初中数学解题方法的知识归纳
初中数学解题思路整理
初中数学解题思路整理数学是一门抽象而又实用的学科,在初中阶段,学生接触到了更加复杂和有挑战性的数学问题,这就需要他们运用一些解题思路和方法来解决。
下面将整理一些初中数学解题的思路和方法,帮助学生更好地应对不同类型的数学题目。
一、代数方程解题思路1. 明确问题:首先要仔细读题,确保理解问题的意思和要求。
找出问题中给出的已知条件和未知数,并确定方程中各项的含义。
2. 列方程:根据已知条件,列出合适的方程式。
注意使用符号来表示未知数和运算符号。
3. 解方程:根据方程的性质,通过加减乘除等运算,逐步约简方程。
最终得到未知数的值。
4. 检验答案:将得到的解代入原方程,验证得到的解是否满足方程的要求。
二、几何题解题思路1. 画图:对于几何题,首先要绘制清晰的图形,以便更好地理解和分析问题。
要确保按照题目要求绘制图形,并标明相关的线段、角度等。
2. 利用已知条件:根据题目中给出的已知条件,运用相关的几何定理和性质,推导出所需的结论。
3. 利用特殊性质:对于某些几何题目,可以尝试通过假设特殊情况来解决问题。
例如,可以将线段长度设为特定值,或者设为相等,以观察是否存在某种规律。
4. 运用均分法:对于某些与长度、角度有关的几何问题,可以尝试使用均分法来解决。
即将一段长度或一定角度分成若干等分,从而得到与之相关的线段长度或角度大小。
三、概率题解题思路1. 确定样本空间:首先要确定问题所涉及的样本空间,即所有可能的结果。
2. 计算事件发生的可能性:根据题目给出的条件,计算特定事件发生的可能性。
可以采用组合数学的知识,计算出特定事件所包含的元素数量,除以样本空间中元素的总数。
3. 利用概率计算方法:根据题目的要求,使用概率计算方法来得到问题的解答。
常用的概率计算方法包括互斥事件的概率加法原理和条件概率的乘法原理等。
四、比例题解题思路1. 确定比例关系:首先要明确题目中给出的比例关系。
可以根据比例关系列出等式,将已知数和未知数相对应。
初中数学应用题解题方法归纳
初中数学应用题解题方法归纳初中数学应用题解题方法是学生在学习数学应用题时需要掌握和运用的技巧和方法。
针对不同类型的应用题,学生们可以通过分析题目、建立数学模型、解决问题等步骤来解决问题。
在本文中,将对常见的初中数学应用题解题方法进行归纳总结。
一、关键词辨析法许多数学应用题给出的信息很多,但关键信息只有一些。
学生可以通过仔细辨析题目中的关键词,找出问题的焦点。
例如,题目中出现的“买”、“打折”、“减少”等词汇都是需要注意的关键词。
通过读懂题意和归纳关键词,可以更好地理解题目的要求。
二、建立数学模型解决复杂的应用题,建立数学模型是十分重要的。
数学模型是将现实问题映射到数学概念中,通过建立数学关系来解决问题。
不同类型的应用题需要采用不同的数学模型。
例如,比例应用题可以采用比例关系建立模型,面积和体积题可以采用图形的相关公式建立模型。
与数学模型相配合的是方程或方程组,学生需要建立符合题目要求的数学方程或方程组,再用解方程的方法求解。
三、分类讨论法有时,一个应用题存在多种情况,学生可以通过分类讨论的方法来逐一解决。
首先,将问题进行分类,并针对每个分类给出解决的具体步骤,最后将各个分类的解决方法汇总得出最终的解答。
例如,一个购物问题中,商品可以打折也可以不打折,学生可以分别讨论这两种情况,得到不同的解答。
四、工作原理法某些问题需要学生理解问题的工作原理,通过分析问题的过程来解决问题。
例如,在速度、时间、距离应用题中,学生需要理解速度是根据时间和距离的比值计算得出的,可以应用速度公式来解决问题。
五、逆向思维法逆向思维法是指通过从问题的结果、答案出发,逆向思考问题的过程和条件。
对于一些求解最值问题或反推问题的应用题,学生可以通过逆向思维法辅助解题。
首先,确定所需要的结果或答案,然后通过逆向的思维过程,找到问题的条件和步骤。
六、列式化简法在一些复杂的应用题中,学生可以通过列式的方式把问题简化为更容易解决的等式或不等式。
初中数学知识归纳一元一次方程的解的求解方法
初中数学知识归纳一元一次方程的解的求解方法一元一次方程,即只含有一个未知数的一次方程,是初中数学中的基础知识之一。
解一元一次方程的方法可以通过等式的变形、配方、代入等方式进行求解。
接下来,将对这些方法进行归纳总结。
一、等式的变形法利用等式的等值性质,通过变形等式来求解一元一次方程。
1. 一次方程的加减法变形对于形如ax + b = c的一元一次方程,可以通过加减法变形将未知数的系数和常数项分别移到等号两侧。
示例1:3x + 2 = 8首先将常数项2移到等号右侧,得到3x = 8 - 2然后再通过除以系数3,得到x = 6/3最后化简得到x = 22. 一次方程的乘除法变形对于形如ax = b的一元一次方程,可以通过乘除法变形将未知数的系数和常数项分别移到等号两侧。
示例2:4x = 12首先将系数4移到等号右侧,得到x = 12 / 4最后化简得到x = 3二、配方法对于一些特殊的一元一次方程,可以通过配方法来求解。
配方法是将方程两边乘以适当的数来使方程变得更容易求解。
