2020年吉林省长春市南关区中考数学一模试卷(解析版)
2024年吉林省长春市南关区中考数学一模试卷及答案解析
2024年吉林省长春市南关区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数在数轴上表示的点距离原点最近的是()A.B.﹣1C.0.5D.42.(3分)国家统计局2024年2月29日发布了《中华人民共和国2023年国民经济和社会发展统计公报》.初步核算,全年国内生产总值为1260582亿元.1260582这个数用科学记数法表示为()A.0.1260582×107B.1.260582×106C.12.60582×105D.126.0582×1043.(3分)榫卯是我国古代木制建筑、家具等的主要结构方式,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.4.(3分)已知a≠0,下列计算正确的是()A.a3•a2=a5B.a6﹣a3=a3C.(﹣2a2)3=6a6D.a﹣1=﹣a5.(3分)如图,A、B、C、D四点均在⊙O上,若∠BOD=100°,则∠C的度数为()A.100°B.110°C.130°D.140°6.(3分)如图,筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理,筒车盛水桶的运行轨迹是以轴心O为圆心的圆,已知圆心在水面上方,且圆的半径OA长为6米,∠OAB=42°,则筒车盛水桶到达的最高点C到水面AB的距离是()米.A.6sin42°B.6+6sin42°C.6+6cos42°D.6+6tan42°7.(3分)如图,在△ABC中,若∠BAC=60°,∠B=75°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAD=30°B.EG=EC C.AB=AD D.∠EFD=25°8.(3分)如图,矩形ABCD的AB边在x轴正半轴上,CD边在第一象限,AB=3,BC=4.当点D在反比例函数的图象上时,BC的中点E也恰好在的图象上.则k的值是()A.6B.8C.10D.12二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)因式分解:x2+2x=.10.(3分)位于天定山的长春冰雪新天地2023年底普通成人票价为150元/位,大学生票价为50元/位,则m位普通成人和n位大学生的总票价为元.11.(3分)若关于x的一元二次方程x2﹣2x+m﹣3=0有两个相等的实数根,则m的值是.12.(3分)如图,将一副直角三角板按图中方式摆放,保持两条斜边互相平行,则∠1的度数为.13.(3分)我国木雕艺术历史悠久,如图的实物木雕图可以看作扇环形,其中OC=0.2m,OA=0.8m,∠COD=100°,则此木雕所用扇环形木板材的面积为m2.(结果用分数表示,保留π)14.(3分)掷实心球是中考体育考试项目之一.小明在训练馆试掷时,鹰眼系统记录了他掷出的实心球在空中运动的轨迹,运动轨迹是抛物线的一部分(如图).根据运动的轨迹得到实心球运动的水平距离x (米)与竖直高度y(米)的数据如表①:表①水平距离x(米)024567竖直高度y(米) 2.25 5.25 6.256 5.254表②等级单项得分中考得分掷实心球(米)优秀1008.09.6957.69.3907.29良好85 6.88.780 6.48.4长春市中考体育考试评分标准(男生版)如表②,依此标准小明此次试掷的中考得分是.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值;2(a2﹣3)﹣(a+2)(a﹣2),其中.16.(6分)今年是甲辰龙年,同时也是中国红十字会成立120周年,为此中国邮政发行了特种含龙图案的邮票2枚和纪念邮票1枚.如图,现有三张正面印有这三枚邮票图案的不透明卡片A、B、C,卡片除正面图案不同外其余均相同.将这三张卡片正面向下洗匀,小宇从中随机抽取两张卡片.请用画树形图或列表的方法,求小宇抽出的两张卡片都是龙图案的概率.17.(6分)刚过去的冬天最热门的地方莫过于哈尔滨冰雪大世界了,冰天雪地的环境吸引着众多游客的到来.春节期间李老师一家从长春乘坐高铁去哈尔滨,返回时乘坐大巴车.已知去时高铁行驶的路程为289km,比返回时大巴车行驶的路程多17km,而高铁的平均速度比大巴车平均速度的2倍还多11km,乘坐大巴车所花时间是乘坐高铁时间的2倍.求大巴车的平均速度.18.(7分)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,点E是AC的中点.过点A作AG∥BC,作射线DE交AG于点F,连结CF.(1)求证:四边形ADCF是矩形.(2)若BC=12,,直接写出矩形ADCF的面积.19.(7分)3月11日邯郸3名初中生杀人埋尸案发生后,为加强学生法治观念,某校开展了“普法知识”竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:七年级C组同学的分数分别为:94,91,93,90;八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表:年级平均数中位数众数优秀率七91a95m八9193b65%(1)填空:a=,b=,m=.(2)根据以上数据,你认为该校七、八年级学生在“普法知识”竞赛中,哪个年级学生成绩更好?请说明理由.(至少写出两条理由)(3)该校七年级有学生400名,八年级有学生500名,请估计这两个年级竞赛成绩为优秀的学生的总人数.20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点叫做格点,△ABC的顶点均在格点上.在给定的网格中,只用无刻度的直尺,在图①、图②、图③中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画△ABC的中线CD.(2)在图②BC边上找一点E,连结AE,使AE平分△ABC的面积.(3)在图③中△ABC的内部找一点F,使,21.(8分)子涵同学在帮妈妈整理厨房时,想把一些规格相同的碗尽可能多地放入内侧高为35cm的柜子里.她把碗按如图那样整齐地叠放成一摞(如图①),但她不知道一摞最多叠放几个碗可以一次性放进柜子里.【探究发现】子涵同学测量后发现,按这样叠放,这摞碗的总高度随着碗个数的变化而变化,记录的数据如表:碗的个数x(个)12345这摞碗的总高度y(厘米) 5.578.51011.5【建立模型】(1)请根据表中信息,在如图②的平面直角坐标系中描出对应点,并指出这些点的分布规律.(2)求y与x的函数关系式,并求当碗的个数量为12个时这摞碗的总高度.【结论应用】请帮子涵同学算一算,一摞最多能叠几个碗可以一次性放进柜子里?22.(9分)【问题提出】如图①,在正方形ABCD中,M、N分别是边AB和对角线BD上的点,∠MCN =45°.从而△ACM∽△DCN,=.【思考探究】如图②,在矩形ABCD中,∠BAC=60°,AB=3,M、N分别是边DC和对角线BD上的点,∠MAN=60°,若DM=1,求BN的长.【拓展延伸】如图③,在菱形ABCD中,AB=13,对角线AC=10,DE⊥BC交BC的延长线于点E,M、N分别是菱形高DE和对角线AC上的点,,AN=3,直接写出DM的长.23.(10分)如图,O为菱形ABCD对角线的交点,,.动点P从点A出发,先沿AD 以每秒5个单位长度的速度运动,然后沿DB以每秒个单位长度的速度继续运动.当点P不与点A、D、O重合时,过点P作PQ∥DC交AC于点Q,分别过点P、Q作AD、PQ的垂线,这两垂线相交于点M.设点P的运动时间为t秒.(1)求点D到BC的距离并写出∠DCB的正弦值.(2)用含t的代数式表示PQ的长.(3)当点O在△PQM的内部时,求t的取值范围.(4)当点M在菱形ABCD的一边上时,直接写出t的值.24.(12分)在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+bx+c(b、c是常数)经过点A(﹣3,﹣1)、B(0,2),点P(m,y1)在该抛物线上.(1)求该抛物线对应的函数表达式并写出顶点的坐标.(2)当点P关于x轴的对称点在直线AB上时,求m的值.(3)过点P作PQ⊥x轴于点Q,当m>﹣2时,在线段AB上取点M,点N坐标为(0,1),当△QMN的周长最小时,求这个最小值以及点M的坐标.数最大值与最小值差为时,直接写出所有满足条件的m的值.2024年吉林省长春市南关区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】先估算的大小,然后根据绝对值的意义判断即可.【解答】解:∵,∴|0.5|<|﹣1|<<|﹣4|,∴在数轴上表示的点距离原点最近的是0.5,故选:C.【点评】本题考查了估算无理数的大小,绝对值的意义,实数的大小比较,熟练掌握无理数的估算是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:1260582用科学记数法表示为1.260582×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:故选:A.【点评】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.【分析】A.根据同底数幂相乘法则进行计算,然后判断即可;B.先判断a6,a3是不是同类项,能否合并,然后判断即可;C.根据积的乘方和幂的乘方法则进行计算,然后判断即可;D.根据负整数指数幂的性质进行计算,然后判断即可.【解答】解:A.∵a3•a2=a5,∴此选项计算正确,故此选项符合题意;B.∵a6,a3不是同类项,不能合并,∴此选项计算错误,故此选项不符合题意;C.∵(﹣2a2)3=﹣8a6,∴此选项计算错误,故此选项不符合题意;D.∵,∴此选项计算错误,故此选项不符合题意;故选:A.【点评】本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂相乘法则、积的乘方法则、负整数指数幂的性质和幂的乘方法则.5.【分析】根据圆周角定理求出∠A,再根据圆内接四边形的性质求出∠C.【解答】解:∵∠BOD=100°,∴∠A=∠BOD=×100°=50°,则∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣50°=130°,故选:C.【点评】本题考查的是圆内接四边形的性质、圆周角定理,熟记圆内接四边形的对角互补是解题的关键.6.【分析】连接CO交AB于点D,根据题意可得:CD⊥AB,然后在Rt△AOD中,利用锐角三角函数的定义求出OD的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:连接CO交AB于点D,由题意得:CD⊥AB,在Rt△AOD中,∠OAB=42°,OA=6米,∴OD=AO•sin42°=6sin42°(米),∵OC=6米,∴CD=OC+OD=(6+6sin42°)米,∴筒车盛水桶到达的最高点C到水面AB的距离是(6+6sin42°)米,故选:B.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.【解答】解:A.由作图可知,AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,故选项A正确,不符合题意;B.由作图可知,GE是BC的垂直平分线,∴∠GEC=90°,∵∠BAC=60°,∠B=75°,∴∠C=180°﹣60°﹣75°=45°,∴EG=EC,故选项B正确,不符合题意;C.∵∠B=75°,∠BAD=30°,∴∠ADB=75°,∴∠B=∠ADB,∴AB=AD,故选项C正确,不符合题意;D.∵∠FDE=∠ADB=75°,∠FED=90°,∴∠EFD=90°﹣75°=15°,故选项D错误,符合题意.故选:D.【点评】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.8.【分析】根据反比例函数图象上点的坐标特征解答即可.【解答】解:设D点坐标为(m,4),则C(m+3,4),B(m+3,0),∵E是BC的中点,∴E(m+3,2),∴4m=2(m+3),解得m=3,∴D(3,4),∴k=12.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握点的坐标特征是解答本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.【分析】直接提取公因式x即可.【解答】解:原式=x(x+2),故答案为:x(x+2).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式,找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.10.【分析】根据题意列出代数式即可.【解答】解:∵普通成人票价为150元/位,大学生票价为50元/位,∴m位普通成人和n位大学生的总票价为(150m+50n)元.故答案为:(150m+50n).【点评】本题考查了列代数式,解决本题的关键是理解题意列出代数式.11.【分析】由于关于x的一元二次方程x2﹣2x+m﹣3=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣3=0有两个相等的实数根,∴Δ=(﹣2)2﹣4×1×(m﹣3)=0,即4﹣m=0,解得m=4.故答案为:4.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得Δ=0,此题难度不大.12.【分析】先利用平行线的性质可得∠A=∠2=45°,然后利用三角形的外角性质可得∠DCF=15°,从而利用平角定义进行计算即可解答.【解答】解:如图:∵AB∥DE,∴∠A=∠2=45°,∵∠2是△DCF的一个外角,∴∠DCF=∠2﹣∠D=45°﹣30°=15°,∵∠ACB=90°,∴∠1=180°﹣∠ACB﹣∠DCF=180°﹣90°﹣15°=75°,故答案为:75°.【点评】本题考查了平行线的性质,三角形的外角性质,根据题目的已知条件并结合图形进行分析是解题的关键.13.【分析】根据扇形的面积公式计算即可.【解答】解:∵OC=0.2m,OA=0.8m,∠COD=100°,∴S木雕=S扇形AOB﹣S扇形COD==(R2﹣r2)=×(0.82﹣0.22)=.故答案为:.【点评】本题考查扇形的面积,掌握扇形的面积公式是本题的关键.14.【分析】依据题意,根据表①所给信息可得,抛物线的对称轴是直线x==4,从而可得顶点为(4,6.25),故可设抛物线为y=a(x﹣4)2+6.25,抛物线过(0,2.25),从而求出a后可得解析式,再令y=0,进而可以判断得解.【解答】解:由题意,根据表①所给信息可得,抛物线的对称轴是直线x==4,∴顶点为(4,6.25).∴可设抛物线为y=a(x﹣4)2+6.25.又抛物线过(0,2.25),∴16a+6.25=2.25.∴a=﹣.∴抛物线的解析式为y=﹣(x﹣4)2+6.25.又令y=0,∴0=﹣(x﹣4)2+6.25.∴x=9或x=﹣1(舍去).∴实心球的水平距离为9米.∴小明此次试掷的中考得分是7.2.故答案为:7.2.【点评】本题主要考查了二次函数的应用,函数的图表和关系式,解题的关键是熟练待定系数法求函数解析式及二次函数的性质.三、解答题(本大题共10小题,共78分)15.【分析】根据乘法分配律和平方差公式将题目中的式子展开,然后合并同类项,再将a的值代入化简后的式子计算即可.【解答】解:2(a2﹣3)﹣(a+2)(a﹣2)=2a2﹣6﹣a2+4=a2﹣2,当a=时,原式=()2﹣2=3.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.16.【分析】列表可得出所有等可能的结果数以及小宇抽出的两张卡片都是龙图案的结果数,再利用概率公式可得出答案.【解答】解:列表如下:A B CA(A,B)(A,C)B(B,A)(B,C)C(C,A)(C,B)共有6种等可能的结果,其中小宇抽出的两张卡片都是龙图案的结果有:(A,B),(B,A),共2种,∴小宇抽出的两张卡片都是龙图案的概率为=.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.17.【分析】设大巴车的平均速度为x km/h,则高铁的平均速度为(2x+11)km/h,利用时间=路程÷速度,结合乘坐大巴车所花时间是乘坐高铁时间的2倍,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设大巴车的平均速度为x km/h,则高铁的平均速度为(2x+11)km/h,根据题意得:=×2,解得:x=88,经检验,x=88是所列方程的解,且符合题意.答:大巴车的平均速度为88km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.【分析】(1)先证明△EAF≌△ECD(ASA),得AF=CD,再证明四边形ADCF是平行四边形,然后由等腰三角形的性质得AD⊥BC,即可得出结论;(2)由等腰三角形的性质得AD⊥BC,BD=CD=BC=6,再由锐角三角函数的定义求出AD的长,然后由矩形的面积公式即可得出结论.【解答】(1)证明:∵AG∥BC,∴∠EAF=∠ECD,∵点E是AC的中点,∴AE=CE,在△EAF和△ECD中,,∴△EAF≌△ECD(ASA),∴AF=CD,∵AG∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形ADCF是矩形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=CD=BC=×12=6,∵tan∠B==,∴AD=BD=×6=10,=AD•CD=10×6=60.∴S矩形ADCF【点评】本题考查了矩形的判定与性质、平行四边形的判定、平行线的性质、全等三角形的判定与性质、等腰三角形的性质以及锐角三角函数的定义等知识,熟练掌握矩形的判定和等腰三角形的性质,证明三角形全等是解题的关键.19.【分析】(1)根据中位数和众数的定义解答即可求出a、b的值,用优秀的人数除以总人数即可得m的值;(2)根据中位数和优秀率进行判断即可;(3)用样本估计总体可得结果.【解答】解:(1)中位数是第10位、第11位的平均数,观察条形统计图可得,中位数在C组,∴a==92,观察扇形统计图和八年级C组同学的分数可得众数b=94,m=×100%=60%,故答案为:92,94,60%;(2)八年级的学生成绩更好,理由如下:因为八年级学生的中位数和优秀率都高于七年级,所以八年级的学生成绩更好;(3)400×60%+500×65%=565(人),答:估计这两个年级竞赛成绩为优秀的学生的总人数为565人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】(1)根据三角形中线的定义画出图形即可;(2)作线段BC的垂直平分线MN,交BC于E,连接AE即可;(3)取格点D,作BC的垂直平分线交BC于K,连接AK,CD交于F,则,【解答】解:(1)如图①,取格点F、G,连接FG交AB于点D,连接CD,点D及△ACD就是所求的图形.理由:连接AF,则AF∥BG,AF=BG,∴∠AFD=∠BGD,在△ADF和△BDG中,,∴△ADF≌△BDG(AAS),∴AD=BD=AB;(2)线段BC的垂直平分线MN,交BC于E,连接AE,线段AE即为所求;理由:如图②,过A作AH⊥BC于H,∵MN垂直平分BC,∴BE=CE,=,S△ACH=,∵S△ABE=S△ACE,∴S△ABE∴AE平分△ABC的面积.(3)如图③,取AB的中点D及格点K,连接CD、AK交于点F,连接BF,点F及△BCF就是所求的图形.理由:如图①,∵△ADF≌△BDG,∴FD=GD,∴点D为格点,取格点I,连接DI,则DI∥CK,∴△DFI∽△CFK,∵DI=1,CK=2,IK=AK,∴,∴FK=IK=AK=AK,=BC•FK=BC×AK=BC•AK=S△ABC.∴S△BCF【点评】此题是三角形的综合题,重点考查平行线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角形的面积公式等知识,此题综合性强,难度较大,属于考试压轴题.21.【分析】(1)描点并连线,观察这些点的分布特点;(2)利用待定系数法求出y与x的函数关系式,将x=12代入函数关系式,求出对应y的值即可;(3)将函数关系式代入y≤35,求出x的最大值即可.【解答】解:(1)在平面直角坐标系中描点如图所示:用光滑的曲线将这些点连起来,发现它们分布在同一条直线上.(2)设y与x的函数关系式为y=kx+b(k、b为常数,且k≠0).将x=1,y=5.5和x=2,y=7代入y=kx+b,得,解得,∴y=1.5x+4,当x=12时,y=1.5×12+4=22.∴y与x的函数关系式为y=1.5x+4,当碗的个数量为12个时这摞碗的总高度为22cm.(3)若能将碗一次性放进柜子里,则1.5x+4≤35,解得x≤,∵x为正整数,∴x的最大值为20,∴一摞最多能叠20个碗可以一次性放进柜子里.【点评】本题考查一次函数的应用,利用待定系数法求出函数关系式、掌握一元一次不等式的解法是解题的关键.22.【分析】(1)由正方形的性质得AD=DC=AB=CB,∠ABC=∠BCD=∠ADC=90°,则AC=DC,∠MAC=∠NDC=∠ACD=45°,而∠MCN=45°,所以∠ACM=∠DCN=45°﹣∠ACN,可证明△ACM∽△DCN,得==,于是得到问题的答案;(2)设AC交BD于点O,由矩形的性质得∠BAC=60°,CD=AB=3,CD∥AB,∠ABC=90°,OA=OC,则OB=OA=AC,∠ACM=∠BAC=60°,=cos60°=,可证明△BAN∽△CAM,得==,求得BN=CM=1;(3)连接DB交AC于点P,由菱形的性质是CB=AB,DB⊥AC,AP=CP=AC=5,BP=DP,则∠ABP=∠DBE,BP==12,求得DB=24,再证明∠BAN=∠BDM,由tan∠ABP=tan∠MBN=,推导出∠ABP=∠MBN,则∠ABN=∠DBM,即可证明△ABN∽△DBM,得=,求得DM==.【解答】解:(1)如图①,∵四边形ABCD是正方形,∴AD=DC=AB=CB,∠ABC=∠BCD=∠ADC=90°,∴AC===DC,∠MAC=∠NDC=∠ACD=45°,∵∠MCN=45°,∴∠ACM=∠DCN=45°﹣∠ACN,∴△ACM∽△DCN,∴==,故答案为:.(2)如图②,设AC交BD于点O,∵四边形ABCD是矩形,∠BAC=60°,AB=3,∴CD=AB=3,CD∥AB,∠ABC=90°,OA=OC,∴OB=OA=AC,∠ACM=∠BAC=60°,=cos60°=,∴∠ABN=∠BAC=60°,∴∠ABN=∠ACM,∵∠MAN=60°,DM=1,∴∠BAN=∠CAM=60°﹣∠CAN,CM=CD﹣DM=3﹣1=2,∴△BAN∽△CAM,∴==,∴BN=CM=×2=1,∴BN的长为1.(3)如图③,连接DB交AC于点P,∵四边形ABCD是菱形,AB=13,AC=10,AN=3,∴CB=AB,DB⊥AC,AP=CP=AC=×10=5,BP=DP,∴∠ABP=∠DBE,BP===12,∴DB=2BP=2×12=24,∵DE⊥BC交BC的延长线于点E,∴∠APB=∠E=90°,∵∠BAN+∠ABP=90°,∠BDM+∠DBE=90°,∴∠BAN=∠BDM,∵tan∠ABP==,tan∠MBN=,∴tan∠ABP=tan∠MBN,∴∠ABP =∠MBN ,∴∠ABP ﹣∠PBN =∠MBN ﹣∠PBN ,∴∠ABN =∠DBM ,∴△ABN ∽△DBM ,∴=,∴DM ===,∴DM 的长是.【点评】此题重点考查正方形的性质、菱形的性质、勾股定理、相似三角形的判定与性质、锐角三角函数与解直角三角形等知识,此题综合性强,难度较大,属于考试压轴题.23.【分析】(1)如图1,过点D 作DN ⊥BC 于N ,先根据勾股定理得:BC =5,最后利用面积法和正弦的定义可得结论;(2)分两种情况:①当点P 在边AD 上时,如图2,根据等腰三角形的性质,判定和平行线的性质可得PQ =AP =5t ;②当点P 在对角线BD 上时,如图3,利用平行线分线段成比例定理可得PQ 的长;(3)先计算分界点时t 的值,当P 在边AD 上,且Q 与O 重合时,如图4,根据AP =PD 可得t =;当P 在边AD 上,且点O 在PM 上,如图5,根据三角函数的定义可得t 的值,从而得结论;(4)存在三种情况:如图7,点M 在边BC 上,延长PQ 交BC 于K ;如图8,点M 在边AD 上,延长PQ 交AD 于K ;如图9,点M 在边BC 上,延长PQ 交BC 于K ;分别根据三角函数列式可解答.【解答】解:(1)如图1,过点D 作DN ⊥BC 于N ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OC =AC =2,OB =BD =,DC =BC =AD ,由勾股定理得:BC ==5,∴DC=5,=•AC•BD=BC•DN,∵S菱形ABCD∴×4×=5DN,∴DN=4,即点D到BC的距离是4,在Rt△DCN中,sin∠DCB==;(2)分两种情况:①当点P在边AD上时,如图2,∴AP=5t,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA,∵PQ∥CD,∴∠AQP=∠DCA,∴∠DAC=∠AQP,∴PQ=AP=5t;②当点P在对角线OD上时,如图3,∴DP=(t﹣1),∵OD=,∴OP=OD﹣DP=﹣(t﹣1)=2﹣t,∵PQ∥AC,∴=,即=,∴PQ=10﹣5t;当点P在对角线OB上时,如图4,同理得:PQ=5t﹣10,综上,PQ=;(3)当P在边AD上,且Q与O重合时,如图5,∵四边形ABCD是菱形,∴OA=OC,∵PQ∥CD,∴AP=PD==5t,∴t=;当P在边AD上,且点O在PM上,如图6,∵OP⊥AD,∴∠APO=90°,∴cos∠DAO==,∴=,∴t=,综上,当点O在△PQM的内部时,t的取值范围是:<t<;(4)如图7,点M在边BC上,延长PQ交BC于K,∵PQ∥CD,AD∥BC,∴四边形DPKC是平行四边形,∴PK=CD,∵AP=PQ=5t,∴KQ=5﹣5t,由(1)可知:tan∠QMK=,∴==,∴MQ=,∵PM⊥AD,∴∠DPQ+∠MPQ=90°,∵PQ⊥MQ,∴∠MQK=90°=∠QMK+∠MKQ,∵AD∥BC,∴∠DPQ=∠MKQ,∴∠MPQ=∠QMK,∴tan∠MPQ=tan∠QMK,∴=,即=,∴t=;如图8,点M在边AD上,延长PQ交AD于K,∵PQ∥CD∥AB,∴=,即=,∴DK=,∴AK=KQ=5﹣KD=5﹣=,同理得:tan∠KMQ==,∴MQ=KQ=,∵∠MPQ=∠KMQ,∴tan∠MPQ==,∴=,解得:t=;如图9,点M在边BC上,延长PQ交BC于K,∵PQ∥CD,∴=,即=,∴CK=,∴CK=KQ=,同理得:tan∠KMQ==,∴MQ=KQ=,∴tan∠MPQ==,∴=,解得:t=;综上,t的值为或或.【点评】本题是四边形的综合题,涉及菱形的性质,平行线分线段成比例定理,等腰三角形的性质和判定,平行四边形的性质和判定,菱形的面积等知识,以及分类讨论的数学思想,根据题意分类并作出对应的图形是解题关键.24.【分析】(1)用待定系数法求函数的解析式即可;(2)将点P关于x轴的对称点为(m,m2+2m﹣2)代入直线AB的解析式即可;(3)点N关于直线AB的对称点为E(﹣1,2),关于x轴的对称点F(0,﹣1),EF与AB的交点为M,与x轴的交点为Q时,△QMN的周长最小,最小值为MN+MQ+NQ=EF=,直线EF与直线AB的交点为M;(4)①当m≤﹣2时,最大值为3,最小值为﹣m2﹣2m+2,可得m=;②当﹣2<m<﹣时,最大值为﹣m2﹣m+2,最小值为﹣m2﹣2m+2,此时m不存在;③当﹣<m<﹣1时,最大值为﹣m2﹣2m+2,最小值为﹣m2﹣m+2,此时m不存在;④当﹣1≤m<0时,最大值为3,最小值为﹣m2﹣m+2,解得m=;⑤当m≥0时,最大值为3,最小值为﹣m2﹣2m+2,此时m无解.【解答】解:(1)将点A(﹣3,﹣1)、B(0,2)代入y=﹣x2+bx+c,∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+2,∵y=﹣x2﹣2x+2=﹣(x+1)2+3,∴顶点为(﹣1,3);(2)∵点P(m,y1)在该抛物线上,∴y1=﹣m2﹣2m+2,∴P(m,﹣m2﹣2m+2),设直线AB的解析式为y=kx+2,∴﹣3k+2=﹣1,解得k=1,∴直线AB的解析式为y=x+2,∵点P关于x轴的对称点为(m,m2+2m﹣2),∴m2+2m﹣2=m+2,解得m=;(3)点N关于直线AB的对称点为E(﹣1,2),关于x轴的对称点F(0,﹣1),EF与AB的交点为M,与x轴的交点为Q时,△QMN的周长最小,最小值为MN+MQ+NQ=EF=,直线EF的解析式为y=3x﹣1,当3x﹣1=x+2时,解得x=﹣,∴M(﹣,);(4)∵P、R在抛物线上,∴P(m,﹣m2﹣2m+2),R(﹣m﹣2,﹣m2﹣m+2),当P、R重合时,m=﹣m﹣2,解得m=﹣,当P点与抛物线顶点重合时,m=﹣1,当R点与抛物线顶点重合时,﹣m﹣2=﹣1,解得m=﹣2,①当m≤﹣2时,最大值为3,最小值为﹣m2﹣2m+2,∴﹣m=3﹣(﹣m2﹣2m+2),解得m=或m=(舍);②当﹣2<m<﹣时,最大值为﹣m2﹣m+2,最小值为﹣m2﹣2m+2,∴﹣m=﹣m2﹣m+2﹣(﹣m2﹣2m+2),解得m=0(舍)或m=﹣(舍);③当﹣<m<﹣1时,最大值为﹣m2﹣2m+2,最小值为﹣m2﹣m+2,∴﹣m=(﹣m2﹣2m+2)﹣(﹣m2﹣m+2),解得m=0(舍)或m=﹣(舍);④当﹣1≤m<0时,最大值为3,最小值为﹣m2﹣m+2,∴﹣m=3﹣(﹣m2﹣m+2),解得m=或m=(舍);⑤当m≥0时,最大值为3,最小值为﹣m2﹣2m+2,∴m=3﹣(﹣m2﹣2m+2),此时方程无解;综上所述:m的值为或.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,利用轴对称求最短距离是解题的关键。
2020年长春市中考数学模拟试卷及答案解析
2020年长春市中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列四个数中,最小的数是()A.−43B.﹣1C.0D.22.(3分)长白山位于吉林省延边州安图县和白山市抚松县境内,是中朝两国的界山、中华十大名山之一、国家5A级风景区.今年十一期间长白山景区共接待游客18.14万人次,将18.14万用科学记数法表示为()A.18.14×104B.1.814×104C.1.814×105D.1.814×106 3.(3分)李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.4.(3分)如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为()A.x≥﹣1B.x<2C.﹣1≤x≤2D.﹣1≤x<2 5.(3分)《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是( )A .{8y −x =37y −x =4B .{8y −x =37y −x =−4C .{y −8x =−37y −x =−4D .{8y −x =37y −y =4 6.(3分)如图,⊙O 的半径为6cm ,四边形ABCD 内接于⊙O ,连结OB 、OD ,若∠BOD=∠BCD ,则劣弧BD̂的长为( )A .4πB .3πC .2πD .1π7.(3分)在台风来临之前,有关部门用钢管加固树木(如图),固定点A 离地面的高度AC=m ,钢管与地面所成角∠ABC =∠a ,那么钢管AB 的长为( )A .m cosaB .m •sin aC .m •cos aD .m sina8.(3分)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)分解因式:16x 4﹣1= .。
2020年吉林省长春市中考数学一模试卷
中考数学一模试卷一、选择题(本大题共6小题,共18.0分)1.如图,该几何体的俯视图是()A. B. C. D.2.下列事件是随机事件的是()A. 人长生不老B. 明天是2月30日C. 一个星期有七天D. 2020年奥运会中国队将获得45枚金牌3.已知反比例函数y=的图象的两支分别在第二、四象限内,那么k的取值范围是()A. k>-B. k>C. k<-D. k<4.在Rt△ABC中,∠C=90°,sin A=,则cos B的值为()A. B. C. D.5.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=50°,则∠BCD的度数为()A. 30°B. 35°C. 40°D. 45°6.如图,在平行四边形ABCD中,点E在边DC上,连接AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是()A. FC:FB=1:3B. CE:CD=1:3C. CE:AB=1:4D. AE:AF=1:2.二、填空题(本大题共8小题,共24.0分)7.点(-2,5)关于原点对称的点的坐标是______.8.在Rt△ABC中,∠C=90°,如果AB=6,cos A=,那么AC=______.9.抛物线y=5(x-4)2+3的顶点坐标是______.10.若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是______.11.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,则的值为______.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为8,则这个反比例函数的解析式为______.13.如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为______.14.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为______.三、解答题(本大题共12小题,共84.0分)15.计算:sin30°+3tan60°-cos245°.16.如图,一位测量人员,要测量池塘的宽度AB的长,他过A、B两点画两条相交于点O的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.17.如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,tan∠DBC=,且BC=6,AD=4.求cos A的值.18.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)若点C(-3,12)是抛物线上的另一点,求点C关于对称轴为对称的对称点D的坐标.19.A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF.(2)求CF的长.21.重庆是一座美丽的山坡,某中学依山而建,校门A处,有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米远的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米.(1)求斜坡AB的坡度i.(2)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)22.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.23.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.24.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过OB的中点E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.25.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.26.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2,直线y=x-2经过点C,交y轴于点G.(1)求C,D坐标;(2)已知抛物线顶点y=x-2上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.(3)将(2)中抛物线沿直线y=x-2平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:从几何体的上面看可得两个同心圆,故选:D.找到从几何体的上面看所得到的图形即可.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.【答案】D【解析】解:A、人长生不老是不可能事件;B、明天是2月30日是不可能事件;C、一个星期有七天是必然事件;D、2020年奥运会中国队将获得45枚金牌是随机事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】C【解析】解:∵函数y=的图象分别位于第二、四象限,∴3k+1<0,解得k<-故选:C.先根据函数y=的图象分别位于第二、四象限列出关于k的不等式,求出k的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.4.【答案】C【解析】解:设∠A、∠B、∠C所对的边分别为a、b、c,由于sin A==,∴cos B==故选:C.根据锐角三角函数的定义即可求出答案.本题考查互余的三角函数关系,解题的关键是正确理解锐角三角函数的定义,本题属于基础题型.5.【答案】C【解析】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=50°,∴∠DAB=90°-50°=40°,∴∠BCD=∠DAB=40°.故选:C.先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,进而可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6.【答案】C【解析】解:∵在平行四边形ABCD中,∴AD∥BC,∴△ECF∽△ADE,∵AD=3CF,A、FC:FB=1:4,错误;B、CE:CD=1:4,错误;C、CE:AB=1:4,正确;D、AE:AF=3:4.错误;故选:C.由四边形ABCD是平行四边形得AD∥BC,证△ECF∽△ADE,进而判断即可.本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【答案】(2,-5)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-2,5)关于原点过对称的点的坐标是(2,-5).故答案为:(2,-5).根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,比较简单.8.【答案】2【解析】解:如图所示.∵在Rt△ABC中,∠C=90°,AB=6,cos A=,∴cos A==,∴AC=AB=×6=2,故答案为2.利用锐角三角函数定义表示出cos A,把AB的长代入求出AC的长即可.此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.9.【答案】(4,3)【解析】【分析】此题考查二次函数的性质,掌握顶点式y=a(x-h)2+k中,顶点坐标是(h,k)是解决问题的关键.根据顶点式的坐标点直接写出顶点坐标.【解答】解:∵y=5(x-4)2+3是抛物线解析式的顶点式,∴顶点坐标为(4,3).故答案为(4,3).10.【答案】k≤1且k≠0【解析】解:∵关于x的一元二次方程kx2-2x+1=0有实数根,∴△=b2-4ac≥0,即:4-4k≥0,解得:k≤1,∵关于x的一元二次方程kx2-2x+1=0中k≠0,故答案为:k≤1且k≠0.根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.【答案】【解析】解:∵l1∥l2∥l3,∴=,∵=,∴=;故答案为:.直接利用平行线分线段成比例定理进而得出=,再将已知数据代入求出即可.此题主要考查了平行线分线段成比例定理,得出=是解题的关键.12.【答案】y=-【解析】解:连接OA,如图所示.设反比例函数的解析式为y=(k≠0).∵AB⊥y轴,点P在x轴上,∴△ABO和△ABP同底等高,∴S△ABO=S△ABP=|k|=8,解得:k=±16.