最新高中物理曲线运动模拟试题

合集下载

最新高中物理曲线运动经典练习题全集(含答案)

最新高中物理曲线运动经典练习题全集(含答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

高中物理曲线运动模拟试题及解析

高中物理曲线运动模拟试题及解析

高中物理曲线运动模拟试题及解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; 5; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1,小球的竖直位移:H=gt12解以上两式得v max=(L+x )=(10+3)×=13m/s.若v太小,小球被墙挡住,因此,球不能落在空地上,v的最小值v min为球恰好越过围墙的最高点P落在空地上时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2小球的竖直方向位移:H﹣h=gt22解以上两式得v min =L =3×=5m/s因此v0的范围是v min≤v0≤v max,即5m/s≤v0≤13m/s.(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s4.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q 点以速度v 0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I 象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动. 【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F 运动时间为1t ,有1F qE =202mv h=由题意得11F qE a m m== 101x v t =21112y at =解得201mv x Eq =2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象限以02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)0221B mv qh=(3) 02v ,且抛 射角是045,如下图所示,根据斜抛运动的规律,有202x v v =cos450202y v v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标由几何知识可知2p 点的坐标是(42222h h -+,0)带电粒子在1p 点的坐标是()202642,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.5.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。

高中物理曲线运动模拟试题含解析

高中物理曲线运动模拟试题含解析

高中物理曲线运动模拟试题含解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

高中物理曲线运动专项训练100(附答案)

高中物理曲线运动专项训练100(附答案)

高中物理曲线运动专项训练100(附答案)一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为EP≤mgR 或EP≥mgR.3.如图所示,在平面直角坐标系xOy内,第Ⅰ象限的等腰直角三角形MNP区域内存在垂直于坐标平面向外的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F运动时间为1t,有1F qE=22mvh=由题意得11F qEam m==101x v t =21112y at =解得201mv x Eq =2012mv y Eq=202mv E qh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)0221B mv qh=(3) 02v ,且抛 射角是045,如下图所示,根据斜抛运动的规律,有202x v v =cos450202y v v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是222h +,0)带电粒子在1p 点的坐标是()22642,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.4.如图所示,竖直平面内有一光滑的直角细杆MON,其中ON水平,OM竖直,两个小物块A和B分别套在OM和ON杆上,连接AB的轻绳长为L=0.5m,.现将直角杆MON绕过OM的轴O1O2缓慢地转动起来.已知A的质量为m1=2kg,重力加速度g取10m/s2。

高中物理曲线运动专项训练100(附答案)

高中物理曲线运动专项训练100(附答案)