示例3:2x + 3 = 4x - 1通过将方程两边乘以2,得到4x + 6 = 8x - 2然后将6移到等号右侧,得到2x = 8x - 8接着将8x移到等号左侧,得到6x = 8最后化简得到x = 8 / 6化简后得到x = 4 / 3,即x = 1 1/3三、代入法代入法是将方程的解代入原方程中验证是否成立,从而求解一元一次方程。
示例4:4x - 1 = 3x + 2假设x = 2是方程的解,将x = 2代入原方程得到4 * 2 - 1 = 3 * 2 + 2化简得到7 = 8由于等式不成立,所以x = 2不是方程的解。
综上所述,解一元一次方程的方法主要包括等式的变形法、配方法和代入法。
在解题时,我们可以根据具体的方程形式和题目要求选择合适的方法进行求解。
同时,在解题过程中,我们还需要注意运算的准确性和步骤的简洁性,以确保最终的答案的正确性。
初中数学知识归纳函数题的解题思路与方法
初中数学知识归纳函数题的解题思路与方法在初中数学中,函数题是一个重要的考点,也是学生们经常遇到的难题之一。
解函数题的思路和方法对于学生来说非常关键,下面我将归纳总结一些解题思路和方法,希望能够帮助到大家。
1. 了解函数的概念和性质在解题之前,首先要对函数的概念和性质有一定的了解。
函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
函数具有定义域、值域、单调性、奇偶性等性质,了解这些性质对于解题非常有帮助。
2. 分析题目中给出的条件和要求在解函数题时,要仔细分析题目中给出的条件和要求。
通常,题目会给出函数的定义式、特定的取值范围或条件等。
通过理解这些条件,可以帮助我们确定函数的定义域、值域以及其他限制条件。
3. 利用函数的性质进行转化和简化在解函数题时,我们可以运用函数的性质进行转化和简化。
例如,当函数关系较为复杂时,可以考虑利用函数的复合、求导、反函数等性质进行化简。
此外,还可以通过代入特定值的方法,计算函数的取值,从而找到一些规律和特点,帮助解题。
4. 利用图像和图表进行分析对于函数题,我们可以通过绘制函数的图像或者绘制函数值的表格进行分析。
图像和图表能够直观地展示函数的变化趋势,帮助我们理解函数的性质和规律。
通过观察图像和图表,我们可以找到函数的最值、零点、极值等重要信息,这些信息对于解题非常有帮助。
5. 运用推理和证明进行问题求解有些函数题需要通过推理和证明进行求解。
在解题过程中,要注重观察函数的特点和规律,运用数学推理进行问题求解。
通过归纳、递推、反证法等方法,可以帮助我们解决一些较为复杂的函数问题。
6. 多做练习,积累经验最后,解函数题也需要多做练习,不断积累经验。
通过反复练习,可以熟悉各种类型的函数题目,提高解题的能力和速度。
同时,还可以总结不同类型的函数题解题思路和方法,积累解题经验,提高解题的准确性和效率。
综上所述,解函数题需要掌握函数的概念和性质,分析题目给出的条件和要求,利用函数的性质进行转化和简化,运用图像和图表进行分析,运用推理和证明进行问题求解,同时要进行大量的练习和积累经验。
初中数学解题技巧整理(史上最全)
初中数学解题技巧(史上最全)目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。
【典例剖析】1.(直接推演法)下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( )A .1B .2C .3D .42.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .20093.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.(特值法)如图所示是二次函数2122y x =-+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( )A .4B .163C .2πD .85.(排除、筛选法)已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -46.(图解法)如图,在直角梯形ABCD 中,DC ∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )7.(分析法)已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥18.(验证法:)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.9.(直接推理法)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.ww (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ;如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ;(2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.11. ( 直接计算法) 如图, 大圆O 的半径OC 是小圆1O 的直径, 且有OC 垂直于圆O 的直径AB . 圆1O 的切线AD 交OC 的延长线于点E , 切点为D . 已知圆1O 的半径为r ,则=1AO _______ ; =DE ________12.(分析法)如图所示,直线12l l ⊥,垂足为点O,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<)。
