大学物理第二十章题解
大学物理重点知识习题课解答-光学
300
600
S .. .. . . .. .. ..
I0
P2
I21
解:
P1 P3P1
P1
入射光通过偏振片I和II后,透射光强为
I1
1 2
I0
cos2
600
插入偏振片III后,其透射光强为
I2
1 2
I0
cos2
300
cos
2
300
I2 2.25I1
27
选择题1. 等倾干涉光程差公式 2d
为了12满I足0 线I偏0 振co部s2分振, 动方4向5在0 出射后“转
过”900,
只要第一个偏振片偏振化方向与入射光中线偏振
光的光振动方向夹角为450,第二个偏振片的偏振
化方向与第一偏振片偏振化方向夹角为450就行.
E
所以,只要两个偏振片就行.
P1
450
P127
I0
.
450 .
E
I0
P1
450
将有关数据代入可得
1
o
d 5 /n2 n1 8.0m
d
4
3。在折射率n3=1.52的照相机镜头表面涂有一层折射率
n2=1.38的MgF2增透膜,若此膜仅适用于波长 =550nm的
光,则此膜的最小厚度为多少?
n1 1
解:因为 光相干相
n2 1.38 d
综合效应。其中明条纹的位置由光栅方程决定,但各 明纹的强度受单缝衍射效应的调制,透射光能量的大 部分将分布在原单缝衍射中央明纹范围(中央包线) 内的各明纹上。
23
17、光栅明纹位置由d sin k 决定。单缝衍射极
小位置由 b sin k决定,当 时 ,光栅明纹
大学物理实验课后思考题全解
实验一霍尔效应及其应用【预习思考题】1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。
霍尔系数,载流子浓度,电导率,迁移率。
2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型?以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。
3.本实验为什么要用3个换向开关?为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。
总之,一共需要3个换向开关。
【分析讨论题】1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行?若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。
要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。
2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源?误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。
实验二声速的测量【预习思考题】1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定?答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。
在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。
若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。
大学物理题目问题详解
第一章 质点运动学T1-4:BDDB1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的矢量表达式和大小;(2) 加速度的矢量表达式和大小 解 (1) 速度的分量式为t t x x 6010d d +-==v t tyy 4015d d -==v 当t =0 时, v o x =-10 m ·s-1, v o y =15 m ·s-1, 则初速度的矢量表达式为1015v i j =-+, 初速度大小为120200s m 0.18-⋅=+=y x v v v(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的矢量表达式为6040a i j =-, 加速度的大小为222s m 1.72-⋅=+=y x a a a1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1,求(1) 质点的任意时刻速度表达式;(2)运动方程.解:(1) 由a =4 -t 2及dv a dt=,有2d d (4)d a t t t ==-⎰⎰⎰v ,得到 31143t t C =-+v 。
又由题目条件,t =3s时v =2,代入上式中有 3114333C =⨯-+2,解得11C =-,则31413t t =--v 。
(2)由dx v dt=及上面所求得的速度表达式,有31d vd (41)d 3t t t t ==--⎰⎰⎰x得到 2421212x t t t C =--+又由题目条件,t =3s时x =9,代入上式中有24219233312C =⨯-⨯-+ ,解得20.75C =,于是可得质点运动方程为24120.7512x t t t =--+ 1 -22 一质点沿半径为R 的圆周按规律2021bt t s-=v 运动,v 0、b 都是常量.(1) 求t 时刻质点的总加速度大小;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?知识点:圆周运动的加速度的切向分量及法向分量表达式.本题采用线量的方式来描述圆周运动的运动方程。
大学物理2-212章习题详细答案
Pd L0dxxθxydEd θ习题1212-3.如习题12-3图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为()()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()i E d L d q+=04πε12-4.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的场强。