高中物理曲线运动专项训练100(附答案)一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,在平面直角坐标系xOy 内,第Ⅰ象限的等腰直角三角形MNP 区域内存在垂直于坐标平面向外的匀强磁场,y <0的区域内存在着沿y 轴正方向的匀强电场22mvEqh=.一质量为m、电荷量为q的带电粒子从电场中Q点以速度v0水平向右射出,经坐标原点O射入第Ⅰ象限.已知粒子在第Ⅲ象限运动的水平方向位移为竖直方向位移的2倍,且恰好不从PN边射出磁场.已知MN平行于x轴,N点的坐标为(2h,2h),不计粒子的重力,求:⑴入射点Q的坐标;⑵磁感应强度的大小B;⑶粒子第三次经过x轴的位置坐标.【答案】(1)()2,h h--(2))221mvqh(3)(20262,0v ghg⎡⎤--⎢⎥-⎢⎥⎣⎦【解析】【分析】带电粒子从电场中Q点以速度v0水平向右射出,在第Ⅲ象限做的是类平抛运动,在第I象限,先是匀速直线运动,后是圆周运动,最后又在电场中做类斜抛运动.【详解】(1)带电粒子在第Ⅲ象限做的是类平抛运动,带电粒子受的电场力为1F运动时间为1t,有1F qE=22mvh=由题意得11F qEam m==101x v t=21112y at=解得21mvxEq=212mvyEq=22mvEqh=Q 的坐标()2,h h --(2) 带电粒子经坐标原点O 射入第Ⅰ象限时的速度大小为1v0x v v =1y v at =1mv t Eq=联立解得0y v v =102v v =由带电粒子在通过坐标原点O 时,x 轴和y 轴方向速度大小相等可知,带电粒子在第I 象限以02v 速度大小,垂直MP 射入磁场,并在洛伦兹力作用下做匀速圆周运动,且恰好不从PN 边射出磁场.如下图所示,设圆周的半径为R ,由牛顿第二定律则有20022mv q v B R= 02R qB =由图知EC 是中位线,O 1是圆心,D 点是圆周与PN 的切点,由几何知识可得,圆周半径22R =+ 解得)021B mv qh=(3)0,且抛 射角是045,如下图所示,根据斜抛运动的规律,有20x v =cos45020y v =sin450带电粒子在电场中飞行时间为2t 则有10222y v v t gg==带电粒子在电场中水平方向飞行距离为2x 有202222x v x v t g==带电粒子在2p 点的坐标 由几何知识可知2p 点的坐标是,0)带电粒子在1p 点的坐标是(2026,0v gh g ⎡⎤--⎢⎥-⎢⎥⎣⎦【点睛】带电粒子在不同场中运动用不同的物理公式以及利用几何知识来计算.3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球通过管道上B点时对管道的压力大小和方向.【答案】(1)0.9m;(2)1N【解析】【分析】(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)根据平抛运动的规律,小球在C点竖直方向的分速度v y=gt=10m/s水平分速度v x=v y tan450=10m/s则B点与C点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B点N B+mg=m2 v R解得 N B=50N根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,竖直平面内有一光滑的直角细杆MON,其中ON水平,OM竖直,两个小物块A和B分别套在OM和ON杆上,连接AB的轻绳长为L=0.5m,.现将直角杆MON绕过OM的轴O1O2缓慢地转动起来.已知A的质量为m1=2kg,重力加速度g取10m/s2。

(完整版)高一物理曲线运动专题练习

(完整版)高一物理曲线运动专题练习

单元测试题(曲线运动)一、选择题1.关于运动的性质,以下说法中正确的是 [ ]A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.曲线运动一定是变加速运动D.物体加速度数值、速度数值都不变的运动一定是直线运动2.关于力和运动,下列说法中正确的是 [ ]A.物体在恒力作用下可能做曲线运动B.物体在变力作用下不可能做直线运动C.物体在恒力作用下不可能做曲线运动D.物体在变力作用下不可能保持速率不变3.物体受到几个力的作用而做匀速直线运动,如果只撤掉其中的一个力,其它力保持不变,它可能做 [ ]A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.曲线运动4.关于互成角度(不为零度和180°)的一个匀速直线运动和一个匀变速直线运动的合运动,下列说法正确的是 [ ]A.一定是直线运动B.一定是曲线运动C.可能是直线,也可能是曲线运动D.以上答案都不对5.某质点在恒力 F作用下从A点沿图1中曲线运动到 B点,到达B点后,质点受到的力大小仍为F,但方向相反,则它从B 点开始的运动轨迹可能是图中的 [ ]A.曲线aB.曲线bC.曲线CD.以上三条曲线都不可能6.关于曲线运动中,下列说法正确的是 [ ]A.加速度方向一定不变B.加速度方向和速度方向始终保持垂直C.加速度方向跟所受的合外力方向始终一致D.加速度方向总是指向圆形轨迹的圆心7.一个质点受到两个互成锐角的力F1和F2的作用,由静止开始运动,若运动中保持两个力的方向不变,但F1突然增大△F,则质点此后[ ]A.一定做匀变速曲线运动B.可能做匀速直线运动C.可能做变加速曲线运动D.一定做匀变速直线运动8.关于运动的合成和分解,下述说法中正确的是[ ]A.合运动的速度大小等于分运动的速度大小之和B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动C.合运动和分运动具有同时性D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动9.某人以一定速率垂直河岸向对岸游去,当水流运动是匀速时,他所游过的路程、过河所用的时间与水速的关系是[ ]A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关,水10.河边有M、N两个码头,一艘轮船的航行速度恒为v1,若轮船在静水中航行于MN的时间是t,则[ ] 流速度恒为v2A.轮船在M、N之间往返一次的时间大于tB.轮船在M、N之间往返一次的时间小于t越小,往返一次的时间越短C.若v2越小,往返一次的时间越长D.若v211.船在静水中的航速是1 m/s,河岸笔直,河宽恒定,河水靠近岸边的流速为2 m/s,河中间的流速为3 m/s.。