初二数学知识解题技巧总结归纳
初二数学知识解题技巧总结归纳数学是我们学习的主要科目之一,也是理科知识,学好数学对于学生来说是至关重要的。
下面是小编为大家整理的关于初二数学知识解题技巧,希望对您有所帮助!初二数学考试解题技巧1.选择题的答题技巧(1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。
首先,看清试题的指导语,确认题型和要求。
二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。
三是辨析选项,排误选正。
四是要正确标记和仔细核查。
(2)特值法。
在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(3)反例法。
把选择题各选择项中错误的答案排除,余下的便是正确答案。
(4)猜测法。
因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的得分机会。
除须计算的题目外,一般不猜A。
2.填空题答题技巧(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。
如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。
3.解答题答题技巧(1)仔细审题。
注意题目中的关键词,准确理解考题要求。
(2)规范表述。
分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。
注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。
合理有序的书写试卷和使用草稿纸,节省验算时间。
初二数学选择题解题方法(一)特别值法。
谈到这类方式信任初中的伙伴都清楚,代数式求值可以采取特值来验算;不过几何证实题和计算题采取特值来考证定论是不是正确,会用的伙伴就较为少,我们先来看2016年山东德州市中考(初中学业水平测试)数学科目选择题第12题。
初中数学知识归纳几何题的解题思路与方法
初中数学知识归纳几何题的解题思路与方法几何题在初中数学中占据着重要的地位,它不仅考察了学生对几何概念的理解,还需要运用一些解题技巧和方法。
本文将从几何题的解题思路和方法两个方面进行阐述,希望能够帮助读者更好地理解和应对几何题。
一、几何题的解题思路解决几何题首先要理解题意,弄清楚题目中给出的条件和要求。
在这个过程中,我们需要运用数学知识进行分析和归纳。
下面是一些常见的解题思路:1. 图形识别法:通过观察题目中给出的图形,识别出可能与之相关的几何性质。
例如,如果题目中出现了平行线、垂直线、等腰三角形等关键词,可以进一步研究它们的性质,从而找到解题的线索。
2. 形状比较法:有时候题目中给出了多个图形,要求我们比较它们的大小、面积或者其他性质。
这时,我们可以通过计算或者直观的对比来找出它们之间的关系。
3. 数字推理法:一些几何题目中给出了具体的数字或者比例关系,我们可以根据这些信息进行推理。
例如,通过求解比例、利用勾股定理等方法来计算出未知的长度、角度等。
4. 分类讨论法:有些几何题目可能存在多种条件或者情况,我们可以根据题目中的关键信息进行分类讨论。
通过分别解决每一种情况,再综合得出最后的结论。
二、几何题的解题方法在掌握了解题思路后,我们还需要掌握一些具体的解题方法,这些方法是根据几何性质和常见的解题模式总结得出的。
下面是一些常见的解题方法:1. 几何性质运用:几何题目中常常涉及到点、线、面的性质。
因此,我们需要牢记一些常见的几何性质,如平行线的性质、垂直线的性质、等腰三角形的性质等。
这些性质在解题过程中起着重要的作用,可以帮助我们找到解题的线索。
2. 分割图形法:有时候题目中给出的图形比较复杂,我们可以通过分割图形来简化问题。
将复杂的图形分割为若干简单的几何形状,然后对每个简单的几何形状进行分析和运算,最后再综合得出最终的结论。
3. 利用相似性:在一些几何题中,图形之间存在相似性。
我们可以通过相似三角形的性质来求解未知的长度、角度等。
初中数学全册知识解题口诀
初中数学全册知识解题口诀
初中数学全册的知识解题口诀可以根据不同的知识点进行总结和归纳,以下是一些常见的口诀:
1. 有理数运算口诀:
加减同符号,异号取差;
乘除同异号,正负搞清楚。
2. 分式运算口诀:
分式加减乘除,通分后统一;
