,解得:,抛物线的解析式为.当时,,解得:,,点的坐标为,点的坐标为.(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是 16 .,存在点,使的面积最大,最大面积是 16 .(3)设点的坐标为,则点的坐标为,.又,.当时,有,解得:,,点的坐标为或;当或时,有,解得:,,点的坐标为,或,.综上所述:点的坐标为,、、或,.92.(1)全班学生总人数为40人;(2)补全图形见解析;(3)全是B类学生的概率为.(1)全班学生总人数为(人;(2)类人数为,类所占百分比为,类百分比为,补全图形如下:(3)列表如下:A B B CA AB AB ACB BA BB BCB BA BB BCC CA CB CB由表可知,共有12种等可能结果,其中全是类的有2种情况,所以全是类学生的概率为.93.(1)见解析;(2)CM=2.(1)中,点是半圆的中点,,,又,,,即;(2)连接、,是的切线,,又,设的半径为,,,解得:,又是直径,,,是等腰直角三角形,在中,由勾股定理得,即,则,.94.(1);(2)当点E(0,8)或(0,5)或(0,-5)或(0,)时,△AOE是等腰三角形.(1)一次函数与反比例函数图象交于与,且轴,,在中,,,,即,根据勾股定理得:,,代入反比例解析式得:,即,把坐标代入得:,即,代入一次函数解析式得:,解得:,即;(2)当,即,;当时,得到,即;当时,由,,得到直线解析式为,中点坐标为,垂直平分线方程为,令,得到,即,综上,当点或或或时,是等腰三角形.95.该一元二次方程有两个实数根,△,解得:,由韦达定理可得,,,,解得:,.96.证明:四边形是平行四边形,,,,,,四边形是平行四边形,,四边形是菱形.97.-3.当,时,原式98.(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,).(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).99.(1)证明见解析;(2)证明见解析;(3)n=4.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BEN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,100.(1)地(市)属项目投资额为830亿元;补全图形见解析;(2)m=18,对应的圆心角为65°. (1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:(2)县(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°.答案第41页,总41页。
历年全国中考数学试题及答案
历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的周长公式?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 已知直角三角形的两直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = \frac{1}{x}D. y = x^3 - 2x答案:B5. 一个数的绝对值等于它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 计算下列哪个表达式的结果为0?A. 2x + 3 - (2x + 3)B. 4x^2 - 4x^2C. 5x - 5x + 1D. 3x^2 - 2x + 1答案:B7. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 以上都是答案:D8. 一个等腰三角形的底角为70°,那么顶角的度数是多少?A. 40°B. 70°C. 80°D. 100°答案:A9. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 不规则多边形答案:B10. 计算下列哪个表达式的结果是负数?A. (-2)^3B. (-2)^2C. (-2)^1D. (-2)^0答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个数的立方根是2,那么这个数是________。
答案:813. 一个等差数列的首项是3,公差是2,那么第5项是________。
往年中招考试试卷数学真题
往年中招考试试卷数学真题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 若a > 0,b < 0,且|a| < |b|,则a + b的值是:A. 正数B. 负数C. 零D. 无法确定3. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 25. 已知一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 25D. 506. 一个长方体的长、宽、高分别是2米、3米和4米,其体积是:A. 24立方米B. 12立方米C. 8立方米D. 6立方米7. 一个分数的分子和分母同时扩大3倍,这个分数的值:A. 扩大3倍B. 不变C. 缩小3倍D. 无法确定8. 一个数的立方根是它本身,这个数可能是:A. 1B. -1C. 0D. 89. 若x^2 - 4x + 4 = 0,那么x的值是:A. 2B. -2C. 4D. 010. 一个数列的前三项是2, 4, 6,若这是一个等差数列,那么第四项是:A. 8B. 10C. 12D. 14二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是______。
12. 一个数的相反数是-3,这个数是______。
13. 若一个角的余角是30°,那么这个角的度数是______。
14. 一个数的平方是16,这个数可能是______。
15. 一个数的立方是-8,这个数是______。
16. 若一个数的平方根是4,那么这个数是______。
17. 一个圆的直径是14,那么这个圆的半径是______。
18. 若一个长方体的体积是24立方米,长和宽都是2米,那么高是______。
19. 若一个数列的前三项是3, 6, 9,且这是一个等差数列,那么第四项是______。
历年数学中考试题(含答案) (95)
历年数学中考试题(含答案) (95)历年数学中考试题(含答案)近年来,数学考试已经成为中学教育中重要的组成部分,它不仅考察学生对数学知识的掌握,还培养了学生的逻辑思维和问题解决能力。
在这篇文章中,我们将回顾过去几年数学中考试题,并提供正确的答案。
通过分析这些题目,我们可以更好地理解数学的应用。
第一部分:选择题1.已知函数f(x) = 3x - 2,求解f(4)的值是多少?A) 10 B) 12 C) 14 D) 16答案:B) 12解析:将x = 4代入函数f(x)中,得到f(4) = 3*4 - 2 = 12。
2.如果a + 3 = 5,那么a的值是多少?A) 1 B) 2 C) 3 D) 4答案:C) 3解析:将等式中的a + 3 = 5转化为a = 5 - 3,得到a = 2。
3.如图所示,三角形ABC中,角A = 90°,AC = 5 cm,BC = 12 cm。
求解三角形ABC的面积是多少?A) 20 cm² B) 24 cm² C) 30 cm² D) 60 cm²答案:B) 24 cm²解析:根据直角三角形的性质,可以使用面积公式S = 1/2 * AC * BC来计算。
代入数值,得到S = 1/2 * 5 * 12 = 30。
第二部分:填空题4.已知一个长方形的面积是18,它的长是3 cm。
那么它的宽度是几厘米?答案:6解析:设长方形的宽度为x,则有3 * x = 18。
将18除以3,得到x = 6。
5.求解下列方程的解:2x + 5 = 17。
答案:6解析:将等式变形为2x = 17 - 5,得到2x = 12。
再将12除以2,得到x = 6。
6.某班级有30名学生,其中男生和女生的人数比是3:2。
求解男生的人数是几名?答案:18解析:将男生和女生的人数比化简为最简分数,得到男生人数和女生人数的比为3:2。
设男生的人数为3x,则女生的人数为2x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学“一次函数试题精选”
1.(2010山东德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h与注水时间t关系的是
、
(A)(B)(C)(D)
2.(2010年山东省济南市)已知一次函数的图象如图所示,当时,y的取值范围是.
3、
(2010盐城)给出下列四个函数:①;②;③;④.
时,y随x的增大而减小的函数有
A.1个 B.2个 C.3个 D.4个4.(2010年北京崇文区) 在函数中,自变量的取值范围是.
5、(2010年浙江省东阳市)如图,矩形ABCO,O为坐标原点,B的坐标为(8,6),
A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,
且是两直线y
1=2x+6、y
2
=2x-6中某条上的一点,若△APD是等腰Rt△,则点
D的坐标为
6.(2010年浙江台州市)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当它们行驶7了小时时,两车相遇,求乙车速度.
7. (2010年益阳市)我们知道,海拔高度每上升1千米,温度下降6℃.
某时刻,益阳地面温度为20℃,设高出地面千米处的温度为℃.
(1)写出与之间的函数关系式;
(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?
(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为
-34℃,求飞机离地面的高度为多少千米?
8(2010年门头沟区)直线:与直线:相交于点.
(1)求的值;
(2)不解关于的方程组,请你直接写出它的解;
(3)直线:是否也经过点?请说明理由.。