大门大桥抗风分析报告共13页
大桥风振事故原理分析以及有效防范措施举例

⼤桥风振事故原理分析以及有效防范措施举例2019-05-10摘要:⽂章通过对塔科马⼤桥的风振事故来探究风振的原理,来概述了风洞试验的发展,以及风振有效的防护措施。
关键词:⼤桥蛇形共振;桥梁抗风;风振动防范;塔科马⼤桥1 理论概述建造⼤桥的时候我们不仅仅要考虑⼤桥的承载能⼒,美观度以及经济性,此外我们建造的⼤桥,⼤跨度桥常常因为柔度⾮常⼤,⽽受风荷载影响很⼤,⼤桥在未知的风的作⽤下会产⽣⼗分巨⼤的变形以及振动。
随着桥梁跨度的增⼤,⾮线性因素也愈加明显,不确定的因素也就变得很⼤很⼤,这就给已经⾮常复杂的风-车-桥系统研究加⼤了难度。
在风速较⼤的地区⽐如芝加哥,修建跨江、跨海铁路⼤桥时,为了确保桥梁结构及列车运⾏安全,必须要综合考虑风和列车荷载对桥梁的动⼒作⽤。
在国内外关于车桥耦合振动及桥梁抗风研究的基础上,需要考虑⼤跨度桥梁的⼏何⾮线性因素。
我们有必要来探究下⼤桥共振的原因,我们说的⼤桥看成不是⼀个刚体并有⾃振,在车辆通过⼤桥的时候对⼤桥产⽣压⼒,⼤桥就会受⼒变形,若这个⼒与⼤桥⾃⾝的震动吻合就会产⽣共振,然⽽这个问题要控制在⼀个安全范围内才对⼤桥不⾄于造成破坏。
概括来讲,该问题属于⽓动弹性振动问题.美国的塔卡马⼤桥就是这样被垮的。
原因是桥垂直⽅位的结构上的板引起了桥发⽣⼀系列振动。
桥对风有相当⼤的阻⼒,因此风被桥遮挡,⾼强度的⽓流只能从结构板上⽅经过,最后压向了桥表⾯。
由于通过的⽓流由于连续的被曲折就加快了它流动的速度,由伯努利定律可知在竖直⽅向上结构板的上⽅及下⽅将产⽣明显的压降。
⽆所谓的是风⼀直从板正前⽅吹过来,它的原因是上下⽅产⽣的压⼒降低会导致相互的抵消。
⿇烦的事是若风⽅向随机且不停地产⽣变换,这将导致压⼒产⽣不断地波动变化。
产⽣的压⼒差若加在了整个桥⾯之上,⽽且因为能够挡住风的竖直⽅向的结构板后,将产⽣涡流并且不断的加强,将会最终导致桥⾯开始振动。
从理论上讲当桥⾯经受⼀定流速的⽓流吹动,就不可避免地会产⽣⾃激振动.除此之外⼀个因素是某个桥墩由于流体的涡振产⽣松动,这使得桥墩产⽣周期性的振动,使桥⾯产⽣低频振荡,车桥耦合振动的概率很⼩,由于车辆的激励频率要⾼好多.2 桥梁风致病害典型案例分析我们举⼀个⾮常有名的例⼦吧,就是著名的塔科马⼤桥由于风振产⽣的倒塌事故。
中铁二十四局昆明绕城A5桥梁总体风险评估报告word精品文档13页

昆明绕城高速东南段A合同段(第A5工区)桥梁施工总体安全风险评估报告中铁二十四局昆明绕城高速东南段A5工区经理部二0一四年十月目录一、编制依据 (1)二、工程概况 (1)三、评估方法说明 (3)四、桥梁情况调查表 (5)五、评估过程 (7)六、评估结果 (9)七、评估结论 (9)桥梁施工总体安全风险评估报告一、编制依据1、《公路桥梁和隧道工程施工安全风险评估指南》(试行)交质监发【2019】217号;2、施工图设计;3、现场踏勘调查、搜集的实地资料;4、我单位在类似工程中的施工经验和相关工程的技术总结、工法成果等。
二、工程概况(一)工程简介本合同段起于宜良县北古城以北,起点里程k42+000,路线由北向南沿南盘江西岸布线,于K46+734设桥跨越南盘江后,沿南盘江东岸布线,经大渡口东侧,于K48+089.06设置宜良枢纽立即与昆石高速公路连接,经大木兴西侧,于K50+410.50设桥跨过宜狗公路,经上任营东侧、下院东侧、小马街东侧、玉龙东侧、马军东侧,路线止于谷家营东侧山坡,止点里程K60+000,全线长为18公里,总体走向为由北向南。
本合同段路线所经区域均属昆明市宜良县北古城镇,区域内河流有南盘江及山谷菁沟。
经过的主要道路为G324线、昆石高速公路、宜狗公路,均设置了互通式交叉及分离式交叉进行连接或跨越,沿线有多条乡村道路,但与其互相干扰较小;没有与铁路交叉的位置。