简化约分要留心,结果要最简约。
3. 代数式展开口诀:
二次方差异平方差,三项立方多分配;
公式记牢运用好,展开式无难求。
4. 相似三角形口诀:
角对角相等,边比例相同;
直角三角形,斜边比较长。
5. 平行线口诀:
平行线交剖线,对应角相等;
内错外错交,内角互补补。
6. 勾股定理口诀:
勾股定理要记清,直角边顺序定;
斜边平方等于和,直角边平方和。
7. 平面图形周长和面积口诀:
周长加边长,面积乘底高;
圆的周长很简单,直径乘π别犹豫。
这些口诀可以帮助初中学生记忆和运用数学知识,提供了一种简明扼要的总结方式,帮助学生更好地理解和解题。
初中数学运算技巧知识点归纳
初中数学运算技巧知识点归纳数学是一门需要运用技巧和方法的学科,而运算技巧是其中非常重要的一部分。
在初中数学学习中,我们需要掌握一些基本的数学运算技巧,以便能够更加高效地解题。
下面我们将对初中数学运算技巧知识点进行归纳,并给出一些例题来帮助大家理解和掌握这些技巧。
1.整数运算技巧(1)加减运算的交换律和结合律整数的加法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
在实际计算中,可以根据需要来改变加法的顺序和结合方式,以达到简化计算的目的。
例题:计算(-3)+5+(-7)+2+(8)+(-6)。
(解)根据结合律:((-3)+5+(-7)+2)+(8)+(-6)。
再根据交换律:((5+(-7)) +(-3)+2)+(8)+(-6)。
计算得:((-2)+(-3)+2)+(8)+(-6)。
继续计算得:((-5)+2)+(8)+(-6)。
再计算得:(-3)+(8)+(-6)。
最后计算得:(-1)+(-6)。
答案为-7。
(2)正数和负数的乘法和除法正数与负数相乘,结果为负数;两个负数相乘,结果为正数。
正数除以正数,结果为正数;负数除以正数,结果为负数;负数除以负数,结果为正数。
例题:计算:(-7)×8,(-36)÷(-6)。
(解)(-7)×8= -56。
(-36)÷(-6) = 6。
2.分数运算技巧(1)分数的加减分数的加减需要先找到相同的分母,然后将分子进行加减计算,并保持分母不变。
例题:计算:1/3 + 2/5,5/6 - 1/4。
(解)1/3 + 2/5 = (5/15) + (6/15) = 11/15。
5/6 - 1/4 = (10/12) - (3/12) = 7/12。
(2)分数的乘法和除法分数的乘法需要将两个分数的分子相乘,分母相乘,并约分;分数的除法需要将除数倒置,然后进行乘法运算。
例题:计算:2/3 × 3/4,2/5 ÷ (1/6)。
初中数学解题方法归纳
初中数学解题方法归纳选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元C 、120元D、88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( ) A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
初中数学学习中的解题技巧和思路
初中数学学习中的解题技巧和思路初中数学是学生学习的重要科目之一,掌握好解题技巧和思路对于提高数学成绩至关重要。
本文将介绍一些初中数学解题的常用技巧和思路,帮助学生提升解题能力。
一、理清题意,认真分析题目在解决数学题目之前,首先要认真阅读题目,理解题意。
明确题目要求,确定解题的方向。
考生应该注意判断题目是什么类型的题目,根据题目的类型选择相应的解题方法。
二、画图辅助解题很多数学题目可以通过画图来辅助解题。
适当运用几何图形的绘制、标注可以帮助更直观地理解问题。
利用图形可以更好地分析题目,发现问题的关键点,从而得出解答的思路。
比如,在解决几何题时,可以根据题目要求画出几何图形,利用相似三角形、勾股定理等几何原理来解题。
在解决代数题时,可以利用坐标图来帮助理解问题,得到方程的几何意义,进而解决问题。
三、利用逻辑思维解题解决数学问题还需要运用逻辑思维。
有些题目看似复杂,但实质上只需运用一些简单的逻辑关系即可解决。
在解决这类问题时,需要学生耐心思考,运用逻辑推理和分析能力。
例如,在解决排列组合问题时,可以利用排列组合的基本原理,找到问题的规律。
在解决等式或方程时,可以通过逆向思维,从已知的结果反推出未知的量。
运用这些逻辑思维的思考方法可以大大提高解题的效率。
四、灵活运用数学工具在解决数学题目时,常常需要使用计算器、尺子、圆规等数学工具。
适当运用这些工具可以提高解题的准确性和效率。
学生在解题过程中,应学会用数学工具在纸上作图、进行计算,从而更好地理解题目和解决问题。
同时,要注意使用数学工具的正确方法,避免出现错误。
五、尝试不同的解题方法解决数学问题时,通常存在多种解题方法。
学生可以尝试不同的方法去解题,从而找到最适合自己的解题思路。
同时,学生也可以通过尝试多种方法来加深对数学知识的理解和运用。
例如,在解决方程问题时,可以通过列方程、画图、逆向思维等不同的方法来求解。
这样不仅可以提高解题的灵活性,还能够加深对数学知识的理解。