[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l RQ q d d π=dq 在O 点的电场强度20204d 4d d RlR Q R qE πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x 方向的电场强度l RQ E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x R Q E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向 12-5. 如习题12-5图所示,一半径为R 的无限长半圆柱面形薄筒,均匀带电,沿轴向单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解]θd 对应的无限长直线单位长带的电量为θπλd d =q 它在轴线O 产生的电场强度的大小为RRq E 0202d 2d d επθλπε==因对称性y d E 成对抵消RE E 02x 2d cos cos d d επθθλθ=⋅=d θRR E E 02202x 2d cos 2d επλεπθθλπ===⎰⎰ 12-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心点O 处的场强。
历届大学物理力学试题解答
3、如图所示。表面呈光滑的 刚体无转动地竖直下落。图中虚线 对应过刚体唯一地 最低点部位P1 的水平切平面。图中竖直虚线 P1 P2 对应着过 P1 点的铅垂线, C 为刚体的 质心。设C与铅垂 线P1 P2确定的平面即为铅垂面,将C到P1 P2 的距离记为 d ,刚 体质量为 m。刚体相对于过 C 点且与图平面垂直的水平转轴的 转动惯量为 JC . 设 JC>m d 2。已知刚体与水平地面将发生的碰 撞为弹性碰撞,且无水平摩擦力,试在刚体中找出这样的点部位 ,它们在刚体与地面碰撞前、后的两个瞬间,速度方向相反,大 小不变。 P2 d vc 解: C y P
历届大学物理力学试题解答
(共21题)
1、均匀细杆AOB 的A 端,B 端和中央位置O处各有1个光滑的 小孔先让杆在光滑的水平大桌面上绕 O 孔以角速度 w。作顺时 针方向旋转如图(图平面为大桌面)。今将一光滑的细杆迅速 插入 A 孔,棍在插入前后无任何水平方向的移动,稳定后,在 迅速拔A棍的同时,将另一光滑细棍如前所述插入B 孔,再次 稳定后,又在迅速拔出 B 棍的同时,将另一光滑细棍如前所述 插入 O 孔。试求:最终稳定后,细杆AOB 绕O 孔旋转方向和 旋转角速度的大小。 解:
2
d
C P1
v0
N
P1
解:
Nt mvc m(v0 ) Ntd J cw 1 1 1 2 2 2 mvc J cw mv0 2 2 2
大学物理上海交通大学20章课后习题答案
习题2020-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。
推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。
解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==,∴仰角9037i θ=-=。
光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。
20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使:(1)透射光强为入射光强的3/1;(2)透射光强为最大透射光强的3/1。
(均不计吸收)解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。
则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α20cos 21I I =,(1)由已知条件,透射光强为入射光强的13,得:20011cos 23I I α=,有: 235.263α==(2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos ()232I I α=,有: 3arccos 54.733α==。
20-3.设一部分偏振光由一自然光和一线偏振光混合构成。
现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过60时,透射光强减为一半,试求部分偏振光中自然光和线偏振光两光强各占的比例。
解:由题意知:max 012max 011211cos 6022I I I I I I =⎧⎪⎪⎨⎪+=+⎪⎩⇒max 01max 0112111224I I I I I I ⎧⎪⎪⎨=+=+⎪⎪⎩⇒01I I =, ∴即得0111I I =::。
20-4.由钠灯射出的波长为589.0nm 的平行光束以50角入射到方解石制成的晶片上,晶片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求:(1)在晶片内o 光与e 光的波长;(2)o 光与e 光两光束间的夹角。
解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λλ=∴589.0356.971.65c o o nm n λλ===,589.0396.371.486c e e nm n λλ===;(2)又∵sin sin i n γ=,有:sin 50arcsin 27.66o o n γ==,sin 50arcsin 31.03e e n γ==,∴o 光与e 光两光束间的夹角为: 3.37e o γγγ∆=-=。
《大学物理A》力学部分习题解答
Y
V BA
V B地
V 地A
0
图 1.12
V A地
X
1.31、一质点沿 X 轴运动,其加速度 a 与坐标 X 的关系为
a 2 6 x 2 ( SI ) ,如果质点在原点处的速度为零,试求其在任意位置处的速
度? 解: a
dv dv dx dv v 2 6 x 2 ,利用分离变量积分解此题 dt dx dt dx
dt
,
x
k t k v0 (1 e m ) , m
t 时, x 有最大值且为 xmax
第三章
k v0 m
。
3.1、一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系 数=0.20,滑动摩擦系数=0.16,现对物体施一水平拉力 F=t+0.96(SI),则 2 秒末物体的速度大小 v=______________。 题意分析:在 01 s 内, F<mg=1.96 ,未拉动物体.当拉力大于(克服)最大 静摩擦力后,物体开始运动,力对时间积累的效果称为:合外力对物体在 dt 时间内 的冲量。 解题思路:从题意分析中得出解题思路:由力对时间的积累,即力对时间的 积分,求出冲量,再求速度。 解题:在 1 s2 s 内, I (t 0.96) d t mg (t 2 t1 ) 0.89 N s
t1 0
t2
20
20 0
18( N ) .