(二)地形地貌K42+000~K50+680段,主要为宜良盆地和澄江盆地,地形平坦开阔,人口众多,交通方便。
上部地层岩性由第四系冲洪积粉质黏土、黏土、粉细砂土、原砾土、卵石土等组成,厚度各地不一;下部为白云岩、泥岩、砂岩等。
K56+680~K60+000段,以低山、丘陵为主,地形左高右低,起伏相对较小。
地层岩性多为泥岩、砂岩、页岩等组成;上部覆盖第四系残坡积黏土、粉质黏土、碎石土等。
(三)气候环境条件路线区域属于亚热带高原季风气候,区内气候宜人,具有冬暖夏凉四季如春的特点。
桥梁设计中的抗风性能优化与评估研究

桥梁设计中的抗风性能优化与评估研究在现代交通基础设施建设中,桥梁作为跨越江河湖海、山谷沟壑的重要建筑物,发挥着至关重要的作用。
然而,风对桥梁的影响不容忽视,强风可能导致桥梁结构的振动、失稳甚至破坏,严重威胁着桥梁的安全和正常使用。
因此,在桥梁设计中,抗风性能的优化与评估成为了一个关键的研究课题。
一、风对桥梁的作用及影响风对桥梁的作用主要包括静力作用和动力作用。
静力作用是指风对桥梁结构产生的稳定压力和吸力,如桥梁的主梁、桥墩等部位会受到风的压力和吸力,可能导致结构的变形和内力增加。
动力作用则更为复杂,包括颤振、抖振和涡振等。
颤振是一种自激振动,当风速超过一定临界值时,桥梁结构可能发生大幅的、不稳定的振动,甚至导致结构破坏。
抖振是由风的脉动成分引起的随机振动,虽然不会导致结构的立即破坏,但长期的抖振作用会使结构产生疲劳损伤。
涡振则是由于风绕流桥梁结构时产生的周期性漩涡脱落引起的结构振动,通常振幅较小,但在特定条件下也可能对桥梁的舒适性和安全性产生影响。
二、桥梁抗风性能的优化设计方法为了提高桥梁的抗风性能,在设计阶段可以采取多种优化方法。
1、合理的桥型选择不同的桥型在抗风性能上具有不同的特点。
例如,悬索桥和斜拉桥由于其柔性较大,对风的敏感性相对较高;而梁桥和拱桥则相对较为刚性,抗风性能较好。
在设计时,应根据桥梁的跨度、地形条件和使用要求等因素,选择合适的桥型。
2、优化桥梁的外形和截面桥梁的外形和截面形状对风的绕流特性有重要影响。
通过采用流线型的外形和合理的截面形状,可以减小风的阻力和漩涡脱落,从而降低风对桥梁的作用。
例如,在主梁设计中,可以采用箱梁截面代替传统的 T 型梁截面,以提高抗风性能。
3、增加结构的阻尼阻尼是结构消耗能量的能力,增加结构的阻尼可以有效地抑制风振响应。
常见的增加阻尼的方法包括使用阻尼器、在结构中设置耗能构件等。
4、加强结构的连接和整体性良好的结构连接和整体性可以提高桥梁在风作用下的稳定性。
铁路桥梁设计中的抗风能力分析

铁路桥梁设计中的抗风能力分析铁路桥梁作为铁路运输的重要组成部分,其安全性和稳定性至关重要。
而风作为一种自然力量,对铁路桥梁的影响不可忽视。
在铁路桥梁的设计过程中,充分考虑抗风能力是确保桥梁结构安全和正常使用的关键因素之一。
风对铁路桥梁的作用形式多种多样,包括静力作用、动力作用以及风与结构的相互作用等。
静力作用主要是指风对桥梁结构产生的平均压力和吸力,这会导致桥梁构件的变形和内力增加。
动力作用则更为复杂,如风致振动,包括颤振、涡振等,可能会引起桥梁结构的疲劳损伤甚至破坏。
在铁路桥梁的抗风设计中,首先要进行准确的风场特性分析。
这需要收集桥梁所在地区的气象数据,包括风速、风向、风的湍流强度等。
通过对这些数据的统计和分析,确定设计基准风速。
设计基准风速是抗风设计的重要参数,它直接影响到桥梁结构所承受的风荷载大小。
桥梁的外形和结构形式对其抗风性能有着显著的影响。
流线型的截面形状通常能够有效地减小风的阻力,降低风对桥梁的作用。
例如,箱梁截面在铁路桥梁中应用广泛,其良好的气动性能有助于提高抗风能力。
此外,桥梁的跨度、高度、宽度等几何参数也会影响风的作用效果。
较长的跨度可能会使桥梁更容易受到风致振动的影响,因此在设计时需要采取相应的加强措施。