高中物理必修二曲线运动测试题及答案

高中物理必修二曲线运动测试题及答案

高中物理必修二曲线运动测试题及答案(1)(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--曲线运动一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。

)1.关于运动的性质,以下说法中正确的是()A.曲线运动一定是变速运动 B.变速运动一定是曲线运动C.曲线运动一定是变加速运动 D.物体加速度大小、速度大小都不变的运动一定是直线运动2.关于运动的合成和分解,下列说法正确的是()A.合运动的时间等于两个分运动的时间之和 B.匀变速运动的轨迹可以是直线,也可以是曲线C.曲线运动的加速度方向可能与速度在同一直线上 D.分运动是直线运动,则合运动必是直线运动3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是()A.速度大的时间长 B.速度小的时间长 C.一样长 D.质量大的时间长4.做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同 B.大小不等,方向不同C.大小相等,方向不同 D.大小不等,方向相同5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A.1∶4 B.2∶3 C.4∶9 D.9∶166.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是()A.绳的拉力大于A的重力 B.绳的拉力等于A的重力C.绳的拉力小于A的重力D.绳的拉力先大于A的重力,后变为小于重力7.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+MgD.2m(v2/R-g)+Mg8.下列各种运动中,属于匀变速运动的有()A.匀速直线运动 B.匀速圆周运动 C.平抛运动 D.竖直上抛运动9.水滴自高处由静止开始下落,至落地前的过程中遇到水平方向吹来的风,则()A.风速越大,水滴下落的时间越长B.风速越大,水滴落地时的瞬时速度越大C.水滴着地时的瞬时速度与风速无关D.水滴下落的时间与风速无关10.在宽度为d的河中,水流速度为v2,船在静水中速度为v1(且v1>v2),方向可以选择,现让该船开始渡河,则该船()A.可能的最短渡河时间为2dvB.可能的最短渡河位移为dC.只有当船头垂直河岸渡河时,渡河时间才和水速无关 D.不管船头与河岸夹角是多少,渡河时间和水速均无关11.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小二、填空题(每空2分,共28分。

高一物理曲线运动测试题及参考答案

高一物理曲线运动测试题及参考答案

曲线运动单元测试一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。

)1.关于运动的性质,以下说法中正确的是()A .曲线运动一定是变速运动B .变速运动一定是曲线运动C .曲线运动一定是变加速运动23A C 51∶2,A 6D 力7.如图所示,有一质量为M 的大圆环,半径为R ,被一轻杆固定后悬挂在O 点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v ,则此时大环对轻杆的拉力大小为()A .(2m +2M )gB.Mg-2mv2/RC.2m(g+v2/R)+MgD.2m(v2/R-g)+Mg8.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动9.水滴自高处由静止开始下落,至落地前的过程中遇到水平方向吹来的风,则()A.风速越大,水滴下落的时间越长10,方向11v13最大速度是m/s。

14.如图所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(即v0∥CD),小球运动到B点,已知A点的高度h,则小球到达B点时的速度大小为______。

