2019全国中考数学真题分类含答案解析-知识点47 新定义型2019
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .1
4
c 【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121 x x x x c +=-⎧⎨⋅=⎩ ∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2. 又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c < 14. ∴c 的取值范围为c <-2 . 2.(2019·济宁) −1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A 【解析】 二、填空题 18.( 2019·娄底) 已知点P ()00,x y 到直线y kx b =+的距离可表示为d = 0, 1)到直线y =2x+6的距离d ==y x =与4y x =-之 间的距离为___________. 【答案】 【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直 线4y x =-的距离就是两平行直线y x =与4y x =- 之间的距离.d = = = 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根 据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二 次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是 广义菱形.其中正确的是 .(填序号) 【答案】①④ 【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然 满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中 的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM =+1, PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④. 17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征 值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 【答案】 85或1 4 . 【解析】当∠A 是顶角时,底角是50°,则k= 808505=;当∠A 是底角时,则底角是20°,k=201 804 =,故答案为:85或1 4 . 三、解答题 1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在 数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”. 定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯 数”, 例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算 23+24+25时,个位产生了进位. (1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数. 解:(1)2019不是“纯数”,2020是“纯数”,理由如下: ∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位, ∴2019不是“纯数”,2020是“纯数”. (2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2 时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨 1 4 214m 214m 2 14 m 论如下: ①当这个数为一位自然数时,只能是0、1、2,共3个; ②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13. 2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”. 定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”. 例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”; ⑵求出不大于100的“纯数”的个数,并说明理由. 解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100 若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个. 两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个. 3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满 是x = 3 a c +,y =3 b d +,那么称点T 是点A ,B 的融合点。 例如:A (-1,8),B (4,一2),当点T (x .y )满是x = 143-+=1,y =8(2) 3 +-=2时.则点T (1,2)是点A ,B 的融合点。 (1)已知点A (-1,5),B (7,7).C (2,4)。请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0).点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式. ②若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标. 解:(1)∵ 173-+=2,57 3 +=4, ∴点C (2,4)是点A .B 的融合点。..…3分 n ()()21++++n n n n 32343332++23252423++