材料的选择在铁路桥梁的抗风设计中也起着重要作用。
高强度、轻质的材料能够在保证结构强度的同时,减轻桥梁的自重,从而降低风荷载的影响。
例如,采用高性能钢材或新型复合材料可以提高桥梁的抗风性能。
在结构体系方面,合理的支撑和连接方式能够增强桥梁的整体稳定性。
例如,增加桥墩的数量和刚度、采用有效的梁墩连接方式等,都可以提高桥梁在风荷载作用下的抵抗能力。
对于可能出现的风致振动,需要进行专门的分析和评估。
颤振是一种自激发散的振动现象,一旦发生会导致桥梁结构的迅速破坏,因此在设计中必须通过理论分析和模型试验确保桥梁不会发生颤振。
涡振则是一种在特定风速下出现的有限振幅振动,虽然不会导致结构的立即破坏,但会影响行车舒适性和结构的疲劳寿命,也需要加以控制。
桥梁抗风设计

振型特点 纵漂 L-S-1 V-S-1 V-A-1 V-S-2 L-A-1 V-A-2
主塔横摆 主塔横摆
T-S-1 V-S-3 V-A-3 V-S-4 L-S-2 边跨竖向 T-A-1
斜拉桥结构动力特性计算示例
1
2
3
4
第一对称竖弯
1
2
3
4
第一反对称竖弯
1
2
3
4
第一对称扭转
1
2
3
4
第一对反称扭转
桥梁抗风设计
桥梁动力特性、作用于桥梁上的风荷载的计算及 桥梁动力失稳判断。桥梁动力特性主要涉及桥梁的 自振周期及频率,本章介绍了如何用结构动力学方 法和一些经验公式进行计算。风荷载计算在基准风 压基础上考虑了重现期、结构体型、地形、地理条 件等因素的影响。桥梁动力失稳包括颤振失稳和驰 振失稳,本章介绍失稳机理及如何用运动方程和经 验公式来判断桥梁是否可能发生动力失稳。
风的攻角:由于地形的影响,近地风的方向可能对水平面产生一定的倾斜度, 称为风的攻角。具有攻角的风可能对桥梁的风致振动,如颤振,产生不利的影 响。一般认为高风速时的平均攻角约在±3°之间。
阵风系数:瞬时风速与10min平均风速的比值。计算阵风荷载时应采用时距为 1~3s的瞬时(阵风)风速,即由阵风系数乘以设计基准风速求得。
不安全
结构型式
动力特性
截面选择
假定Th值
假定阻力系数
颤振风速估计
稳定性验算
很安全
设计风载
重现期 基本风速 设计风速
气象资料
阵风系数
及格
不安全
节段模型风洞试验 各类风振分析
是否要进行 全模型验算
是 全桥气弹模型试验
大桥抗震分析报告书

大桥抗震分析报告目录一、工程概况 (1)二、设计规和标准 (3)三、设防标准、性能目标及计算方法 (3)六、地震作用参数 (4)七、桥墩顺桥向抗震计算.... 错误!未定义书签。
八、桥墩横桥向水平地震力及抗震验算 (24)九、结论 (36)一、工程概况某路XX大桥为两联等截面连续梁,每联为四跨(4×40m),总桥面宽为33.5m由左右两半幅桥面组成,每半幅桥的上部结构均由5片预应力混凝土小箱梁组成(见图1.2)。
下部结构采用等截面矩形空心薄壁墩、直径1.5m为桩基础。
桥跨的总体布置见图1.1。
台墩墩墩墩墩墩墩台第1联第2联图1.1 XX大桥立面示意图图1.2 上部结构断面图图1.3 下部结构构造图联间墩设GYZ450X99型圆形板式支座,每片梁下为两个支座,联端为活动盆式支座。
桥上二期恒载(含桥面铺装、栏杆、防撞墙和上水管等)为21.7kN/m。
主梁为C50混凝土、盖梁和桥墩为C35混凝土,桩基础为C25混凝土。
主梁混凝土的容重取26 kN/m3、其它的容重取25 kN/m3,混凝土的其它参数均按现行《公路钢筋混凝土及预应力混凝土桥涵设计规》取值,见表1.1。
表1.1 计算参数取值混凝土弹模(107kPa)基础土对桩基础对的约束作用采用弹簧模拟,弹簧的刚度用m法计算。
查《公路桥涵地基=2与基础设计规》(JTG D63-2007),静力计算时土的m值取10000kN/m4,动力计算时处取m动×m=20000 kN/m4。