∵反比例函数在第二象限有图象,∴k=-16,∴反比例函数的解析式为y=-.故答案为:y=-.连接OA,设反比例函数的解析式为y=(k≠0),根据△ABO和△ABP同底等高,利用反比例函数系数k的几何意义结合△ABP的面积为4即可求出k值,再根据反比例函数在第二象限有图象,由此即可确定k值,此题得解.本题考查了反比例函数系数k的几何意义以及反比例函数图象,根据反比例函数系数k 的几何意义找出|k|=4是解题的关键.13.【答案】π【解析】【分析】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为π.14.【答案】(2,-4)【解析】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴-=2,∴a=-,∴抛物线的表达式为:y=-x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,-4),故答案为:(2,-4).根据抛物线对称轴列方程求出a,即可得到抛物线解析式,再根据抛物线解析式写出顶点坐标,设对称轴与x轴的交点为E,求出∠OAE=∠EOP,然后根据锐角的正切值相等列出等式,再求解得到PE,然后利用勾股定理列式计算即可得解.本题是二次函数综合题型,主要利用了二次函数的对称轴公式,二次函数图象上点的坐标特征,锐角三角函数的定义,正确的理解题意是解题的关键.15.【答案】解:原式=+3×-()2=+3-=3.【解析】根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.16.【答案】解:∵=,∠AOB=∠EOD(对顶角相等),∴△AOB∽△EOD,∴==,∴=,解得AB=111.6米.所以,可以求出A、B之间的距离为111.6米.【解析】先判定出△AOB和△EOD相似,再根据相似三角形对应边成比例计算即可得解.本题考查了相似三角形的应用,主要利用了相似三角形的判定与相似三角形对应边成比例的性质.17.【答案】解:在Rt△DBC中,∵∠C=90°,BC=6,∴tan∠DBC==.∴CD=8.∴AC=AD+CD=12在Rt△ABC中,由勾股定理得AB=,∴cos A=.【解析】先解Rt△DBC,求出DC的长,然后根据AC=AD+DC即可求得AC,再由勾股定理得到AB,最后再求cos A的值即可.本题主要考查了解直角三角形.熟练掌握三角函数的定义是解题的关键.18.【答案】解:(1)设抛物线的解析式是:y=a(x-1)2-4,根据题意得:a(3-1)2-4=0解得:a=1.则函数的解析式是:y=(x-1)2-4.(2)设点C关于对称轴为对称的对称点D的横坐标是m,则=1解得:m=5则点D的坐标是(5,12).【解析】(1)已知顶点,和经过的一个点,利用待定系数法即可求解;(2)关于对称轴为对称的对称点纵坐标相同,横坐标的平均数是对称轴的值,据此即可求解.本题主要考查了待定系数法求函数解析式,理解关于对称轴对称的两点坐标之间的关系是解决本题的关键.19.【答案】解:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P==,乙获胜的情况有2种,P==,所以,这样的游戏规则对甲乙双方不公平.【解析】(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比20.【答案】(1)证明:∵EF⊥BE,∴∠EFB=90°,∴∠DEF+∠AEB=90°.∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°,∴∠DEF=∠ABE,∴△ABE∽△DEF.(2)解:∵AD=12,AE=8,∴DE=4.∵△ABE∽△DEF,∴=,∴DF=,∴CF=CD-DF=6-=.【解析】(1)由同角的余角相等可得出∠DEF=∠ABE,结合∠A=∠D=90°,即可证出△ABE∽△DEF;(2)由AD、AE的长度可得出DE的长度,根据相似三角形的性质可求出DF的长度,将其代入CF=CD-DF即可求出CF的长.本题考查了相似三角形的判定与性质以及矩形的性质,解题的关键是:(1)利用同角的余角相等找出∠DEF=∠ABE;(2)利用相似三角形的性质求出DF的长度.21.【答案】解:(1)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴AB的坡度i==1:2.4;(2)在Rt△BCF中,BF==,在Rt△CEF中,EF==,∵BE=4米,∴BF-EF═-=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【解析】(1)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(2)在Rt△BCF中,BF==,在R t△CEF中,EF==,得到方程BF-EF=-=4,解得CF=16,即可求得求DC=21.本题考查了解直角三角形的应用-仰角和俯角问题,解直角三角形的应用-坡度和坡比问题,正确理解题意是解题的关键.22.【答案】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(-6,4).【解析】(1)作出A、C的对应点A1、C1即可解决问题;(2)作出A、B、C的对应点A2、B2、C2即可;本题考查作图-位似变换、旋转变换等知识,解题的关键是熟练掌握位似变换和旋转变换的性质,所以中考常考题型.23.【答案】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE,∵BF=6,∴BH=3,在Rt△BHO中,OB=5,∴OH==4,∴CE=4.【解析】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.(1)连接OE,证明∠OEA=90°即可;(2)连接OF,过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,利用垂径定理和勾股定理计算出OH 的长,进而求出CE 的长.24.【答案】解:(1)∵矩形OABC 的顶点B 的坐标是(4,2),E 是矩形ABCD 的对称中心,∴点E 的坐标为(2,1),∵代入反比例函数解析式得=1,解得k =2,∴反比例函数解析式为y =,∵点D 在边BC 上,∴点D 的纵坐标为2,∴y =2时,=2,解得x =1,∴点D 的坐标为(1,2);(2)∵D 的坐标为(1,2),B (4,2),∴BD =3,OC =2.∵点E 是OB 的中点,∴S △DOE =S △OBD =××3×2=;(3)如图,设直线与x 轴的交点为F ,矩形OABC 的面积=4×2=8, ∵矩形OABC 的面积分成3:5的两部分,∴梯形OFDC 的面积为×8=3, 或×8=5, ∵点D 的坐标为(1,2),∴若(1+OF )×2=3, 解得OF =2,此时点F 的坐标为(2,0), 若(1+OF )×2=5, 解得OF =4,此时点F 的坐标为(4,0),与点A 重合,当D (1,2),F (2,0)时,, 解得, 此时,直线解析式为y =-2x +4,当D (1,2),F (4,0)时,, 解得.此时,直线解析式为y=-x+,综上所述,直线的解析式为y=-2x+4或y=-x+.【解析】(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)根据点D的坐标求出BD的长,再由点E是OB的中点可知S△DOE=S△OBD,由此可得出结论;(3)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.本题考查的是反比例函数综合题,涉及到矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(3)难点在于要分情况讨论.25.【答案】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3-3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t-1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.【解析】本题考查了相似性的综合,用到的知识点是相似三角形的性质和判定、平行四边形的性质、解直角三角形、勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力,是一道综合性较强的题,有一定难度.(1)连结AQ、MD,根据平行四边形的对角线互相平分得出AP=DP,代入求出即可;(2)根据已知得出△AMP∽△DQP,再根据相似三角形的性质得出=,求出AM的值,从而得出在P、Q运动的过程中,总有CQ=AM;(3)根据已知条件得出BN=MN,再根据BM=AB+AM,由勾股定理得出BN=MN=(1+t),根据四边形ABCD是平行四边形,得出MN⊥AD,设四边形ANPM的面积为y,得出y=×AP×MN,假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,得出t2+t=×3×,最后进行整理,即可求出t的值.26.【答案】解:(1)令y=2,2=x-2,解得x=4,则OA=4-3=1,∴C(4,2),D(1,2);(2)由二次函数对称性得,顶点横坐标为=,令x=,则y=×-2=,∴顶点坐标为(,),∴设抛物线解析式为y=a(x-)2+,把点D(1,2)代入得,a=,∴解析式为y=(x-)2+,即,∴M(0,)又∵C(4,2),∴直线CM的解析式为y=过点Q作QH⊥x轴交直线CM于点H设Q(m,m2-m+),则H(m,-m+)∴S△MCQ==所以当m=2时,S△MCQ最大=,此时Q(2,)(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0)∴可设解析式为y=(x-m)2+m-2,①若FG=EG时,FG=EG=2m,则F(0,2m-2),代入解析式得+m-2=2m-2,得m=0(舍去),m=-,此时所求的解析式为:y=(x-+)2+3-;②若GE=EF时,FG=2m,则F(0,2m-2),代入解析式得:m2+m-2=2m-2,解得m=0(舍去),m=,此时所求的解析式为:y=(x-)2-;③若FG=FE时,∵平移后抛物线的顶点在y轴右侧,∴∠GEF为钝角,∴此种情况不存在.【解析】(1)先令y=2求出x的值,故可得出OA的长,根据正方形的性质即可得出C、D的坐标;(2)由二次函数对称性得出其顶点坐标,设抛物线解析式为y=a(x-)2+,把点D(1,2)代入求出a的值,故可得出二次函数的解析式,得出点M的坐标.利用待定系数法求出直线CM的解析式,再根据三角形的面积即可得出结论;(3)设顶点E在直线上运动的横坐标为m,则E(m,m-2)(m>0),故可设解析式为y=(x-m)2+m-2,再分FG=EG,GE=EF及FG=FE三种情况进行讨论.本题考查的是二次函数综合题,涉及到轴对称的性质、二次函数图象上点的坐标特点等知识,难度较大.。
2020年吉林省长春市南关区东北师大附中明珠学校中考数学一模试卷
中考数学一模试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.实数2019的相反数是()A. 2019B. -2019C.D.2.据统计,第15中国(长春)国际汽车博览会成交额约为6 058 000 000,6 058 000 000这个数用科学记数法表示为()A. 60.58×1010B. 6.058×1010C. 6.058×109D. 6.058×1083.把多项式a3-a分解因式,结果正确的是()A. a(a2-1)B. a(a-1)2C. a(a+1)2D. a(a+1)(a-1)4.下列几何体中,主视图和俯视图都为矩形的是()A. B. C. D.5.不等式组的解集在数轴上表示为()A. B.C. D.6.一元二次方程2x2-4x+1=0的根的情况是()A. 没有实数根B. 只有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根7.如图,直线y=x+b与直线y=kx+4交于点(,,则关于x的不等式x+b>kx+4的解集是()A. x>B. x≥C. x<D. x≤8.如图,在平面直角坐标系中,过反比例函数y=(k<0,<0)的图象上一点A作AB⊥x轴于B,连结AO,过点B作BC∥AO交y轴于点C.若点A的纵坐标为4,且tan∠BCO=,则k的值为()A. -6B. -12C. -24D. 24二、填空题(本大题共6小题,共18.0分)9.写出一个比5大且比6小的无理数______.10.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为______.11.如图,AB∥CD.若∠ACD=82°,∠CED=29°,则∠ABD的大小为______度.12.如图,海面上B、C两岛分别位于A岛的正东和正北方向,A岛与C岛之间的距离约为36海里,B岛在C岛的南偏东43°,A、B两岛之间的距离约为______海里(结果精确到0.1海里)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】13.如图,在平面直角坐标系中,抛物线y=-1的顶点为A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=______.14.在数学课上,老师提出如下问题:已知:直线l和直线外的一点P(如图1)求作:过点P作直线PQ⊥l于点Q小华的作法如下:如图2,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作∠APB的平分线,交直线l于点Q.直线PQ即为所求作.老师说:“小华的作法正确”请回答:小华第二步作图的依据是______.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:(x+1)2+x(x-2),其中x=-.四、解答题(本大题共9小题,共72.0分)16.一个不透明的口袋中装有三个小球,上面分别标有数字3、4、5,这些小球除数字不同外其余均相同.(1)从口袋中随机摸出一个小球,小球上的数字是偶数的概率是______;(2)从口袋中随机摸出一个小球,记下数字后放回,再随机摸出一个小球,记下数字,请用画树状图(或列表)的方法,求两次摸出的小球上的数字都是奇数的概率.17.如图,在⊙O中,点C为OB的中点,点D为弦AB的中点,连结CD并延长,交过点A的切线于点E.求证:AE⊥CE.18.甲、乙两名同学做中国结.已知甲每小时比乙少做6个中国结,甲做30个中国结所用的时间与乙做45个中国结所用的时间相同,求甲每小时做中国结的个数.19.如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.(1)求证:四边形ACDE为平行四边形.(2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.20.张老师计划通过步行锻炼身体,她用运动手环连续记录了6天的运动情况,并用统计表和统计图记录数据:日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672492755436648步行距离(公里) 6.8 3.1 3.4 4.3卡路里消耗(千卡)1577991127燃烧脂肪(克)20101216(1)请你将手环记录的4月5日和4月6日的数据(如图①)填入表格(2)请你将条形统计图(如图②)补充完整(3)张老师这6天平均每天步行约______公里,张老师分析发现每天步行距离和消耗的卡路里近似成正比例关系,她打算每天消耗的卡路里至少达到100千卡,那么每天步行距离大约至少为______公里(精确到0.1公里)21.某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a米/秒的速度匀速跑,一段时间后提高速度,以米/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学跑的路程为s (米),乙同学所用的时间为t(秒),s与t之间的函数图象如图所示.(1)乙同学起跑的速度为______米/秒;(2)求a、b的值;(3)当乙同学领先甲同学60米时,直接写出t的值是______.22.【感知】如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”【探究】如图②,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长【应用】如图③(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB′;(2)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______.23.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2.点P从点A出发,以每秒个单位长度的速度向终点C运动,点Q从点B出发,以每秒2个单位长度的速度向终点A运动,连接PQ,将线段PQ绕点Q顺时针旋转90°得到线段QE,以PQ、QE为边作正方形PQEF.设点P运动的时间为t秒(t>0)(1)点P到边AB的距离为______(用含t的代数式表示)(2)当PQ∥BC时,求t的值(3)连接BE,设△BEQ的面积为S,求S与t之间的函数关系式(4)当E、F两点中只有一个点在△ABC的内部时,直接写出t的取值范围24.在平面直角坐标系中,已知抛物线y=x2-2mx-3m(1)当m=1时,①抛物线的对称轴为直线______,②抛物线上一点P到x轴的距离为4,求点P的坐标③当n≤x≤时,函数值y的取值范围是-≤y≤2-n,求n的值(2)设抛物线y=x2-2mx-3m在2m-1≤x≤2m+1上最低点的纵坐标为y0,直接写出y0与m之间的函数关系式及m的取值范围.答案和解析1.【答案】B【解析】解:实数2019的相反数是:-2009.故选:B.直接利用相反数的定义进而得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】C【解析】解:6.058×109=1.76×105,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:原式=a(a2-1)=a(a+1)(a-1),故选:D.原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.【答案】B【解析】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.分别确定四个几何体从正面和上面看所得到的视图即可.此题主要考查了简单几何体的三视图,注意所有的看到的棱都应表现在三视图中.5.【答案】A【解析】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选:A.求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.6.【答案】D【解析】解:∵△=(-4)2-4×2×1=8>0,∴方程有两个不相等的实数根,故选:D.直接计算判别式的值,然后根据判别式的意义判断根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.7.【答案】A【解析】解:关于x的不等式x+b>kx+4的解集是x>.故选:A.写出直线y=x+b在直线y=kx+4上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.【答案】C【解析】解:∵AB⊥x轴,∴AB∥OC,∵BC∥AO,∴四边形OABC是平行四边形,∴∠OAB=∠BCO.∵tan∠BCO=,∴tan∠OAB==,又AB=4,∴OB=6,∴A(-6,4).∵点A在反比例函数y=(k<0,<0)的图象上,∴k=-6×4=-24.故选:C.先证明四边形OABC是平行四边形,得出∠OAB=∠BCO,那么tan∠OAB==tan∠BCO=,由AB=4,求出OB=6,得到A(-6,4),代入y=,即可求出k的值.本题考查了反比例函数图象上点的坐标特征,平行四边形的判定与性质,锐角三角函数定义,难度适中.求出A点坐标是解题的关键.9.【答案】3【解析】解:∵25<27<36,∴5<3<6,故答案为:3.由于25<27<36,则5<3<6,即可得到满足条件的无理数.本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.10.【答案】,【解析】解:根据题意得:,故答案为:,根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.11.【答案】69【解析】解:∵∠ACD=82°,∠CED=29°,∴∠CDE=180°-82°-29°=69°,∵AB∥CD,∴∠ABD=∠CDE=69°,故答案为:69根据三角形内角和得出∠CDE,进而利用平行线的性质解答即可.此题考查平行线的性质,关键是根据三角形内角和得出∠CDE.12.【答案】33.5【解析】解:由题意得,AC=36海里,∠ACB=43°.在Rt△ABC中,∵∠A=90°,∴AB=AC•tan∠ACB=36×0.93≈33.5海里.故A、B两岛之间的距离约为33.5海里.故答案为:33.5.在Rt△ABC中,利用正切函数的定义可得AB=AC•tan∠ACB,将数值代入计算即可求解.本题考查了解直角三角形的应用-方向角问题,正切函数的定义,路程、速度与时间自己的关系,难度一般.理解方向角的定义,将实际问题转化为数学问题是解决问题的关键.13.【答案】3【解析】【分析】本题考查了二次函数的性质,二次函数图象上点的坐标特征,函数和方程的关系,等腰直角三角形的性质,根据根与系数的关系列出关于m的方程是解题的关键.作AD⊥BC于D,易证得BC=2AD=2(m+1),设B(x1,m),C(x2,m),解方程-1=m,根据根与系数的关系得出x1+x2=6,x1•x2=5-4m,即可得出(x2-x1)2+4x1x2=36,即(2+2m)2+4(5-4m)=36,解关于m的方程求得即可.【解答】解:如图,作AD⊥BC于D,∵AB=AC,∠BAC=90°,∴AD=CD=BD,∴BC=2AD,∵抛物线y=-1的顶点为A,∴A(3,-1),∵点P(0,m),∴AD=1+m,∴BC=2+2m,设B(x1,m),C(x2,m),∴x2-x1=2+2m,解-1=m整理得:x2-6x+5-4m=0,∴x1+x2=6,x1•x2=5-4m,∴(x2-x1)2+4x1x2=36,∴(2+2m)2+4(5-4m)=36,解得m=3和m=-1(舍去),故答案为3.14.【答案】等腰三角形的顶角角平分线也是底边上的高【解析】解:小华第二步作图的依据是:等腰三角形的顶角角平分线也是底边上的高,故答案为:等腰三角形的顶角角平分线也是底边上的高,利用等腰三角形的三线合一的性质即可解决问题.本题考查作图-复杂作图,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】解:原式=x2+2x+1+x2-2x=2x2+1,当x=-时,原式=4+1=5.【解析】原式利用完全平方公式,以及单项式乘以多项式法则计算得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:(1);(2)画树形图得:由树形图可知:两次摸出的小球所标数字都是奇数的概率为.【解析】【分析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意球是放回还是不放回.用到的知识点为:概率=所求情况数与总情况数之比.(1)直接利用概率公式计算可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字都是奇数的情况,再利用概率公式求解即可求得答案.【解答】解:(1)从口袋中随机摸出一个小球,小球上的数字是偶数的概率是,故答案为;(2)见答案.17.【答案】证明:连接OA,∵AE是⊙O的切线,∴OA⊥AE,∵点C为OB的中点,点D为弦AB的中点,∴CE∥OA,∴AE⊥CE.【解析】连接OA,根据切线的性质得到OA⊥AE,根据三角形中位线定理得到CE∥OA,根据平行线的性质证明即可.本题考查的是切线的性质、三角形中位线定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.【答案】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得=,解得:x=12,经检验:x=12是原方程的根,答:甲每小时做12个.【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲乙的工作时间,可列方程.本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AE∥CD,∵AE=AB,∴AE=CD,∴四边形ACDE为平行四边形.(2)解:由(1)得:四边形ACDE为平行四边形,∴AD、CE互相平分,∵AB=AC,CD=AB,∴AC=CD,∴四边形ACDE是菱形,∴AD⊥CE,∴四边形ACDE的面积=AD×CE=×4×6=12.【解析】(1)由平行四边形的性质得出AB∥CD,AB=CD,即AE∥CD,证出AE=CD,由平行四边形的判定定理即可得出四边形ACDE为平行四边形.(2)由平行四边形的性质得出AD、CE互相平分,证出AC=CD,证出四边形ACDE 是菱形,得出AD⊥CE,由菱形面积公式即可求出结果.本题考查了平行四边形的判定与性质、菱形的判定与性质、等腰三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明四边形ACDE为菱形是解题的关键.20.【答案】(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为10.0公里,卡路里消耗为234千卡,燃烧脂肪30克;填表如下:日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672492755436648768915638步行距离(公里) 6.8 3.1 3.4 4.35.010.0卡路里消耗(千卡)1577991127142234燃烧脂肪(克)201012161830(2)条形图补充如下:(3)5.4 3.9.【解析】解:(1)见答案;(2)见答案;(3)张老师这6天平均每天步行约:(6.8+3.1+3.4+4.3+5.0+10.0)÷6=32.6÷6≈5.4(公里).张老师这6天一共消耗卡路里157+79+91+127+142+234=830(千卡),则步行时每公里约消耗卡路里830÷32.6≈25.5(千卡),故张老师打算每天消耗的卡路里至少达到100千卡,那么每天步行距离大约至少为≈3.9(公里).故答案为:5.4,3.9.(1)依据手环记录中的数据,即可补全表格;(2)依据统计图中的数据,即可补全统计图;(3)用这6天步行数的和除以6可得平均每天步行数,根据每天步行距离和消耗的卡路里近似成正比例关系,即可预估张老师每天步行距离.本题考查的是条形统计图,用样本去估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.【答案】(1)5 ;(2)a=300÷100=3,b=100+(800-300)×(3×)=200,即a的值是3,b的值是200;(3) 30或160【解析】解:(1)由图可得,乙同学起跑的速度为:300÷6=5米/秒,故答案为:5;(2)见答案;(3)当0<t≤60时,(5-3)t=60,得t=30,当60<t≤140时,乙的速度为:(620-300)÷(140-60)=4米/秒,∵在前100秒,甲的速度小于乙的速度,则30秒到100秒中他们的距离会越来越大,当t=100时,甲跑的路程为300米,乙跑的路程为:300+(100-60)×4=460米,当t=140时,甲跑的路程为300+(140-100)×5=500米,乙跑的路程为:300+(140-60)×4=620,∵620-500>60,∴在100≤t≤140中,甲乙之间的距离大于60米,当140<t<230时,乙的速度为:(800-620)÷(230-140)=2米/秒,620+2(t-140)-[300+(t-100)×5]=60,解得,t=160,故答案为:30或160.(1)根据函数图象中的数据可以求得乙起跑的速度;(2)根据题意和函数图象中的数据可以求得a、b的值;(3)根据题意可以求得乙同学领先甲同学60米时对应的t的值.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】【探究】y=-x+1,令y=0,则x=3,令x=0,则y=1,故点A、B的坐标为(3,0)、(0,1),点C坐标(,),直线CD的表达式为:y=3x+b,将点C坐标代入上式得:=3×+b,解得:b=-4,直线CD的表达式为:y=3x-4,令y=0,则x=,则BD=DA=3-=;【应用】(1)AB′的位置,如下图所示;(2)【解析】解:【探究】见答案;【应用】(1)见答案;(2)点B′(4,3),过AB′的中点作AB′的垂直平分线,点P是该平分线上一点,由【探究】同理可得AB′垂直平分线的表达式为:y=-x+,设点P(m,-m+),点A(3,0),AP==,∵10>0,故AP有最小值,当m=-=3.5时,AP有最小值,当m=4或3时,-m+不是整数,当m=5时,-m+=1,是整数,当m=2时,-m+=2,是整数,故点P(5,2)或(2,2)时,AP有最小值,当点P坐标为(5,2)时,AP=2,当点P坐标为(2,2)时,AP=,∵,故当点P(2,2)时,AP的最小值为,故答案为.【分析】【探究】求出直线CD的表达式为:y=3x-4,令y=0,则x=,则BD=DA=3-=,即可求解;【应用】(1)AB′的位置,如下图所示;(2)由【探究】同理可得AB′垂直平分线的表达式为:y=-x+,AP==,即可求解.本题考查的是二次函数综合运用,涉及到中垂线的性质、二次函数一般性质等,其中【应用】(2)中,利用二次函数对称性,确定点P的横、纵坐标均为整数时,AP的最小值是本题的新颖点.23.【答案】(1)t;(2)根据题意,AP=,PC=2-,BQ=2t,AQ=4-2t,当PQ∥BC时,,即,解得t=1(3)由(1)可知,E,F运动过程可分为两个阶段当0<t<1,如图,连接BE,作PH⊥AB交AB于点H,作GE⊥AB交AB于点G,∵∠HPG+∠PQH=∠HQP+∠GQE=90°,∵,∴△PHQ≌△QGE(AAS),∴AH=BQ=2t,HQ=GE=4-4t,S==,当1≤t≤2,连接BE,作PH⊥AB交AB于点H,作GE⊥AB交AB于点G,同理可证∴△PHQ≌△QGE(AAS),∴AH=BQ=2t,HQ=GE=4t-4,S===4t2-4t,∵S>0,∴t≠0,∴S=;(4)①当点E在AC上时,过点P作PM⊥AB于点M,过点E作EN⊥AB于点N,如图,QB=2t,易得:△NEQ≌△MQP,此时NE=MQ=4-4t,QN=PM=t,∴NB=QN=t,AN=4-t,∵△ANE∽△ABC,∴,即,解得t=;当点F在AC上时,PQ⊥AC,点E在△ABC内部,QB=2t,AP=,AQ=4-2t,△APQ~△ABC,,解得t=∴当点E、F两点中只有点E在△ABC内部时,;②由(2)可知,当PQ∥BC时,E在AB上,此时t=1;当点F在边AB上时,过点P作PO⊥AB于点O,如下图:由(1)可知PO=t,则由正方形的性质可知PO=QO=FO=t,由(3)可知OQ=4t-4,∴4t-4=t,解得t=,∴当点E、F两点中只有点F在△ABC内部时,;综上所述,当E、F两点中只有一个点在△ABC的内部时,或.【解析】解:(1)如图,作PH⊥AB交AB于点H,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,AC=.根据题意,AP=,∵∠A=∠A,∠B=∠AHP,∴△AHP~△ABC,∴,即,解得PH=t,即点P到边AB的距离为t.故答案为:t(2)见答案;(3)见答案;(4)见答案.【分析】(1)作PH⊥AB交AB于点H,根据相似三角形,求出PH即可;(2)根据平行线成比例性质,当PQ∥BC时,,即可求出t;(3)分为0<t<1和1≤t≤2两种情况,进行讨论;(4)分为2种情况进行讨论,当点E在△ABC内部和当点F在△ABC内部时,分别进行讨论.本题考查了正方形和直角三角形的性质,熟练掌握四边形和三角形性质是解答此题的关键.24.【答案】解:(1)①x=1;②当y=4时,x2-2x-3=4,解得:x1=1-2,x2=1+2,∴点P的坐标为(1-2,4)或(1+2,4);当y=-4时,x2-2x-3=-4,解得:x1=x2=1,∴点P的坐标为(1,-4).综上所述:点P的坐标为(1-2,4),(1+2,4)或(1,-4).③∵当n≤x≤时,y值随x值的增大而减小,且函数值y的取值范围是-≤y≤2-n,∴n2-2n-3=2-n,解得:n1=,n2=(舍去),∴n的值为.(2)∵抛物线的对称轴为直线x=-=m,∴分三种情况考虑:①当m<2m-1,即m>1时,如图1,在2m-1≤x≤2m+1上,y值随x值的增大而增大,∴y0=(2m-1)2-2m(2m-1)-3m=-5m+1;②当2m-1≤m≤2m+1,即-1≤m≤1时,如图2,y0=m2-2m•m-3m=-m2-3m;③当m>2m+1,即m<-1时,如图3,在2m-1≤x≤2m+1上,y值随x值的增大而减小,∴y0=(2m+1)2-2m(2m+1)-3m=-m+1.综上所述:y0=.【解析】解:(1)当m=1时,抛物线的解析式为y=x2-2x-3.①抛物线的对称轴为直线x=-=1.故答案为:x=1.②见答案;③见答案;(2)见答案.【分析】(1)代入m=1,求出二次函数解析式;①利用二次函数的性质,求出抛物线的对称轴;②由点P到x轴的距离可得出点P的纵坐标,再利用二次函数图象上点的坐标特征即可求出点P的坐标;③利用二次函数的性质找出关于n的一元二次方程,解之取其负值即可得出结论;(2)分m<2m-1,2m-1≤m≤2m+1及m>2m+1三种情况考虑,利用二次函数的性质结合函数图象,即可找出y0与m之间的函数关系式.本题考查了二次函数的性质、二次函数图象上点的坐标特征、解一元二次方程以及二次函数的最值,解题的关键是:(1)①利用二次函数的性质,找出抛物线的对称轴;②利用二次函数图象上点的坐标特征,求出点P的坐标;③利用二次函数的性质及二次函数图象上点的坐标特征,找出关于n的一元二次方程;(2)分m<2m-1,2m-1≤m≤2m+1及m>2m+1三种情况,找出y0与m之间的函数关系式.。
2020年吉林省长春市中考数学一模试卷 (解析版)