15.一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,用下面的方法测量它匀速转动时的角速度。

实验器材:电磁打点计时器,米尺,纸带,复写纸片。

实验步骤:(1)如图所示,将电磁打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔后,固定在待测圆盘的侧面上,使得圆转动时,纸带可以卷在圆盘侧面上。

a.b.16B O点C.测出曲线上某点的坐标x、y,用v0=算出该小球的平抛初速度,实验需要对多个点求v0的值,然后求它们的平均值。

D.取下白纸,以O为原点,以竖直线为轴建立坐标系,用平滑曲线画平抛轨迹。

上述实验步骤的合理顺序是___________(只排列序号即可)。

高中物理曲线运动模拟试题及解析

高中物理曲线运动模拟试题及解析

高中物理曲线运动模拟试题及分析一、高中物理精讲专题测试曲线运动1. 如下图,粗拙水平川面与半径为R=0.4m 的粗拙半圆轨道 BCD 相连结,且在同一竖直平面内, O 是 BCD 的圆心, BOD 在同一竖直线上.质量为m=1kg 的小物块在水平恒力F=15N 的作用下,从 A 点由静止开始做匀加快直线运动,当小物块运动到 B 点时撤去 F ,小物块沿半圆轨道运动恰巧能经过D 点,已知 A 、 B 间的距离为 3m ,小物块与地面间的动摩擦因数为 0.5,重力加快度 g 取 10m/s 2.求:(1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块走开 D 点后落到地面上的点与D 点之间的距离【答案】( 1) 160N ( 2)0.8 2 m 【分析】 【详解】(1)小物块在水平面上从 A 运动到 B 过程中,依据动能定理,有:(F-μmg ) x AB1 B 2=mv-02在 B 点,以物块为研究对象,依据牛顿第二定律得:N mgmv B 2R联立解得小物块运动到B 点时轨道对物块的支持力为:N=160N由牛顿第三定律可得,小物块运动到 B 点时对圆轨道 B 点的压力大小为: N ′=N=160N (2)因为小物块恰能经过 D 点,所以在 D 点小物块所受的重力等于向心力,即:2 mgmv DR可得: v D =2m/s 设小物块落地址距 B 点之间的距离为 x ,着落时间为 t ,依据平抛运动的规律有:x=v D t ,12R= gt 22解得: x=0.8m则小物块走开 D 点后落到地面上的点与D点之间的距离l2x 0.8 2m2. 如下图,水平屋顶高 H =5 m h =3.2 m ,围墙到房屋的水平距离 L = 3 m,围 ,围墙高墙外空地宽 x = 10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取 10 m/s 2.求:(1)小球走开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】 (1)5 m/s ≤v(2)5 5 m/s ;0≤13 m/s;【分析】【剖析】【详解】(1)若 v 太大,小球落在空地外边,所以,球落在空地上,v 的最大值 v max为球落在空地最右边时的平抛初速度,如下图,小球做平抛运动,设运动时间为t 1.则小球的水平位移: L+x=v max t 1,小球的竖直位移: H= gt12解以上两式得v max=( L+x)=( 10+3)×=13m/s.若 v 太小,小球被墙挡住,所以,球不可以落在空地上, v 的最小值 v min为球恰巧超出围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t2小球的竖直方向位移:H﹣ h=gt22解以上两式得 v min=L=3×=5m/s所以 v0的范围是min0 maxv≤v≤v ,即 5m/s≤v0≤ 13m/s.(2)依据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min′===5 m/s3.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右边固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与 Q 点之间是粗拙的,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后、,AB 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上 ,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m4.一宇航员登上某星球表面,在高为 2m 处,以水平初速度 5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求:(1)该星球表面重力加快度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2)1;10【分析】(1)依据平抛运动的规律:x=v0t得 t=x=5s=1s v0 5由 h=1gt2 2得: g=22h=222m / s2=4m / s2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg=R星2 G M 地 m地球表面物体重力等于万有引力:mg=R地2M 星=gR星24 1 21则M 地g R地2=10( 2 )10点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.15.如下图,在竖直平面内有一半径为R的圆滑圆弧轨道AB,与水平川面相切于B4点。