桩径d=1.5m,桩形状换算系数kf=0.9,桩的计算宽度b=1.0×0.9×(1.5+1)=2.25m。
建立有限元模型,桩基划分为单元长1m,在每个节点设水平节点弹性支承,弹簧刚度:K=1×2.25×20000×Z=4500Z(kN/m)式中,Z为设置弹簧处距地面的距离。
二、设计规和标准1、设计规(1)《城市桥梁设计准则》(CJJ 11-93)(2)《城市桥梁设计荷载标准》(CJJ 77-98)(3)《公路桥涵设计通用规》(JTG D60-2004)(4)《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)(5)《公路桥涵地基与基础设计规》(JTG D63-2007)(6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)2、设计标准:(1)立交等级:城市枢纽型互通式立交;道路等级:城市I级主干道(2)设计荷载:城-A级(公路-I级)(3)设计基准期:100年(4)设计安全等级:二级;结构重要性系数:1.0(5)抗震设防烈度8度,设计地震加速度峰值0.20g(6)场地类别为II类场地,特征周期0.40s三、设防标准、性能目标及计算方法根据《公路桥梁抗震设计细则》(JTG/T B02-01-2008)(以下简称“抗震细则”)的规定,进行本工程的抗震设计和计算。
大桥施工安全风险评估报告

大桥施工安全风险评估报告二广高速公路A2合同段第九标段XX大桥施工安全风险评估报告二广高速公路A2合同段第九标段XX大桥施工安全风险评估报告编制单位:广东省长大公路工程有限公司评估小组负责人:日期:二广高速公路A2合同段第九标段XX大桥评估小组人员名称及职称序号姓名职称备注签名1 刘文浩路桥高级工程师评估小组负责人2 邱杰汉路桥工程师评估人员3 谢兼量路桥工程师评估人员4 李萌路桥工程师评估人员5 潘红丽路桥高级工程师评估人员6 赖锦红路桥高级工程师评估人员概述为加强我部公路桥梁施工安全管理,优化施工组织方案,提高施工现场安全预控有效性,鉴于本单位承揽的XX大桥桥位地形复杂,跨越永丰河及新、旧省道S263,存在较大的施工风险。
因此,按交通运输部下发的《关于开展桥梁和隧道施工安全风险评估试行工作的通知》交质监发[2011]217号文件及二广司[2012]141号文件要求,本项目成立了安全风险评估小组,开展施工阶段安全风险评估。
1.编制依据(1)中华人民共和国交通运输部《关于开展桥梁和隧道工程施工安全风险评估试行工作的通知》(交质监发[2011]217号);(2)中华人民共和国交通运输部《公路桥梁和隧道工程施工安全风险评估指南(试行)》;(3)《公路工程施工安全技术规程》(JTJ076---95);(4)《公路桥涵施工技术规范》(JTG/TF50---2011);(5)广东省公路勘察规划设计院有限公司相关设计文件;(6)国家、行业规定的其他安全规程,如《中华人民共和国安全生产法》、《国家突发事件总体应预案》和《国务院关于进一步加强安全生产工作的决定》等有关规定;(7)现场踏勘调查、搜集的实地资料;(8)我单位在类似工程中的施工经验、技术成果等。
2.工程概况XX大桥采用整体式断面设计,左幅桩号范围:K89+993.98~K90+621.52;右幅桩号范围:K89+933.98~K90+621.52。
桥位两端位于低山地带,上跨旧省道S263(桥下行车净空大于5.5m)、新省道S263(桥下行车净空大于5.5m)、永丰河。
大桥施工安全风险评估报告