2020年吉林省长春市中考数学一模试卷一、选择题(共8小题).1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣12.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×1033.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.10.因式分解:m2﹣4m+4=.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为.12.如图,一束平行太阳光线照射到正五边形上,则∠1=.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为cm.14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.﹣1【分析】直接利用数轴得出结果即可.解:数轴上蝴蝶所在点表示的数可能为﹣1,故选:D.2.今年初,党中央、国务院对湖北共派遣援鄂抗役医务人员42000多人,经过全国人民的共同努力,取得了这场战役的胜利:42000这个数用科学记数法表示为()A.42×103B.4.2×104C.4.2×105D.4.2×103【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数﹣1.解:42000=4.2×104,故选:B.3.某立体图形的左视图如图所示,则该立体图形不可能()A.B.C.D.【分析】找到各选项中从左面看不是所给视图的立体图形即可.解:各选项中只有选项D从左面看得到从左往右2列正方形的个数依次为2,1,1,故选:D.4.不等式2x﹣2≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】利用不等式的基本性质,移项后再除以2,不等号的方向不变.解:移项,得2x≤2,系数化为1,得x≤1,不等式的解集在数轴上表示如下:.故选:D.5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.解:设有x匹大马,y匹小马,根据题意得,故选:C.6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.【分析】如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.7.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为32°,缆车速度为每分钟50米,从山脚下A到达山顶B缆车需要16分钟,则山的高度BC为()A.800•sin32°B.C.800•tan32°D.【分析】作BC⊥AC,垂足为C,在Rt△ABC中,利用三角函数解答即可.解:如图,作BC⊥AC,垂足为C.在Rt△ABC中,∠ACB=90°,∠BAC=32°,AB=50×16=800(米),sin∠BAC=,∴BC=sin∠BAC•AB=800•sin32°.故选:A.8.如图,点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上.若OA⊥OB,=2,则a的值为()A.﹣4B.4C.﹣2D.2【分析】过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函数系数k的几何意义得出S△AOM:S△BON=1:(﹣a),进而可得出结论.解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=(x>0),y=(x<0)的图象上,∴S△AOM:S△BON=1:(﹣a),∴AO:BO=1:,∵OB:OA=2,∴a=﹣4,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.解:原式=2﹣=.故答案为:.10.因式分解:m2﹣4m+4=(m﹣2)2.【分析】原式利用完全平方公式分解即可.解:原式=(m﹣2)2.故答案为:(m﹣2)2.11.关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,则k的值为﹣.【分析】根据关于x的方程2x2﹣3x﹣k=0有两个相等的实数根可得△=(﹣3)2﹣4×2(﹣k)=0,求出k的值即可.解:∵关于x的方程2x2﹣3x﹣k=0有两个相等的实数根,∴△=(﹣3)2﹣4×2(﹣k)=0,∴9+8k=0,∴k=﹣.故答案为:﹣.12.如图,一束平行太阳光线照射到正五边形上,则∠1=30°.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.13.图①表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10cm.图②表示当钟面显示3点45分时,A点距桌面的高度为16cm,若钟面显示3点55分时,A点距桌面的高度为(16+3)cm.【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AD=10,进而得出A′C=16,从而得出FA″=3,得出答案即可.解:∵当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.∴AD=10,∵钟面显示3点45分时,A点距桌面的高度为16公分,∴A′C=16,∴AO=A″O=6,则钟面显示3点55分时,∠A″OA′=45°,∴FA″=3,∴A点距桌面的高度为:16+3(cm).故答案为:().14.如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.15.先化简,再求值(a﹣1)2﹣2a(a﹣1)+(2a+1)(2a﹣1),其中a=.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.解:原式=a2﹣2a+1﹣2a2+2a+4a2﹣1=3a2,当a=时,原式=3×5=15.16.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.【分析】首先根据题意列表求得所有等可能的结果与抽到的两张卡片上的数字之和为偶数的情况,再利用概率公式即可求得答案.解:根据题意,列表如下:1271238234978914所以P(两次抽取的卡片上数字之和为偶数)=.17.今年初,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.【分析】设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为1.4x 元/个,根据数量=总价÷单价结合第二次比第一次多购进了10000个,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设该爱心人士第一次购进口罩的单价为x元/个.则第二次购进口罩的单价为 1.4x 元/个,依题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意.答;该爱心人士第一次购进口罩的单价为5元/个.18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.【分析】(1)连接OD,如图,由切线的性质得到OD⊥BC,则OD∥AC,根据平行线的性质得到∠CAD=∠ODA,由∠ODA=∠OAD,所以∠CAD=∠DAE;(2)由(1)知,∠FAE=50°,由弧长公式可得答案.解:(1)如图,连结OD,∵⊙O与边BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠C=∠ODB=90°,∴OD∥AC.∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)如图,连结OF,∵AD平分∠BAC,且∠CAD=25°,∴12﹣3=9,∴∠EOF=100°,∴的长为.19.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为18;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.20.图①,图②,图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上,在图①,图②,图③恰定的网格中按要求画图.(1)在图①中,画出格点C,使AC=BC,用黑色实心圆点标出点C所有可能的位置.(2)在图②中,在线段AB上画出点M,使AM=3BM.(3)在图③中,在线段AB上画出点P,使AP=2BP.(保留作图痕迹)要求:借助网格,只用无刻度的直尺,不要求写出画法.【分析】(1)根据线段垂直平分线的性质画图即可;(2)根据相似三角形的性质,构造相似三角形即可;(3)由相似三角形的性质,构造相似三角形即可.解:(1)如图①所示,点C即为所求;(2)如图②所示,点M即为所求;(3)如图③所示,点P即为所求.21.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y(米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为20米/分,无人机在40米的高度上飞行了3分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.【分析】(1)利用图象信息,根据速度=计算即可解决问题;(2)利用待定系数法即可解决问题;(3)求出无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),分两种情形构建方程即可解决问题;解:(1)无人机上升的速度为=20米/分,无人机在40米的高度上飞行了6﹣1﹣2=3分.故答案为20,3;(2)设y=kx+b,把(9,60)和(12,0)代入得到,解得,∴无人机下落过程中,y与x之间的函数关系式为y=﹣20x+240.(3)易知无人机从40米高度到60米高度的函数关系式为y=20x﹣60(5≤x≤6),由20x﹣60=50,解得x=5.5,由﹣20x+240=50,解得x=9.5,综上所述,无人机距地面的高度为50米时x的值为5.5和9.5.22.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA =PB(请写出完整的证明过程)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线l、m、n分别是边AB、BC、AC的垂直平分线.求证:直线l、m、n交于一点.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=18,则DE的长为6.【分析】教材呈现:如图①中,证明△PAC≌△PBC即可解决问题.定理应用:(1)如图②中,设直线l、m交于点O,连结AO、BO、CO.利用线段的垂直平分线的判定和性质解决问题即可.(2)连接BD,BE,证明△BDE是等边三角形即可.【解答】教材呈现:解:如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)证明:如图②中,设直线l、m交于点O,连结AO、BO、CO.∵直线l是边AB的垂直平分线,∴OA=OB,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(2)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=18,∴DE=AC=6.故答案为6.23.在△ABC中,AC=5,BC=4,∠B=45°,点D在边AB上,且AD=3,动点P 从点A出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上做正方形PDMN,设点P运动的时间为t秒,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长.(2)当点N落在△ABC的边上时,求t的值.(3)求S与t的函数关系式.(4)当点P在线段AD上运动时,做点N关于CD的对称点N',当N'与△ABC的某一个顶点的连线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°,BC=4,∴CD′=BD′=4,∴AD′===3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3;(2)①如图2中,当点N在AC上时,∵MN∥AD,∴,∴,解得t=;②如图3中,当点N在BC上时,∵MN∥BD,∴,∴,解得t=5;综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,S=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣t+;②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,S=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,S=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,S=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴,则,解得t=1;如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴,∴,解得t=;如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“伴随点”.例如:点(5,6)的“伴随点”为点(5,6);点(﹣5,6)的“伴随点”为点(﹣5,﹣6).(1)直接写出点A(2,1)的“伴随点”A′的坐标.(2)点B(m,m+1)在函数y=kx+3的图象上,若其“伴随点”B′的纵坐标为2,求函数y=kx+3的解析式.(3)点C、D在函数y=﹣x2+4的图象上,且点C、D关于y轴对称,点D的“伴随点”为D′.若点C在第一象限,且CD=DD′,求此时“伴随点”D′的横坐标.(4)点E在函数y=﹣x2+n(﹣1≤x≤2)的图象上,若其“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),直接写出实数n的取值范围.【分析】(1)由题意即可求解;(2)分m≥0、m<0两种情况分别求解即可;(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,CD=DD′,即可求解;(4)通先分段表示出y',进而确定出最大值,最后用m的范围建立不等式组,即可得出结论.解:(1)由题意得:点A'的坐标为(2,1)(2)①当m≥0时,m+1=2,m=1∴B(1,2)∵点B在一次函数y=kx+3图象上,∴k+3=2,解得:k=﹣1∴一次函数解析式为y=﹣x+3②m<0时,m+1=﹣2,m=﹣3∴B(﹣3,﹣2)∵点B在一次函数y=kx+3图象上,∴﹣3k+3=﹣2解得:k=一次函数解析式为y=x+3.(3)设点C的横坐标为n,点C在函数y=﹣x2+4的图象上,∴点C的坐标为(n,﹣n2+4),∴点D的坐标为(﹣n,﹣n2+4),D′(﹣n,n2﹣4)∵CD=DD′,∴2n=2(﹣n2+4),解得:n=;∵点C在第一象限,∴D′的横坐标为;(4)当﹣1≤x≤0时,y'=x2﹣n,此时,﹣n≤y'≤1﹣n,当0≤x≤2时,y'=﹣x2+n,此时,n﹣4≤y'≤n,当n≥1﹣n时,即:n≥,y'的最大值是n,①∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤n≤3,当n<时,y'最大值为1﹣n,②∵“伴随点”E′的纵坐标y′的最大值为m(1≤m≤3),∴1≤1﹣n≤3,∴﹣2≤n≤0,∴n的取值范围应为1≤n≤3或﹣2≤n≤0.。
2020年吉林省吉林市中考数学一模试卷(含答案解析)
2020年吉林省吉林市中考数学⼀模试卷(含答案解析)2020年吉林省吉林市中考数学⼀模试卷⼀、选择题(本⼤题共6⼩题,共12.0分)1.下列计算错误的是()A. (?1)2018=1B. ?3?2=?1C. (?1)×3=?3D. 0×2017×(?2018)=02.下图是⼀个由4个相同的正⽅体组成的⽴体图形,它的左视图是()A. B. C. D.3.计算(x2)2的结果是()A. x2B. x4C. x6D. x84.如图,直线AB//CD,如果∠1=70°,那么∠BOF的度数是()A. 70°B. 100°C. 110°D. 120°5.如图,△ABC是⊙O的内接三⾓形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A. 45°B. 85°C. 90°D. 95°6.如图,在菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线交于点F,若∠BCF=90°,则∠D的度数为()A. 30°B. 45°C. 60°D. 75°⼆、填空题(本⼤题共8⼩题,共24.0分)7.近年来,党和国家⾼度重视精准扶贫,收效显著,据不完全统计约有65000000⼈脱贫,65000000⽤科学记数法表⽰为_______.8.因式分解:2a3?32a=______.=______.9.计算:2√48÷√6?2√2?110.不等式组{x?2≤1x+3>2的解集为______.11.在墙壁上固定⼀根横放的⽊条,则⾄少需要2枚钉⼦,正确解释这⼀现象的数学知识是______.12.如图∠AOB=30°,点C在OB上,OC=8,以点C为圆⼼、R为半径的圆与OA相切,则R=______.13.已知点A(4,x),B(y,?3),若AB//x轴,且线段AB的长为5,则xy=______.14.如图,矩形纸⽚ABCD中,AB=6,BC=9,将矩形纸⽚ABCD折叠,使点C与点A重合,则折痕EF的长为________.三、解答题(本⼤题共12⼩题,共84.0分)15.先化简,再求值:(1a+2?1)÷a2?1a+2,其中a=√3+116.《孙⼦算经》是中国传统数学中最重要的著作,其中记载了这样⼀个问题:“今有⽊,不知长短.引绳度之,余绳四尺五,屈绳量之,不⾜⼀尺.问⽊长⼏何?”译⽂:“⽤⼀根绳⼦去量⼀根长⽊,绳⼦还剩余4.5尺,将绳⼦对折再量长⽊,长⽊还剩余1尺,问长⽊长多少尺?”17.⼀个不透明的⼝袋中有三个⼩球,上⾯分别标有数字1,2,3,每个⼩球除数字外其他都相同.甲先从袋中随机取出1个⼩球,记下数字后放回;⼄再从袋中随机取出1个⼩球记下数字.(1)⽤画树形图或列表的⽅法,求取出的两个⼩球上的数字之和为3的概率;(2)求取出的两个⼩球的数字之和⼤于4的概率.18.已知:如图,在Rt△ABC中,∠B=90°,AE⊥CA,且AE=BC,点D在AC上,且AD=AB,求证:DE//AB.19.如图所⽰,在边长为1个单位的正⽅形⽹格中建⽴平⾯直⾓坐标系,△ABC的顶点均在格点上.(1)△A1B1C1与△ABC关于y轴对称,画出△A1B1C1(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1;并直接写出点A2、B2的坐标.20.每年11⽉9⽇为消防宣传⽇,今年“119”消防宣传⽉活动的主题是“全民参与,防治⽕灾”.为响应该主题,吴兴区消防⼤队到某中学进⾏消防演习.图1是⼀辆登⾼云梯消防车的实物图,图2是其⼯作⽰意图,AC是可以伸缩的起重臂,其转动点A离地⾯BD的⾼度AH为5.2m.当起重臂AC长度为16m,张⾓∠HAC为130°时,求操作平台C离地⾯的⾼度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)21.某校组织九年级的三个班级进⾏趣味数学竞赛活动,各班根据初赛成绩分别选拔了10名同学参加决赛,决赛成绩(满分:10分)如下表所⽰:班级决赛成绩(单位:分)⼀班55677888910⼆班46777999 10 10三班567789991010(1)把下表补充完整(单位:分),其中a=______,b=______,c=______;班级平均分中位数众数⼀班7.3a8⼆班7.88b三班c8.59(2)8统计量进⾏说明;(3)为了在全市竞赛中取得好成绩,你认为应选派哪个班级代表学校去参加全市的竞赛?为什么?22.如图1,直线y=kx?2k(k<0)与y轴交于点A,与x轴交于点B,AB=2√5.(1)求A、B两点的坐标.(2)如图2,以AB为边,在第⼀象限内画出正⽅形ABCD,并求直线CD的解析式.23.甲、⼄两组同时加⼯某种零件,⼄组⼯作中有⼀次停产更换设备,更换设备后,⼄组的⼯作效率是原来的2倍.两组各⾃加⼯零件的数量y(件)与时间x(时)的函数图象如图所⽰.(1)直接写出甲组加⼯零件的数量y与时间x之间的函数关系式______;(2)求⼄组加⼯零件总量a的值;(3)甲、⼄两组加⼯出的零件合在⼀起装箱,每满300件装⼀箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?24.如图1,直⾓三⾓形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.25. 如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm.点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.26. 23.已知⼆次函数y =x 2+bx ?34的图像经过点(2,54).(1)求这个⼆次函数的函数解析式;(2)若抛物线交x 轴于A ,B 两点,交y 轴于C 点,顶点为D ,求以A 、B 、C 、D 为顶点的四边形⾯积.。
2020年吉林省长春市新区中考数学一模试卷 (解析版)
2020年吉林省长春市新区中考数学一模试卷一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.02.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010 3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a25.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1 7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5二、填空题(共6小题,每小题3分,共18分)9.(3分)比较大小:2(填“>”、“<”或“=”)10.(3分)分解因式:a2﹣9=.11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是(写出一个即可).12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为度.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加米.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起*4247*4752*49坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为千米/时,乙车的速度为千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为;②用含t的代数式表示线段PQ的长为.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.参考答案一、选择题(共8小题).1.(3分)如图,数轴上被遮挡住的整数的相反数是()A.1B.﹣3C.﹣1D.0【分析】被遮挡的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,再求相反数即可.解:被遮住的左边是整数﹣2,右边是0,因此被遮挡的整数是﹣1,﹣1的相反数是1,故选:A.2.(3分)据长春海关统计数据显示,2020年一季度,全省出口总额为7 810 000 000元,7 810 000 000这个数用科学记数法表示为()A.0.781×103B.7.81×109C.78.1×109D.7.81×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:7 810 000 000=7.81×109.故选:B.3.(3分)如图是由6个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:这个立体图形的俯视图有两层,上层三个正方形,下层一个正方形,右齐.故选:D.4.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【分析】根据同底数幂的乘法、幂的乘方、同底数幂的除法分别计算可得.解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.5.(3分)《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x只,怪鸟为y只,可列方程组为()A.B.C.D.【分析】根据怪兽和怪鸟的头数及脚数,即可得出关于x,y的二元一次方程,此题得解.解:依题意,得:.故选:C.6.(3分)小致利用测角仪和皮尺测量学校旗杆的高度,如图,小致在D处测得顶端P的仰角∠PDC=α,D到旗杆的距离CD=5米,测角仪BD的高度为1米,则旗杆PA的高度表示为()A.5tanα+1B.5sinα+1C.5cosα+1D.+1【分析】根据题意可得,四边形ABDC是矩形,根据锐角三角函数即可表示旗杆PA的高度.解:根据题意可知:四边形ABDC是矩形,∴∠PCD=90°,AC=BD=1,在Rt△PCD中,PC=CD tanα=5tanα,∴PA=PC+AC=5tanα+1.答:旗杆PA的高度表示为5tanα+1.故选:A.7.(3分)如图,在△ABC中,按以下步骤作图:①以B为圆心,适当长度为半径作弧,交AB于点D,交BC于点E;②分别以D,E为圆心,以大于长为半径作弧,两弧交于点M;③作射线BM交AC于点N,若AB=BN,∠A=74°,则∠C的大小为()A.32°B.42°C.37°D.40°【分析】依据等腰三角形的性质即可得到∠ABN的度数,再根据角平分线的定义以及三角形内角和定理,即可得到∠C的度数.解:∵AB=BN,∠A=74°,∴∠ANB=74°,∠ABN=180°﹣2×74°=32°,由作图痕迹可得,BN平分∠ABC,∴∠ABC=2∠ABN=64°,∴△ABC中,∠C=180°﹣∠A﹣∠ABC=180°﹣74°﹣64°=42°,故选:B.8.(3分)如图,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴,函数y=(k >0,x>0)的图象经过OA的中点D,与直角边AB交于点C,若点A的坐标为(4,3),则△AOC的面积为()A.5B.3C.D.4.5【分析】直接根据点D是OA的中点即可求出D点坐标,由D点坐标即可求出反比例函数的解析式,故可得出△OBC的面积,由S△AOC=S△AOB﹣S△OBC即可得出结论.解:∵D是OA的中点,点A的坐标为(4,3),∴D(2,),把D(2,)代入反比例函数y=的图象上,∴k=2×=3,∵点C在反比例函数y=的图象上,∴S△OBC=×3=,∴S△AOC=S△AOB﹣S△OBC=×4×3﹣=.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)比较大小:<2(填“>”、“<”或“=”)【分析】首先利用二次根式的性质可得2=,再比较大小即可.解:∵2=,∴<2,故答案为:<.10.(3分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).11.(3分)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的值可以是0(写出一个即可).【分析】先利用判别式的意义得到22﹣4k>0,再解不等式确定k的范围,然后在此范围内取一个值即可.解:根据题意得△=22﹣4k>0,解得k<1.所以k可以取0.故答案为0.12.(3分)如图,直线PQ∥MN,将一个有30°角的三角尺按如图所示的方式摆放,若∠CBA=43°,则∠PAC的大小为107度.【分析】根据平行线的性质得到∠BAP=137°,由角的和差关系得到∠PAC的大小即可.解:∵PQ∥MN,∴∠BAP=180°﹣∠CBA=137°,∴∠PAC=137°﹣30°=107°.故答案为:107.13.(3分)如图,在矩形ABCD中,AB=3,AD=5,E是AB上一点,连结CE,将△BCE沿CE翻折,使点B的对应点F落在边AD上,则△AEF的面积为.【分析】根据矩形的性质得到∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,根据折叠的性质得到CF=CB=5,EF=BE,根据勾股定理得到DF==4,AE =,于是得到结论.解:∵在矩形ABCD中,AB=3,AD=5,∴∠A=∠B=∠D=90°,CD=AB=3,BC=AD=5,∵将△BCE沿CE翻折,使点B的对应点F落在边AD上,∴CF=CB=5,EF=BE,∴DF==4,∴AF=AD﹣DF=5﹣4=1,∵EF2=AE2+AF2,∴(3﹣AE)2=AE2+12,解得:AE=,∴△AEF的面积=AE•AF=×1=故答案为:.14.(3分)如图是一座截面边缘为抛物线的拱形桥,当拱顶离水面2米高时,水面l为4米,则当水面下降1米时,水面宽度增加(2﹣4)米.【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.解:建立平面直角坐标系如图:则抛物线顶点C坐标为(0,2),设抛物线解析式y=ax2+2,将A点坐标(﹣2,0)代入,可得:0=4a+2,解得:a=﹣,故抛物线解析式为y=﹣x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,将y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度为2米,故水面宽度增加了(2﹣4)米,故答案为:(2﹣4).三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣3,b=.【分析】直接利用完全平方公式以及单项式乘以多项式计算得出答案.解:a(a﹣2b)+(a+b)2=a2﹣2ab+a2+b2+2ab=2a2+b2,当a=﹣3,b=时,原式=2a2+b2=2×(﹣3)2+()2=23.16.(6分)一个不透明的口袋中有三个小球,上面分别标有数字﹣2、0、1,每个小球除数字不同外其余均相同,小致先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求小致两次摸出的小球的数字之和是负数的概率.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是负数的概率.解:列表得:﹣201和﹣2﹣4﹣2﹣10﹣2011﹣112共有9种等情况数,其中小致两次摸出的小球的数字之和是负数的有5种,则小致两次摸出的小球的数字之和是负数的概率是.17.(6分)某市为落实“2020脱贫攻坚政策”,甲工程队计划将该市的900套老旧房屋进行翻新改造,为尽快完成任务,实际每天翻新改造的数量是原来计划的1.5倍,结果提前30天完成任务,求甲工程队原计划每天翻新改造老旧房屋的数量.【分析】设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x套,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设甲工程队原计划每天翻新改造老旧房屋x套,则实际每天翻新改造老旧房屋1.5x 套,依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:甲工程队原计划每天翻新改造老旧房屋10套.18.(7分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的直线交OP于点C,且∠CBP=∠ADB.(1)求证:BC为⊙O的切线;(2)若OA=2,AB=,则线段BP的长为.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=,故答案为:.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上,在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求长写出画法.(1)在图①中以线段AB为边画一个直角△ABM;(2)在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.【分析】(1)根据网格即可在图①中以线段AB为边画一个直角△ABM;(2)根据网格和勾股定理即可在图②中以线段CD为边画一个轴对称△CDN,使其面积为5;(3)根据网格和梯形面积公式即可在图③中以线段EF为边画一个轴对称四边形EFGH,使其面积为6.解:(1)图①中直角△ABM即为所求;(2)图②中△CDN即为所求;(3)图③中四边形EFGH即为所求.20.(7分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9;②一分钟仰卧起坐成绩的中位数为45;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.17.77.57.57.37.27.0 6.5一分钟仰卧起坐*4247*4752*49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【分析】(1)①根据题意和表格中的数据可以求得m的值;②根据条形统计图中数据和中位数的定义可以得到这组数据的中位数;(2)①根据题意和表格中的数据可以求得全年级女生实心球成绩达到优秀的人数;②根据题意和表格中的数据可以解答本题.解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.21.(8分)甲、乙两车沿同一条道路从A地出发向1200km外的B地输送紧急物资,甲在途中休息了3小时,休息前后的速度不同,最后两车同时到达B地,如图甲、乙两车到A地的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)甲车休息前的行驶速度为120千米/时,乙车的速度为80千米/时;(2)当9≤x≤15,求甲车的行驶路程y与x之间的函数关系式;(3)直接写出甲出发多长时间与乙在途中相遇.【分析】(1)根据甲在途中休息了3小时,结合函数图象可求出b的值,进而由路程÷时间=速度,便可求得结果;(2)用待定系数法进行解答便可;(3)设甲出发x小时与乙在途中相遇,分两种情况:在甲中途休息前相遇,甲中途休息时相遇.分别列出一元一次方程解答.解:(1)由题意知,b=9﹣3=6,∴甲车休息前的行驶速度为:600÷(b﹣1)=600÷(6﹣1)=120(千米/时),乙车的速度为:1200÷15=80(千米/时),故答案为:120;80;(2)设当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为y=kx+b(k≠0),把(9,600),(12,1200)代入得,,解得,,∴当9≤x≤15时,甲车的行驶路程y与x之间的函数关系式为:y=100x﹣300;(3)设甲出发x小时与乙在途中相遇,根据题意得,①在甲途中休息前相遇,有120x﹣80x=80×1,解得,x=2;②在甲途中休息时相遇,有80(x+1)=600,解得,x=6.5,综上,甲出发2小时或6.5小时与乙在途中相遇.22.(9分)问题呈现:下图是小致复习全等三角形时遇到的一个问题并引发的思考,请帮助小致完成以下学习任务.如图,OC平分∠AOB,点P在OC上,M、N分别是OA、OB上的点,OM=ON,求证:PM=PN.小致的思考:要证明PM=PM,只需证明△POM≌△PON即可.请根据小致的思路,结合图①,解出完整的证明过程.结论应用:(1)如图②,在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上点P,求证:PC=PD.(2)在(1)的条件下,如图③,若AB=10,tan∠PAB=,当△PBC有一个内角是45°时,△PAD的面积是8或.【分析】问题呈现:由“SAS”可证△MOP≌△NOP,可得PM=PN;结论应用:(1)在AB上截取AE=AD,连接PE,由“SAS”可证△ADP≌△AEP,△BPC≌△BPC,可得PD=PE=PC;(2)延长AP,BC交于点H,由“ASA”可证△ADP≌△HCP,可得CP=DP,AD=CH,S△ADP=S△CPH,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.解:问题呈现:∵OC平分∠AOB,∴∠AOC=∠BOC,又∵OP=OP,OM=ON,∴△MOP≌△NOP(SAS),∴PM=PN;结论应用:(1)如图②,在AB上截取AE=AD,连接PE,∵AP平分∠DAB,∴∠DAP=∠BAP,又∵AD=AE,AP=AP,∴△ADP≌△AEP(SAS),∴DP=PE,∠D=∠AEP,∵AB=AD+BC,AB=AE+BE,∴BE=BC,∵BP平分∠ABC,∴∠ABP=∠CBP,又∵BP=BP,∴△BPC≌△BPE(SAS),∴CP=PE,∠PCB=∠PEB,∴PC=PD=PE;(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∴∠DAC+∠ABC=180°,∵∠DAB的平分线和∠ABC的平分线交于CD边上点P,∴∠DAC=2∠PAB,∠ABC=2∠ABP,∴2∠PAB+2∠ABP=180°,∴∠PAB+∠ABP=90°,∴∠APB=90°,∵AB=10,tan∠PAB==,∴PA=2PB,∵PA2+PB2=AB2,∴PB=2,PA=4,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=4,∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=×BP×PH=×BP×CN+×PH×CM,∴CM=CN=,∴S△PCH=×4×==S△ADP;若∠PCB=45°时,如图⑤,过点P作PF⊥BC于F,∵∠PAB=∠H,∴tan H=tan∠PAB=,∴,∴FH=2PF,∵PF2+FH2=PH2=80,∴PF=4,FH=8,∵PF⊥BC,∠BCP=45°,∴∠PCB=∠FPC=45°,∴CF=PF=4,∴CH=4,∴S△ADP=S△CPH=×4×4=8,故答案为:8或.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=12,AB=20.点P从点B出发,以每秒5个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以相同速度沿AB向终点B运动.过点P作PQ⊥AB于点Q,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与△ABC重叠部分图形的面积为S(S >0),点P的运动时间为t秒.(1)①BC的长为16;②用含t的代数式表示线段PQ的长为3t.(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.【分析】(1)①由勾股定理可求解;②由锐角三角函数可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由锐角三角函数可求解.解:(1)①∵∠ACB=90°,AC=12,AB=20,∴BC===16,故答案为:16;②∵sin B=,∴,∴PQ=3t,故答案为:3t;(2)在Rt△PQB中,BQ==4t,当点M与点Q相遇,20=4t+5t,∴t=,当0<t<时,MQ=AB﹣AM﹣BQ,∴20﹣4t﹣5t=10,∴t=,当<t≤时,MQ=AM+BQ﹣AB,∴4t+5t﹣20=10,∵>,∴不合题意舍去,综上所述:当QM的长度为10时,t的值为;(3)当0<t<时,S=3t×(20﹣9t)=﹣27t2+60t;当<t≤时,如图,∵四边形PQMN是矩形,∴PN=QM=9t﹣20,PQ=3t,PN∥AB,∴∠B=∠NPE,∴tan B=tan∠NPE,∴,∴NE==﹣15,∴S=3t×(9t﹣20)﹣×(9t﹣20)×(﹣15)=﹣;(4)如图,若NQ⊥AC,∴NQ∥BC,∴∠B=∠MQN,∴tan B=tan∠MQN,∴=,∴t=,如图,若NQ⊥BC,∴NQ∥AC,∴∠A=∠BQN,∴tan A=tan∠BQN,∴,∴,∴t=综上所述:当t=s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.24.(12分)如图,在平面直角坐标系中,矩形ABCD的四个顶点坐标分别是A(﹣1,﹣1)、B(4,﹣1)、C(4,1),D(﹣1,1).函数y=(m为常数).(1)当此函数的图象经过点D时,求此函数的表达式.(2)在(1)的条件下,当﹣2≤x≤2时,求函数值y的取值范围.(3)当此函数的图象与矩形ABCD的边有两个交点时,直接写出m的取值范围.(4)记此函数在m﹣1≤x≤m+1范围内的纵坐标为y0,若存在1≤y0≤2时,直接写出m的取值范围.【分析】(1)根据矩形的性质结合平面直角坐标系先确定点D的坐标,再判断出经过点D的函数,代入点D的坐标求出m的值即可;(2)当﹣2≤x≤2时分﹣2≤x<和≤x≤2两种情况,结合函数图象进一步确定函数的取值范围;(3)首先确定当x<m时,y有最小值为﹣(x﹣m)2+3,再根据m的不同取值,结合图象与矩形的边的交点个数确定m的取值范围;(4)根据x的不同取值,分别得到关于m的不等式(组),求解不等式(组)即可.解:(1)由题意得,点D的坐标为(﹣1,1),当x=﹣1时,y=,∴函数的图象不经过点D,∴函数y=x2﹣2mx+2m+2(x<m)的图象经过点D,∴(﹣1)2﹣2m×(﹣1)+2m+2=1,解得,,∴;(2)由(1)可知,当﹣2≤x≤2时,分段讨论:①当﹣2≤x<时,y=x2+x+1,该二次函数的对称轴为直线x=﹣,且开口向上,如图,∴当﹣2≤x<时,y随x的增大而减小,当x=﹣2时,y取最大值,最大值=4﹣2+1=3;当x=﹣时(取不到),y最小值=;所以,<y≤3;②当﹣≤x≤2时,,二次函数的对称轴为x=2,开口向下,如图所示,∴﹣≤x≤2时,y随x的增大而增大,当x=﹣时,y最小值=﹣,当x=2时,y最大值是1,∴.综上,当﹣2≤x<时,<y≤3;当﹣≤x≤2时,;∴y的取值范围是:;(3)过点E(0,﹣1),F(2,1),B(4,﹣1)三点,=(x﹣m)2﹣(m﹣1)+3恒过(1,3),对称轴为直线x=m,在x<m时,y随x的增大而减小,y有最小值,最小值=m2﹣2m2+2m+2=﹣(m﹣1)2+3.①若m≤0,x≥0时,则y1与矩形的边有3个交点,不符合题意;②若0<m≤2时,y1与矩形的边有F、B两个交点,即y2与矩形的边无交点,∴y最小值≥1,∴﹣(m﹣1)2+3≥1,解得,,即:0<m≤2;③若2<m≤4,x≥m时,y1与矩形的边的交点只有B,∴y2有且只有一个交点,∴﹣1≤﹣(m﹣1)2+3<1,解得,﹣1≤﹣(m﹣1)2+3<1,解得:或,∴,④若m>4,y1与矩形的边无交点,则y2与矩形的边有两个交点,即:当x=4时,y2<1,有两个交点,即16﹣8m+2m+2<1,∴m>,∴m>4,综上,m的取值范围是:0<m≤2或或m>4;(4)①当m≤x≤m+1时,,若存在1≤y0≤2,仅有y0=1,即x=2时,y1=1,∴m≤2≤m+1,∴1≤m≤2;②当m﹣1≤x <m时,,若存在1≤y 0≤2,则,即满足最小值小于2,最大值大于等于1即可,∴,∴或;综合①、②得:或.。
初中数学吉林省长春市南关区中考模拟数学一模考试卷含答案解析