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高中物理曲线运动练习题及答案及解析.docx

高中物理曲线运动练习题及答案及解析.docx

高中物理曲线运动练习题及答案及解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在 B 点连接,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g 取 10 m/s 2.求:(1)小球脱离弹簧时的速度大小;(2)小球从 B 到 C 克服阻力做的功;(3)小球离开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【解析】【分析】【详解】(1)根据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能通过最高点,故mg m v22④R由②③④得W f=24 J(3)根据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度 ,从而根据动能定理求解从 B 至 C 过程中小球克服阻力做的功 ;(3)小球离开 C 点后做平抛运动 ,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,带有1 光滑圆弧的小车A 的半径为R,静止在光滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度相同.现 B、 C 以相同的速度向右匀速运动, B 与 A 碰后即粘连在一起, C 恰好能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加速度为g)(1)B、C 一起匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR (2)v1 2 3gR53gR, v233【解析】本题考查动量守恒与机械能相结合的问题.(1)设 B、 C 的初速度为v , AB 相碰过程中动量守恒,设碰后AB 总体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR ,v253gR333.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离 B 点高度为h 处(3 R2h3R )的 A 点由静止开始下落,从 B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D点?试通过计算说明;(2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从 D 点飞出后能否落在水平面BC 上,若能,求落点与 B 点水平距离 d 的范围.【答案】(1)小球能到达 D 点;(2) 0F3mg ;(3)2 1 R d 2 21 R【解析】【分析】【详解】(1)当小球刚好通过最高点时应有:mg mv D2R由机械能守恒可得:mg h R mv D 22联立解得 h 3R ,因为3R h3R ,小球能到达 D 点;2h 的取值范围为2(2)设小球在D点受到的压力为 F ,则F mg mv D2 Rmg h R mv D2 2联立并结合 h 的取值范围 3 R h3R 解得: 0F3mg2据牛顿第三定律得小球在最高点对轨道的压力范围为:0 F 3mg (3)由( 1)知在最高点D速度至少为v D min gR此时小球飞离 D 后平抛,有:R 1 gt22xmin vD mint联立解得x min2R R ,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:mg3mg m v D2maxR解得v D max 2gR 小球飞离 D 后平抛 R 1gt 2,2x max vD maxt联立解得x max 2 2R故落点与 B 点水平距离 d 的范围为: 2 1 R d 2 2 1 R4.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

最新高中物理曲线运动题20套(带答案)

最新高中物理曲线运动题20套(带答案)

最新高中物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA在A点相切. BC 为圆弧轨道的直径.O 为圆心,OA和OB 之间的夹角为3α, sin α=,一质量为m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过 C 点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图,一位宇航员站一斜坡上 A 点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t 落到斜坡上另一点B,斜坡倾角为α,已知该星球的半径为R,引力常量为G,求:(1)该星球表面的重力加快度g;(2)该星球的密度.【答案】(1)2vtan(2)3vtant 2 RtG【分析】试题剖析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,依据平抛运动的规律求出星球表面的重力加快度.依据万有引力等于重力争出星球的质量,联合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tan α===因此星球表面的重力加快度为:g=.(2)在星球表面上,依据万有引力等于重力,得:mg=G解得星球的质量为为:M=3星球的体积为: V= πR.则星球的密度为: ρ=整理得: ρ=点晴:解决本题重点为利用斜面上的平抛运动规律:常常利用斜面倾解的正切值进行求得星球表面的重力加快度,再利用mg=G 和 ρ= 求星球的密度 .3. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18 N ,最后从 C 点水平飞离轨道,落到水平川面上的 P. B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力, g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点 P 与 B 点的水平距最大. 【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点 的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从O到 B 的过程中重力和阻力做功,由动能定理可得:mg R R W f 1mv B2022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC 1mv C21mv B2 22解得: L BC v B2v C2 2g从 C 点到落地的时间:t02h0.8s gB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:124L 44v C5v C由数学知识可知,当v C 1.6m / s时, P 到 B 的水平距离最大,为:L=3.36m【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.4.如下图,半径为 R 的四分之三圆滑圆轨道竖直搁置,CB是竖直直径, A 点与圆心等高,有小球 b 静止在轨道底部,小球 a 自轨道上方某一高度处由静止开释自 A 点与轨道相切进入竖直圆轨道,a、 b 小球直径相等、质量之比为3∶ 1,两小球在轨道底部发生弹性正碰后小球 b 经过 C点水平抛出落在离 C 点水平距离为22R 的地面上,重力加快度为g,小球均可视为质点。