初中数学解题技巧方法归纳
初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。
它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。
在数学上两类数学对象必须有一定的关系才好比较。
我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。
如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。
猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。
初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。
归纳有完全归纳和不完全归纳。
完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。
关键是猜之有理、猜之有据。
5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
初中数学解题思想及十大解题方法
建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题⽬加以划分,以便在考试中游刃有余。
解题⽅法01配⽅法通过把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式解决数学问题的⽅法,叫配⽅法。
配⽅法⽤得最多的是配成完全平⽅式,它是数学中⼀种重要的恒等变形的⽅法,它的应⽤⼗分⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。
02因式分解法因式分解,就是把⼀个多项式化成⼏个整式乘积的形式,是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法,在代数、⼏何、三⾓等的解题中起着重要的作⽤。
因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有利⽤拆项添项、求根分解、换元、待定系数等等。
03 换元法通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。
04判别式法与韦达定理⼀元⼆次⽅程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄⼏何、三⾓运算中都有⾮常⼴泛的应⽤。
韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等。
05待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。
06构造法在解题时,我们常常会采⽤这样的⽅法,通过对条件和结论的分析,构造辅助元素,它可以是⼀个图形、⼀个⽅程(组)、⼀个等式、⼀个函数、⼀个等价命题等,架起⼀座连接条件和结论的桥梁,从⽽使问题得以解决,这种解题的数学⽅法,我们称为构造法。
初中数学解题规律方法和技巧
初中数学解题规律方法和技巧初中数学解题规律方法和技巧有:1. 解题思路:在解题时,要认真审题,仔细分析题意,明确解题思路。
对于复杂的问题,可以将其分解为多个小问题,逐步解决。
同时,要注意问题的条件和结论,以及它们之间的关系,从而找到解题的突破口。
2. 数学符号:数学符号是数学解题中的重要工具。
要熟练掌握各种数学符号的含义和使用方法,注意符号的准确性和规范性。
3. 公式和定理:初中数学中有很多公式和定理,要熟练掌握它们的推导过程和使用方法。
对于一些常用的公式和定理,可以归纳总结,形成自己的解题“秘籍”。
4. 图形和图像:初中数学中有很多图形和图像,如平面几何、函数图像等。
要熟练掌握各种图形的性质和特点,以及它们的绘制方法。
同时,要注意借助图形和图像来分析问题,使抽象的问题变得形象具体。
5. 分类讨论:对于一些综合性较强的问题,要注意分类讨论,将问题划分为不同的情形,逐一解决。
同时,要注意分类标准的确定和分类层次的合理性。
6. 数形结合:数形结合是一种非常重要的数学思想方法。
通过将数量关系和空间形式结合起来,可以化抽象为具体,使问题更加清晰易懂。
7. 方程和不等式:方程和不等式是初中数学中常见的数学模型。
在解题时,要注意建立方程或不等式模型,将实际问题转化为数学问题,从而解决实际问题。
8. 规律探究:初中数学中有很多规律探究的问题,如数字规律、周期现象等。
要熟练掌握各种规律的特点和探究方法,善于发现规律并利用规律解决问题。
9. 实际应用:初中数学中有很多实际应用的问题,如生活中的数学问题、生产中的数学问题等。
要善于将实际问题转化为数学问题,利用数学知识解决实际问题。
初中数学证明题解题技巧知识点归纳
初中数学证明题解题技巧知识点归纳数学证明题是初中数学的重要内容之一,通过解题可以培养学生的逻辑思维能力和推理能力。