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣2的绝对值是( )A.﹣2 B.2 C.﹣ D.试题2:用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.试题3:下列运算正确的是( )A.a•a2=a2 B.(a2)3=a6 C.a2+a3=a6 D.a6÷a2=a3试题4:不等式组的解集在数轴上表示正确的是( )评卷人得分A. B. C. D.试题5:如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于EF 长为半径作圆弧,两条圆弧交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC的大小是( )A.20° B.25° C.30° D.40°试题6:如图,在Rt△ABC中,∠C=90°,AC<BC.斜边AB的垂直平分线交边BC于点D.若BD=5,CD=3,则△ACD的周长是( )A.7 B.8 C.12 D.13试题7:如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是( )A.130° B.120° C.110° D.100°试题8:如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )A. B. C. D.试题9:化简:﹣=__________.试题10:某种商品n千克的售价是m元,则这种商品8千克的售价是__________元.试题11:不解方程,判断方程2x2+3x﹣2=0的根的情况是__________.试题12:如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于A、B两点,点P(1,m)在△AOB的形内(不包含边界),则m的值可能是__________.(填一个即可)试题13:如图,在正方形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是__________度.试题14:如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是__________度.试题15:先化简,再求值:(),其中x=.试题16:在一个不透明的口袋里装有2个红球、1个黄球和1个白球,它们除颜色不同外其余都相同.从口袋中随机摸出2个球,请你用画树状图或列表法的方法,求摸到的两个球都是红球的概率.试题17:某市政工程队承担着1200米长的道路维修任务.为了减少对交通的影响,在维修了240米后通过增加人数和设备提高了工程进度,工作效率是原来的4倍,结果共用了6小时就完成了任务.求原来每小时维修多少米?试题18:如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.试题19:2015年3月22日是第二十三届“世界水日”,宣传主题是“水与可持续发展”.小明同学为了解本校同学对“世界水日”的了解情况,从本校七、八、九年级学生中各随机抽取100人进行问卷调查,这些同学都交回了调查问卷,并都对“了解”和“不了解”这两个选项做了唯一的选择,小明根据所得数据绘制了统计图如下.根据相关信息,解答下列问题.(1)补全条形统计图.(2)求抽取的学生中了解“世界水日”的人数.(3)本校七、八、九年级各有学生500名,估计全校学生了解“世界水日”的人数.试题20:如图是某城市一座立交桥的引桥部分,桥面截面AB可以近似地看做Rt△ABC的斜边,桥面AB上路灯DE的高度为5m,已知坡角∠ABC为14°,求路灯DE的顶端D点到桥面AB的垂直距离(即DF的长,精确到0.1m).【参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25】试题21:某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.试题22:【发现问题】如图①,在△ABC中,分别以AB、AC为斜边,向△ABC的形外作等腰直角三角形,直角的顶点分别为D、E,点F、M、G分别为AB、BC、AC边的中点.求证:△DFM≌△MGE.【拓展探究】如图②,在△ABC中,分别以AB、AC为底边,向△ABC的形外作等腰三角形,顶角的顶点分别为D、E,且∠BAD+∠CAE=90°.点F、M、G分别为AB、BC、AC边的中点,若AD=5,AB=6,△DFM的面积为32,直接写出△MGE的面积.试题23:如图,在平面直角坐标系中,直线y=kx﹣3k(k>0)分别交x轴、y轴于点A、B.抛物线y=x2+(k﹣3)x﹣3k经过A、B 两点,点P在抛物线上,且在直线y=kx﹣3k(k>0)的下方,其横坐标为2k,连结PA、PB,设△PAB的面积为S.(1)求点P的坐标(用含k的代数式表示).(2)求S与k之间的函数关系式.(3)求S等于2时k的值.(4)求S取得最大值时此抛物线所对应的函数表达式.试题24:如图,在△ABC中,AC=BC=5cm,AB=6cm,CD⊥AB于点D.动点P、Q同时从点C出发,点P沿线CD做依次匀速往返运动,回到点C停止;点Q沿折线CA=AD向终点D做匀速运动;点P、Q运动的速度都是5cm/s.过点P作PE∥BC,交AB于点E,连结PQ.当点P、E不重合点P、Q不重合时,以线段PE∥BC,交AB于点E,连结PQ.当点P、E不重合且点P、Q不重合时,以线段PE、PQ为一组邻边作▱PEFQ.设点P运动的时间为t(s),▱PEFQ与△ABC重叠部分的面积为S(cm2).(1)用含t的代数式表示线段PE的长.(2)当点F在线段AB上时,求t的值.(3)当点Q在线段AB上运动时,求S与t之间的函数关系式.(4)在整个运动过程中,当▱PEFQ为矩形时,直接写出t的值.试题1答案:B【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.试题2答案:C【考点】简单组合体的三视图.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.试题3答案:B【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选B.【点评】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.试题4答案:B【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣1;由②得,x≤2,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:【点评】本题考查的是在数轴上表示一元一次不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.试题5答案:A【考点】作图—基本作图.【分析】根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.【解答】解:由题意可得:AH平分∠CAB,∵AB∥CD,∴∠C+∠CAB=180°,∵∠ACD=140°,∴∠CAB=40°,∵AH平分∠CAB,∴∠HAB=20°,∴∠AHC=20°.故选A.【点评】此题主要考查了平行线的性质,以及角平分线的作法,关键是掌握两直线平行,同旁内角互补,以及角平分线的做法.试题6答案:C【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到AD=BD,根据勾股定理求出AC的长,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴AD=BD=5,又CD=3,由勾股定理得,AC==4,∴△ACD的周长=AC+CD+AD=12,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.试题7答案:D【考点】圆内接四边形的性质;圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.试题8答案:C【考点】反比例函数图象上点的坐标特征;坐标与图形变化-平移.【分析】先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.试题9答案:.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.试题10答案:元.【考点】列代数式.【分析】先求出1千克商品的价格,再乘以8,即可解答.【解答】解:根据题意,得:,故答案为:.【点评】本题考查了列代数式,解决本题的关键是先求出1千克商品的价格.试题11答案:有两个不相等的实数根.【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=2,b=3,c=﹣2,∴△=b2﹣4ac=9+16=25>0,∴一元二次方程有两个不相等的实数根.故答案为:有两个不相等的实数根.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.试题12答案:1.(填一个即可)【考点】一次函数图象上点的坐标特征.【分析】先求出AB两点的坐标,进而可得出结论.【解答】解:∵直线y=﹣x+2分别交x轴、y轴于A、B两点,∴A(4,0),B(0,2),∴当点P在直线y=﹣x+2上时,﹣+2=m,解得m=,∵点P(1,m)在△AOB的形内,∴0<m<,∴m的值可以是1.故答案为:1.【点评】本题考查的是一次函数图象上点的坐标特征,熟知一次函数图象上图象上点的坐标一定适合此函数的解析式是解答此题的关键.试题13答案:66度.【考点】多边形内角与外角;等边三角形的性质.【分析】根据等边三角形的性质得到BF=BC,∠FBC=60°,由正五边形的性质得到AB=BC,∠ABC=108°,等量代换得到AB=BF,∠ABF=48°,根据三角形的内角和即可得到结论.【解答】解:∵△BCF是等边三角形,∴BF=BC,∠FBC=60°,∵在正方形ABCDE中,AB=BC,∠ABC=108°,∴AB=BF,∠ABF=48°,∴∠AFB=∠BAF==66°,故答案为:66.【点评】本题考查了正多边形的内角和,等边三角形的性质,等腰三角形的性质,熟记正多边形的内角的求法是解题的关键.试题14答案:80度.【考点】旋转的性质.【分析】由旋转的性质可知∠B=∠AB1C1,AB=AB1,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BB1A=∠AB1C1=40°,从而可求得∠BB1C1=80°.【解答】解:由旋转的性质可知:∠B=∠AB1C1,AB=AB1,∠BAB1=100°.∵AB=AB1,∠BAB1=100°,∴∠B=∠BB1A=40°.∴∠AB1C1=40°.∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.故答案为:80.【点评】本题主要考查的是旋转的性质,由旋转的性质得到△ABB1为等腰三角形是解题的关键.试题15答案:【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=÷(﹣)=÷=•=x2.当x=时,原式=()2=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.试题16答案:【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到的两个球都是红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,摸到的两个球都是红球的有2种情况,∴摸到的两个球都是红球的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.试题17答案:【考点】分式方程的应用.【分析】设原来每小时维修x米,则后来每小时维修4x米,等量关系是:原来维修240米所用时间+后来维修(1200﹣240)米所用时间=6小时,依此列出方程求解即可.【解答】解:设原来每小时维修x米.根据题意得+=6,解得x=80,经检验,x=80是原方程的解,且符合题意.答:原来每小时维修80米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.试题18答案:【考点】平行四边形的判定.【专题】证明题.【分析】首先利用全等三角形的判定方法得出△AEF≌△DEB(AAS),进而得出AF=BD,再利用一组对边平行且相等的四边形是平行四边形进而得出答案.【解答】证明:∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中∵,∴△AEF≌△DEB(AAS).∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形.【点评】此题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出△AEF≌△DEB是解题关键.试题19答案:【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)求得八年级的人数,补全条形统计图即可;(2)求出总人数乘以40%即可得到结果;(3)由500乘以学生了解“世界水日”的百分比即可得到结果.【解答】解:(1)八年级一共300×40%﹣60﹣20=40人;画图如下:(2)100×3×40%=120人;(3)500×3×40%=600人.【点评】此题考查了条形统计图,扇形统计图,关键是正确从扇形统计图和条形统计图中,对比两个图中得到所用的信息.试题20答案:【考点】解直角三角形的应用-坡度坡角问题.【分析】首先得到∠EDF=∠ABC=14°,然后在Rt△DEF中利用余弦的定义得到DF=DEcos∠EDF即可.【解答】解:在Rt△BEG和Rt△DEF中,∵∠BEG=∠DEF,∴∠EDF=∠ABC=14°,在Rt△DEF中,∵cos∠EDF=,∴DF=DEcos∠EDF=5×cos14°=5×0.97=4.85≈4.9m.答:路灯DE的顶端D点到桥面AB的垂直距离为4.9米.【点评】本题考查了解直角三角形的知识,解题的关键是能够从实际问题中整理出直角三角形并选择合适的边角关系求解.试题21答案:【考点】一次函数的应用.【分析】(1)根据函数图象可知点(0,15)和点(1,10)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以分别求得甲乙刚开始两端对应的函数解析式,联立方程组即可求得第一次相遇的时间;(3)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.【点评】本题考查一次函数的应用,解题的关键是能看懂题意,根据数形结合的数学思想,找出所求问题需要的条件.试题22答案:【考点】全等三角形的判定与性质;等腰直角三角形.【分析】【发现问题】根据等腰直角三角形的性质得到∠DFB=90°,DF=FA;∠EGC=90°,AG=GE,根据三角形的中位线的性质得到FM∥AC,MG∥AB,推出四边形AFMG是平行四边形,根据平行四边形的性质得到FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,即可得到结论;【拓展探究】根据三角形的中位线的性质得到FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,等量代换得到∠DFM=∠MGE,根据余角的性质得到∠1=∠3,根据三角函数的定义,推出,得到△DFM∽△MGE,根据相似三角形的性质即可得到结论.【解答】【发现问题】证明:∵△ADB是等腰直角三角形,F为斜边AB的中点,∴∠DFB=90°,DF=FA;∵△ACE是等腰直角三角形,G为斜边AC的中点,∴∠EGC=90°,AG=GE,∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴FM=AG,MG=FA,∠BFM=∠BAC,∠BAC=∠MGC,∴DF=MG,∠DFM=∠MGE,FM=GE,在△DFM与△MGE中,,∴△DFM≌△MGE.【拓展探究】∵点F、M、G分别为AB、BC、AC边的中点,∴FM∥AC,MG∥AB,FM=AC=AG,MG=AB=AF,∠MGC=∠BAC=∠BFM,∴∠DFM=∠MGE,∵∠1+∠2=90°∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,即,∴,∵∠DFM=∠MGE,∴△DFM∽△MGE,∴,∴S△MGE=18.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质.三角形的中位线的性质,等腰三角形的性质,证得△DFM∽△MGE是解题的关键.试题23答案:【考点】二次函数综合题.【分析】(1)把点P的横坐标2k代入抛物线y=x2+(k﹣3)x﹣3k,可求P的坐标(用含k的代数式表示).(2)过P点作PQ∥y轴交AB于点Q,过B点作BN⊥PQ于点N,过A点作AM⊥PQ于点M,可得P(2k,6k2﹣9k),Q(2k,2k2﹣3k),根据两点间的距离公式可得PQ,再根据S△PAB=S△PQB+S△PQA,可求S与k之间的函数关系式.(3)根据S等于2,可得关于k的方程,解方程可求k的值.(4)根据配方法可求S取得最大值时k的值,进一步得到抛物线所对应的函数表达式.【解答】解:(1)∵点P在抛物线y=x2+(k﹣3)x﹣3k上,且其横坐标为2k,∴y=4k2+(k﹣3)×2k﹣3k=6k2﹣9k,∴点P的坐标(2k,6k2﹣9k);(2)如图,过P点作PQ∥y轴交AB于点Q,过B点作BN⊥PQ于点N,过A点作AM⊥PQ于点M,则P(2k,6k2﹣9k),Q(2k,2k2﹣3k),则PQ=﹣4k2+6k),S△PAB=S△PQB+S△PQA=PQ•BN+PQ•AM=PQ(BN+AM)=PQ=﹣6k2+9k;(3)依题意有﹣6k2+9k=2,解得k1=,k2=;(4)S△PAB=﹣6k2+9k=﹣6(k﹣)2+,当k=时,△PAB面积最大值是,y=x2﹣x﹣.【点评】考查了二次函数综合题,解题的关键是熟练掌握两点间的距离公式,三角形面积,二次函数最值的知识点,同时涉及方程思想的应用,综合性较强,有一定的难度.试题24答案:【考点】相似形综合题.【专题】压轴题;数形结合.【分析】(1)根据题意,分两种情况:①当0<t<时;②当<t≤时;然后根据PE∥BC,可得,据此用含t 的代数式表示线段PE的长即可.(2)首先用含t的代数式表示出QF、QA,然后根据QA=QF,求出t的值是多少即可.(3)首先作PM⊥BC于点M,作QN⊥BC于点N,设▱PEFQ的高为h,分别用含t的代数式表示出PM、QN,进而用含t的代数式表示出h;然后根据三角形的面积的求法,求出S与t之间的函数关系式即可.(4)当▱PEFQ为矩形时,推得∠DQP=∠BCD,然后根据tan∠DQP=tan∠BCD==,可得,据此求出t的值是多少即可.【解答】解:(1)∵AC=BC=5cm,CD⊥AB于点D,∴点D是AB的中点,AD=6÷2=3(cm),∵AC=5cm,∴CD==(cm).①当0<t<时,如图1,∵PC=5t,∴PD=CD﹣PC=4﹣5t,∵PE∥BC,∴,∴PE==(4﹣5t)=5﹣t.②当<t≤时,如图2,,PD=5t﹣4,∵PE∥BC,∴,∴PE==(5t﹣4)=t﹣5.综上,可得PE=.(2)如图3,QF=PE=t﹣5∵CQ=5t,∴QA=AC﹣CQ=5﹣5t,∵PE∥BC,PE∥QF,∴QF∥BC,∴,∵AC=BC,∴QA=QF,∴5﹣5t=t﹣5,解得t=.(3)如图4,作PM⊥BC于点M,作QN⊥BC于点N,设▱PEFQ的高为h,∵sin∠PCM=,∴PM=PC•sin∠PCM=(8﹣5t)×=﹣3t,∵sin∠QBN==,∴QN=BQ•sin∠QBN=[6﹣(5t﹣5)]×=﹣4t,∴h=QN﹣PM=(﹣4t)﹣(﹣3t)=4﹣t,∴S==(t﹣5)×(4﹣t)=﹣t2+15t﹣10.(4)如图5,当▱PEFQ为矩形时,PD=5t﹣4,QD=8﹣5t,∵▱PEFQ为矩形,∴∠DQP+∠DEP=90°,∵∠B+BCD=90°,∠DEP=∠B,∴∠DQP=∠BCD,∴tan∠DQP=tan∠BCD==,∴,解得t=.【点评】(1)此题主要考查了相似形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了函数关系式的求法、矩形的性质和应用、三角函数的应用、三角形的面积的求法,要熟练掌握.。
2020年吉林省长春市南关区净月实验中学中考数学一模试卷
2020年吉林省长春市南关区净月实验中学中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.2019的相反数是()A. −2019B. 2019C. 12009D. −120092.据统计,长春市某区今年停车泊位计划施划35000个.35000这个数用科学记数法表示为()A. 35×104B. 3.5×104C. 3.5×105D. 0.35×1063.如图是由5个完全相同的小正方体组成的几何体,其左视图是()A.B.C.D.4.不等式3x≥−6的解集在数轴上表示为()A. B.C. D.5.一元二次方程2x2−5x−2=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根6.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A. 75°B. 85°C. 60°D. 65°7.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()A. B.C. D.8.如图,正方形ABCD的边长为5,点A的坐标为(−4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为()A. y=3x B. y=4xC. y=5xD. y=6x二、填空题(本大题共6小题,共18.0分)9.计算:√3×√6=______ .10.分解因式:m2n−4mn+4n=______.11.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为______ 米(用含α的代数式表示).12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为______.13.如图,正五边形ABCDE内接于⊙O,且⊙O的半径为5,则弧CD的长为______(结果保留π).14.在平面直角坐标系中,将二次函数y=−x2+x+6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示).当直线y=m与图象G有4个交点时,则m的取值范围是____.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:(x+1)2+x(x−2),其中x=−√2.四、解答题(本大题共9小题,共72.0分)16.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.17.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.18.图①、图②均是边长为1的小方形组成的5×5的网格,每个小方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②分别找到两个格点P、Q,连结PQ,交AB于点O.(1)在图①中,线段PQ垂直平分AB;(2)在图②中,使得BO=3√10,要求保留画图痕迹,标好字母.419.如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.20.央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.21.在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A 地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的函数图象如图所示.(1)甲车到达B地停留的时长为______小时.(2)求甲车返回A地途中y与x之间的函数关系式.(3)直接写出两车在途中相遇时x的值.22.如图,AD是△ABC的中线,过点C作直线CF//AD.【问题】如图①,过点D作直线DG//AB交直线CF于点E,连结AE,求证:AB=DE.【探究】如图②,在线段AD上任取一点P,过点P作直线PG//AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.【应用】在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.23.如图,矩形ABCD中,AB=4,AD=3,∠DAB的角平分线交边CD与点E,点P在射线AE上以每秒√2个单位长度的速度沿射线AE方向从点A开始运动,过点P作PQ⊥AB于点Q,以PQ为边向右作平行四边形PQMN,点N在射线AE上,且AP=PN.设P点运动时间为t秒.(1)PQ=______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)设平行四边形PQMN与矩形ABCD重合部分面积为S,当点P在线段AE上运动时,求S与t的函数关系式.(4)直接写出在点P、Q运动的过程中,整个图形中形成的三角形存在全等三角形时t的值(不添加任何辅助线).24. 对于某一函数给出如下定义:对于任意实数m ,当自变量x ≥m 时,函数y 关于x的函数图象为G 1,将G 沿直线x =m 翻折后得到的函数图象为G 2,函数G 的图象由G 1和G 2两部分共同组成,则函数G 为原函数的“对折函数”如函数y =x(x ≥2)的对折函数为y ={x(x ≥2)−x +4(x <2)(1)写出函数y =−2x +1(x ≥−1)的对折函数;(2)若函数y =2x −2(x ≥−32)的对折函数与x 轴交于点A ,B(点A 在点B 的左侧),与y 轴交于点C ,求△ABC 的周长;(3)若点P(m,5)在函数y =(x −1)2−4(x ≥−1)的对折函数的图象上,求m 的值;(4)当函数y =(x −1)2−4(x ≥n)的对折函数与x 轴有不同的交点个数时,直接写出n 的取值范围.答案和解析1.【答案】A【解析】【分析】此题主要考查了相反数,正确把握相反数的定义是解题关键.直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是:−2019.故选A.2.【答案】B【解析】解:35000这个数用科学记数法表示为3.5×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从左面看易得有一列有2个正方形.故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】A【解析】解;3x≥−6,x≥−2,故选:A.根据解不等式的步骤,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.本题考查了不等式的解集,从−2向右的方向,包括−2点,注意−2点用实心点表示.5.【答案】B【解析】【分析】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.先计算判别式的值,然后根据判别式的值判断方程根的情况.【解答】解:∵△=(−5)2−4×2×(−2)=41>0,∴方程有两个不相等的实数根.故选B.6.【答案】B【解析】解:如图所示,∵DE//BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3−∠A=115°−30°=85°,故选:B.先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.【答案】C【解析】解:当CD是AB的垂线时,△ACD∽△CBD.∵CD⊥AB,∴∠CDA=∠BDC=90°,∵∠ACB=90°,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD.根据作图痕迹可知,A选项中,CD是∠ACB的角平分线,不符合题意;B选项中,CD不与AB垂直,不符合题意;C选项中,CD是AB的垂线,符合题意;D选项中,CD不与AB垂直,不符合题意;故选:C.如果△ACD∽△CBD,可得∠CDA=∠BDC=90°,即CD是AB的垂线,根据作图痕迹判断即可.本题考查了相似三角形的判定,直角三角形的性质,熟练掌握相似三角形的判定是解题的关键.8.【答案】A【解析】【分析】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明△ABO和△BCE全等,根据全等三角形对应边相等可得OA=BE=4,CE=OB=3,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(−4,0),∴OA=4,∵AB=5,∴OB=√52−42=3,在△ABO和△BCE中,{∠OAB=∠CBE ∠AOB=∠BEC AB=BC,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE−OB=4−3=1,∴点C的坐标为(3,1),∵反比例函数y=kx(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=3x.故选:A.9.【答案】3√2【解析】解:原式=√3×6=√2×9=3√2,故答案为:3√2.根据二次根式的乘法,先把被开方数相乘,再进行二次根式的化简.本题考查了二次根式的乘除法,是基础知识比较简单,要识记.10.【答案】n(m−2)2【解析】解:m2n−4mn+4n,=n(m2−4m+4),=n(m−2)2.故答案为:n(m−2)2.先提取公因式n,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.【答案】7tanα【解析】【分析】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=7米,∠BAC=α,∴BCAC=tanα,∴BC =AC ·tanα=7tanα(米). 故答案为7tanα.12.【答案】{5x +2y =102x +5y =8【解析】解:根据题意得:{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组. 本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系. 13.【答案】2π【解析】解:如图所示:连接OC 、OD .∵⊙O 为正五边形ABCDE 的外接圆,⊙O 的半径为5, ∴∠COD =360°5=72°,∴CD ⏜的长为:72π×5180=2π. 故答案为2π.利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.14.【答案】−254<m <0【解析】 【分析】本题考查了抛物线与x 轴的交点、二次函数图象与几何变换、二次函数的性质等知识点,根据翻折变换规律得到抛物线G 的顶点坐标是解题的难点. 如图,通过y =−x 2+x +6=−(x −12)2+254和对称的性质得到D(12,−254),结合函数图象得到答案. 【解答】解:y =−x 2+x +6=−(x −12)2+254.因为新函数的图象G 是由二次函数y =−x 2+x +6在x 轴上方的图象沿x 轴翻折到x 轴下方得到的,所以新函数的图象G的顶点坐标D(12,−254),当直线y=m与图象G有4个交点时,则m的取值范围是−254<m<0.故答案是:−254<m<0.15.【答案】解:原式=x2+2x+1+x2−2x=2x2+1,当x=−√2时,原式=4+1=5.【解析】原式利用完全平方公式,以及单项式乘以多项式法则计算得到最简结果,把x的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:画树状图得:∵共有6种等可能的结果,小丹获胜的情况有3种,∴P(小丹获胜)=36=12.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x−20)袋,依题意得:700x =500x−20,解这个方程得:x=70经检验x=70是方程的解,所以x−20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x−20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x−20,由所用时间相等,建立等量关系.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.【答案】解:(1)如图,线段PQ垂直平分线段AB,点O即为所求.(2)如图,点O即为所求.【解析】(1)取格点P,Q,使得A,P,B,Q四点构成正方形,对角线的交点O即为所求.(2)取格点E,F,G,使得AEFG是平行四边形,可得格点M,N,连接MN交AB于点O,点O即为所求.本题考查作图−应用与设计,线段的垂直平分线的性质,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOc=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠AEO=∠DEC,∴∠DEC=∠ADC,∴CD=CE,∵CE=5,∴CD=5.【解析】根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.本题主要考查了等腰三角形的判定定理,等角对等边,以及切线的性质定理,已知圆的切线时,常用的辅助线是连接圆心与切点构造垂直.20.【答案】(1)200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200−24−76−30=70人,如图所示;(3)126;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:2500×12%=300人.【解析】解:(1)∵喜欢文史类的人数为76人,占总人数的38%, ∴此次调查的总人数为:76÷38%=200人, 故答案为:200; (2)见答案;(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24200×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%−15%−38%−12%=35%, ∴小说类所在圆心角为:360°×35%=126°, 故答案为:126; (4)见答案.(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数; (3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数; 本题考查统计问题,解题的关键是熟练运用统计学中的公式,本题属于基础题型. 21.【答案】3【解析】解:(1)由题意可得,甲车到达B 地停留的时长为:7−2−2=3(小时), 故答案为:3;(2)设甲车返回A 地途中y 与x 之间的函数关系式是y =kx +b , {5k +b =1607k +b =320,得{k =80b =−240, 即甲车返回A 地途中y 与x 之间的函数关系式是y =80x −240; (3)由题意可得,甲车的速度为:160÷2=80千米/时,乙车的速度为:360÷(7−1)=60千米/时, 第一次相遇的时间为:160÷60=83ℎ,设第二次相遇的时间为xh ,则(360−60x)=160或(360−60x)=320−(80x −240), 解得,x =103或x =10(舍去),答:两车在途中相遇时x 的值是83或103.(1)根据题意和函数图象中的数据可以求得甲车到达B 地停留的时长;(2)根据题意和函数图象中的数据可以求得甲车返回A 地途中y 与x 之间的函数关系式; (3)根据题意可以求得两车在途中相遇时x 的值.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.【答案】【问题】证明:如图①∵DG//AB ,∴∠1=∠2,∠B =∠4, ∵CF//AD , ∴∠2=∠3, ∴∠1=∠3,∵AD 是△ABC 的中线, ∴BD =DC ,∴△ABD≌△EDC , ∴AB =DE .(或证明四边形ABDE 是平行四边形,从而得到AB =DE.)【探究】四边形ABPE 是平行四边形. 方法一:如图②,证明:过点D 作DN//PE 交直线CF 于点N ,∵CF//AD ,∴四边形PDNE是平行四边形,∴PE=DN,∵由问题结论可得AB=DN,∴PE=AB,∴四边形ABPE是平行四边形.方法二:如图③,证明:延长BP交直线CF于点N,∵PG//AB,∴∠1=∠2,∠5=∠4,∵CF//AD,∴∠2=∠3,∴∠1=∠3,∵AD是△ABC的中线,CF//AD,∴BP=PN,∴△ABP≌△EPN,∴AB=PE,∴四边形ABPE是平行四边形.【应用】如图④,延长BP交CF于H.由上面可知,四边形ABPE是平行四边形,∴AE//BH,∴PA//EH,∴四边形APHE是平行四边形,∴PA=EH,∵BD=DC,DP//CH,∴BP=PH,∴CH=2PD,∵AP=PD,∴EC=3PA,∵PA//EC,∴PMEM =PAEC=13,∴S△AEM=3S△APM=3,∴S△ABP=S△APE=4,∴S平行四边形ABPE=8.【解析】【问题】如图①,过点D作直线DG//AB交直线CF于点E,连结AE,只要证明△ABD≌△EDC即可;【探究】如图②,四边形ABPE是平行四边形,方法一,过点D作DN//PE交直线CF于点N,只要证明四边形PDNE是平行四边形,推出PE=DN,由问题结论可得AB=DN,推出PE=AB,推出四边形ABPE 是平行四边形;方法二,如图③中,延长BP交直线CF于点N,只要证明△ABP≌△EPN,即可解决问题;【应用】如图④,延长BP交CF于H.想办法求出△AEM的面积即可解决问题;本题考查四边形综合题、全等三角形的判定和性质、平行线的性质、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.23.【答案】t【解析】解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵AE是∠BAD的角平分线,∴∠BAE=12∠BAD=45°,∵PQ⊥AB,∴∠APQ=45°=∠BAE,∠AQP=90°,即:△APQ是等腰直角三角形,由运动知,AP=√2t,∴PQ=t,故答案为:t;(2)如图1,∵四边形PQMN是平行四边形,∴PQ//MN,∵点M在BC上,∴BN//PQ,∵AP=PN,∴AQ=BQ=12AB=2,在Rt△APQ中,∠PAQ=45°,∴AP=√2AQ=2√2由运动知,AP=√2t,∴√2t=2√2,∴t=2;(3)①如图4中,当0<t≤32时,重叠部分是平行四边形PQMN,S=t2,②如图5中,当32<t≤2时,重叠部分是五边形PQMGE,S=S平行四边形PQMN −S△NGE=t2−12[√2t−3√2√2]2=−t2+6t−92.③如图6中,当2<t≤3时,重叠部分是五边形PQGCE,延长QP交CD于K.S =S 矩形QBCK −S △KPE −S △QBG =3(4−t)−12(√2−2√2t √2)2−12(4−t)2=−t 2+4t −12,综上所述S ={t 2(0<t ≤32)−t 2+6t −92(32<t ≤2)−t 2+4t −12(2<t ≤3).(4)①如图7中,当点Q 是AB 中点时,△APQ≌△QMB ,此时t =2.②如图8中,当点P 与点E 重合时,△APQ≌△AED ,此时t =3.③如图9中,当△PEK≌△QGB 时,由EK =BQ 得到,√2t−3√2√2=4−t ,解得t =72,综上所述t =2s 或3s 或72s 时,整个图形中形成的三角形存在全等三角形. (1)判断出△APQ 是等腰直角三角形即可得出结论;(2)先判断出点Q 是AB 中点,进而求出AQ =2,即可得出结论;(3)分三种情形讨论①如图4中,当0<t ≤32时,重叠部分是平行四边形PQMN.②如图5中,当32<t ≤2时,重叠部分是五边形PQMGE.③如图6中,当2<t ≤3时,重叠部分是五边形PQGCE ,延长QP 交CD 于K.分别求解即可.(4)分三种情形讨论即可)①如图7中,当点Q 是AB 中点时,△APQ≌△QMB.②如图8中,当点P 与点E 重合时,△APQ≌△AED.③如图9中,当△PEK≌△QGB 时,分别求解即可.本题考查四边形综合题、矩形的性质、等腰直角三角形的性质、平移变换、全等三角形的判定等知识,解题的关键是学会分类讨论,学会画好图形,学会利用分割法求面积,属于中考压轴题.24.【答案】解:(1)如图1,设对折点为A ,则点A(−1,3),设对折图象与x 轴的交点为A 、B ,当y =−2x +1=0时,x =12,即点B(12,0),则点C(−52,0), 由A 、C 的坐标可得,直线AC 的表达式为:y =2x +5, 故y =−2x +1(x ≥−1)的对折函数为:y ={−2x +1,(x ≥−1)2x +5,(x <−1);(2)同理可得:函数y =2x −2(x ≥−32)的对折函数y ={2x −2,(x ≥−32)−2x −8,(x <−32),则y =2x −2=0时,x =1,故点B(1,0),第21页,共21页 同理可得:点A(−4,0),点C(0,−2),则AB =5,AC =2√5,BC =√5,则△ABC 的周长为:5+5√5;(3)令y =(x −1)2−4=0,则x =−1或3,如下图:即点A 、B 的坐标为(−1,0)、(3,0),则对折后函数的顶点坐标为(−3,−4),该函数表达式为:y =(x +3)2−4,即对折函数为y ={(x −1)2−4,(x ≥−1)(x +3)2−4,(x <−1), 将点P(m,5)代入上式并解得:m =4或−6(不合题意的值已舍去),即:m =4或−6;(4)①当n <−1时,如图3:此时x =n 在点A(−1,0)的左侧,从图中可以看出:函数与x 轴有4个交点(A 、B 、C 、D); ②当n =−1时,x =n 过点A ,从图2可以看出:函数与x 轴有3个交点;③同理:当−1<n <3时,函数与x 轴有2个交点;④同理:当n =3时,函数与x 轴有3个交点;⑤同理:当n >3时,无交点.【解析】(1)当y =−2x +1=0时,x =12,即点B(12,0),则点C(−52,0),即可求解;(2)参考(1)求出对折后函数表达式即可求解;(3)求出对折函数,将点P(m,5)代入函数表达式,即可求解;(4)分当n <−1、n =−1、−1<n <3、n =3、n >3,分别求解即可.本题考查的是二次函数综合运用,此类新定义题目,通常按照题设的顺序逐次求解,一般比较容易,其中(4)是本题难点,要注意分类求解,避免遗漏.。
吉林省长春市南关区2020年一模数学试题
结 DE,点 C 关于 DE 的对称点为 C1,连结 AC1 并延长交 DE 的延长线于点 M,F 是 AC1 的中点,连结 DF.