3.5、一质量为 m 的物体,以初速 v0 成从地面抛出,抛射角 300 ,如忽略空
气阻力,则从抛出到刚要接触地面的过程中 (1) 物体动量增量的大小为 (2) 物体动量增量的方向为 提示: p p2 p1 。 。
大学物理第二十章题解
20-2.如图所示,将一条无限长直导线在某处弯成半径为 R 的半圆形,已知导线中的 电流为 I ,求圆心处的磁感应强度 B .
解 根据毕-萨定律,两直线段导线的电流在 O 点产生的磁感应强度 B 0 ,半圆环形 导线的电流在 O 点产生的磁感应强度 B 1 0I .由叠加原理,圆心
2 2R O 处的磁感应强度
B 1 0I 1 0I 1 0I 0I 2 ,方向垂直纸面向里.
2 2 R 2 2 R 2 2R 4 R
*20-4.如图所示,电流 I 均匀地流过宽为 2a 的无限长平面导体薄板 . P 点到薄板的 垂足 O 点正好在板的中线上,设距离 PO x ,求证 P 点的磁感应强度 B 的大小为
B 0 I arctan a
2a
解 把薄板等分成无限多条宽为 dy 的细长条,
每根细长条的电流 dI I dy ,可视为线电流;无 2a
限长载流薄板可看成由无限多条无限长载流直导线构
成.
y
处的细长条在
P
x
点产生的磁感应强度为
强度为 dB ,二者叠加为沿 Oy 方向的 dB .所以 P 点的磁感应强度 B 沿 Oy 方向, B 的大
解 在1 4 圆周的圆弧 aAb 上,单位长度弧长的线圈匝数为
N 2N 2 R 4 R
在如图 处, d 角对应弧长 dl 内通过的电流
第二十章 稳恒电流的磁场
20-1.如图所示,将一条无限长载流直导线在某处折成直角, P 点在折线的延长线上, 到折线的距离为 a .(1)设导线所载电流为 I ,求 P 点的 B .(2)当 I 20A , a 0.05m ,求 B .
解
(1)根据毕-萨定律, AB 段直导线电流在 P 点产生的磁场 B 0 ; BC 段是
第二十章狭义相对论
一、选择题[ A ]1 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C)2)/(1c t c v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆注:飞船中的光速为c ,传播时间为∆t ,所以飞船的固有长度为c ·∆t[ B ]2 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A) (4/5) c . (B) (3/5) c .(C) (2/5) c . (D) (1/5) c .注:由于2201cv -=ττ,其中s5=τ,s40=τ,故cv53=[ C ]3 K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O 'x '轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是: (A) (2/3)c . (B) (1/3)c .(C) (2/3)1/2c . (D) (1/3)1/2c . 注:2201cv x x-=,0y y=⇒-=-==222201130tan 145tan cv cv x y x ycv 2132(=[ C ]4 设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小 为(以c 表示真空中的光速) (A)1-K c . (B)21K Kc -.(C) 12-KKc . (D))2(1++K K K c.注:⇒=202ckm mc⇒=-kcv 2211 12-=kkc v二.填空题1 在惯性系中,两个光子火箭(以光速c 运动的火箭)相向运动时,一个火箭对另一个火箭的相对运动速率为________c___________.注:由光速不变原理即知结论2 一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为cl au 221-=.3 (1) 在速度=v c23情况下粒子的动量等于非相对论动量的两倍.注:由题意知:cv vm cv v m 23210220=⇒=-(2) 在速度=v c23情况下粒子的动能等于它的静止能量.注:由题意知:cv cm mccm cm mcE k23220220202=⇒=⇒=-=4 已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是)1(20-nc m .注:⇒-=2201cv ττncv =-2211,)1()111(202220202-=--=-=n c m cv c m cm mcE k三.计算题1 在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:与运动方向垂直的对角线长为:cmd210=沿运动方向的对角线长为:cmcv d 26121022=-='则面积 26021cmd d S ='=2 两只飞船相向运动,它们相对地面的速率都是v .在A 船中有一根米尺,米尺顺着飞船的运动方向放置.问B 船中的观察者测得该米尺的长度是多少?