解决数学证明题的关键在于分析题目,运用合适的数学原理和方法,推导出正确的结论。
本文将从常见的证明题中归纳总结一些解题技巧和知识点。
1. 相似三角形的证明相似三角形的证明题常见于初中数学考试中。
在解决相似三角形的证明题时,需要用到相似三角形的性质和辅助线的构造。
常用的相似三角形的证明方法有以下几种:(1)边角对应相等法则:如果两个三角形的对应两边成比例,并且对应的角度相等,则两个三角形相似。
(2)全等三角形法则:如果两个三角形的三个角度相等,则两个三角形全等,也可以推出两个三角形相似。
(3)平行线截比法则:通过绘制平行线,形成一条与原线段成比例的线段,就可以判定出相似三角形。
2. 数列极限的证明数列极限的证明题是数列章节的重要内容。
在解决数列极限的证明题时,常用的技巧和知识点有:(1)数列有界性: 如果数列有上界(或下界),并且趋向于某个值,那么该值就是数列的极限。
(2)夹逼法则: 如果一个数列比另一个数列大,并且比另一个数列小,而这两个数列的极限相等,那么这两个数列的极限也相等。
(3)数列递推公式的应用: 如果数列递推公式的后一项只与前一项相关,并且这个数列的极限存在,那么可以通过归纳法证明数列的极限。
3. 整式因式分解的证明整式因式分解的证明题常见于初中数学的代数章节。
在解决整式因式分解的证明题时,需要掌握以下技巧和知识点:(1)公因式提取法:将多项式中的公因式提取出来,得到一个公因式和一个因式分解式。
(2)差平方公式:对差平方公式有足够的理解和掌握,通过将给定的多项式转化为差平方公式的形式,进而对多项式进行因式分解。
(3)分组分解法:将多项式中的项按照一定的规则进行分组,进而将多项式进行因式分解。
4. 平行线性质的证明平行线性质的证明题常见于初中数学的几何章节。
在解决平行线性质的证明题时,可以运用以下技巧和知识点:(1)平行线性质:两条平行线与同一直线相交,则交角相等。
52个初中数学解题大招
52个初中数学解题大招初中数学是一门重要的学科,也是让很多学生头疼的学科。
为了帮助学生更好地掌握数学知识,我整理了52个初中数学解题的技巧和方法。
一、整数运算1.加减法:要注意进位和借位的规则,加减整数时要注意符号。
2.乘法:掌握乘法口诀表,尤其是小乘法口诀表,可以快速计算乘法。
3.除法:要掌握除法的基本原理,如被除数除以除数等于商,可以用长除法来进行计算。
二、分数运算4.分数加减法:要先找到分母的最小公倍数,然后将分数转化为相同分母再进行运算。
5.分数乘除法:乘法可以直接相乘,除法可以转化为乘法,并注意约分的规则。
6.分数与整数的加减乘除:可以把整数看作带分母为1的分数,然后按照上述规则进行运算。
三、小数运算7.小数加减法:将小数的小数点对齐,然后按照整数的加减法规则进行运算。
8.小数乘法:将小数中的小数点去掉,按照整数的乘法规则进行运算,最后将小数点移到正确的位置。
9.小数除法:将除数移到小数点后面的位置,然后按照整数的除法规则进行运算,最后将小数点移到正确的位置。
四、代数运算10.代数式的加减法:将同类项进行合并,注意正负号的运算。
11.代数式的乘法:将每一项相乘,然后将同类项进行合并。
12.代数式的除法:用除法原理进行计算,将每一项进行除法运算。
五、方程与方程组13.一元一次方程:利用等式的性质解方程,注意正负号和运算规则。
14.一元一次方程的应用:将实际问题转化为方程进行求解。
15.一元二次方程:利用配方法和求根公式解方程。
16.一元二次方程的应用:将实际问题转化为方程进行求解。
17.一元三次方程:利用因式分解和求根公式解方程。
18.一元三次方程的应用:将实际问题转化为方程进行求解。
19.一元四次方程:利用因式分解和求根公式解方程。
20.一元四次方程的应用:将实际问题转化为方程进行求解。
21.一元一次方程组:利用消元法和代入法解方程组。
22.一元一次方程组的应用:将实际问题转化为方程组进行求解。
(完整版)初中数学解题方法归纳总结
初中数学知识点归纳总结一、基本运算方法 (2)1、配方法 (2)2、因式分解法 (2)3、换元法 (2)4、判别式法与韦达定理 (2)5、待定系数法 (3)6、构造法 (3)7、反证法 (3)8、面积法 (3)9、几何变换法 (4)10、客观性题的解题方法 (4)二、基本定理 (5)三、常用数学公式 (10)基本运算方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0 (a、b、c属于R, a W0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学解题技巧方法总结
初中数学解题技巧方法总结初中数学解题技巧方法总结数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段。
以下是小编带来的初中数学解题技巧方法总结,一起来看看吧。
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
初中数学必考知识点总结与10大解题方法