【猜想】如图①, FDM 的大小为
度.
【探究】如图②,过点 A 作 AM1∥DF 交 MD 的延长线于点 M1,连结 BM.
求证:△ ABM ≌△ ADM1.
【拓展】如图③,连结 AC,若正方形 ABCD 的边长为 2,则△ ACC1 面积的最大值
已知杠杆的动力臂 AP 与阻力臂 BP 之比为 4:1,要使这块石头滚动,至少要将杠杆的 A 端
向下压
cm.
y
A
A
D
C
B
P B
(第 12 题)
B1 E
B
A1
C
(第 13 题)
AE
D
O
x
(第 14 题)
13.如图,在矩形 ABCD 中,E 是 AB 上一点,将△ADE 沿 DE 翻折,点 A 恰好落在 BC 上,记 为 A1,折痕为 DE.再将∠B 沿 EA1 向内翻折,点 B 恰好落在 DE 上,记为 B1.若 AD=1, 则 AB 的长为__________.
14.如图,在平面直角坐标系中,抛物线 y x2 mx 4 与 y 轴交于点 C,过点 C 作 x 轴的平行线
交抛物线于点 B,点 A 在抛物线上,点 B 关于点 A 的对称点 D 恰好落在 x 轴负半轴上,过点
A 作 x 轴的平行线交抛物线于点 E.若点 A、D 的横坐标分别为 1、1,则线段 AE 与线段 CB
.
10.因式分解: ab b2
.
11.关于 x 的一元二次方程 x2 5x k 0 有两个不相等的实数根,则 k 可取的最大整数为
2020届吉林省长春市南关区中考数学一模试卷(有解析)
2020届吉林省长春市南关区中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.下列说法正确的是()A. −a一定是负数B. 数轴上原点左边的点表示的数一定比右边的点表示的数大C. 0的相反数还是0D. 绝对值等于自身的数只有02.每年的天猫双十一购物狂欢节是中国的“剁手节”,也是马云最赚钱的一天,2016年阿里天猫双十一狂欢节中成交额突破1200亿,120000000000用科学记数法表示为()A. 1.2×1010B. 12×109C. 0.12×1011D. 1.2×10113.关于x的不等式2x+m>−6的解集是x>−3,则()A. m>0B. m≥0C. m<0D. m=04.如图,,,是中点。
则下列结论:①,②,③,④中正确的个数是()A. 1个B. 2个C. 3个D. 4个5.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM//AB,EN//AD,则∠C的度数为()A. 110°B. 115°C. 120°D. 125°6.为出行方便,近日来越来越多的重庆市民使用起了共享单车,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知,∠ABE=70°,∠EAB=45°,车轮半径为30cm,BE=40cm.小明体验后觉得当坐垫C离地面高度为0.9m时骑着比较舒适,此时CE的长约为()(结果精确到1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈1.41)A. 26cmB. 24cmC. 22cmD. 20cmBC的长为半径作弧,7.如图,在已知的△ABC中,按以下步骤:(1)分别以B、C为圆心,大于12两弧相交M、N;(2)作直线MN,交AB于D,连结CD,若CD=AD,∠B=20°,则下列结论:①∠ADC=40°②∠ACD=70°③点D为△ABC的外心④∠ACD=90°,正确的有()A. 4个B. 3个C. 2个D. 1个8.二次函数y=ax2+bx+c的图象如图所示,则−次函数y=−bx−4ac+b2与反比例函数y=a−b+c在同一坐标系内的图象大致为()xA.B.C.D.二、填空题(本大题共6小题,共18.0分)9.如图所示,根据有理数a,b在数轴上的对应点的位置,用“>、<、=”填空:(1)−a−b______0;(2)a+b______0;(3)ab______0.10.已知x+5y−3=0,则42x+y⋅8y−x=______.11.已知关于x的一元二次方程x2+2x−a=0有两个相等的实数根,则a的值是______.12.如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小华的距离ED=2米时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5米,则铁塔AB的高度是______米.13.如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为______.14.已知抛物线经过点(1,0),(−5,0),且顶点纵坐标为9,这个二次函数的解析式______ .2三、计算题(本大题共1小题,共7.0分)15.口渴的乌鸦看到一只装了水的瓶,瓶的旁边还有350粒玉米(假设每粒玉米的体积相等),乌鸦本想立即吃玉米,但口渴难忍,它还得用祖辈传下来的本领−投“石”喝水呢!乌鸦先叼了100粒玉米投入瓶中,水面上升到瓶的高度的12;再往瓶中投了150粒玉米,水面上升到瓶的高度的78(如图,瓶是圆柱形).若再向瓶中投入玉米,乌鸦就能喝到水啦! (1)如果瓶的容积是V ,那么每粒玉米的体积是______ ; (2)最初瓶中水的体积是______ ;(3)如果乌鸦最终喝了瓶中水的70%,那么乌鸦还需投入瓶中______ 粒玉米; (4)这时,它还可以吃到______ 粒玉米.四、解答题(本大题共9小题,共71.0分)16. 先化简,再求值:2(a +b)(a −b)−(a −b)2,其中a =0,b =1.17. 小莉和小明玩扑克牌游戏,小莉有数字为1,2,3,5的四张牌,小明有数字为4,6,7,8的四张牌,按以下游戏规则进行:小莉和小明从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则小明胜.这个游戏公平吗?请用树状图或列表法列出所有可能的结果,通过计算概率来说明理由.18. (1)如图1,只用直尺和圆规,求做一个点P ,使点P 同时满足下列两个条件(要求:保留作图痕迹,不写作法)①点P 到A ,B 两点的距离相等: ②点P 到∠xOy 的两边的距离相等.(2)△ABC 在平面直角坐标系xOy 中的位置如图2所示.①作△ABC 关于y 轴对称的△A 1B 1C 1,并写出A 1、B 1、C 1点的坐标. ②求出△ABC 的面积.19.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF//MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=60°.求此时拉杆BC的伸长距离.20.在一次九年级数学检测中,有一道满分8分的解答题,按评分标准,某地区所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从访区5000名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅不完整的统计图.(1)填空:a=______,b=______,并把条形统计图补全;(2)请估计该地区此题得满分的学生人数;(3)已知难度系数的计算公式为L=x,其中L为难度系数,x为样本平均得分,M为试题满分值.一M般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4< L≤0.7时,此题为中等难度试题,当0.7<L<1时,此题为容易题.试问:此题对于该地区的九年级学生来说属于哪一类?21.微山湖自古就有“日出斗金”之美誉,助推着周边地区经济的发展,某公司加工生产了A、B、C三类湖产品,销售的重量及利润如表所示:湖产品种类A类B类C类每辆汽车装载吨数21 1.5每吨湖产品可获利润(万元)574该公司计划用26辆汽车装载三类湖产品(毎类湖产品至少一辆车,每辆汽车只装一类湖产品且装满)共48吨到某地销售.(1)设装A类湖产品用x辆汽车,装B类湖产品用y辆汽车,装C类湖产品用z辆汽车.请用含z的式子表示x,y.(2)如果本次销售公司获得利润为w万元,那么如何安排装运,可使w最大,最大是多少万元?22. 如图,C地到A,B两地分别有笔直的道路CA,CB相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.(1)如果A地在C地的正东方向,那么B地在C地的什么方向?(2)现计划把河水从河道AB段的点D引到C地,求C,D两点间的最短距离.23. 如图,A、C为x轴上两点,以AC为对角线构造矩形ABCD,反比例(x>0)经过点D,已知点B坐标为(0,−4),点P坐标为函数y=kx(3,0).[提示:已知A(x1,y1)、B(x2,y2),点M(x,y)为线段AB的中点,则有x=x x+x22,y=y1+y22](1)求反比例函数解析式;(2)求直线AB的解析式.24. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且OB=OC=3AO.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标;(2)连结CQ,判断线段CQ与线段AE的数量关系和位置关系,并说明理由.(3)连结PA、PD,当m为何值时,S△PAD=12S△DAB.【答案与解析】1.答案:C解析:解:A、当a为负数时,−a为正数,选项A不符合题意;B、数轴上原点左边的点表示的数一定比右边的点表示的数小,选项B不符合题意;C、0的相反数还是0,选项C符合题意;D、0和正数的绝对值等于自身,选项D不符合题意.故选:C.A、由a为负数时−a为正数,可得出选项A不符合题意;B、由数轴上原点左边的点表示负数,右边的点表示正数,负数小于正数,可得出选项B不符合题意;C、由0的相反数还是0,可得出选项C符合题意;D、由0和正数的绝对值等于自身,可得出选项D不符合题意.综上,此题得解.本题考查了数轴、正数和负数、相反数以及绝对值,逐一分析四个选项的正误是解题的关键.2.答案:D解析:解:120000000000用科学记数法表示为:1.2×1011,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:D解析:解:∵2x+m>−6m,∴x>−3−12∵解集是x>−3,m=−3,∴−3−12解得m=0.故选:D.首先解不等式得到解集为x>−3−12m,再根据解集是x>−3,可得到方程−3−12m=−3,解方程即可.此题主要考查了解一元一次不等式,关键是正确求出不等式的解集.4.答案:C解析:解:,,是中点,能得到⊿ABC和⊿BDE全等,①,正确;②,不一定正确;③,正确;④,正确.故选择C.5.答案:D解析:本题考查了平行线的性质、翻折的性质,利用平行线的性质、翻折的性质是解题关键.根据平行线的性质,可得∠EMC,∠ENC,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.解:∵EM//AB,EN//AD,∴∠EMC=∠B=60°,∠ENC=∠D=50°,∵△CMN沿MN翻折得△EMN,∴∠NMC=12∠EMC=30°,∠MNC=12ENC=25°,由三角形的内角和,得∴∠C=180°−∠NMC−∠MNC=125°.故选D.6.答案:B解析:解:过点C作CN⊥AB,交AB于M,交地面于N由题意可知MN=30cm,当CN=0.9m,即CN=90cm时,CM=60cm ∴在Rt△BCM中,∠ABE=70°,∴sin∠ABE=sin70°=CMCB=0.94∴BC≈64cm∴CE=BC−BE=64−40=24(cm)故选:B.过点C作CN⊥AB,交AB于M,交地面于N,构造直角三角形,利用三角函数,求出BC,再用BC 减去BE即可.本题考查了解直角三角形的应用,构造直角三角形,将所给角放到直角三角形中,是解题的关键.7.答案:B解析:解:由题意可知,直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD=20°,∴∠ADC=∠BCD+∠CBD=40°,故A选项正确;又∵CD=AD,∴∠A=∠ACD,又∵∠A+∠ACD+∠ADC=180°,∴∠ACD=70°,故B选项正确,D选项错误;∵AD=CD,BD=CD,∴AD=BD,即D是AB的中点,故C选项正确;故选:B.依据直线MN是线段BC的垂直平分线,可得∠B=∠BCD=20°,进而得出∠ADC=40°;依据AD=CD 与三角形内角和定理,即可得到∠ACD=70°;依据AD=BD,即可得出D是AB的中点;依据AD= CD=DB,即可得到点D是△ABC的外接圆圆心;依据∠ACD=70°得∠ACD≠90°.本题主要考查了线段垂直平分线的性质,经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,简称“中垂线”.8.答案:A解析:本题综合考查了一次函数、二次函数以及反比例函数的图象.熟练掌握图象与函数关系式中系数的关系是解题的关键.根据二次函数图象确定−b、b2−4ac、a−b+c的符号,由它的符号判定一次函数图象与反比例函数图象所经过的象限即可.解:如图,抛物线y=ax2+bx+c的开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,所以b>0,故−b<0.又因为抛物线与x轴有2个交点,所以b2−4ac>0,所以直线y=−bx+b2−4ac经过第一、二、四象限.当x=−1时,y<0,即a−b+c<0,所以双曲线y=a−b+c在经过第二、四象限.x综上所述,符合条件的图象是A选项.故选:A.9.答案:<><解析:解:∵a在原点的左侧,b在原点的右侧,∴a<0,b>0,∵a到原点的距离小于b到原点的距离,∴−b<a<0,(1)−a−b<0;(2)a+b>0;(3)ab<0;故答案为:<,>,<.先根据数轴的特点判断出a、b的符号,再根据两点到原点的距离判断出各个式子的符号即可.本题考查的是数轴的定义及有理数比较大小的法则,比较简单.10.答案:8解析:此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形求出答案.解:∵x+5y−3=0,∴x+5y=3,∴42x+y⋅8y−x=24x+2y×23y−3x=2x+5y=23=8.故答案为:8.11.答案:−1解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据判别式的意义得到△=22−4×(−a)=0,然后解一次方程即可.解:根据题意得△=22−4×(−a)=0,解得a=−1.故答案为−1.12.答案:15解析:解:∵入射光线和反射光线与镜面夹角相等,∴△CDE∽△ABE,即CDAB =DEBE,∴1.5AB =220,解得,AB=15.因为入射光线和反射光线与镜面夹角相等,所以△CDE∽△ABE,再根据相似三角形的对应边成比例解答即可.此题考查了相似三角形对应边成比例,解题关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形中,利用相似比列出方程即可求出.13.答案:3−√5解析:解:∵AB=CD=4,C为线段AB的中点,∴BC=AC=2,∴AD=2√5,∵EH⊥DC,CD⊥AB,BE⊥AB,∴EH//AC,四边形BCGE为矩形,∴∠HEA=∠EAB,BC=GE=2,又∵AE是∠DAB的平分线,∴∠EAB=∠DAE,∴∠DAE=∠HEA,∴HA=HE,设GH=x,则HA=HE=HG+GE=2+x,∵EH//AC,∴△DHG∽△DAC,∴DHDA =HGAC,即√5−(2+x)2√5=x2,解得:x=3−√5,即HG=3−√5,故答案为:3−√5.根据AB=CD=4、C为线段AB的中点可得BC=AC=2、AD=2√5,再根据EH⊥DC、CD⊥AB、BE⊥AB得EH//AC、四边形BCGE为矩形,BC=GE=2,继而由AE是∠DAB的平分线可得∠DAE=∠HEA即HA=HE,设GH=x得HA=2+x,由△DHG∽△DAC得DHDA =HGAC,列式即可求得x.本题主要考查勾股定理、平行线的性质和判定、等腰三角形的判定与性质、矩形的判定与性质及相似三角形的判定与性质等知识点,根据相似三角形的性质得出对应边成比例且表示出各边长度是关键.14.答案:y=−12x2−2x+52解析:解:∵点(1,0),(−5,0)是抛物线与x的两交点,∴抛物线对称轴为直线x=−2,∴抛物线的顶点坐标为(−2,92),设抛物线的解析式为y =a(x +2)2+92,将点(1,0)代入,得a(1+2)2+92=0,解得a =−12,即y =−12(x +2)2+92,∴所求二次函数解析式为y =−12x 2−2x +52.已知抛物线与x 轴交于(1,0),(−5,0)两点,可求对称轴,即顶点的横坐标,已知顶点的纵坐标,设抛物线解析式的顶点式y =a(x +2)2+92,再将点(1,0)代入求a 即可.本题考查了抛物线顶点坐标的确定方法.根据顶点坐标,设抛物线解析式的顶点式,能使求解析式简便. 15.答案:1400V ;14V ;70;30解析:解:(1)150粒玉米的体积为78V −12V =38V ,每粒玉米的体积为38V ÷150=1400V ;(2)最初瓶中水的体积为12V −100×1400V =14V ;(3)70%×14V ÷V 400=70粒;(4)最后乌鸦还可以吃到的玉米粒数为350−100−150−70=30.故答案为1400V ;14V ;70;30.(1)先算出150粒玉米的体积,每粒玉米的体积=150粒玉米的体积÷150;(2)最初瓶中水的体积=12V −100粒玉米的体积;(3)先算出70%的水有多少,除以一粒玉米的体积,即为还需要玉米粒数.(4)吃到的玉米=原玉米数−用掉的玉米数.考查有关容积的计算;得到150粒玉米的体积是解决本题的突破点;得到1粒玉米的体积是解决本题的关键. 16.答案:解:2(a +b)(a −b)−(a −b)2=2a 2−2b 2−a 2+2ab −b 2=a 2+2ab −3b 2当a=0,b=1时,原式=02+2×0×1−3×12=−3解析:本题考查整式运算,求代数式值.首先运用平方差公式与完全平方公式,进行计算,将整式化简整理后,再将a、b值代入代数式,即可求得结果.熟练掌握整式乘法中平方差与完全平方差公式是解题的关键.17.答案:解:这个游戏不公平.画树状图得:一共有16种等可能结果,其中和为偶数的有6种,和为奇数的有10种,所以小莉获胜的概率为616=38、小明获胜的概率为1016=58,∵38≠58,∴这个游戏不公平.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果是偶数的情况,再利用概率公式即可求得答案.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.答案:解:(1)如图1所示:(2)①如图2所示;由图可知,A1(2,3),B1(1,1),C1(0,2);②S△ABC=S正方形ADEF−S△ADC−S△BEC−S△ABF=2×2−12×1×2−12×1×1−12×1×2=4−1−12−1=32.解析:(1)连接AB,先作AB的垂直平分线l,再作∠xOy的平分线OD,式OD与直线l交于点P,则P点即为所求;(2)根据轴对称的性质作△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1点的坐标;求出△ABC的面积即可.本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.19.答案:解:(1)作BH⊥AF于点K,交MN于点H,如图,设圆形滚轮的半径AD的长是xcm.∵BK//CG,∴△ABK∽△ACG,∴BKCG =ABAC,即38−x59−x=5050+35,解得x=8.答:⊙A的半径长为8cm;(2)在Rt△ACG中,CG=80−8=72,∵sin∠CAG=sin60°=CGAC,∴AC=72sin60∘=72×√3≈83.136,∴BC=AC−AB=83.136−50=33.136(cm).即此时拉杆BC的伸长距离为33.136cm.解析:(1)作BH⊥AF于点K,交MN于点H,如图,设圆形滚轮的半径AD的长是xcm.证明△ABK∽△ACG,利用相似比得到38−x59−x =5050+35,然后解方程即可;(2)利用60度的正弦求出AC,然后计算AC−AB即可.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,为了使问题简便,尽量构造直角三角形,然后利用三角形相似,对应边成比例可求出对应线段的长.20.答案:(1)25;20;补全的条形统计图如右图所示,故答案为:25,20;(2)由(1)可得,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是:5000×20%=1000人,即该地区此题得满分(即8分)的学生数1000人;(3)由题意可得,L =0×10%+3×25%+5×45%+8×20%10%+25%+45%+20%8=4.68=0.575,∵0.575处于0.4<L ≤0.7之间,∴题对于该地区的九年级学生来说属于中等难度试题.解析:解:(1)由条形统计图可知0分的同学有24人,由扇形统计图可知,0分的同学占10%, ∴抽取的总人数是:24÷10%=240,故得3分的学生数是;240−24−108−48=60,∴a%=60240×100%=25%,b%=48240×100%=20%,(2)见答案.(3)见答案.(1)根据条形统计图和扇形统计图可以得到a 和b 的值,从而可以得到得3分的人数将条形统计图补充完整;(2)根据第(1)问可以估计该地区此题得满分(即8分)的学生人数;(3)根据题意可以算出L 的值,从而可以判断试题的难度系数.本题考查加权平均数、用样本估计总体、条形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题. 21.答案:解:(1)由已知得:{x +y +z =262x +y +1.5z =48,解得:{x =12−0.5z y =14−0.5z. ∴x =12−0.5z ,y =14−0.5z .(2)由已知得:w =5×2x +7y +4×1.5z =120−5z +98−3.5z +6z =−2.5z +218. ∵x ≥1,y ≥1,z ≥1,且x +y +z =26,x =12−0.5z ,y =14−0.5z(x 、y 、z 为整数), ∴2≤z ≤22(z 为偶数).∵−2.5<0,∴当z =2时,w 取最大值,最大值为213,此时x =11,y =13.答:当A 类湖产品装11车、B 类湖产品装13车、C 类湖产品装2车时,可使w 最大,最大是213万元.解析:(1)根据共运26车、三类湖产品共48吨,即可得出关于x 、y 、x 的三元一次方程,通过解方程即可用含z 的式子表示出x 、y 的值;(2)根据表格给出的数据结合“总利润=A 类湖产品的利润+B 类湖产品的利润+C 类湖产品的利润”即可得出w 关于z 的函数关系式,根据毎类湖产品至少一辆车以及x 、y 关于z 的关系即可得出z 的取值范围,再根据一次函数的性质即可解决最值问题.本题考查了一次函数的应用,解题的关键是:(1)根据数量关系找出关于x 、y 、z 的三元一次方程组;(2)根据数量关系找出w 关于x 的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出方程组(或函数关系式)是关键.22.答案:解:(1)∵BC 2+AC 2=62+82=102=AB 2,∴△ABC 是直角三角形,∴B 地在C 地的正北方向;(2)作CD ⊥AB 于D ,则CD 的长是C ,D 两地的最短距离,∵△ABC 是直角三角形,∴S △ABC =12AB ⋅CD =12AC ⋅BC ,∴C ,D 两点间的最短距离=AC⋅BCAB =8×610=4.8km ,答:C ,D 两点间的最短距离是4.8km .解析:(1)根据勾股定理得到逆定理得到△ABC 是直角三角形,于是得到B 地在C 地的正北方向;(2)作CD⊥AB于D,则CD的长是C,D两地的最短距离,根据三角形的面积公式列方程即可得到结论.本题考查了勾股定理的逆定理,三角形的面积公式,正确的理解题意是解题的关键.23.答案:解:(1)∵矩形ABCD中,点B坐标为(0,−4),点P坐标为(3,0),∴D(6,4),(x>0)经过点D,∵反比例函数y=kx∴k=6×4=24,∴反比例函数解析式为y=24,x(2)∵点B坐标为(0,−4),点P坐标为(3,0),∴OB=4,OP=3,∴PB=√OB2+OP2=5,∵P是矩形对角线的交点,∴BD=2PB=10,∴AC=BD=10,∴AP=5,∴A(−2,0),设直线AB的解析式为y=kx−4,把A(−2,0)代入得,0=−2k−4,解得k=−2.∴直线AB的解析式为y=−2x−4.解析:(1)根据矩形的性质即可求得D的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)利用勾股定理求得PB=5,进而根据矩形的性质求得AP=BP=5,即可求得A的坐标,然后根据待定系数法即可求得直线AB的解析式.本题考查了待定系数法求反比例函数的解析式,根据矩形的性质求得A、D的坐标是解题的关键.24.答案:解:(1)直线y=x+1与抛物线交于A点,则点A(−1,0)、点E(0,1),因为OB=OC=3AO,则点B、C的坐标分别为:(3,0)、(0,3),故抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3),即−3a=3,解得:a=−1,故抛物线的表达式为:y=−x2+2x+3,函数的对称轴为:x=1,故点Q(1,4);(2)CQ=AE,且CQ//AE,理由,CQ=√12+(4−3)2=√2,AE=√AO2+OE2=√1+1=√2,∴CQ=AE,设直线CQ的方程为y=kx+b,可得直线CQ表达式中的k值也是1,故AE//CQ,故C Q=AE,且CQ//AE;(3)联立直线y=x+1与抛物线的表达式并解得:x=0或x=2,故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,−m2+2m+3),则点K(m,m+1),S△PAD=12×PK×(x D−x A)=12×3×(−m2+2m+3−m−1)=12S△DAB=14×4×3,解得:m=0或m=1,故点P(0,3)或(1,4),即当m为0或1时,S△PAD=12S△DAB.解析:本题考查二次函数的综合运用,属于较难题.(1)直线y=x+1与抛物线交于A点,则点A(−1,0)、点E(0,1),即可求解;(2)根据题意,进行求解即可;(3)设点P(m,−m2+2m+3),则点K(m,m+1),即可求解.。
2020年吉林市中考数学一模试题及答案
2020年吉林市中考数学一模试题及答案一、选择题1.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( ) A .中位数是2B .众数是17C .平均数是2D .方差是22.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A .B .C .D .3.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥124.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.55.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=6.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=07.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .8.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)9.下面的几何体中,主视图为圆的是( )A .B .C .D .10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,1511.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 16.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.17.已知62x =,那么222x x -的值是_____.18.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____.19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.2.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.3.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.5.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:12x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 6.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.7.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.8.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.9.C解析:C 【解析】试题解析:A 、的主视图是矩形,故A 不符合题意; B 、的主视图是正方形,故B 不符合题意; C 、的主视图是圆,故C 符合题意; D 、的主视图是三角形,故D 不符合题意; 故选C .考点:简单几何体的三视图.10.D解析:D 【解析】 【分析】 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .11.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.B解析:B 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,B 、是中心对称图形,也是轴对称图形,故该选项符合题意,C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,D 、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=443AB ⋅=,∴CE=BE-BC=2,5=, ∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°, ∴在Rt △CDE 中,sin CD E CE =, ∴CD=36sin 255CE E ⋅=⨯=. 15.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.16.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 17.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=x=,∴(22∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.18.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;-台,根据每小时加工零件的总量(2)设A型机器安排m台,则B型机器安排(10m)+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过=⨯型机器的数量6B8A76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩,解得:6m8,m为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.【解析】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A 的坐标为(4,2),将其代入y=可得k=8,∵点B (2,n )在y=的图象上, ∴n=4; (2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,∴S △ABC =AC•BE=×4×2=4,即△ABC 的面积为4.考点:反比例函数与一次函数的交点问题.23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD;【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。
2020年吉林省吉林市中考数学一模试卷 (含答案解析)
2020年吉林省吉林市中考数学一模试卷一、选择题(本大题共6小题,共12.0分)1.计算:|−5+3|的结果是()A. −2B. 2C. −8D. 82.用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.3.下列运算中,正确的是()A. x2+x2=x4B. (x3)2=x5C. x⋅x2=x3D. x3−x2=x4.不等式1+x<0的解集在数轴上表示正确的是()A. B.C. D.5.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. √3B. 2C. √5D. √66.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,若∠P=50°,则∠ABC的度数为()A. 20°B. 25°C. 40°D. 50°二、填空题(本大题共8小题,共24.0分)7.计算:2√12−√27=______.8.城市轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿元用科学记数法表示为______元.9.某熟食店在七月的营业额是a万元,八月的营业额上升25%.受流感的影响,九月的营业额比上月下降12%,那么九月的营业额是________万元.(结果保留最简式)10.方程3x =2x−2的解是______ .11.若关于x的一元二次方程x2−x+m=0有两个不相等的实数根,则m的值可能是______(写出一个即可).12.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是______ .13.如图,在△ABC中,∠CAB=75∘,在同一平面内,将△ABC绕点A旋转到AB′C′的位置,使CC′//AB,则∠BAB′的度数为________.14.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为______cm.三、解答题(本大题共12小题,共84.0分)15.先化简,再求值.x2(x−1)−(x−1)2−(x+3)(x−3),其中x=12.16.一个不透明的口袋中装有4个红球和白球,这些球除颜色外其余都相同,将球搅匀,从中任意.摸出一个球,恰好摸到红球的概率等于12(1)口袋中有几个红球⋅(2)先从口袋中任意摸出一个球,不放回后再摸出一个球,请用列表法或画树状图法求摸到一个红球一个白球的概率.17.某学校准备购买若干台A型电脑和B型打印机,如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.求每台A 型电脑和每台B型打印机的价格分别是多少元.18.如图所示,正方形ABCD中,E、F分别是AB和AD上的点,若CE⊥BF于点M,求证:AF=BE.19.如图是有桩公共自行车“达达通”车桩的截面示意图,点B、C在EF上,EF//HG,EH⊥HG,EH=4cm,AB=90cm,∠ABC=75°,求点A到地面的距离(结果精确到0.1cm).(参考数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732)20.在平面直角坐标系中,点O是坐标原点,矩形OABC的边OA、OC分别在x轴和y轴上,OA=8,OC=4;点D是BC的四等(x>0)的图象经过点D,交分点,且CD<BD.反比例函数y=kxAB于点E.连接OE、OB.(1)求反比例函数的解析式;(2)求△BOE的面积.21.如图,方格中每个小正方形的边长都为1.(1)图1中△ABC的边长AC长为______,△ABC的面积为______.(2)在图2的4×4方格中,画一个面积为10的格点正方形.(四个顶点都在方格的顶点上)22.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:一、数据收集,从全校随机抽取20学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):二、整理数据,按如下分段整理样本数据并补全表格:三、分析数据,补全下列表格中的统计量:四、得出结论:①表格中的数据:a=______,b=______,c=______;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;③如果该校现有学生400人,估计等级为“B”的学生有______人;④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读______本课外书.23.甲、乙两名工人分别加工a个同种零件.甲先加工一段时间,由于机器故障进行维修后继续按原来的工作效率进行加工,当甲加工43小时后.乙开始加工,乙的工作效率是甲的工作效率的3倍.下图分别表示甲、乙加工零件的数量y(个)与甲工作时间x(时)的函数图象.解读信息:(1)甲的工作效率为______个/时,维修机器用了______小时(2)乙的工作效率是______个/时;问题解决:①乙加工多长时间与甲加工的零件数量相同,并求此时乙加工零件的个数;②若乙比甲早10分钟完成任务,求a的值.24.正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.若△AEB′为等边三角形,则∠BEF等于多少度.(2)在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(3)如图2,连接CB′,求△CB′F周长的最小值.25.在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN//BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=√3EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.26.如图,已知直线y=−3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=−x2+bx+c经过点A,B,与X轴的另一个交点是C.(1)求抛物线的解析式.