最新高中物理曲线运动模拟试题

最新高中物理曲线运动模拟试题

最新高中物理曲线运动模拟试题一、高中物理精讲专题测试曲线运动1.如下图,倾角为45的粗拙平直导轨与半径为r 的圆滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰巧击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为 e 点,重力加快度为g,不计空气阻力. 求:(1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果能够保存根号)【答案】( 1)142 mgr ;()′;()2=6mg2F314【分析】【剖析】【详解】(1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r v a t竖直方向: r1gt 22解得:v a gr小滑块在 a 点飞出的动能E k1mv a21mgr22(2)设小滑块在 e 点时速度为v m,由机械能守恒定律得:1mv m21mv a2mg 2r22在最低点由牛顿第二定律:F mg mv m2r由牛顿第三定律得:F′=F解得: F′ =6mg(3) bd 之间长度为L,由几何关系得:L 2 2 1 r从 d 到最低点 e 过程中,由动能定理mgHmg cos L1mv m22解得42142.如下图,在风洞实验室中,从 A 点以水平速度v0向左抛出一个质最为m 的小球,小球抛出后所受空气作使劲沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加快度为g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv022m2 gv02v0F24m2g2 2F(2)2( 3)F F【分析】【剖析】(1)依据水平方向的运动规律,联合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球抵达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依据运动学公式联合平行四边形定章求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma xv 02=2ax mx解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t=v1a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0 V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的重点将小球的运动的运动分解,搞清分运动的规律,联合等时性,运用牛顿第二定律和运动学公式进行求解.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为m、电量为+q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mgqE (2)在物理最高点F:tanmg 解得α=370;过 F 点的临界条件:v F=0从开始到 F 点:-1mgx qE (x R sin)mg ( R R cos ) 01mv02 2解得v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到 F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg2R01mv022s x R x1解得: s(44)R4.如下图,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁圆滑,圆轨道右边的水平面BC 与圆心等高.质量为m 的小球从离 B 点高度为h 处(3R h3R )的 A 点由静止开始着落,从 B 点进入圆轨道,2重力加快度为g ).(1)小球可否抵达D点?试经过计算说明;(2)求小球在最高点对轨道的压力范围;(3)经过计算说明小球从 D 点飞出后可否落在水平面BC 上,若能,求落点与 B 点水平距离d的范围.【答案】(1)小球能抵达D点;(2)0F3mg;( 3)2 1 R d22 1 R【分析】【剖析】【详解】(1)当小球恰巧经过最高点时应有:mv D2 mg R由机械能守恒可得: mg h R mv D2 2联立解得 h 3R ,因为h的取值范围为 3 R h3R ,小球能抵达 D 点;22(2)设小球在D点遇到的压力为 F ,则F mg mv D2 Rmg h R mv D2 2联立并联合 h 的取值范围33R解得: 0F3mg R h2据牛顿第三定律得小球在最高点对轨道的压力范围为:0 F 3mg (3)由( 1)知在最高点D速度起码为v D min gR此时小球飞离 D 后平抛,有:R 1 gt22x min v D min t联立解得x min2R R ,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:mg3mg m v D2maxR 解得v D max2gR 小球飞离 D 后平抛 R 1gt 2 ,2x max vD maxt联立解得x max 2 2R故落点与 B 点水平距离 d 的范围为: 2 1 R d 2 2 1 R5.如下图 ,半径为l,质量为 m 的小球与两根不行伸长的轻绳a,b 连结 ,两轻绳的另一端分4别固定在一根竖直圆滑杆的A,B 两点上 .已知 A,B 两点相距为 l,当两轻绳挺直后A、B 两点到球心的距离均为 l,重力加快度为 g.(1)装置静止时 ,求小球遇到的绳索的拉力大小T;(2)现以竖直杆为轴转动并达到稳固(轻绳a,b 与杆在同一竖直平面内).①小球恰巧走开竖直杆时,竖直杆的角速度0多大?②轻绳 b 挺直时 ,竖直杆的角速度多大?【答案】 (1)4 150 15g 2gT15 mg (2)①ω=2②15ll【分析】【详解】(1)设轻绳 a 与竖直杆的夹角为α15 cos4 对小球进行受力剖析得mg Tcos解得:T4 15mg15(2)①小球恰巧走开竖直杆时,小球与竖直杆间的作使劲为零。