解:设B 船为k 系,地面为k '系,A 船为研究对象,则v v =' vV = 则222121cv v Vcv v v v A +='++'=则 22222211vcv c cv lA +-=-⨯=3 半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:从地球上看:sct s t 8161044.1999.0103.4⨯=⨯==∆从飞船上看:scv t t 62201044.61⨯=-⨯∆=∆(或者:从飞船上看,半人马星座α星与地球间的距离为:221cv s l-⨯=则scv t cv vS vl t 6222201044.611⨯=-⨯∆=-==∆)4 一短跑选手,在地球上以10s 时间跑完100m ,在飞行速度为0.98c 的飞船中观察者观察,这选手跑了多少时间和多长距离? 解:取飞船为k 系,地面为k '系, 则cv V 98.0==飞船0由221cV t V x x-'+'=与2221c V x c V t t-'+'=知:221cV t V x x-'∆+'∆=∆,2221cV x cV t t-'∆+'∆=∆其中m x 100='∆,s t 10='∆ 则mx101048.1⨯=∆,st5.50=∆(注: 由于m/sv v 10=='选手,所以由飞船上看,选手的速度为sm v cV V v v/10938.2182⨯='++'=则由飞船上看,选手跑的距离为 mt v x 101048.1⨯=∆=∆)5 要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg) 解:202cm mcE k-=则由动能定理知 Jcm cv cv cm m E Ae k 1422212222121075.4)1111()(-⨯=---=-=∆=6已知μ子的静止能量为105.7MeV ,平均寿命为2.2⨯10-6s ,试求动能为150MeV 的μ子的速度V ,以及平均寿命τ。
江西理工大学大学物理(下)习题册及答案详解
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
大学物理实验报告思考题部分答案解析(周岚)
⼤学物理实验报告思考题部分答案解析(周岚)实验⼗三拉伸法测⾦属丝的扬⽒弹性摸量【预习题】1.如何根据⼏何光学的原理来调节望远镜、光杠杆和标尺之间的位置关系?如何调节望远镜?答:(1)根据光的反射定律分两步调节望远镜、光杠杆和标尺之间的位置关系。
第⼀步:调节来⾃标尺的⼊射光线和经光杠杆镜⾯的反射光线所构成的平⾯⼤致⽔平。
具体做法如下:①⽤⽬测法调节望远镜和光杠杆⼤致等⾼。
②⽤⽬测法调节望远镜下的⾼低调节螺钉,使望远镜⼤致⽔平;调节光杠杆镜⾯的仰俯使光杠杆镜⾯⼤致铅直;调节标尺的位置,使其⼤致铅直;调节望远镜上⽅的瞄准系统使望远镜的光轴垂直光杠杆镜⾯。
第⼆步:调节⼊射⾓(来⾃标尺的⼊射光线与光杠杆镜⾯法线间的夹⾓)和反射⾓(经光杠杆镜⾯反射进⼊望远镜的反射光与光杠杆镜⾯法线间的夹⾓)⼤致相等。
具体做法如下:沿望远镜筒⽅向观察光杠杆镜⾯,在镜⾯中若看到标尺的像和观察者的眼睛,则⼊射⾓与反射⾓⼤致相等。
如果看不到标尺的像和观察者的眼睛,可微调望远镜标尺组的左右位置,使来⾃标尺的⼊射光线经光杠杆镜⾯反射后,其反射光线能射⼊望远镜内。
(2)望远镜的调节:⾸先调节⽬镜看清⼗字叉丝,然后物镜对标尺的像(光杠杆⾯镜后⾯2D 处)调焦,直⾄在⽬镜中看到标尺清晰的像。
2.在砝码盘上加载时为什么采⽤正反向测量取平均值的办法?答:因为⾦属丝弹性形变有滞后效应,从⽽带来系统误差。
【思考题】1.光杠杆有什么优点?怎样提⾼光杠杆测量微⼩长度变化的灵敏度?答:(1)直观、简便、精度⾼。
(2)因为D x b L 2?=?,即bD L x 2=??,所以要提⾼光杠杆测量微⼩长度变化的灵敏度Lx ??,应尽可能减⼩光杠杆长度b (光杠杆后⽀点到两个前⽀点连线的垂直距离),或适当增⼤D (光杠杆⼩镜⼦到标尺的距离为D )。
2.如果实验中操作⽆误,得到的数据前⼀两个偏⼤,这可能是什么原因,如何避免?答:可能是因为⾦属丝有弯曲。
避免的⽅法是先加⼀两个发码将⾦属丝的弯曲拉直。
武汉理工大学大物练习册练习20答案
3、平板电容器,充电时,玻印廷矢量 S 的方向 ;放电时的方向 。 (坡印亭矢量 S 用于描述电磁场的能量通量 (J·m−2·s−1) ,S E H ,所以, 充电时指向中心,
而放电时远离中心。 ) 二、计算题 1、一平板空气电容器的两极板都是半径为 r 的圆形导体板,在充电时,板间电场强度的变 化率为
器中心轴上的点为心的一系列同心圆。由此判断,P 点磁场方向垂直于纸面向里,⊗ )
Ex 0 2、真空中一平面电磁波的电场方程为 Ez 0 ,则此平面电磁波沿 x E y E0 cos2 v(t ) u
方向传播。磁场强度沿 方向振动。
(根据 E 方程知电磁波沿着 x 轴传播。真空中,电磁波的 E 矢量、B 矢量及传播方向相互 垂直,电场沿 y 方向,则磁场沿着 z 方向)