(2)点P是对称轴的左侧抛物线上的一点,当S△PAB=2S△AOB时,求点P的坐标;(3)连接BC,抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由-------- 答案与解析 --------1.答案:B解析:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.先计算−5+3,再求绝对值即可.解:原式=|−2|=2.故选:B.2.答案:B解析:解:如图所示的立体图形的俯视图为.故选:B.从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.答案:C解析:解:A、结果是2x2,故本选项不符合题意;B、结果是x6,故本选项不符合题意;C、结果是x3,故本选项符合题意;D、结果是x3−x2,不能合并,故本选项不符合题意;故选:C.先求出每个式子的值,再进行判断即可.本题考查了同底数幂的乘法,合并同类二次根式,积的乘方和幂的乘方等知识点,能正确求出每个式子的值是解此题的关键.4.答案:A解析:解:移项,得:x<−1,故选:A.移项即可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.答案:C解析:解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=√12+22=√5,∴CE=√5,故选:C.根据勾股定理求得OD=√5,然后根据矩形的性质得出CE=OD=√5.本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.6.答案:A解析:本题考查了切线的性质和圆周角定理.根据切线的性质得∠PAO=90°,又∠P=50°,得知∠AOP=∠AOP,即可求解.40°,根据圆周角定理,∠ABC=12解:∵直线PA与⊙O相切于点A,∴∠PAO=90°,又∠P=50°,∴∠AOP=40°,∠AOP=20°.∴∠ABC=12故选A.7.答案:√3解析:此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.直接化简二次根式进而得出答案.解:原式=2×2√3−3√3=√3.故答案为:√3.8.答案:2.537×1010解析:解:253.7亿用科学记数法表示为:2.537×1010,故答案为:2.537×1010.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.9.答案:1.1a解析:本题主要考查了根据题意列代数式的知识,解决本题的关键是分清题意,列出代数式.依据题意,首先求出八月份的营业额为a(1+25%),再由九月份的营业额比上月下降12%,即可求解.解:根据题意得:八月份的营业额为a(1+25%)=54a,∴九月份的营业额为54a(1−12%)=54a×88100=1.1a.故答案为1.1a.10.答案:x=6解析:解:去分母得:3x−6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=6分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.11.答案:0解析:解:∵一元二次方程x2−x+m=0有两个不相等的实数根,∴△=1−4m>0,,解得m<14故m的值可能是0,故答案为0.若一元二次方程有两不等实数根,则根的判别式△=b2−4ac>0,建立关于m的不等式,求出m 的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2−4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯一,只需满足m<1即可.412.答案:10解析:本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故答案为:10.13.答案:30°解析:此题主要考查了旋转的性质,三角形内角和定理以及平行线的性质.掌握旋转的性质和平行线的性质定理是解题的关键.首先由平行可得∠BAC =∠ACC′=75°,再证明∠ACC′=∠AC′C ,然后运用三角形的内角和定理求出∠CAC′=30°,即可解决问题.解:由题意得:AC =AC′,∴∠ACC′=∠AC′C ,∵CC′//AB ,且∠BAC =75°,∴∠ACC′=∠AC′C =∠BAC =75°,∴∠CAC′=180°−2×75°=30°,由题意知:∠BAB′=∠CAC′=30°.故答案为30°.14.答案:6π解析:本题考查了弧长公式:l =n⋅π⋅R 180(弧长为l ,圆心角度数为n ,圆的半径为R).也考查了等边三角形的性质.直接利用弧长公式计算即可.解:该莱洛三角形的周长=3×60×π×6180=6π(cm).故答案为6π. 15.答案:解:原式=x 3−x 2−(x 2−2x +1)−(x 2−9)=x 3−x 2−x 2+2x −1−x 2+9=x 3−3x 2+2x +8,当x =12时,原式=18−34+1+8=678.解析:本题考查整式的混合运算−化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.先根据单项式乘多项式的法则,完全平方公式和平方差公式进行去括号运算,再合并同类项,结果化为最简后将x的值代入计算即可.16.答案:解:(1)设口袋中有x个红球,根据题意得x4=12,解得x=2,即口袋中有2个红球.(2)列表如下:所有等可能的结果有12种,其中摸到一个红球一个白球的结果有8种,则P(摸到一个红球一个白球)=812=23.解析:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.(1)设红球有x个,根据任意摸出一个球,恰好摸到红球的概率等于12,求出x的值即可;(2)列表得出所有等可能的情况数,找出两次摸到的球中一个是红球和一个是白球的情况数,即可求出所求的概率.17.答案:解:设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得{x +2y =5900,2x +2y =9400.解这个方程组,得{x =3500,y =1200.答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元.解析:本题考查的是二元一次方程组的应用,解题的关键是理解题意,找到题目蕴含的相等关系并列出方程组.设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之即可.18.答案:证明:∵四边形ABCD 是正方形,∴AB =BC ,∠A =∠ABC =90°,∴∠CBM +∠ABF =90°,∵CE ⊥BF ,∴∠ECB +∠MBC =90°,∴∠ECB =∠ABF ,在△ABF 和△BCE 中,{∠CBE =∠A AB =BC ∠ABF =∠BCE,∴△ABF≌△BCE(ASA),∴BE =AF .解析:首先证明利用等角的余角相等得出∠ECB =∠ABF ,再证明△ABF≌△BCE 即可得到BE =AF ; 此题主要考查了全等三角形的判定与性质,以及正方形的性质,关键是掌握全等三角形的判定方法. 19.答案:解:过点A 作AM ⊥BF 于点M ,在Rt △AMB 中,sin75°=AMAB ,∴AM =AB ⋅sin75°≈90×0.966=86.94cm ,∴AM +EH =86.94+4≈90.9cm .答:点A到地面的距离约为90.9cm.解析:过点A作AM⊥BF于点M,在Rt△AMB中,根据三角函数求出AM,进一步即可求得点A到地面的距离.此题主要考查了三角函数的应用以及解直角三角形的应用−坡度坡角问题,得出AM的长是解题关键.20.答案:解:(1)∵四边形ABCO是矩形,∴BC=AO=8,∵点D是BC的四等分点,且CD<BD,∴CD=2,∵OC=4,∴D(2,4),将点D(2,4)代入y=kx得k=8,∴反比例函数的解析式为:y=8x;(2)∵点E在AB上,将x=8代入y=8x得y=1,∴E(8,1),∴AE=1,BE=3,∴△BOE的面积=12BE·OA=12×3×8=12.解析:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点E在函数的图象上,即可得出结论.21.答案:√13 3.5解析:解:(1)AC=√32+22=√13,△ABC的面积为:3×3−12×1×2−12×2×3−12×1×3=3.5.故答案为:√13,3.5;(2)如图2所示:正方形ABCD即为所求.(1)直接利用勾股定理以及利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用勾股定理进而得出答案.此题主要考查了应用设计与作图以及勾股定理,正确应用勾股定理是解题关键.22.答案:①5;4;80.5;②B;③160④13解析:解:①由已知数据知a=5,b=4,∵第10、11个数据分别为80、81,=80.5,∴中位数c=80+812故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B,故答案为:B;=160(人),③估计等级为“B”的学生有400×820故答案为:160;×52=13(本),④估计该校学生每人一年(按52周计算)平均阅读课外书80320故答案为:13.①根据已知数据和中位数的概念可得;②由样本中位数和众数、平均数都是B等级可得答案;③利用样本估计总体思想求解可得;④用没有阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.23.答案:20 0.560解析:解:(1)甲的工作效率是10÷0.5=20(个/时),维修机器用的时间为:1−0.5=0.5(小时).故答案为20,0.5;(2)∵乙的工作效率是甲的工作效率的3倍,甲的工作效率是20个/时,∴乙的工作效率是20×3=60(个/时).故答案为60;①如图,设直线BC 对应的函数关系式为y =20x +b 1,把点B(1,10)代入得b 1=−10.则直线BC 所对应函数关系式为y =20x −10 ①.设直线DE 的关系式为y =60x +b 2,把点D(43,0)代入得b 2=−80.则直线DE 对应的函数关系式为y =60x −80②.−联立①②,得:{y =20x −10y =60x −80, 解得:{x =1.75y =25, 所以交点坐标为(1.75,25).1.75−1.75−43=512(小时).所以乙加工512小时与甲加工零件数量相同,此时乙加工25个零件;②设点E(x 1,a),点C(x 2,a),分别代入y =60x −80,y =20x −10,得x 1=a+8060,x 2=a+1020, ∵x 2−x 1=1060=16,∴a+1020−a+8060=16, 解得:a =30.(1)根据图象可以得到甲0.5小时加工了10个零件,则可以求得甲的工作效率,根据图象可以直接求出维修机器用的时间;(2)根据乙的工作效率是甲的工作效率的3倍可求乙的工作效率;①利用待定系数法求得乙的函数解析式以及甲在大于1小时时的函数解析式,联立两个函数的解析式,求出它们的交点坐标即可;②设点E(x 1,a),点C(x 2,a),分别代入两个函数的解析式,根据x 2−x 1=16小时,即可列方程求解.本题考查了一次函数的应用,一元一次方程的应用,函数的图象以及待定系数法求函数的解析式,正确利用数形结合思想,把数值的大小转化为点的坐标之间的关系是关键.24.答案:解:(1)当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=12∠BEB′=12×120°=60°,故答案为:60;(2)A B′//EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF//AB′;(3)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE−B′E=5√5−5,∴B′C最小值为5√5−5,∴△CB′F周长的最小值=10+5√5−5=5+5√5.解析:本题属于四边形综合题,主要考查了折叠的性质,平行线的判定,等边三角形的性质,正方形的性质以及三角形周长最小值的计算,灵活运用相关知识是解题的关键.(1)当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=12∠BEB′=12×120°=60°;(2)依据AE=B′E,可得∠EAB′=∠EB′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,进而得出EF//AB′;(3)由折叠可得,CF+B′F=CF+BF=BC=10,依据B′E+B′C≥CE,可得B′C≥CE−B′E= 5√5−5,进而得到B′C最小值为5√5−5,故△CB′F周长的最小值=10+5√5−5=5+5√5.25.答案:解:(1)如图1中,作EH⊥MN于H.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=30°∴∠AEB=60°,∵EB=ED,∴∠EBD=∠EDB,∵∠AEB=∠EBD+∠EDB,∴∠EDB=∠EBD=30°,∵MN//BD,∴∠ENM=∠EBD,∠EMN=∠EDB=30°,∴∠ENM=∠EMN,∴EN=EM,∵EH⊥MN,∴NH=MH,在Rt△EMH中,cos30°=MHEM =√32,∴2MH=√3EM,∴MN=√3EM.(2)如图1中,作NK⊥AD于K.由(1)可知:BC=AD=6,AB=CD=2√3,AE=2,BE=DE=4,∵MN=√3EM,∴EM=√33x,∴DM=4−√33x,在Rt△MNK中,NK=12MN=12x,∴y=12MD⋅NK=−√312x2+x.(3)解:连接MC交BD于点J(如图2).∵点M是线段ED中点,∴EM=MD=2,MN=2√3.∵DC=AB=AE⋅tan60°=2√3,∴MC=√MD2+DC2=4.∴cos∠DMC=MDMC =12.∴∠DMC=60°.∴∠NMC=180°−∠EMN−∠DMC=90°.∵MN//BD,∴∠MJD=∠NMC=90°.∴MJ=12MD=1.NC=√MN2+MC2=2√7∵∠MGJ=90°−∠FMC,∠MCF=90°−∠FMC,∴∠MGJ=∠MCF.∵∠MJG=∠NMC=90°,∴△MJG∽△NMC,∴MGNC =PJMN,∴PG=2√3×2√7=√213.解析:(1)如图1中,作EH⊥MN于H.首先证明MH=HN,在Rt△EMH中,根据cos30°=MHEM =√32,即可解决问题;(2)如图1中,作NK⊥AD于K.只要求出NK、DM即可解决问题;(3)连接MC交BD于点J,可得∠NMC=90°,进而可得△MJG∽△NMC;可得MGNC =PJMN,解可得PG的长;本题考查是四边形综合题、矩形的性质、等腰三角形的判定和性质、直角三角形30度角性质、相似三角形的判定和性质、锐角三角函数、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.26.答案:解:(1)∵直线y =−3x +c 与x 轴相交于点A(1,0),∴0=−3+c ,c =3,∴y =−3x +3,当x =0时,y =3,∴B(0,3),∵抛物线y =−x 2+bx +c 经过点A ,B ,∴{−1+b +c =0c =3, 解得{b =−2c =3, ∴y =−x 2−2x +3;(2)∵A(1,0),B(0,3),∴OA =1,OB =3,∴S △PAB =2S △AOB =2×12×OA×OB=2×12×1×3=3,∵y =−x 2−2x +3=−(x +1)2+4,∴对称轴为x =−1,过点P 作PK ⊥BC ,交AB 的延长线于点K ,作PH ⊥x 轴于点H ,交AB 的延长线于点F ,可得∠F=∠ABO,∠PKF=∠AOB=90°,∴△PKF∽△AOB,∴PKAO =PFAB,∴AB·PK=AO·PF,∵AO=1,∴S△PAB=12AB·PK=12AO·PF=3,∴PF=6,设P(x,−x2−2x+3),x<−1,则F(x,−3x+3),∴PF=−3x+3−(−x2−2x+3)=x2−x=6,解得x1=−2,x2=3(不合题意舍去),∴P(−2,3);(3)(−1,4)或(12,7 4 ).解析:此题考查二次函数的图像和性质,一次函数的图像和性质,待定系数法求一次函数和二次函数的解析式,三角形的面积.(1)把A(1,0)代入y=−3x+c,可得一次函数的解析式,可求出点B坐标,把点A、B坐标代入y=−x2+bx+c,计算可得;(2)由题意可得S△PAB=2S△AOB =2×12×OA×OB=2×12×1×3=3,求出二次函数的对称轴,证明△PKF∽△AOB,根据比例式得出PF,再进一步计算即可;(3)利用tan∠MCB=tan∠ABO计算即可.。
2020年吉林省长春市南关区东北师大附中净月校区中考数学一模试卷
中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.2019的相反数是()A. B. -2019 C. - D. 20192.下列运算正确的是()A. x2•x3=x6B. x2+x2=2x4C. (-3a3)•(-5a5)=15a8D. (-2x)2=-4x23.如图,是一个几何体的表面展开图,则该几何体是()A. 三棱柱B. 四棱锥C. 长方体D. 正方体4.已知关于x的不等式的解中有3个整数解,则m的取值范围是()A. 3<m≤4B. 4≤m<5C. 4<m≤5D. 4≤m≤55.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是()A. 360°B. 540°C. 720°D. 900°6.如图,AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为()A. B. C. D. 17.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A. cmB. cmC. 64 cmD. 54cm8.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线y=过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A. 6B. 8C. 12D. 16二、填空题(本大题共6小题,共18.0分)9.分解因式:8a3-2a=______.10.若关于x的方程kx2+4x-1=0有实数根,则k的取值范围是______.11.《九章算术》中记载问题如下:“今有共买物,人出八,盈三;人出七,不是四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又差4钱,问人数、物价各多少?设有x人,依题意列方程得______.12.如图,过点N(0,-1)的线y=kx+b与图中的四边形ABCD有不少两个交点,其A(-2,3)、B(-1,1)、C(-4,1)、D(-4,3),则k的值可以是______.(写出一个满足条什的值即可).13.如图,平行四边形ABCD,点F是BC上的一点,连接AF,∠FAD=60°,AE平分∠FAD,交CD于点E,且点E是CD的中点,连接EF,已知AD=5,CF=3,则EF=______.14.如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是______.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:-,其中a=-5.四、解答题(本大题共9小题,共72.0分)16.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:每人各出一张牌,若两人出的牌相同,则为平局;若两人出的牌不同,则A胜B,B 胜C,C胜A.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.17.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.18.如图,在每个小正方形的边长为1的网格中,点O、M均在格点上,P为线段OM上的一个动点.(1)OM的长等于______;(2)当点P在线段OM上运动,OP=时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置(保留作图的痕迹)19.如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F(1)求证:AE是⊙O的切线;(2)若cos∠A=,AE=8,则⊙O的半径长为______.20.在建设港珠澳大桥期间,大桥的规划选线须经过中华白海豚国家级自然保护区--区域A或区域B.为实现白海豚“零伤亡,不搬家”的目标,需合理安排施工时间和地点,为此,海豚观察员在相同条件下连续出海20天,在区域A、B两地对中华白海豚的踪迹进行了观测和统计,过程如下,请补充完整.(单位:头)【收集数据】连续20天观察中华白海豚每天在区域A、区域B出现的数量情况,得到统计结果,并按从小到大的顺序排列如下:【整理、描述数据】(1)按如下数段整理、描述这两组数据,请补充完整:2请填空:上表中,中位数,众数.(3)规划者们选择了区域A为大桥的必经地,为减少施工对白海豚的影响,合理安排施工时间,估计在接下来的200天施期内,区域A大约有多少天中华白海豚出现的数目在22≤x≤35的范围内?21.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示(1)a的值是______,甲的速度是______km/h.(2)求乙车距A地的路程y与x之间的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?22.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.23.如图,在△ABC中,AB=14,∠B=45°,tan A=,点D为AB中点.动点P从点D出发,沿DA方向以每秒1个单位长度的速度向终点A运动,点P关于点D对称点为点Q,以PQ为边向上作正方形PQMN.设点P的运动时间为t秒.(1)当t=______秒时,点N落在AC边上.(2)设正方形PQMN与△ABC重叠部分面积为S,当点N在△ABC内部时,求S 关于t的函数关系式.(3)当矩形PQMN的对角线所在直线将△ABC的分为面积相等的两部分时,直接写出t的值.24.已知:在平面直角坐标系xOy中,点A(x1,y1)、B(x2,y2)是某函数图象上任意两点(x1<x2),将函数图象中x<x1的部分沿直线y=y1作轴对称,x>x2的部分沿直线y=y2作轴对称,与原函数图象中x1≤x≤x2的部分组成了一个新函数的图象,称这个新函数为原函数关于点A、B的“双对称函数”.例如:如图①,点A(-2,-1)、B(1,2)是一次函数y=x+1图象上的两个点,则函数y=x+1关于点A、B的“双对称函数”的图象如图②所示.(1)点A(t,y1)、B(t+3,y2)是函数y=图象上的两点,y=关于点A、B的“双对称函数”的图象记作G,若G是中心对称图形,直接写出t的值.(2)点P(,y1),Q(+t,y2)是二次函数y=(x-t)2+2t图象上的两点,该二次函数关于点P、Q的“双对称函数”记作f.①求P、Q两点的坐标(用含t的代数式表示).②当t=-2时,求出函数f的解析式;③若-1≤x≤1时,函数f的最小值为y min,求-2≤y min≤-1时,t的取值范围.答案和解析1.【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:A、x2•x3=x5,故此选项错误;B、x2+x2=2x2,故此选项错误;C、(-3a3)•(-5a5)=15a8,故此选项正确;D、(-2x)2=4x2,故此选项错误;故选:C.直接利用同底数幂的乘法运算法则、积的乘方运算法则以及单项式乘以单项式运算法则,即可得出答案.此题主要考查了用同底数幂的乘法运算以及积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.3.【答案】A【解析】解:由图得,这个几何体为三棱柱.故选:A.由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.考查了几何体的展开图,有两个底面的为柱体,有一个底面的为锥体.4.【答案】C【解析】解:不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选:C.表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:∵多边形从一个顶点出发可引出2条对角线,∴n-3=2,解得n=5,∴内角和=(5-2)•180°=540°.故选:B.根据从多边形的一个顶点可以作对角线的条数公式(n-3)求出边数,然后根据多边形的内角和公式(n-2)•180°列式进行计算即可得解.本题考查了多边形的内角和公式,多边形的对角线的公式,求出多边形的边数是解题的关键.6.【答案】A【解析】解:连接AQ,BQ,∵∠P=45°,∴∠QAB=∠P=45°,∠AQB=90°,∴△ABQ是等腰直角三角形.∵AB=2,∴2BQ2=4,∴BQ=.故选:A.连接AQ,BQ,根据圆周角定理可得出∠QAB=∠P=45°,∠AQB=90°,故△ABQ是等腰直角三角形,根据勾股定理即可得出结论.本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.【答案】C【解析】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.8.【答案】A【解析】解:如图,过F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若设F(m,n)则OA=3m,BF=2m∵S△BEF=4∴BE=则E(3m,n-)∵E在双曲线y=上∴mn=3m(n-)∴mn=6即k=6.故选:A.由于,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=,然后即可求出E(3m,n-),依据mn=3m(n-)可求mn=6,即求出k的值.此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.9.【答案】2a(2a+1)(2a-1)【解析】解:8a3-2a=2a(4a2-1)=2a(2a+1)(2a-1).故答案为:2a(2a+1)(2a-1).直接提取公因式2a,再利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.10.【答案】k≥-4【解析】解:当k=0时,原方程可整理得:4x-1=0,(符合题意),当k≠0时,∵关于x的方程kx2+4x-1=0有实数根,∴△=16+4k≥0,解得:k≥-4,综上可知:k的取值范围为:k≥-4,故答案为:k≥-4.当k=0时,原方程可整理得:4x-1=0,(符合题意),当k≠0时,根据“关于x的方程kx2+4x-1=0有实数根”,得:△=16+4k≥0,解之即可得到k的取值范围.本题考查了根的判别式和一元二次方程的定义,正确掌握根的判别式公式和一元二次方程的定义是解题的关键.11.【答案】8x-3=7x+4【解析】解:设有x人合伙买东西,依题意,得:8x-3=7x+4.故答案为:8x-3=7x+4.设有x人合伙买东西,根据货物的价格不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】-1(-2≤k<-)【解析】解:当直线经过点N和点B时,设直线解析式为y=kx+b,解得∴直线NB的解析式为y=-2x-1,∵当x=-2时,y=3,∴点A也在直线NB上,当直线经过点N和点C时,设直线解析式为y=mx+n,解得∴直线NC的解析式为y=-x-1,综上所述:-2≤k<-.故答案为:-1(-2≤k<-).找到临界状态,分别是直线经过点B、C的时刻,求出这两种临界状态的k,则k的取值范围即可求出,在范围内任取k的值都可以.此题考查了待定系数法求函数解析式,找到临界状态为解题关键.13.【答案】4【解析】解:如图,延长AE,BC交于点G,∵点E是CD的中点,∴DE=CE,∵平行四边形ABCD中,AD∥BC,∴∠D=∠ECG,又∵∠AED=∠GEC,∴△ADE≌△GCE,∴CG=AD=5,AE=GE,又∵AE平分∠FAD,AD∥BC,∴∠FAE=∠DAE=∠G=∠DAF=30°,∴AF=GF=3+5=8,又∵E是AG的中点,∴FE⊥AG,∴Rt△AEF中,EF=AF=4,故答案为:4.延长AE,BC交于点G,判定△ADE≌△GCE,即可得出CG=AD=5,AE=GE,再根据三线合一即可得到FE⊥AG,进而得出Rt△AEF中,EF=AF=4.本题主要考查了平行四边形的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等进行推算.14.【答案】或【解析】解:由tan∠AOE=,可设A、B点坐标分别为(2m,3m)、(2n,3n),∵AD∥OC,∴∠ADB=∠OCB,∠DAB=∠COA,∴△BAD∽△BOC.①当点A在线段OB上时,如图1所示.∵OC=2AD,∴D点为线段BC的中点,∵C(0,c),B(2n,3n),∴D点横坐标为=n,由题意知A、D点均在抛物线的对称轴上,∴n=2m,∴B点坐标为(4m,6m),∵A,B在抛物线上,且抛物线对称轴为x=2m,∴有,解得:,或,∵c>0,∴c=;②当点B在线段OA上时,如图2所示.∵OC=2AD,∴OB=2AB.∵C(0,c),B(2n,3n),∴D点横坐标为×2n=3n,由题意知A、D点均在抛物线的对称轴上,∴n=m,∴B点坐标为(m,2m),∵A,B在抛物线上,且抛物线对称轴为x=2m,∴有,解得:,或.∵c>0,∴c=.综上所述:c的值为或.故答案为:或.设A(2m,3m)、B(2n,3n),分点A在线段OB上及点B在线段OA上两种情况,由OC=2AD,利用相似三角形的性质可得出m、n间的关系,将A、B点坐标代入抛物线与抛物线对称轴x=2m联立方程组,解方程组即可求得c的值.本题考查了三角形的相似以及二次函数的性质,解题的关键是根据OC=2AD找到A、B 点坐标的关系.15.【答案】解:原式=•-=-=-,当a=-5时,原式=-=1.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.16.【答案】解:(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:=.【解析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可求得答案.17.【答案】解:设小红骑自行车的速度是每小时x千米,则驾车的速度是每小时4x千米.根据题意得:.解得x=20.经检验x=20是分式方程的解,并符合实际意义.答:小红骑自行车的速度是每小时20千米.【解析】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.设小红骑自行车的速度是每小时x千米,则驾车的速度是每小时4x千米.依据“小红每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答.18.【答案】4【解析】解:(1)由勾股定理得:OM=4;故答案为:4;(2)如图,取AB=CD=,分别交格线于点E和F,连接EF交OM于P,点P即为所求;理由是:∵EM=5.5,OF=2.5,EM∥OF,∴△EMP∽△FOP,∴,∴,∴,∴,∴OP=.利用勾股定理列式求出OM=4,然后作一对平行线AB和CD,得E和F,EF与OM 的交点就是点P.本题考查了应用与设计作图,考虑利用相似三角形对应边成比例的性质是解题的关键.19.【答案】【解析】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)∵∠AEC=90°,cos∠A=,AE=8,∴AC=10,CE=6,∵OB∥CE,∴△AOB∽△ACE,∴,∴,∴OB=,∴⊙O的半径长为,故答案为:.(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)解直角三角形得到AC=10,CE=6,根据相似三角形的性质列方程即可得到结论.本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.20.【答案】2 1 8 6【解析】解:(1)由收集数据中的数据可得,22≤x≤28时,中华白海豚在区域A出现的数目为:2,29≤x≤35时,中华白海豚在区域A出现的数目为:1,故答案为:2,1;(2)由收集数据中的数据可得,a=,b=6,故答案为:8,6;(3)200×=30(天),答:区域A大约有30天中华白海豚出现的数目在22≤x≤35的范围内.(1)根据题目中的数据,可以将表格补充完整;(2)根据题目中的数据可以分别求得a、b的值;(3)根据表格中的数据可以求得区域A大约有多少天中华白海豚出现的数目在22≤x≤35的范围内.本题考查用样本估计总体、算术平均数、中位数、众数,解答本题的关键是明确题意,求出相应的中位数、众数.21.【答案】4.5 60【解析】解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7-4.5)(v-50)=460,解得v=90(千米/小时),4v=360,则D(4,360),E(4.5,360),∴线段OD的函数关系式为y=90x(0≤x≤4),设直线EF的解析式为y=kx+b,,解得,所以线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);综上所述,乙车距A地的路程y与x之间的函数关系式为:y=;(3)易知C(0,40),设线段CF的解析式为y=kx+40,根据题意得,7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,∴,解得,,解得,则两车在行驶过程中可以通话的总时长为:(小时).(1)由乙在途中的货站装货耗时半小时易得a=4.5,甲从A到B共用了(+7)小时,然后利用速度公式计算甲的速度;(2)分段函数;设乙开始的速度为v千米/小时,利用乙两段时间内的路程和为460列方程4v+(7-4.5)(v-50)=460,解得v=90(千米/小时),计算出4v=360,则可得到D(4,360),E(4.5,360),然后利用待定系数法求出线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)求出线段CF的解析式,再根据题意列不等式组解答即可.本题考查了一次函数的应用:学会从函数图象中获取信息,特别注意自变量取值范围的变化.22.【答案】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴∠ABD=∠ACE.(2)(1)中结论成立,理由:在Rt△ABC中,∠ABC=30°,∴AB=AC,在Rt△ADE中,∠ADE=30°,∴AD=AE,∴=.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB∽△AEC.∴∠ABD=∠ACE(3)解:①当点E在AB上时,BE=AB-AE=AB-AD=2.∵∠EAC=90°,∴CE===2.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=10.∵∠EAC=90°,∴CE===2.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【解析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到∠ABD=∠ACE;(2)先判断出△ADB∽△AEC,即可得出结论;(3)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.此题是几何变换综合题,主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.23.【答案】(1);(2)①如图2,∵四边形PQMN是正方形,∴∠BQM=90°,∵∠B=45°,∴BQ=MQ,即7-t=2t,解得t=,故当0<t≤时,S=(2t)2=4t2;②如图3,∵∠BQF=90°,∠B=45°,∴BQ=FQ=7-t,∠BFQ=∠MFE=45°,则MF=MQ-QF=3t-7,∵∠M=90°,∴ME=MF=3t-7,则S=(2t)2-×(3t-7)2=-t2+21t-(<t<);综上,S=.(3)S△ABC=AB•CG=×14×8=56,①如图4,作HR⊥AB于点R,∵四边形PQMN为正方形,且PM为对角线,∴∠HPB=∠B=45°,∴HR=PB=×(14-7+t)=,∵PM将△ABC面积平分,∴S△PBH=S△ABC,则•(7+t)•=×56,解得t=-7+4(负值舍去);②如图5,作KT⊥AB于T,设KT=4m,由tan A==知AT=3m,∵∠KQT=45°,∴KT=QT=4m,则AQ=3m+4m=7m,又AQ=14-(7-t)=7+t,则7m=7+t,∴m=,∵直线NQ将△ABC面积平分,∴S△AKQ=S△ABC,即×7m×4m=×56,整理,得:m2=2,则()2=2,解得:t=-7+7(负值舍去),综上,t的值为4-7或7-7.【解析】解:(1)如图1,作CG⊥AB于点G,设BG=h,∵∠B=45°,AB=14,∴CG=BG=h,AG=14-h,∵tan A==,即=,解得:h=8,则AG=6,∵DP=DQ=t,∴PN=PQ=2t,由PN∥CG知△APN∽△AGC,∴=,即=,解得:t=,故答案为:.(2)见答案;(3)见答案.【分析】(1)作CG⊥AB,由∠B=45°可设BG=CG=h,AG=14-h,根据tan A=求得h=8,再证△APN∽△AGC得=,据此求解可得;(2)分点M在△ABC内部和外部两种情况:点M在△ABC内部时,重叠部分面积即为正方形的面积;点M在△ABC外部时,重叠部分面积=正方形PQMN的面积-△EMF的面积,据此求解;(3)分直线PM和直线QN将△ABC面积平分的两种情况分别求解可得.本题主要考查四边形的综合问题,解题的关键是掌握正方形的性质,直角三角形的有关性质,相似三角形的判定与性质及分类讨论思想的运用等知识点.24.【答案】解:(1)如图1,设点A(t,),A′(t+3,),∵G是中心对称图形,由反比例函数图象的中心对称性质可知:A与A′关于原点成中心对称,∴t+t+3=0,解得:t=;(2)①y1=+2t=t2+t+,y2=+2t=2t+∴P(,t2+t+),Q(+t,2t+),②当t=-2时,y=(x+2)2-4,P(,),Q(,),根据“双对称函数”定义可知:新图象f由x<时抛物线y=(x+2)2-4沿直线y=翻折所得图象、x>时抛物线y=(x+2)2-4沿直线y=翻折所得图象及≤x≤时抛物线y=(x+2)2-4三个部分组成,∴当t=-2时,函数f的解析式为:y=③∵当-1≤x≤1时,函数f的最小值为y min,且-2≤y min≤-1,若t<0,该二次函数关于点P、Q的“双对称函数”为:y=,当t≤-1时,点Q始终是“双对称函数”在-1≤x≤1的最低点,由-2≤2t+≤-1,∴≤t≤,故≤t≤-1当-1<t<0时,将x=-1代入得y=-(-1-t)2+2t+=-t2,由-2≤-t2≤-1,解得:≤t≤,∴-1≤t≤-当t≥0时,由-2≤-(-1-t)2+2t2+≤-1,可解得:≤t≤,综上所述,t的取值范围为:-≤t≤或≤t≤,【解析】(1)根据定义、反比例函数图象性质和中心对称性质即可求出t;(2)①直接代入计算即可;②新函数是分段函数,自变量x的范围分为:x<或≤x≤或x>,二次函数图象翻折后开口方向与原来相反,顶点与原来顶点关于对称轴对称,可以先求新顶点;③分t≤-1,-1<t<0,t≥0进行讨论.本题是新定义创新题型,考查了二次函数图象和性质,轴对称和中心对称性质,二次函数最值应用等,解题关键是对新定义的理解和运用.。