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。

要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。

若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。

给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。

高中物理曲线运动专项训练100(附答案)含解析

高中物理曲线运动专项训练100(附答案)含解析

高中物理曲线运动专项训练100(附答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。

不计空气阻力,重力加速度求:滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。

【答案】(1),(2)【解析】 【详解】设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知:滑块滑离平板车后做平抛运动,则有:解得:,;由功能关系可知:解得:【点睛】本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。

完整版)高一物理曲线运动练习题(含答案)

完整版)高一物理曲线运动练习题(含答案)

完整版)高一物理曲线运动练习题(含答案) 第五章第一节《曲线运动》练题一、选择题1.关于运动的合成的说法中,正确的是()。

A。

合运动的位移等于分运动位移的矢量和B。

合运动的时间等于分运动的时间之和C。

合运动的速度一定大于其中一个分运动的速度D。

合运动的速度方向与合运动的位移方向相同答案:A。

此题考查分运动与合运动的关系,D答案只在合运动为直线时才正确。

2.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是()。

A。

静止B。

匀加速直线运动C。

匀速直线运动D。

匀速圆周运动答案:B。

其余各力的合力与撤去的力等大反向,仍为XXX。

3.某质点做曲线运动时(AD)。

A。

在某一点的速度方向是该点曲线的切线方向B。

在任意时间内,位移的大小总是大于路程C。

在某段时间里质点受到的合外力可能为零D。

速度的方向与合外力的方向必不在同一直线上4.精彩的F1赛事相信你不会陌生吧!XXX在2005年以8000万美元的年收入高居全世界所有运动员榜首。

在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。

这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。

关于脱落的后轮的运动情况,以下说法正确的是(C)。

A。

仍然沿着汽车行驶的弯道运动B。

沿着与弯道垂直的方向飞出C。

沿着脱离时,轮子前进的方向做直线运动,离开弯道D。

上述情况都有可能5.一个质点在恒力F作用下,在xOy平面内从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,y 则恒力F的方向不可能()。

A。

沿x轴正方向B。

沿x轴负方向C。

沿y轴正方向D。

沿y轴负方向答案:A。

质点到达A点时,Vy=0,故沿y轴负方向上一定有力。

6.在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。

现突然将与速度反方向的2N力水平旋转90º,则关于物体运动情况的叙述正确的是(BC)。

高考物理曲线运动模拟试题含解析

高考物理曲线运动模拟试题含解析

高考物理曲线运动模拟试题含解析一、高中物理精讲专题测试曲线运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高中物理曲线运动模拟试题一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,在风洞实验室中,从A 点以水平速度v 0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F ,经过一段时间小球运动到A 点正下方的B 点 处,重力加速度为g ,在此过程中求(1)小球离线的最远距离; (2)A 、B 两点间的距离; (3)小球的最大速率v max .【答案】(1)202mv F(2)22022m gv F (3)2220 4v F m g F +【解析】 【分析】(1)根据水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)根据水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A 、B 两点间的距离;(3)小球到达B 点时水平方向的速度最大,竖直方向的速度最大,则B 点的速度最大,根据运动学公式结合平行四边形定则求出最大速度的大小; 【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解 水平方向:F =m a x v 02=2a x x m解得:202m mv x F= (2)水平方向速度减小为零所需时间01xv t a = 总时间t =2t 1竖直方向上:22202212m gv y gt F== (3)小球运动到B 点速度最大v x =v 0 V y =gt222220max 4x y v v v v F m g F==++【点睛】解决本题的关键将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.3.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+4.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤5.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