高速公路XX大桥风险评估报告XX项目经理部二O年月目录一、编制依据 (3)二、评估过程和评估办法 (6)2.1成立风险评估小组 (7)2.2评估办法 (7)三、XX大桥风险评价标准 (7)3.1风险评估指标体系标准 (7)3.2风险等级划分评价标准 (8)四、XX大桥专项风险评估 (9) (9) (10)五、风险分析 (11) (12)风险源风险分析表 (13)六、风险估测 (15) (17) (18)七、安全管理评估指标 (18)7.1钻孔桩孔桩作业事故可能性评估指标 (19) (20)7.3重大风险源风险等级汇总 (20)八、对策措施及建议 (21)8.1一般风险源控制 (21)8.2重大风险源控制及建议 (21) (22)8.2.2 钻孔桩施工风险防控对策 (25)8.2.3 墩柱施工风险防控对策 (26)九、评估结论 (26)XX大桥施工安全风险评估报告一、编制依据1.1相关的国家和行业标准、规范及规定(1)《公路桥梁和隧道工程施工安全风险评估指南》(中国交通部【2011.5】);(2)《公路桥梁风险评估与管理暂行规定》;(3)《XX大桥工程地质勘查地质资料》;(4)《地下工程防水技术规范》(GB50108-2008);(5)《公路工程地质遥感勘察规范》(JTG/T C21-01-2005);(6)《混凝土结构耐久性设计规范》(GB/T50476-2008)(1)《营城子至松江河高速公路抚松至松江河段YS10合同段桥涵施工图》(2)《XX大桥实施性施工组织设计》1.3 XX大桥概况XX发源于吉林省长白山天池,XX主要由锦江、漫江、梯子河、老黑河等几条河流汇聚而成,流域水系水量丰沛,流经吉林省抚松县、靖宇县,在靖宇县榆树河与第二松花江汇合后称为为松花江。
本桥设计桥位位于抚松县南马鹿村XX上。
左幅里程ZK276+802.5~ZK277+621.5,桥长819米,布置形式为6×(3×40)+(3×30);右幅里程YK276+785.5~YK277+624.5,桥长839米,布置形式为(3×40)+2×(4×40)+2×(3×40)+(5×30)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录概述1.采用的规范及参考依据2.设计基本风速、设计基准风速、主梁颤振检验风速的确定 2.1 设计基本风速2.2 主梁颤振检验风速3.结构动力特性分析3.1 计算图式3.2 边界条件3.3 动力特性分析4.主梁抗风稳定性分析4.1 桥梁颤振稳定性指数4.2 主梁颤振临界风速的估算4.3 结论概述:大门大桥推荐方案采用双塔双索面混凝土斜拉桥,跨度布置为135+316+ 135=586m,主跨主梁为 形断面,主塔为倒Y形索塔。
在进行初步设计的过程中需要对主桥推荐方案的抗风、抗震性能进行分析。
本报告对推荐方案的抗风稳定性进行分析。
分析的必要性大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s 和35.9m/s下的稳定性要求。
由于缺乏桥区处风速观测资料,报告中设计风速采用的是《公路桥梁抗风设计规范》附表A中温州市的10m高设计基准风速。
由于桥址处无论是10m平均最大风速,还是瞬时最大风速均较大,而主桥推荐方案有“塔高、跨大”的特点,因此,主桥方案斜拉桥结构的抗风稳定性检算是必需的。
结论利用ANSYS软件对推荐方案的相关环节进行相应分析,得出如下结论:结构的抗风稳定性等级为Ⅰ级,成桥状态和施工状态的主梁的颤振临界风速大于主梁的颤振检验风速,满足抗风稳定性要求。
1.采用规范及参考依据1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTGD60-2004)1.2 中华人民共和国推荐性行业标准《公路桥梁抗风设计规范》(JTG/T D60-01-2004)1.3 中华人民共和国交通部部标准《公路斜拉桥设计规范》(试行)(JTJ027-96)2.设计基本风速、设计基准风速和主梁颤振检验风速的确定根据《公路桥梁抗风设计规范》(JTG/T D60-01-2004),查得温州地区距地面以上10米,频率为1/100平均最大风速V10=33.8m/s。