2020年长春市中考数学模拟考试试卷及答案解析
2020年长春市中考数学模拟考试试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在﹣2□3的“□”中填入一个运算符号使运算结果最小()A.+B.﹣C.×D.÷2.(3分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数字338600000用科学记数法可表示为()A.3.386×109B.0.3386×109C.33.86×107D.3.386×108 3.(3分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变4.(3分)一元二次方程4x2+1=3x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.(3分)如图,以正五边形ABCDE的边DE为边作等边三角形DEF,使点F在其内部,连结FC,则∠DFE的大小是()A.76°B.66°C.60°D.48°6.(3分)在▱ABCD中,AB<BC,对角线AC的垂直平分线交AD于点E,连结CE,若▱ABCD 的周长为20cm,则△CDE的周长为()A .20cmB .40cmC .15cmD .10cm7.(3分)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .4mB .2√5mC .8√33mD .8m8.(3分)如图,在平面直角坐标系中,矩形OABC 的对角线OB 、AC 相交于点D ,BE ∥AC ,AE ∥OB .函数y =k x(k >0,x >0)的图象经过点E .若点A 、C 的坐标分别为(3,0)、(0,2),则k 的值为( )A .3B .4C .4.5D .6二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:a 2•a 4= .10.(3分)关于x 的方程x +2a =1的解是负数,则a 的取值范围是 .11.(3分)如图,①以点A 为圆心2cm 长为半径画弧分别交∠MAN 的两边AM 、AN 于点B 、D ;②以点B 为圆心,AD 长为半径画弧,再以点D 为圆心,AB 长为半径画弧,两弧交于点C ; ③分别连结BC 、CD 、AC .若∠MAN =60°,则∠ACB 的大小为 .12.(3分)如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别是AB 、AC 、AD 的中。
2020年吉林省长春市中考数学一模试卷 (含答案解析)
2020年吉林省长春市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.如图,在数轴上点M表示的数可能是()A. 1.5B. 2.5C. −1.5D. −2.52.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长55公里,建成后将成为世界最长的跨海大桥,整座大桥计划投资720亿元,预计将在2018年7月1日正式通车,请将720亿用科学记数法表示为()A. 7.2×108B. 7.2×109C. 72×109D. 7.2×10103.下列选项的四个图形中是如图所示的侧面展开图的是()A.B.C.D.4.不等式2x≥x−1的解集在数轴上表示正确的是()A. B.C. D.5.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosxD. acosx+bsinx6.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A. 54°B. 64°C. 27°D. 37°AC的长为半径画7.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于12弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A. 50°B. 60°C. 70°D. 80°8.反比例函数y=k的图象经过点A(−2,−5),则当1<x<2时,y的取值范围是()xA. −10<y<−5B. −2<y<−1C. 5<y<10D. y>10二、填空题(本大题共6小题,共18.0分)9.小明买了单价为10元的练习本a本和单价为5元的钢笔b支,他一共花费______元.10.分解因式:16a2−1=______ .11.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是______.12.正五边形的一个外角等于______°.13.如图,△ABC中,∠C=90°,AC=BC=8,D为边AB中点.以B为圆心,BD为半径作弧,交BC于点E;以C为圆心,CD为半径作弧,交AC于点F.则图中阴影部分的面积为______.(x−3)2−1的顶点为14.如图,在平面直角坐标系中,抛物线y=14A,直线l过点P(0,m)且平行于x轴,与抛物线交于点B和点C.若AB=AC,∠BAC=90°,则m=____.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共9小题,共72.0分)16.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)17.如图,在小正方形的边长为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为10;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为2,DF与(1)中所画线段AE平行,连接AF,请直接写出线段AF的长.18.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.19.如图,已知平行四边形ABCD中,E是边CD的中点,连接AE并延长交BC的延长线于点F,连接AC.(1)求证:AD=CF;(2)若AB⊥AF,且AB=6,BC=4,求sin∠ACE的值.20.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω) 30 40 70 80 90 110 120 140天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数______,中位数______;(2)请补全空气质量天数条形统计图;(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动.请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?21.已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为______千米/时,a=______,b=______.(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.22.22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)如图1,点E在BC上,线段AE与BD的关系是________;(2)把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A,E,D三点在直线上时,请直接写出AD的长.24.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=−3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√2?2-------- 答案与解析 --------1.答案:C解析:此题考查了数轴.看清数轴上点的位置是解本题的关键.根据数轴上点M的位置,可得点M表示的数.解:∵点M表示的数大于−2且小于−1,∴A、B、D三选项错误,C选项正确.故选C.2.答案:D解析:解:将720亿用科学记数法表示为7.2×1010.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:C解析:【试题解析】本题主要考查几何体侧面展开图的知识,解答本题的关键是知道几何体侧面展开图的特点.解:根据几何体侧面展开图的特点,知道的侧面展开图是.故选C.4.答案:A解析:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.根据解一元一次不等式基本步骤:移项、合并同类项可得.解:移项,得:2x−x≥−1,合并同类项,得:x≥−1,故选:A.5.答案:D解析:本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意,过点A作AE⊥OB于点E,然后利用锐角三角函数即可表示出BE和BO的长度,则点A 到OC的距离等于BE+BO,本题得以解决.解:过点A作AE⊥OB于点E,因为∠ABC=90∘,所以∠ABE+∠OBC=90∘.因为∠BOC=90∘,所以∠OBC+∠BCO=90∘.所以∠ABE=∠BCO=x.在Rt△ABE中,BE=AB⋅cos∠ABE=acos x.在Rt△BCO中,BO=BC⋅sinx=AD⋅sinx=bsinx.故点A到OC的距离等于BE+OB=acosx+bsinx.故选D.6.答案:C解析:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.解:∵∠AOC=126°,∴∠BOC=180°−∠AOC=54°,∠BOC=27°.∵∠CDB=12故选:C.7.答案:C解析:本题主要考查作图−基本作图、三角形内角和定理及线段垂直平分线的性质,熟练掌握中垂线的作图和性质是解题的关键.根据内角和定理求得∠BAC=100°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°−∠B−∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC−∠DAC=70°,故选C.8.答案:C解析:解:∵反比例函数y=k的图象经过点A(−2,−5),x∴−5=k,解得:k=10,−2∴反比例函数解析式为y=10.x当x>0时,反比例函数单调递减,=10;当x=1时,y=101=5.当x=2时,y=102∴当1<x<2时,5<y<10.故选C.将点A的坐标代入反比例函数解析式中,求出k值,结合反比例函数的性质可知当x>0时,反比例函数单调递减,分别代入x=1、x=2求出y值,由此即可得出结论.本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及待定系数法求函数解析式,解题的关键是求出k值.本题属于基础题,难度不大,解决该题型题目时,由给定点的坐标利用待定系数法求出k的值,再根据反比例函数的性质确定其单调性,代入x的值即可得出结论.9.答案:(10a+5b)解析:小明一共花费的钱数=练习本的单价×练习本的数量+钢笔的单价×钢笔的数量.本题考查了列代数式,掌握总价=单价×数量是解题的关键.解:∵小明买了单价为10元的练习本a本和单价为5元的钢笔b支,∴他一共花费:(10a+5b)元.故答案为:(10a+5b).10.答案:(4a+1)(4a−1)解析:解:16a2−1=(4a+1)(4a−1).符合平方差公式分解因式的特点,利用平方差公式进行分解因式.本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.答案:1解析:解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22−4m=0,∴m=1,故答案为:1.由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.12.答案:72解析:解:正五边形的一个外角=360°5=72°,故答案为:72.根据多边形的外角和是360°,即可求解.本题考查多边形的内角与外角,正确理解多边形的外角和是360°是关键.13.答案:16解析:解:∵在△ABC中,∠C=90°,AC=BC=8,D为边AB中点,∴∠B=∠A=45°,AB=8√2,∴BD=AD=CD=4√2,∠DCF=45°连接CD,∵BD=CD,∠DCF=∠B,∴S扇形DCF=S扇形DBE∴阴影部分的面积=S三角形BDC =8×82×12=16,故答案为:16.根据题意,可以求得AB、AD、BD、CD的长,然后根据割补法以及三角形的面积即可解答本题.本题考查扇形面积的计算、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.14.答案:3解析:本题考查了二次函数的性质,二次函数图象上点的坐标特征,函数和方程的关系,等腰直角三角形的性质,根据根与系数的关系列出关于m的方程是解题的关键.(x−3)2−1=m,作AD⊥BC于D,易证得BC=2AD=2(m+1),设B(x1,m),C(x2,m),解方程14根据根与系数的关系得出x1+x2=6,x1x2=5−4m,即可得出(x2−x1)2+4x1x2=36,即(2+ 2m)2+4(5−4m)=36,解关于m的方程求得即可.解:如图,作AD⊥BC于D,∵AB=AC,∠BAC=90°,∴AD=CD=BD,∴BC=2AD,(x−3)2−1的顶点为A,∵抛物线y=14∴A(3,−1),∵点P(0,m),∴AD=1+m,∴BC=2+2m,设B(x1,m),C(x2,m),∴x2−x1=2+2m,(x−3)2−1=m整理得:x2−6x+5−4m=0,解14∴x1+x2=6,x1x2=5−4m,∴(x2−x1)2+4x1x2=36,∴(2+2m)2+4(5−4m)=36,解得m=3和m=−1(舍去),故答案为3.15.答案:解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.解析:根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.16.答案:解:画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,,所以P(两张都是“红脸”)=49答:抽出的两张卡片上的图案都是“红脸”的概率是4.9解析:根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.此题主要考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.17.答案:解:(1)如图所示:△ABE即为所求;(2)如图所示:△CDF即为所求,AF=√17.解析:(1)直接利用勾股定理结合网格得出符合题意的答案;(2))直接利用勾股定理结合网格得出符合题意的答案.此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.18.答案:解:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,由题意得,100000x+500=100000(1−10%)x解得:x=4500,经检验,x=4500是原分式方程的解,且符合题意.答:今年每部手机的售价是4500元.解析:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,根据今年的销售总额比去年减少10%,列方程求解.19.答案:(1)证明:∵四边形ABCD是平行四边形∴AD//BC∴∠D=∠ECF,∠DAE=∠F,∵E是CD的中点∴DE=CE,∴△ADE≌△FCE(AAS)∴AD=CF,(2)∵四边形ABCD是平行四边形∴AD=BC=4∵△ADE≌△FCE∴AD=CF=BC=4,∵AB⊥AF∴AC=12BF=4AF=√BF2−AB2=√82−62=2√7∴AE=EF=12AF=√7∵AB//CD,∴CD⊥AF∴sin∠ACE=AEAC =√74.解析:(1)根据平行四边形的性质和全等三角形的判定和性质证明即可;(2)根据勾股定理和三角函数解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答.20.答案:解:(1)90;90;(2)由题意,得轻度污染的天数为:30−3−15=12天.补全条形统计图如图.(3)由题意,得优所占的百分比为:3÷30=10%,优所占的圆心角的度数为:10%×360=36°,良所占的百分比为:15÷30=50%,良所占的圆心角的度数为:50%×360=180°,轻度污染所占的百分比为:12÷30=40%,轻度污染所占的圆心角的度数为:40%×360=144°,补全扇形统计图如图;(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.解析:本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.(1)根据众数的定义就可以得出这组数据的众数为90,由30个数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据计算出轻度污染的天数即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)利用样本估计总体的方法,求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)见答案;(3)见答案;(4)见答案.21.答案:75 3.6 4.5解析:解:(1)乙车的速度为:(270−60×2)÷2=75千米/时,a =270÷75=3.6,b =270÷60=4.5.故答案为:75;3.6;4.5;(2)60×3.6=216(千米),当2<x ≤3.6时,设y =k 1x +b 1,根据题意得:{2k 1+b 1=03.6k 1+b 1=216,解得{k 1=135b 1=−270, ∴y =135x −270(2<x ≤3.6);当3.6<x ≤4.6时,设y =60x ,∴y ={135x −270(2<x ≤3.6)60x(3.6<x ≤4.5);(3)甲车到达距B 地70千米处时行驶的时间为:(270−70)÷60=206(小时), 此时甲、乙两车之间的路程为:135×206−270=180(千米).答:当甲车到达距B 地70千米处时,求甲、乙两车之间的路程为180千米.(1)根据图象可知两车2小时后相遇,根据路程和为270千米即可求出乙车的速度;然后根据“路程、速度、时间”的关系确定a 、b 的值;(2)运用待定系数法解得即可;(3)求出甲车到达距B 地70千米处时行驶的时间,代入(2)的结论解答即可.此题主要考查了一次函数的应用问题,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了行程问题,要熟练掌握速度、时间和路程的关系:速度×时间=路程.22.答案:(1)证明见解析;(2)当∠BAE =30°时,四边形AECF 是菱形解析:(1)首先证明△ABE≌△CDF ,则DF =BE ,然后可得到AF =EC ,依据一组对边平行且相等四边形是平行四边形可证明AECF 是平行四边形;(2)由折叠性质得到∠BAE =∠CAE =30°,求得∠ACE =90°−30°=60°,即∠CAE =∠ACE ,得到EA =EC ,于是得到结论.【详解】解:(1)∵四边形ABCD 为矩形,∴AB =CD ,AD//BC ,∠B =∠D =90°,∠BAC =∠DCA .由翻折的性质可知:∠EAB =12∠BAC ,∠DCF =12∠DCA .∴∠EAB =∠DCF .在△ABE 和△CDF 中{∠B =∠D AB =CD ∠EAB =∠DCF, ∴△ABE≌△CDF(ASA),∴DF =BE .∴AF =EC .又∵AF//EC ,∴四边形AECF 是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°−30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.答案:(1)AE=BD;AE⊥BD.(2)结论成立:理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)17或7.解析:本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会用分类讨论的射线思考问题,(1)如图1中,延长AE交BD于H.只要证明△ACE≌△BCD即可;(2)结论不变.如图2中,延长AE交BD于H,交BC于O.只要证明△ACE≌△BCD即可;(3)分两种情形分别求解即可解决问题;解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)见答案.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,DE=5,∴EH=DH,CH=12在Rt△ACH中,∵AC=13,CH=5,∴AH=√132−52=12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH−DH=12−5=7,综上所述,满足条件的AD的值为17或7故答案为17或7.24.答案:解:(Ⅰ)当a=1,m=−3时,抛物线的解析式为y=x2+bx−3.∵抛物线经过点A(1,0),∴0=1+b−3,解得b=2,∴抛物线的解析式为y=x2+2x−3.∵y=x2+2x−3=(x+1)2−4,∴抛物线的顶点坐标为(−1,−4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=−m−1.∴抛物线的解析式为y=x2−(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt △EAH 中,EH =1−(m +1)=−m ,HA =0−m =−m ,∴AE =√EH 2+HA 2=−√2m ,∵AE =EF =2√2,∴−√2m =2√2,解得m =−2.此时,点E(−1,−2),点C(0,−2),有EC =1.∵点F 在y 轴上,∴在Rt △EFC 中,CF =√EF 2−EC 2=√7.∴点F 的坐标为(0,−2−√7)或(0,−2+√7).②由N 是EF 的中点,得CN =12EF =√2.根据题意,点N 在以点C 为圆心、√2为半径的圆上,由点M(m,0),点C(0,m),得MO =−m ,CO =−m ,∴在Rt △MCO 中,MC =√MO 2+CO 2=−√2m.当MC ≥√2,即m ≤−1时,满足条件的点N 在线段MC 上.MN 的最小值为MC −NC =−√2m −√2=√22,解得m =−32; 当MC <√2,即−1<m <0时,满足条件的点N 落在线段CM 的延长线上,MN 的最小值为NC −MC =√2−(−√2m)=√22, 解得m =−12.∴当m 的值为−32或−12时,MN 的最小值是√22.解析:(Ⅰ)将A(1,0)代入抛物线的解析式求出b =2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a =1,b =−m −1.求出抛物线的解析式为y =x 2−(m +1)x +m.则点C(0,m),点E(m +1,m),过点A 作AH ⊥l 于点H ,由点A(1,0),得点H(1,m).根据题意求出m 的值,可求出CF 的长,则可得出答案;②得出CN =12EF =√2.求出MC =−√2m ,当MC ≥√2,即m ≤−1时,当MC <√2,即−1<m <0时,根据MN 的最小值可分别求出m 的值即可.本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.。
吉林省长春市南关区中考第一次模拟考试数学试题(含答案)
1 / 7九年级质量调研题(数学)一、选择题(本大题共8小题,每小题3分,共24分) 1.6-的绝对值是(A )6-. (B )6. (C )16-. (D )16. 2.“十二五”期间,某市义务教育阶段在校学生人数达到654 000人.654 000这个数用科学记数法表示为(A )60.65410⨯. (B )66.5410⨯. (C )56.5410⨯. (D )465.410⨯. 3.下列运算中,正确的是(A )235a a a ⋅=. (B )842a a a ÷=. (C )527()a a =. (D )235a b ab +=. 4.右图是由六个完全相同的小正方体组合而成的立体图形,它的主视图是(A ) (B ) (C ) (D ) (第4题)5.如图,直线a ∥b .若130∠=︒,2=45∠︒,则3∠的大小为(A )75︒. (B )80︒. (C )85︒. (D )105︒.(第5题) (第6题)6.如图,四边形ABCD 内接于⊙O .若⊙O 的半径为4,135D ∠=︒,则AC 的长为 (A )π. (B )2π. (C )4π. (D )8π.7.如图,在△ABC 中,分别以点A 、C 为圆心,以大于2AC长为半径作圆弧,两弧分别相交于点E 、F ,连结EF 并延长交边BC 于点D ,连结AD .若6AB =,8BC =,则△ABD的周长为(A )8. (B )10. (C )12. (D )14.(第7题) (第8题) 8.如图,在平面直角坐标系中,矩形ABCD 的边BC 在x 轴的正半轴上,点B 在点C 的左侧,直线y kx =经过点(3,3)A 和点P,且OP =.将直线y kx =沿y 轴向下平移得到直线y kx b =+,若点P 落在矩形ABCD 的内部,则b 的取值范围是(A )0<b <3. (B )3-<b <0. (C )6-<b <3-. (D )3-<b <3. 二、填空题(本大题共6小题,每小题3分,共18分) 92.(填“>”、“=”或“<”) 10.不等式2(3)4x +-≤0的解集为 .11.一元二次方程2530x x -+=根的判别式的值为 .12.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上.若40CAB ∠=︒,则D ∠的大小为 度.(第12题) (第13题) (第14题)13.如图,在平面直角坐标系中,点A 在函数ky x=(x >0) 的图象上,过点A 作AC ⊥y 轴于点C ,点B 在x 轴上,连结CB 、AB .若△ABC 的面积为4,则k 的值为 . 14.如图,在平面直角坐标系中,抛物线2(2)1y a x =-+(a 为常数)的顶点为A ,过点A作y 轴的平行线与抛物线21433y x x =--交于点B ,抛物线21433y x x =--的顶点为C ,连结CA 、CB .则△ABC 的面积为 .九年级数学 第1页 (共8页) 九年级数学 第2页 (共8页)密封线内不要答题、密封线外不要写考号、姓名ba 321FEDB C A B2 / 7三、解答题(本大题共10小题,共78分) 15.(6分)先化简,再求值:(4)(1)(1)a a a a -+-+,其中34a =.16.(6分)现有一副扑克牌中的3张牌,牌面数字分别为7、9、9,从中随机抽取一张然后放回,再随机抽取一张.用画树状图(或列表)的方法,求抽取的两张牌面数字相同的概率.17.(6分)某车间计划生产360个零件,由于改进了技术,该车间实际每天生产零件的个数是原计划的1.2倍,结果提前4天完成任务.求该车间原计划每天生产零件的个数.18.(7分)如图,在△ABC 中,AB =AC ,AD 平分BAC ∠交BC 于点D ,分别过点A 、D作AE ∥BC 、DE ∥AB ,AE 与DE 相交于点E ,连结CE .求证:四边形ADCE 是矩形.(第18题)九年级数学 第3页 (共8页) 九年级数学 第4页 (共8页)EDC BA密封线内不要答题3 / 719.(7分)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处.海轮沿正南方向航行一段时间后,到达位于灯塔P 的南偏东64°方向上的B 处.求海轮所在的B 处与灯塔P 的距离.(结果精确到0.1海里) 【参考数据:sin640.90cos640.44tan64 2.05︒=︒=︒=,,】(第19题)20.(7分)在“世界粮食日”前夕,某校团委随机抽取了n 名本校学生,对某日午餐剩饭菜情况进行问卷调查.问卷中的剩饭菜情况包括: A .饭和菜全部吃完; B .饭有剩余但菜吃完; C .饭吃完但菜有剩余;D .饭和菜都有剩余.每位学生在问卷调查时都按要求只选择了其中一种情况,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的条形统计图. (1)求n 的值.(2)饭和菜全部吃完的学生人数占被调查的学生人数的百分比为 . (3)根据统计结果,估计该校2400名学生中菜有剩余的学生人数.(第20题)21.(8分)甲、乙两个工程队同时开始维修某一段路面,一段时间后,甲队被调往别处,乙队又用了2小时完成了剩余的维修任务.已知乙队每小时维修路面的长度保持不变,甲队每小时维修路面30米.甲、乙两队在此路段维修路面的总长度y (米)与维修时间x (时)之间的函数图象如图所示.(1)甲队调离时,甲、乙两队已维修路面的总长度为 米. (2)求此次维修路面的总长度a .(3)求甲队调离后y 与x 之间的函数关系式.(第21题)22.(9分)在菱形ABCD 中,60B ∠=︒,AC 为对角线.点E 、F 分别在边AB 、DA 或其延长线上,连结CE 、CF ,且60ECF ∠=︒.感知:如图①,当点E 、F 分别在边AB 、DA 上时,易证: AF BE =.(不要求证明) 探究:如图②,当点E 、F 分别在边AB 、DA 的延长线上时,CF 与边AB 交于点G .求证:AF BE =.应用:如图②,若12AB =,4AF =,求线段GE 的长.图① 图②(第22题)九年级数学 第5页 (共8页) 九年级数学 第6页 (共8页)密封线内不要答题、密封线外不要写考号、姓名F EDCB A GF EDCBA剩饭菜情况n 名学生午餐剩饭菜情况的人数条形统计图64°30°北BAP时)y (米4 / 723.(10分)如图,在△ABC 中,90C ∠=︒,6AC BC ==. 点P 在边AC 上运动,过点P作PD ⊥AB 于点D ,以AP 、AD 为邻边作□P ADE . 设□P ADE 与ABC △重叠部分图形的面积为y ,线段AP 的长为x (0<x ≤6). (1)求线段PE 的长(用含x 的代数式表示). (2)当点E 落在边BC 上时,求x 的值. (3)求y 与x 之间的函数关系式.(4)直接写出点E 到△ABC 任意两边所在直线距离相等时x 的值. (第23题)24.(12分)如图,在平面直角坐标系中,抛物线2+5y ax bx =+与x 轴交于(1,0)A 、(5,0)B 两点,点D 是抛物线上横坐标为6的点.点P 在这条抛物线上,且不与A 、D 两点重合,过点P 作y 轴的平行线与射线AD 交于点Q ,过点Q 作QF 垂直于y 轴,点F 在点Q 的右侧,且2QF =,以QF 、QP 为邻边作矩形QPEF .设矩形QPEF 的周长为d ,点P 的横坐标为m .(1)求这条抛物线所对应的函数表达式.(2)求这条抛物线的对称轴将矩形QPEF 的面积分为1:2两部分时m 的值. (3)求d 与m 之间的函数关系式及d 随m 的增大而减小时d 的取值范围. (4)当矩形QPEF 的对角线互相垂直时,直接写出其对称中心的横坐标.(第24题)九年级数学 第7页 (共8页) 九年级数学 第8页 (共8页)密封线内不要答题ABCPED5 / 7九年级数学质量调研题参考答案及评分标准 .4一、选择题(每小题3分,共24分)1B 2C 3A 4 D 5 A 6B 7D 8 C二、填空题(每小题3分,共18分)9.< 10.x ≤1- 11.13 12.50 13.8 14.10 三、解答题(本大题共10小题,共78分)15.原式224114.a a a a =-+-=- (4分) 当34a =时,原式=31414 2.4a -=-⨯=- (6分)16.(4分)或所以5().9P 数字相同= (6分)17.设该车间原计划每天生产零件x 个. 根据题意,得36036041.2x x-=. (3分) 解得15x =. (5分经检验,15x =是原方程的解,且符合题意. 答:该车间原计划每天生产零件15个. (6分)18.∵AE ∥BC 、DE ∥AB ,∴四边形ABDE 是平行四边形. (3分)∴.AE BD =又∵AB AC =,AD 平分BAC ∠,∴BD DC =,AD ⊥BC . ∴AE DC =,90.ADC ∠=︒ (5分) 又∵AE ∥BC ,∴四边形ADCE 是平行四边形.∴四边形ADCE 是矩形. (7分)19.过点P 作PC ⊥AB 于点C . 由题意可知,AB ∥PD , ∴30,64.A B ∠=︒∠=︒ 在Rt △APC 中,90,30,80.ACP A AP ∠=︒∠=︒=1sin3040.2PC AP AP =︒== (3分)在Rt △PBC 中,90,64.BCP B ∠=︒∠=︒4044.44sin 640.9PC PB ===︒≈44.4(海里). 答:海轮所在的B 处与灯塔P 的距离约为44.4海里. (7分) 20.(1)120402020200.n =+++= (2分) (2)60%. (4分) (3)20202400480200+⨯= (人). (7分)21.(1)150. (2分)(2)甲队调离前,甲、乙两队每小时维修路面的总长度为1503=50÷(米).∴乙队每小时维修路面的长度为503020-=. (4分) 150202190a =+⨯=(米). (5分)(3)设所求函数关系式为y kx b =+. 将点(3,150),(5,190)代入,得3150,5190.k b k b +=⎧⎨+=⎩ 解得20,90.k b =⎧⎨=⎩(7分) ∴2090y x =+(3<x ≤5). (8分)22.探究:∵四边形ABCD 是菱形,60.ABC ∠=︒ ∴AC BC =. (1D C北B AP64°30°(9,7)(9,9)(9,9)(9,9)99(9,9)(9,7)(7,7)(7,9)(7,9)7997结果第二张牌第一张牌第二张牌第一张牌7999977999976 / 7分) 60.ACB DAC ABC ∠=∠=∠=︒ ∴180120.FAC DAC ∠=︒-∠=︒ 180120.EBC ABC ∠=︒-∠=︒∴.FAC EBC ∠=∠ (3分)又∵60ECF ∠=︒∴60.ACF ACB GCB GCB ∠=∠-∠=︒-∠ 60.BCE ECF GCB GCB ∠=∠-∠=︒-∠∴.ACF BCE ∠=∠ (5分)∴△ACF ≌△BCE . ∴.AF BE = (6分)应用:∵四边形ABCD 是菱形,∴AD ∥CB .∴△AFG ∽△BCG .∴41.123GA AF GB BC === ∴3.GB GA = 又∵12.GA GB AB +== ∴312.GA GA +=∴ 3.GA = (8分)∴9.GB =又∵AF BE =,∴9413.GE GB BE =+=+= (9分)23.(1)cos452PE AD AP x ==︒=. (2分) (2)62xx +=. 4.x = (4分)(3)当0<x ≤4时,21.222y x x x =⋅= 当4<x ≤6 时,16.2DG x =- 13(6) 6.22GE x DG x x x =-=--=- 2221135(6)918.2228y x x x x =--=-+- (7分)(注:两段自变量的取值范围1分,每个函数关系式各1分)(4)3,6,12(37 (10分)由116.22x x x =-- 得 3.x =由11(6).2x x x =-- 得 6.x =6.2xx x =-- 得12(37x = 24.(1)把(1,0)A 、(5,0)B 代入2+5y ax bx =+50,25550.a b a b ++=⎧⎨++=⎩ 解得1,6.a b =⎧⎨=-⎩ (2分)∴26 5.y x x =-+ (2)对称轴为:63.22b x a -=-=-= 由3223m -=,得53m =. 由3123m -=,得73m =. (4分) (3)当6x =时,22656665 5.y x x =-+=-⨯+= ∴点D 的坐标为(6,5).射线AD 所对应的函数表达式为1y x =-(x >1).∴2(,65)P m m m -+,(,1)Q m m -. 当1<m <6时,222(762)2148.d m m m m =-+-+=-+- (6分) 当m >6时,222(762)21416.d m m m m =-++=-+ (8分) 又2273321482).22d m m m =-+-=--+( ∴d 随m 的增大而减小时d 的取值范围是0<m ≤332.(9分) (4)999222-+ 由2780.m m -+= 得12m m =由2740.m m -+= 得 12m m =(舍去) (12分)GA BCP ED注:18—24题采用本参考答案以外的解法,只要正确均可参照该题步骤给分.7 / 7。
2020年吉林省长春市南关区中考数学一模试卷
二、填空题(本大题共6小题,每小题3分,共18分)
9.(3分) ﹣ =.
10.(3分)分解因式:ab﹣b2=.
11.(3分)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为.
12.(3分)用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)﹣3的绝对值是( )
A.﹣3B.3C. D.
2.(3分)某企业一个项目的总投资为4 170 000元.4 170 000这个数用科学记数法表示为( )
A.0.417×107B.4.17×106C.4.17×107D.41.7×105
20.(7分)在新冠病毒疫情防控期间,某校“停课不停学”,开展了网络教学.为了解九年级学生在网络学习期间英语学科和数学学科的学习情况,复课后从九年级学生中随机抽取60名学生进行了测试,获得了他们成绩(百分制)的数据,通过对成绩数据的整理、描述和分析,得到了如下部分信息.
①英语成绩的频数分布直方图如图:
(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100.)