可知小球做圆周运动的半径为r=4l 20tan mg m r αω=解得:ω0=15215gl②轻绳b 刚伸直时,轻绳a 与竖直杆的夹角为60°,可知小球做圆周运动的半径为sin60r l '=︒2tan 60mg m r ω'︒=解得:ω=2g l 轻绳b 伸直时,竖直杆的角速度2g lω≥6.“抛石机”是古代战争中常用的一种设备,如图所示,为某学习小组设计的抛石机模型,其长臂的长度L = 2 m ,开始时处于静止状态,与水平面间的夹角α=37°;将质量为m =10.0㎏的石块装在长臂末端的口袋中,对短臂施力,当长臂转到竖直位置时立即停止转动,石块被水平抛出,其落地位置与抛出位置间的水平距离x =12 m 。

不计空气阻力, 重力加速度g 取10m/s²,取水平地面为重力势能零参考平面。

sin37°= 0.6,cos37°= 0.8。

求:(1)石块在最高点的重力势能E P (2)石块水平抛出的速度大小v 0; (3)抛石机对石块所做的功W 。

【答案】(1)320J (2)15m/s (3)1445J【解析】(1)石块在最高点离地面的高度:h =L +L sin α=2×(1+0.6)m = 3.2m 由重力势能公式:E P =mgh=320J (2)石块飞出后做平抛运动 水平方向 x = v 0t竖直方向 212h gt =解得:v 0 = 15m/s(3)长臂从初始位置转到竖直位置过程, 由动能定理得: 2012W mgh mv -= 解得: W = 1445J点睛:要把平抛运动分解水平方向上的匀速和竖直方向上的自由落体运动。

7.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A 点,已知木板的长度l =10m ,A 点到平台边缘的水平距离s =1.6m ,平台距水平地面的高度h =3m ,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字) (3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字) 【答案】(1) (2) v =0.67m/s (3)x =0.29m【解析】 【分析】 【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v 由动量守恒定律有:,木板第一与挡板碰后:解得:v =0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x =0.29m . 【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.8.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.9.如图所示,某同学在一辆车上荡秋千,开始时车轮被锁定,车的右边有一个和地面相平的沙坑,且右端和沙坑的左边缘平齐;当同学摆动到最大摆角θ=600时,车轮立即解除锁定,使车可以在水平地面无阻力运动,该同学此后不再做功,并可以忽略自身大小,已知秋千绳子长度L=4.5m ,该同学和秋千支架的质量M=200kg ,重力加速度g=10m/s 2,试求:(1)该同学摆到最低点时的速率;(2)在摆到最低点的过程中,绳子对该同学做的功;(3)该同学到最低点时,顺势离开秋千板,他落入沙坑的位置距离左边界多远?已知车辆长度s=3.6m ,秋千架安装在车辆的正中央,且转轴离地面的高度H=5.75m. 【答案】(1)6m/s ;(2)-225J ;(3)0.421m 【解析】(1)人向下运动的过程中,人与车在水平方向的动量守恒,选取向右为正方向,则:人向下运动的过程中系统的机械能守恒,则:代入数据,联立得:(2)对人向下运动的过程中使用动能定理,得:代入数据解得:(3)人在秋千上运动的过程中,人与车组成的系统在水平方向的平均动量是守恒的,则:由于运动的时间相等,则:又:,联立得:,即车向左运动了人离开秋千后做平抛运动,运动的时间为:人沿水平方向的位移为:所以人的落地点到沙坑边缘的距离为:代入数据,联立得:。

相关文档
最新文档