初中数学必考知识点总结与10大解题方法一、数与运算〔10个考点〕考点1:数的整除性以及有关概念〔本考点含整数和整除、分解素因数〕考核要求:〔1〕知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;〔2〕知道能被2或3、5、9整除的正整数的特征;〔3〕会分解素因数;〔4〕会求两个正整数的最小公倍数和最大公因数.详细效果讨论触及的正整数普通不大于100.样题汇编:〔正在树立中,希冀大家可以无看法地树立自己的考试命题数据库〕考点2:分数的有关概念、基本性质和运算考核要求:〔1〕掌握分数与小数的互化,初步体会转化思想;〔2〕掌握异分母分数的加减运算以及分数的乘除运算.考点3:比、比例和百分比的有关概念及比例的性质考核要求:〔1〕了解比、比例、百分比的有关概念;〔2〕比例的基本性质.对合分比定理、等比定理不作教学要求.考点4:有关比、比例、百分比的复杂效果考核要求:〔1) 考察比、比例的实践运用,结合实践掌握求合格率、出勤率、及格率、盈利率、利率的方法;〔2〕会处置有关比、比例、百分比的复杂效果,了解百分比在经济、生活中的一些基本知识及复杂运用.考点5:有理数以及相反数、倒数、相对值等有关概念,有理数在数轴上的表示考核要求:〔1〕了解相反数、倒数、相对值等概念;〔2〕会用数轴上的点表示有理数.留意:〔1〕去掉相对值符号后的正负号确实定,〔2〕0没有倒数.考点6:平方根、立方根、次方根的概念考核要求:(1) 了解平方根、立方根、次方根的概念;〔2〕了解开方与方根的意义,留意平方根和算术平方根的联络和区别.考点7:实数的概念考核要求:了解实数的有关概念.留意:判别在理数不看方式,要看实质.考点8:数轴上的点与实数的逐一对应考核要求:掌握实数与数轴上的点的逐一对应关系.解题关键是判别实数的大小.考点9:实数的运算考核要求:〔1〕掌握实数的加、减、乘、除、乘方、开方等运算的法那么、性质〔交流律、结合律、分配律、互逆性、数0和数1的特征〕、运算顺序,明白有关运算性质的推行和运用;〔2〕会用计算器停止实数的运算.留意:〔1〕应用运算定律,力图简便计算和巧算,〔2〕运算要稳中求快,准确无误.考点10:迷信记数法考核要求:〔1〕了解迷信记数法的意义;〔2〕会用迷信记数法表示较大的数.2第二局部方程与代数〔27个考点〕考点11:代数式的有关概念考核要求:〔1〕掌握代数式的概念,会判别代数式与方程、不等式的区别;〔2〕知道代数式的分类及各组成局部的概念,如整式、单项式、多项式;〔3〕知道代数式的书写格式.留意单项式与多项式次数的区别.考点12:列代数式和求代数式的值考核要求:〔1〕会用代数式表示罕见的数量,会用代数式表示含有字母的复杂运用题的结果;〔2〕经过列代数式,掌握文字言语与数学式子表述之间的转换;〔3〕在求代数式的值的进程中,停止有理数的运算.考点13:整式的加、减、乘、除及乘方的运算法那么考核要求:〔1〕掌握整式的加、减、乘、除及乘方的运算法那么;〔2〕会用同底数幂的运算性质停止单项式的乘、除、乘方及复杂混合运算;〔3〕会求多项式乘以或除以单项式的积或商;〔4〕会求两个或三个多项式的积.留意:要灵敏了解同类项的概念.考点14:乘法公式〔平方差、两数和、差的平方公式〕及其复杂运用考核要求:〔1〕掌握平方差、两数和〔差〕的平方公式;〔2〕会用乘法公式简化多项式的乘法运算;〔3〕可以运用全体思想将一些比拟复杂的多项式运算转化为乘法公式的方式.考点15:因式分解的意义考核要求:〔1〕知道因式分解的意义和它与整式乘法的区别;〔2〕会鉴别一个式子的变形进程是因式分解还是整式乘法. 考点16:因式分解的基本方法〔提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法〕考核要求:掌握提取公因式法、分组分解法和二次项系数为1时的十字相乘法等因式分解的基本方法.考点17:分式的有关概念及其基本性质考核要求:〔1〕会求分式有有意义或分式为0的条件;〔2〕了解分式的有关概念及其基本性质;〔3〕能熟练地停止通分、约分.考点18:分式的加、减、乘、除运算法那么考核要求:〔1〕掌握分式的运算法那么;〔2〕能熟练停止分式的运算、分式的化简.考点19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:〔1〕了解正整数指数、零指数、负整数指数的幂的概念;〔2〕知道分数指数幂的意义;〔3〕可以运用零指数的条件停止式子取值范围的讨论.考点20:整数指数幂,分数指数幂的运算考核要求:〔1〕掌握幂的运算法那么;〔2〕会用整数指数幂及负整数指数幂停止运算;〔3〕掌握负整数指数式与分式的互化;〔4〕知道分数指数式与根式的互化。
【初中数学】初中必考知识点总结与解题方法
【初中数学】初中必考知识点总结与解题方法有理数是很重要的知识,这里把这些知识整理出来发给大家:基础知识㈠、数与代数a、数与式:1.有理数有理数:① 整数→ 正整数/0/负整数②分数→正分数/负分数数字轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