②英语和数学成绩的平均数、中位数、众数如表:
学科
平均数
中位数
众数
英语
74.8
m
83
数学
72.2
70
81
③英语成绩在70≤x<80这一组的数据是:
吉林省长春市南关区2020年中考数学一模试卷含答案解析
36.某简易房的示意图如图所示, 它是一个轴对称图形, 则坡屋顶上弦杆 AC 的长为( )2020年吉林省长春市南关区中考数学一模试卷•选择题(共8小题) 13的绝对值是(C .4 170 000元.4 170 000这个数用科学记数法表示为 ()4.由四个完全相同的正方体组成的几何体如图所示,则这个几何体的俯视图是()5.如图,OC 是/ AOB 的平分线,直线I // OB .若/ 1= 50°,则/ 2的大小为()A . 0.417X 107 B. 4.17 X 106C . 4.17X 107D . 41.7X 1053.不等式组的解集在数轴上表示正确的是(-o -12.某企业一个项目的总投资为C .4136.某简易房的示意图如图所示, 它是一个轴对称图形, 则坡屋顶上弦杆 AC 的长为( )ACZ!MB . 60°C . 65D . 80A . 50°&如图,在平面直角坐标系中,点 C 、A 分别在x 轴、y 轴上,AB // x 轴,/ ACB = 90°,反比例函数 尸生(x >0)的图象经过 AB 的中点M .若点A ( 0,4)、C ( 2,0),则k 的值为(C .□SsinCL口Sens a 7.如图,在?ABCD AD > AB ,用直尺和圆规在边 AD 上确定一点E ,使AE = AB ,则下米llsindllcasQ中,二.填空题(共6小题) 9.:「 _____________ .10. _________________________ 分解因式:ab - b 2= . 11.关于x 的一元二次方程 x 2-5x+k = 0有两个不相等的实数根,则 k 可取的最大整数为 _______ . 12.用杠杆撬石头的示意图如图所示, P 是支点,当用力压杠杆的 A 端时,杠杆绕P 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B 端必须向上翘起8cm ,已知杠杆的动力臂 AP 与阻力臂BP 之比为4: 1,要使这块石头滚动,至少 要将杠杆的 A 端向下压 ________________ c m .13 .如图,在矩形ABCD 中,E 是AB 上一点,将厶ADE 沿DE 翻折,点A 恰好落在BC 上,记为A 1,折痕为DE .再将/ B 沿EA 1向内翻折,点B 恰好落在DE 上,记为B 1.若AD =1,则AB 的长为 _________ .14 .如图,在平面直角坐标系中,抛物线 y = x 2- mx+4与y 轴交于点C ,过点C 作x 轴的平行线交抛物线于点 B ,点A 在抛物线上,点 B 关于点A 的对称点D 恰好落在x 轴负半轴上,过点B . 20C . 32D .40A作x轴的平行线交抛物线于点 E .若点A、D的横坐标分别为1、- 1,则线段AE与线段CB的长度和为 ________ .215 .先化简,再求值: —_旷],其中x =- 3 .x-1 16 .现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有 1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出 1个球,利用树状图或者列表的方法,求摸出的两个球颜色相同的概率.17 .图①、图②均是6 X 6的正方形网格,每个小正方形的边长为1,小正方形的顶点称为格点,点A 、B 、C 、D 均在格点上.用直尺在给定的网格中按要求画图,所画图形的顶 点均在格点上,不要求写画法.(1) 在图①中以线段AB 为腰画一个等腰三角形 ABM ,画出的厶ABM 的面积是 __________ (2) 在图②中以线段 CD 为边画一个四边形 CDEF ,使/ FCD+ / EDC = 90 ° .$ ™1 1:A :il b 1 1 I* 1 1 k i■ 11 1 ■p ■" ™ " ,W ! ■■—1 I- • 1严I ;i ■ « «1 •.1 1 -1 1 1、1 1 \ H 1 P 1 I 111■十1 11 卞1 1 11 1l1 1 *I V 11\ ::""Ji l!、丄.丄- 7ir—r1 ■"!11 Hr ™ ■— ™ "F " ™™卡■\ !> IT i 丄i ■ liJ k i i li I i |i l1 \1 \ 1 \7£ ■亠「i i l r b q = “ ■Ei i ■ Tii厂一丁一訂 i1 1 D 1 i■ ""11 1■j M— □ _K .t ■».i =4 ..i4|iJ1■| .丄_ “|團①團②18 .如图,AB 是O O 的直径,/ A =Z CBD .(1) 求证:BC 是O O 的切线.(2) 若/ C = 35°, AB = 6,求"啲长(结果保留 n).19•某玩具厂计划加工2700个玩具,为了尽快完成任务,实际每天加工玩具的数量是原计划的1.2倍,结果提前3天完成任务•求该玩具厂原计划每天加工这种玩具的数量.20.在新冠病毒疫情防控期间,某校“停课不停学”,开展了网络教学.为了解九年级学生在网络学习期间英语学科和数学学科的学习情况,复课后从九年级学生中随机抽取60名学生进行了测试,获得了他们成绩(百分制)的数据,通过对成绩数据的整理、描述和分析,得到了如下部分信息.①英语成绩的频数分布直方图如图:(数据分成6 组:40W x v 50, 50W x v 60, 60< x v 70, 70< x v 80, 80< x v 90, 90< x w 100.)②英语和数学成绩的平均数、中位数、众数如表:学科平均数中位数众数英语74.8m83数学72.27081③英语成绩在70w x v 80这一组的数据是:70 71 72 73 73 73 74 76 77 77 77 78 79 79根据以上信息,回答下列问题:(1) 表中m的值是________ .(2) 在此次测试中,李丽的英语成绩为74分,数学成绩为71分,该名学生成绩排名更靠前的学科是_______ .(填“英语”或“数学”),理由是_________ .(3) 若该校九年级共有500名学生,请你估计英语成绩超过77.5分的人数.九年级砂名学生英语成豢频数分布直方團频数/人数f18 ------------------------ —14 120 60 70 £21 .甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之 间的距离y (千米)与甲车行驶的时间 x (小时)之间的函数关系如图所示.(2)求乙车追上甲车后,y 与x 之间的函数关系式,并写出自变量x 的取值范围.的延长线于点 M , F 是AC 1求证:△ ABM ADM 1 .【拓展】如图③ 琏结AC,若正方形ABCD 的边长为2,则△ ACC 1面积的最大值为(1 )甲行驶的速度是千米/小时.的中点, 连结DF .【猜想】如图①,/ FDM 的大小为 【探究】 如图 ②,过点A 作AM 1 / DF 交MD 的延长线于点M 1,连结BM .E 不与点B 、C 重合),连结DE ,点 C 关于DE 的对称点为C 1,连结AC 1并延长交DE23. 如图,在 Rt △ ABC 中,/ C = 90°, AC = 8,秒5个单位长度的速度向终点 B 运动.当点P 不与点A 重合时,过点P 作PD 丄AC 于点 D 、PE // AC ,过点D 作DE // AB , DE 与PE 交于点E .设点P 的运动时间为t 秒. (1)线段AD 的长为 _________ .(用含t 的代数式表示) (2) 当点E 落在BC 边上时,求t 的值.(3) 设厶DPE 与厶ABC 重叠部分图形的面积为 S ,求S 与t 之间的函数关系式. (4) 若线段PE 的中点为Q ,当点Q 落在△ ABC 一边垂直平分线上时,直接写出t 的值.24. 已知函数(1 )当 n = 1 时,① 点P (- 3, m )在此函数图象上,求 m 的值. ② 当-4w x w 3时,求此函数的最大值和最小值. (2)当x v n 时,若此函数的图象与坐标轴只有两个交点,求n 的取值范围.(3 )若 n > 0,当此函数的图象与以 A (0, 3)、B (5, - 2)、C (- 5, - 2 )、D (- 5, 3)为顶点的四边形的边有且只有四个公共点时,直接写出BC = 6 .动点P 从点A 出发,沿AB 以每(n 为常数)n 的取值范围.图①J图32020年吉林省长春市南关区中考数学一模试卷参考答案与试题解析.选择题(共8小题) 1 . - 3的绝对值是( ) A. - 3B . 3C .丄D .-33【分析】根据绝对值的定义,-3的绝对值是指在数轴上表示- 3的点到原点的距离,即 可得到正确答案.【解答】解:|-3|= 3. 故-3的绝对值是3 . 故选:B .2.某企业一个项目的总投资为 4 170 000元.4 170 000这个数用科学记数法表示为( )A . 0.417X 107B . 4.17X 106C . 4.17X 107D . 41.7X 105【分析】科学记数法的表示形式为a X 10n 的形式,其中1 w |a|v 10,n 为整数.确定 n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同. 【解答】解:将4 170 000用科学记数法表示为:4.17X 106 .故选:B .不等式组■ 的解集在数轴上表示正确的是(-O -1*-•1【分析】先求出不等式组的解集,再在数轴上表示出不等式组的解集, 再得出选项即可.OC.【解答】解:*① 幺€1②•••解不等式①得:x>- 1 ,又•••不等式②的解集是x w 1 ,•••不等式组的解集是-1 v x w 1,在数轴上表示为:故选:A.4.由四个完全相同的正方体组成的几何体如图所示,则这个几何体的俯视图是(【分析】找到从上面所看到的图形即可,注意所看到的棱都应在俯视图中.【解答】解:从上面看有3个正方形,故选:B.5.如图,0C是/ AOB的平分线,直线I // 0B.若/ 1= 50°,则/ 2的大小为()A. 50°B. 60°C. 65°D. 80°【分析】根据平行线的性质可求/ AOB,再根据角平分线的定义求得/ BOC,再根据平行线的性质可求/ 2 .【解答】解:J I // OB ,•••/ AOB= 180° -Z 1 = 130°,•/ OC是/ AOB的平分线,•••/ BOC= 65°,•••/ 2=Z BOC= 65° .故选:C.C.D.6.某简易房的示意图如图所示, 它是一个轴对称图形, 则坡屋顶上弦杆 AC 的长为( ) c 3 米 C D c 43k B H £ B C A DB CB 【解答】解:如图,过点 A 作AH 丄BC 于H . 由题意 AB = AC , BC = 4+0.2+0.2 = 4.4 (m ), •/ AH 丄 BC , BH = CH = 2.2 ( m ), 故选:D . 7.如图,在?ABCD 中, AD > AB ,用直尺和圆规在边 AD 上确定一点E , 使AE = AB ,则下 列作法错误的是( ) 0 2米 【分析】如图,过点A 作AH 丄BC 于H . 解直角三角形求出 AB 即可. AC = AB = cosO. 2.2 (m), 5cos a cos a A . I l : ■ —米 B . ——■—米 SsinCL 占米【解答】解:A 、由作图可知,AB = AE ,本选项不符合题意.B 、由作图可知,/ ABE =Z EBC ,•/ AD // BC ,•••/ AEB =Z EBC ,•••/ ABE =Z AEB ,• AB = AE ,本选项不符合题意.C 、由作图可知,四边形 ABCE 是等腰梯形,• AB = EC ,推不出AB = AE ,故本选项符合题意.D 、由作图可知, AF 平分/ BAE ,AF 丄BE ,•••/ ABE =Z AEB ,• AB = AE ,故本选项不符合题意.故选:C .&如图,在平面直角坐标系中,点 C 、A 分别在x 轴、y 轴上,AB / x 轴,/ ACB = 90°,反比例函数y=K (x >0)的图象经过 AB 的中点M .若点A (0,4)、C (2,0),则k 的值为(D 中,可以证明 AB = AE ,由此判断即可.r \A0c XA . 16B . 20 C. 32 D. 40【分析】过点B作BD丄x轴于点D,证明△ AOC CDB,求得CD,得出M点坐标, 便可求得结果.•••/AOC=Z ACB= 90°,•••/ OAC+ / OCA=Z OCA+ / DCB = 90°,•••/ OAC=Z DCB,•••/ AOC=Z CDB = 90°,•△AOC s^ CDB,•0A JX 即4 二2…-匚、打~T -,•DC = 8 ,AB= OD = 2+8= 10 ,•/ M是AB的中点,•AM = 5 ,• M ( 5 , 4),•••反比例函数(x> 0)的图象经过AB的中点M,xk= 5X 4 = 20 .故选:B .二 .填空题(共6小题)9. :■?- 「:=_•「'、_.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3 . ]-.「: = 2 .-:.故答案为:2 .「:.10 .分解因式:ab - b2= b (a- b) .【分析】根据提公因式法,可得答案.【解答】解:原式=b (a- b),故答案为:b (a- b).11.关于x的一元二次方程x2- 5x+k= 0有两个不相等的实数根,则k可取的最大整数为6【分析】根据判别式的意义得到△=( - 5) 2- 4k>0,解不等式得kv-,然后在此范4围内找出最大整数即可.【解答】解:根据题意得△=( - 5) 2-4k> 0,解得k v孚,所以k可取的最大整数为 6 .故答案为6 .12 .用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4: 1,要使这块石头滚动,至少【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图:AM、BN都与水平线垂直,即AM // BN ;易知:△ APM BPN ;•••杠杆的动力臂 AP 与阻力臂BP 之比为5: 1,•••_1 = _!,即卩 AM = 4BN ;BN 1•••当 BN > 8cm 时,AM > 32cm ;故要使这块石头滚动,至少要将杠杆的端点A 向下压32cm .13 .如图,在矩形ABCD 中,E 是AB 上一点,将厶ADE 沿DE 翻折,点A 恰好落在BC 上,•••/ADE = 90° -Z AED = 30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年吉林省长春市南关区中考数学一模试卷一.选择题(共8小题)1.﹣3的绝对值是()A.﹣3B.3C.D.2.某企业一个项目的总投资为4 170 000元.4 170 000这个数用科学记数法表示为()A.0.417×107B.4.17×106C.4.17×107D.41.7×1053.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.由四个完全相同的正方体组成的几何体如图所示,则这个几何体的俯视图是()A.B.C.D.5.如图,OC是∠AOB的平分线,直线l∥OB.若∠1=50°,则∠2的大小为()A.50°B.60°C.65°D.80°6.某简易房的示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AC的长为()A.米B.米C.米D.米7.如图,在▱ABCD中,AD>AB,用直尺和圆规在边AD上确定一点E,使AE=AB,则下列作法错误的是()A.B.C.D.8.如图,在平面直角坐标系中,点C、A分别在x轴、y轴上,AB∥x轴,∠ACB=90°,反比例函数y=(x>0)的图象经过AB的中点M.若点A(0,4)、C(2,0),则k 的值为()A.16B.20C.32D.40二.填空题(共6小题)9.﹣=.10.分解因式:ab﹣b2=.11.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为.12.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.13.如图,在矩形ABCD中,E是AB上一点,将△ADE沿DE翻折,点A恰好落在BC上,记为A1,折痕为DE.再将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1.若AD =1,则AB的长为.14.如图,在平面直角坐标系中,抛物线y=x2﹣mx+4与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点A作x轴的平行线交抛物线于点E.若点A、D的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为.三.解答题(共10小题)15.先化简,再求值:,其中x=﹣3.16.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,利用树状图或者列表的方法,求摸出的两个球颜色相同的概率.17.图①、图②均是6×6的正方形网格,每个小正方形的边长为1,小正方形的顶点称为格点,点A、B、C、D均在格点上.用直尺在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写画法.(1)在图①中以线段AB为腰画一个等腰三角形ABM,画出的△ABM的面积是.(2)在图②中以线段CD为边画一个四边形CDEF,使∠FCD+∠EDC=90°.18.如图,AB是⊙O的直径,∠A=∠CBD.(1)求证:BC是⊙O的切线.(2)若∠C=35°,AB=6,求的长(结果保留π).19.某玩具厂计划加工2700个玩具,为了尽快完成任务,实际每天加工玩具的数量是原计划的1.2倍,结果提前3天完成任务.求该玩具厂原计划每天加工这种玩具的数量.20.在新冠病毒疫情防控期间,某校“停课不停学”,开展了网络教学.为了解九年级学生在网络学习期间英语学科和数学学科的学习情况,复课后从九年级学生中随机抽取60名学生进行了测试,获得了他们成绩(百分制)的数据,通过对成绩数据的整理、描述和分析,得到了如下部分信息.①英语成绩的频数分布直方图如图:(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x ≤100.)②英语和数学成绩的平均数、中位数、众数如表:学科平均数中位数众数英语74.8m83数学72.27081③英语成绩在70≤x<80这一组的数据是:70 71 72 73 73 73 74 76 77 77 77 78 79 79根据以上信息,回答下列问题:(1)表中m的值是.(2)在此次测试中,李丽的英语成绩为74分,数学成绩为71分,该名学生成绩排名更靠前的学科是.(填“英语”或“数学”),理由是.(3)若该校九年级共有500名学生,请你估计英语成绩超过77.5分的人数.21.甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)求甲车出发多长时间两车相距75千米.22.如图,在正方形ABCD中,点E是边BC上任意一点(点E不与点B、C重合),连结DE,点C关于DE的对称点为C1,连结AC1并延长交DE的延长线于点M,F是AC1的中点,连结DF.【猜想】如图①,∠FDM的大小为度.【探究】如图②,过点A作AM1∥DF交MD的延长线于点M1,连结BM.求证:△ABM≌△ADM1.【拓展】如图③,连结AC,若正方形ABCD的边长为2,则△ACC1面积的最大值为.23.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.(1)线段AD的长为.(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.24.已知函数y=(n为常数).(1)当n=1时,①点P(﹣3,m)在此函数图象上,求m的值.②当﹣4≤x≤3时,求此函数的最大值和最小值.(2)当x<n时,若此函数的图象与坐标轴只有两个交点,求n的取值范围.(3)若n>0,当此函数的图象与以A(0,3)、B(5,﹣2)、C(﹣5,﹣2)、D(﹣5,3)为顶点的四边形的边有且只有四个公共点时,直接写出n的取值范围.2020年吉林省长春市南关区中考数学一模试卷参考答案与试题解析一.选择题(共8小题)1.﹣3的绝对值是()A.﹣3B.3C.D.【分析】根据绝对值的定义,﹣3的绝对值是指在数轴上表示﹣3的点到原点的距离,即可得到正确答案.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.某企业一个项目的总投资为4 170 000元.4 170 000这个数用科学记数法表示为()A.0.417×107B.4.17×106C.4.17×107D.41.7×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将4 170 000用科学记数法表示为:4.17×106.故选:B.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组的解集,再在数轴上表示出不等式组的解集,再得出选项即可.【解答】解:∵解不等式①得:x>﹣1,又∵不等式②的解集是x≤1,∴不等式组的解集是﹣1<x≤1,在数轴上表示为:,故选:A.4.由四个完全相同的正方体组成的几何体如图所示,则这个几何体的俯视图是()A.B.C.D.【分析】找到从上面所看到的图形即可,注意所看到的棱都应在俯视图中.【解答】解:从上面看有3个正方形,故选:B.5.如图,OC是∠AOB的平分线,直线l∥OB.若∠1=50°,则∠2的大小为()A.50°B.60°C.65°D.80°【分析】根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.【解答】解:∵l∥OB,∴∠AOB=180°﹣∠1=130°,∵OC是∠AOB的平分线,∴∠BOC=65°,∴∠2=∠BOC=65°.故选:C.6.某简易房的示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AC的长为()A.米B.米C.米D.米【分析】如图,过点A作AH⊥BC于H.解直角三角形求出AB即可.【解答】解:如图,过点A作AH⊥BC于H.由题意AB=AC,BC=4+0.2+0.2=4.4(m),∵AH⊥BC,∴BH=CH=2.2(m),∴AC=AB===(m),故选:D.7.如图,在▱ABCD中,AD>AB,用直尺和圆规在边AD上确定一点E,使AE=AB,则下列作法错误的是()A.B.C.D.【分析】由作图可知选项A,B,D中,可以证明AB=AE,由此判断即可.【解答】解:A、由作图可知,AB=AE,本选项不符合题意.B、由作图可知,∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AB=AE,本选项不符合题意.C、由作图可知,四边形ABCE是等腰梯形,∴AB=EC,推不出AB=AE,故本选项符合题意.D、由作图可知,AF平分∠BAE,AF⊥BE,∴∠ABE=∠AEB,∴AB=AE,故本选项不符合题意.故选:C.8.如图,在平面直角坐标系中,点C、A分别在x轴、y轴上,AB∥x轴,∠ACB=90°,反比例函数y=(x>0)的图象经过AB的中点M.若点A(0,4)、C(2,0),则k 的值为()A.16B.20C.32D.40【分析】过点B作BD⊥x轴于点D,证明△AOC∽△CDB,求得CD,得出M点坐标,便可求得结果.【解答】解:过点B作BD⊥x轴于点D,如图,∵AB∥x轴,A(0,4),C(2,0),∴OA=BD=4,OC=2,∵∠AOC=∠ACB=90°,∴∠OAC+∠OCA=∠OCA+∠DCB=90°,∴∠OAC=∠DCB,∵∠AOC=∠CDB=90°,∴△AOC∽△CDB,∴,即,∴DC=8,∴AB=OD=2+8=10,∵M是AB的中点,∴AM=5,∴M(5,4),∵反比例函数y=(x>0)的图象经过AB的中点M,∴k=5×4=20.故选:B.二.填空题(共6小题)9.﹣=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.10.分解因式:ab﹣b2=b(a﹣b).【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).11.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为6.【分析】根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.【解答】解:根据题意得△=(﹣5)2﹣4k>0,解得k<,所以k可取的最大整数为6.故答案为6.12.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压32cm.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图:AM、BN都与水平线垂直,即AM∥BN;易知:△APM∽△BPN;∴=,∵杠杆的动力臂AP与阻力臂BP之比为5:1,∴=,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A向下压32cm.故答案为:32.13.如图,在矩形ABCD中,E是AB上一点,将△ADE沿DE翻折,点A恰好落在BC上,记为A1,折痕为DE.再将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1.若AD =1,则AB的长为.【分析】利用矩形的性质,证明∠ADE=∠A1DE=∠A1DC=30°,∠C=∠A1B1D=90°,推出△DB1A1≌△DCA1,CD=B1D,设AB=DC=x,由DE长度列出方程求得x便可.【解答】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A1ED,△A1BE≌△A1B1E,∠A1B1E=∠B=∠A1B1D=90°,∴∠AED=∠A1ED,∠A1EB=∠A1EB1,BE=B1E,∴∠AED=∠A1ED=∠A1EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A1DE=90°﹣∠A1EB1=30°,∴∠ADE=∠A1DE=∠A1DC=30°,又∵∠C=∠A1B1D=90°,DA1=DA1,∴△DB1A1≌△DCA1(AAS),∴DC=DB1,在Rt△AED中,∠ADE=30°,AD=1,∴AE=,DE=设AB=DC=x,则BE=B1E=x﹣∵B1E+B1D=DE,∴x+x﹣,∴,故答案为:.14.如图,在平面直角坐标系中,抛物线y=x2﹣mx+4与y轴交于点C,过点C作x轴的平行线交抛物线于点B,点A在抛物线上,点B关于点A的对称点D恰好落在x轴负半轴上,过点A作x轴的平行线交抛物线于点E.若点A、D的横坐标分别为1、﹣1,则线段AE与线段CB的长度和为4.【分析】求得B的纵坐标为4,然后根据题意求得A的纵坐标2,即可得到5﹣m=2,求得m的值,得到抛物线为y=x2﹣3x+4,根据坐标特征求得B、A、E的坐标即可求得结果.【解答】解:∵抛物线y=x2﹣mx+4与y轴交于点C,∴C(0,4),∵BC∥x轴,∴点B的纵坐标为4,∵点A的横坐标为1,把x=1代入y=x2﹣mx+4得,y=5﹣m,∴A(1,5﹣m),∵点B关于点A的对称点D恰好落在x轴负半轴上,∴AD=AB,∴点A的纵坐标为2,∴5﹣m=2,解得m=3,∴抛物线为y=x2﹣3x+4,∴B(3,4),∴BC=3,把y=2代入y=x2﹣3x+4得,2=x2﹣3x+4,解得x=1和2,∴AE=2﹣1=1,∴线段AE与线段CB的长度和为4,故答案为4.三.解答题(共10小题)15.先化简,再求值:,其中x=﹣3.【分析】原式通分并利用同分母分式的减法法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣=﹣==,当x=﹣3时,原式=﹣.16.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,利用树状图或者列表的方法,求摸出的两个球颜色相同的概率.【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【解答】解:根据题意列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为.17.图①、图②均是6×6的正方形网格,每个小正方形的边长为1,小正方形的顶点称为格点,点A、B、C、D均在格点上.用直尺在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写画法.(1)在图①中以线段AB为腰画一个等腰三角形ABM,画出的△ABM的面积是7.5.(2)在图②中以线段CD为边画一个四边形CDEF,使∠FCD+∠EDC=90°.【分析】(1)根据AB=5,构造等腰△ABM,使得AB=BM即可.(2)根据要求画出图形即可(答案不唯一).【解答】解:(1)如图,△ABM即为所求.S△ABM=×5×3=7.5.故答案为7.5.(2)如图,四边形CDEF即为所求.18.如图,AB是⊙O的直径,∠A=∠CBD.(1)求证:BC是⊙O的切线.(2)若∠C=35°,AB=6,求的长(结果保留π).【分析】(1)由圆周角定理得出∠ADB=90°,得出∠A+∠ABD=90°,证出∠ABC=90°,即可得出结论;(2)连接OD,证出∠ABD=∠C=35°,由圆周角定理得出∠AOD=2∠ABD=70°,再由弧长公式即可得出答案.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠CBD,∴∠CBD+∠ABD=90°,即∠ABC=90°,∴BC⊥AB,∴BC是⊙O的切线.(2)解:连接OD,如图所示:∵∠ABC=90°,∴∠C+∠A=90°,又∠A+∠ABD=90°,∴∠ABD=∠C=35°,∴∠AOD=2∠ABD=70°,∵直径AB=6,∴OA=3,∴的长==.19.某玩具厂计划加工2700个玩具,为了尽快完成任务,实际每天加工玩具的数量是原计划的1.2倍,结果提前3天完成任务.求该玩具厂原计划每天加工这种玩具的数量.【分析】设该玩具厂原计划每天加工这种玩具x个,则实际每天加工这种玩具1.2x个,根据工作时间=工作总量÷工作效率结合实际比原计划提前3天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该玩具厂原计划每天加工这种玩具x个,则实际每天加工这种玩具1.2x 个,依题意,得:﹣=3,解得:x=150,经检验,x=150是原分式方程的解,且符合题意.答:该玩具厂原计划每天加工这种玩具150个.20.在新冠病毒疫情防控期间,某校“停课不停学”,开展了网络教学.为了解九年级学生在网络学习期间英语学科和数学学科的学习情况,复课后从九年级学生中随机抽取60名学生进行了测试,获得了他们成绩(百分制)的数据,通过对成绩数据的整理、描述和分析,得到了如下部分信息.①英语成绩的频数分布直方图如图:(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x ≤100.)②英语和数学成绩的平均数、中位数、众数如表:学科平均数中位数众数英语74.8m83数学72.27081③英语成绩在70≤x<80这一组的数据是:70 71 72 73 73 73 74 76 77 77 77 78 79 79根据以上信息,回答下列问题:(1)表中m的值是76.5.(2)在此次测试中,李丽的英语成绩为74分,数学成绩为71分,该名学生成绩排名更靠前的学科是数学.(填“英语”或“数学”),理由是该学生的成绩小于英语的中位数,而大于数学的中位数.(3)若该校九年级共有500名学生,请你估计英语成绩超过77.5分的人数.【分析】(1)先确定英语成绩的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两门学科的中位数定义解答可得;(3)用总人数乘以样本中超过77.5分的人数所占比例可得.【解答】解:(1)∵英语成绩总人数为3+7+12+14+18+6=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 72 73 73 73 74 76 77 77 77 78 79 79,∴英语成绩的中位数为=76.5,即m=76.5,故答案为:76.5;(2)∵该学生的成绩小于英语成绩的中位数,而大于数学成绩的中位数,∴这名学生成绩排名更靠前的课程是数学,故答案为:数学,该学生的成绩小于英语的中位数,而大于数学的中位数;(3)估计英语成绩超过77.5分的人数为500×=225人.21.甲、乙两人开车匀速从同一地点到距离出发地480千米处的景点旅游,甲出发半小时后,乙以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止.甲、乙两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲行驶的速度是60千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)求甲车出发多长时间两车相距75千米.【分析】(1)根据题意结合图象列式计算即可;(2)分别求出相应线段的两个端点的坐标,再运用待定系数法解答即可;(3)把y=80代入(2)的结论解答即可.【解答】解:(1)甲行驶的速度为:30÷0.5=60(千米/小时),故答案为:60.(2)如图所示:设甲出发x小时后被乙追上,根据题意得:60x=80(x﹣0.5),解得x=2,即甲出发2小时后被乙追上,∴点A的坐标为(2,0),480÷80+0.5=6.5(时),即点B的坐标为(6.5,90),设AB的解析式为y=kx+b,由点A,B的坐标可得:,解得,所以AB的解析式为y=20x﹣40(2≤x≤6.5);(3)根据题意得20x﹣40=75或60x=480﹣75,解得x=或答:甲车出发小时或小时两车相距75千米.22.如图,在正方形ABCD中,点E是边BC上任意一点(点E不与点B、C重合),连结DE,点C关于DE的对称点为C1,连结AC1并延长交DE的延长线于点M,F是AC1的中点,连结DF.【猜想】如图①,∠FDM的大小为45度.【探究】如图②,过点A作AM1∥DF交MD的延长线于点M1,连结BM.求证:△ABM≌△ADM1.【拓展】如图③,连结AC,若正方形ABCD的边长为2,则△ACC1面积的最大值为2﹣2.【分析】(1)证明∠CDE=∠C1DE和∠ADF=∠C1DF,可得∠FDM=∠ADC=45°;(2)先判断出∠DAM1=∠BAM,由(1)可知:∠FDM=45°,进而判断出∠AMD=45°,得出AM=AM1,即可得出结论;(3)先作高线C1G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C1在BD上时,C1G最大,其△AC1C的面积最大,并求此时的面积.【解答】解:(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDM=∠FDC'+∠EDC'=∠ADC=45°;故答案为:45;(2)∵DF⊥AC1,∴∠DFM=90°,∵AM1∥DF∴∠MAM'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAM1=∠BAM,由(1)可知:∠FDM=45°∵∠DFM=90°∴∠AMD=45°,∴∠M1=45°,∴AM=AM1,在:△ABM和△ADM1中,∵,∴△ABM≌△ADM1(SAS);(3)如图,过C1作C1G⊥AC于G,则=AC•C1G,在Rt△ABC中,AB=BC=2,∴AC==2,即AC为定值,当C1G最大值,△AC1C的面积最大,连接BD交AC于O,当C1在BD上时,C1G最大,此时G与O重合,∵CD=C1D=2,OD=AC=,∴C'G=C1D﹣OD=2﹣,∴=AC•C1G=×2(2﹣)=2﹣2,故答案为:2﹣2.23.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.(1)线段AD的长为4t.(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.【分析】(1)解直角三角形求出AB,根据cos A==求解即可.(2)首先证明四边形APED是平行四边形,由=,构建方程即可解决问题.(3)分两种情形:①如图1中,当0<t≤1时,②如图3中,当1<t≤2时,分别求解即可.(4)分三种情形:①如图4﹣1中,当点Q落在线段AC的垂直平分线MN上时.②如图4﹣2中,当点Q落在线段AB的垂直平分线MN上时.③如图4﹣3中,当点Q落在线段BC的垂直平分线上时,分别求解即可.【解答】解:(1)如图1中,在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,∵PD⊥AC,∴cos A==,∴=,∴AD=4t,故答案为4t.(2)如图2中,当点E落在BC上时,∵DE∥AB,PE∥AD,∴四边形APED是平行四边形,∴DE=AP=5t,AD=PE=4t,∴=,∴=,解得t=1,∴当点E落在BC边上时,t的值为1.(3)①如图1中,当0<t≤1时,重叠部分是△PDE,∵PE∥AD,∴∠DPE=∠ADP=90°,∵DE=5t,PE=4t,∴PD=3t,∴S=•PD•PE=×3t×4t=6t2.②如图3中,当1<t≤2时,S=•(MN+PD)•PN=[3t+3t﹣(10﹣5t)]•(10﹣5t)=﹣18t2+48t﹣24.综上所述,S=.(4)①如图4﹣1中,当点Q落在线段AC的垂直平分线MN上时,由题意:=,可得=,解得t=.②如图4﹣2中,当点Q落在线段AB的垂直平分线MN上时,由题意:=,可得=,解得t=③如图4﹣3中,当点Q落在线段BC的垂直平分线上时,AP=PB,此时t=1,综上所述,满足条件的t的值为或或1.24.已知函数y=(n为常数).(1)当n=1时,①点P(﹣3,m)在此函数图象上,求m的值.②当﹣4≤x≤3时,求此函数的最大值和最小值.(2)当x<n时,若此函数的图象与坐标轴只有两个交点,求n的取值范围.(3)若n>0,当此函数的图象与以A(0,3)、B(5,﹣2)、C(﹣5,﹣2)、D(﹣5,3)为顶点的四边形的边有且只有四个公共点时,直接写出n的取值范围.【分析】(1)①利用待定系数法解决问题即可.②分别求出分段函数在﹣4≤x≤3上的最大值以及最小值即可解决问题.(2)分n>0,n=0,n<0三种情形画出图形分别求解即可.(3)分两种情形:如图3﹣1中,当四边形ABCD与函数y=﹣x2﹣2nx+2(x<n)有3个交点,与函数y=x2﹣2nx+2(x≥n)有1个交点时,如图3﹣2中,当四边形ABCD与函数y=﹣x2﹣2nx+2(x<n)有2个交点,与函数y=x2﹣2nx+2(x≥n)有2个交点时,分别构建不等式组解决问题即可.【解答】解:(1)n=1时,函数为y=,①∵P(﹣3,m)在函数图象上,∴m=﹣9+6+2=﹣1.②当﹣4≤x<1时,y=﹣x2﹣2x+2,最小值为﹣16+8+2=﹣6,最大值为﹣1+2+2=3,当1<x≤3时,y=x2﹣2x+2,最小值为1﹣2+2=1,最大值为9﹣6+2=5,综上所述,当﹣4≤x≤3时,此函数的最大值为5,最小值为﹣6.(2)①当n>0时,图象如图所示,当函数y=﹣x2﹣2nx+2,x=n时,y≥0即可满足条件,∴﹣n2﹣2n2+2≥0,解得﹣≤n≤,∵n>0,∴0<n≤.②当n=0时,显然不符合题意.③当n<0时,不存在符合条件的n的值.综上所述,满足条件的n的值为0<n≤.(3)如图3﹣1中,当四边形ABCD与函数y=﹣x2﹣2nx+2(x<n)有3个交点,与函数y=x2﹣2nx+2(x≥n)有1个交点时,满足:,解得1<n≤.如图3﹣2中,当四边形ABCD与函数y=﹣x2﹣2nx+2(x<n)有2个交点,与函数y=x2﹣2nx+2(x≥n)有2个交点时,满足:,解得2.6<n<2.9.综上所述,满足条件的n的值为1<n≤或2.6<n<2.9.。