据《温州市大门大桥工程可行性研究报告》中4.3.7条桥梁抗风、抗震规定标准,大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。
本报告中场地平均最大风速按后者取值。
桥址地表类别按A类考虑,桥面离水面高度为38.5m,根据《公路桥梁抗风设计规范》式3.2.5-1,计算得K1=1.38,由此,求得本桥运营阶段的设计基本风速Vd =K1·V10=49.542m/s。
对于施工阶段,设计基准风速VDS=45.954m/s。
根据《公路桥梁抗风设计规范》第6.3.8条,主梁成桥状态颤振检验风速[Vcr ]=1.2·μF·Vd=1.2×1.3068×49.542=77.69m/s。
主梁施工阶段颤振检验风速[V scr ]= 1.2·μf·VDS=1.2×1.3068×39.181=72.05m/s。
3.结构动力特性分析3.1 计算图式本方案的抗风稳定性分析中,梁、塔、墩采用梁单元建模,索采用单向受拉杆单元建模。
考虑到主梁为带实心边梁板式开口断面,其自由扭转刚度较小,若按照单脊梁(鱼骨式)模型,因为常规梁单元的限制,其不能考虑主梁约束扭转刚度的影响,因此在建模分析中常考虑作三主梁模型处理。
而在ANSYS 程序中提供考虑截面翘曲刚度的梁单元,通过建立单脊梁(鱼骨式)模型,能够准确计算结构的扭转频率,从而有效模拟斜拉桥开口截面主梁。
报告采用单脊梁模型,梁单元选用计入截面翘曲刚度的BEAM188单元。
为比较动力特性分析结果,另采用梁格法建模分析,进行验证。
见图1。
根据结构所处状态,建模包括4方面内容:本桥式方案成桥状态和施工独塔阶段、最大双伸臂阶段、最大单伸臂阶段。
各计算图式如图1、2。
图1 成桥状态计算图式(单脊梁和梁格模型)图2 最大双伸臂和独塔阶段计算图式图3 最大单伸臂阶段计算图式3.2 边界条件本桥式方案的成桥状态和施工最大双、单伸臂阶段的边界条件见表3,表3成桥状态和施工最大单伸臂阶段结构各部位边界条件注:1.表3中,△x、△y、△z分别表示沿横桥向、竖桥向、纵桥向的线位移,θx、θy、θz分别表示绕横桥向、竖桥向、纵桥向的转角位移,1—约束,0—放松。
2.施工最大双悬臂阶段主塔在承台顶处、塔梁交接处边界条件与施工最大单悬臂阶段相同。
3.3 结构动力特性分析3.3.1 成桥状态表4和表5分别给出单脊梁和梁格法建模成桥状态的振型特点,单脊梁模型其相应的振型图见图5。
从表4和表5可以看出,采用188单元的单脊梁和梁格法建模分析结果很接近,同时其扭转频率值相差不到3%。
单脊梁模型分析结果满足要求。
从振型图来看,因为塔、梁分离,节点无顺桥向约束,主梁顺桥向刚度比较弱,一阶振型为纵飘振型,频率值较低。
同时,主塔和斜拉索对主梁的扭转制约作用比较明显,主梁抗扭刚度较高,振型靠后,出现在第十阶,对结构抗风有利。
塔高自承台以上达148.3m,斜拉桥主跨为316m,但由于采用倒Y形,因而主塔的纵弯振型靠前,出现在第一阶。
尽管主塔较高,塔梁分离,板式主梁的抗扭刚度较小,但由于塔身形状以及双索面的布设,主梁仍具有较高的扭转自振频率和扭弯频率比,为主梁的抗风稳定性提供了可靠的保证。
表4 成桥状态动力特性表(单脊梁模型)表5 成桥状态动力特性表(梁格模型)第一阶模态第二阶模态第三阶模态第四阶模态第六阶模态第七阶模态第八阶模态第九阶模态第十阶模态图5 成桥状态前十阶模态3.3.2 裸塔状态独塔自立状态的振型特点见表6,其相应的振型图见图6。
对结果分析可知,塔身较高,呈倒Y形,塔身纵弯频率较低,而侧弯和扭转频率较高,说明裸塔自身的抗扭刚度较高。
表6 推荐方案独塔自立状态动力特性表第一阶模态第三阶模态第四阶模态第五阶模态图6 裸塔自立状态前五阶模态3.3.3 最大双伸臂状态施工最大双伸臂阶段的振型特点见表7,其相应的振型图见图7。