② 任何有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④ 数字轴上由两点表示的数字在右侧总是大于左侧。
正数大于0,负数小于0,正数大于负数。
绝对值:① 在数字轴上,数字对应点与原点之间的距离称为数字的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:① 添加相同的符号,使用相同的符号,然后添加绝对值。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③ 数字添加到0时不会更改。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
② 将任何数字乘以0得到0。
③乘积为1的两个有理数互为倒数。
部门:①除以一个数等于乘以一个数的倒数。
② 0不能是除数。
乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。
混合顺序:首先计算乘法,然后计算乘法和除法,最后计算加法和减法。
如果有括号,首先计算括号中的括号。
2、实数无理数:无限的非循环小数称为无理数平方根:① 如果正数x的平方等于a,那么正数x被称为a的算术平方根。
②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
③ 正数有2个平方根/0的平方根是0/负数没有平方根。
④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学解题方法的知识归纳初中数学解题方法的知识归纳
要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。
初中数学解题方法之常用的公式
下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。
你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画图
数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。
学会画图
画图时应注意尽量画得准确。
画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会
将你引入歧途。
初中数学解题方法之审题
对于一道具体的习题,解题时最重要的环节是审题。
审题
所以,在实际解题时,应特别注意,审题要认真、仔细。
初中数学解题方法之增加习题的难度
人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。
增加习题的难度
应先易后难,逐步增加习题的难度。
一个人的能力也是通过锻炼逐步增长起来的。
若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题
的速度就会大大提高。
养成了习惯,遇到一般的难题,同样可以保
持较高的解题速度。
而我们有些学生不太重视这些基本的、简单的
习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。
比如,与一个人扛一大袋大米上五层楼相比,一个人
拎一个小提包也上到五层楼当然要轻松得多。
但是,如果扛米的人
只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包
人比扛米人的劳动强度大。
所以在相同时间内,解50道、100道简
单题,可能要比解一道难题的劳动强度大。
再如,若这袋大米的重
量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费
了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而
无功。
而拎包人一次只拎10千克,15次就可以把150千克的大米
拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。
由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些
的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。
随着速度和能
力的提高,再逐渐增加难度,就会达到事半功倍的效果。
初中数学解题步骤和解题方法
同学们认真看看,下面是对解题步骤和解题方法内容的讲解。
解题步骤和解题方法
对基本的解题步骤和解题方法也要熟悉。
解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基
本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
否则,走
了弯路就多花了时间。
希望上面对数学解题步骤和解题方法的内容知识讲解学习,同学们都能很好的掌握,相信同学们会学习的更好的哦。