从振型图来看,由于边跨合龙前主塔双侧最大伸臂长度仅为97.6m,结构的动力特性更依赖于主塔自身特性,最大双伸臂结构的低阶振型出现以主塔为主的振动,主梁扭转频率较高。
主梁竖弯和扭转基频较为接近,需要进行弯扭耦合颤振检算。
表7 施工最大双伸臂阶段动力特性表第一阶模态第三阶模态第四阶模态第五阶模态第六阶模态图7 施工最大双伸臂阶段前六阶模态3.3.4 最大单伸臂状态施工最大单伸臂阶段的振型特点见表8,其相应振型见图8。
从振型图来看,在最大悬臂状态,由于塔梁固结,低阶振型出现塔梁纵弯和塔梁横弯的振型。
而边墩纵飘振型在第九、十阶出现。
最大伸臂达158m,主梁的抗扭刚度相对双伸臂明显偏小,扭转振型在第五阶出现。
表8 施工最大单伸臂阶段动力特性表第一阶模态第二阶模态第三阶模态第四阶模态第五阶模态4.主梁抗风稳定性分析 4.1 桥梁抗风安全等级根据《公路桥梁抗风设计规范》第6.3.1条,桥梁颤振安全等级按下式计算:f I =[]cr t V f B,各工况下的颤振稳定性指数及分级见表9。
表9 颤振稳定性指数及分级从表9可以看出,本桥成桥状态和施工最大单伸臂阶段的主梁颤振稳定性指数I f 值均小于2.5,抗风稳定性分级均为Ⅰ级,因此,可以得出本桥的成桥状态和施工最大单、双伸臂阶段的抗风安全是有充分保证的。
4.2 颤振临界风速的估算对弯扭耦合颤振,其临界风速根据《公路桥梁抗风设计规范》的两个公式分别进行估算。
4.2.1 弯扭耦合颤振的Van der put公式Vcr1=ηα·ηs[1+(ε-0.5)br/72.0μ]·ωh·b式中:ηs 为主梁断面形状影响系数,取ηs=0.7;ηα为攻角效应系数,取ηα=1;b为半桥宽,取b=17.75;r为惯性半径,计算得2.75;ε为扭弯频率比,成桥阶段:ε= f10/ f2=2.973;施工阶段:最大双伸臂ε= f6/ f4=1.271,最大单伸臂ε= f5/ f1=2.566。
μ为梁体质量与空气的密度比,μ=m/(πρb2)=43.7。
m=53008kg/m;ρ=1.225kg/m3;ωh为基阶竖弯自振圆频率,成桥阶段:ωh1=2πf2=1.813;施工阶段:最大双伸臂ωh2=2πf3=5.536,最大单伸臂ωh3=2πf3=2.175。
成桥阶段:Vcr1=145.5m/s>[Vcr]= 77.69m/s。
施工阶段:最大双伸臂V scr1=185.9m/s>[V scr] =72.05m/s。
最大单伸臂V scr1=150.3m/s>[V scr] =72.05m/s4.2.2 分离流扭转颤振的临界风速的Herzog公式V co =Tho-1·B·ft式中:Tho-1为西奥多森数的倒数,根据《公路桥梁抗风设计规范》第6.3.4.2条,Tho-1;B为全桥宽,取B=35.5米;f t 为主梁扭转基频。
成桥阶段:f t =0.8578;施工阶段:最大双伸臂f st =1.1199,最大单伸臂f st =0.8882。
计算得:成桥阶段:V co =186.8m/s ;施工阶段:最大双伸臂V s co1=243.9m/s ,最大单伸臂V s co2=193.4m/s 。
考虑形状折减系数ηs =0.7和攻角效应折减系数ηα=1.0,得: 成桥阶段:V cr =130.8m/s>[V cr ]= 77.69m/s ;施工阶段:最大双伸臂V s cr1=170.7m/s>[V s cr ] =72.05m/s 。
最大单伸臂V s cr2=135.4m/s>[V s cr ] =72.05m/s 4.3 结论通过以上分析知,桥梁在成桥阶段和施工阶段的抗风临界风速均大于该地区最大设计风速,说明该方案满足抗风性要求。
希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
2、推销产品要针对顾客的心,不要针对顾客的头。
3、不同的信念,决定不同的命运。