3、一平行板电容器,极板是半径为 R 的两圆形金属板,极板间为空气,如图所示。此电容 器与交变电源相接。极板上带电量随时间变化的关系为 q q0 sin(t )( 为常量) ,忽略边 缘效应,求: (1)电容器极板间位移电流及位移电流密度。 (2)两极板间离中心轴线距离为 r(r<R)处的 b 点的磁场强度 H 的大小。 解:平板电容器内部为匀强场
dE 1.0 10 12 V / m s ,求: dt
dD dE 2 S 0 r 6.95 102 A dt dt dE D 2 (2)由 H dl t dS 得, 2 RH 0 dt R ,所以 I d jS 1 dE B 0 0 R =0.000000278T 2 dt
dE ,若略去边缘效应,求两极板间的位移电流。 dt
解:平板电容器内部为匀强场,则位移电流:
大学物理学第二版习题解答
大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2)平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4)质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5)r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v 有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt=及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及a = 你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1)最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2)s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B r.(2)当20A I =,0.05m a =,求B r .解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B r.解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB Rμ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B ρ.解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I I B R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B ρ的大小为xaa I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +r,y -处的细长条在P 点产生的磁感应强度为d B -r,二者叠加为沿Oy 方向的d B r .所以P 点的磁感应强度B ρ沿Oy 方向,B ρ的大小aB θ=⎰0a=⎰0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B ρ.解 在14圆周的圆弧ºab上,单位长度弧长的线圈匝数为 224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NII l R θππ== 此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r IR NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20-6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d S Φ=B S ⋅⎰⎰r r 0d 2b a I l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il b aμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰rr Ñ可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰r r Ñ 可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰r r Ñ可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰r r Ñ可得0422IrB aμπ=.20-8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,0y >区域B r 沿Ox 负方向,0y <区域B r沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰r rÑ外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22L B l B l rlJ μ⋅==⎰r rÑ内内 所以0B rJ μ=内.可表示为0B yJi μ=-r r内(d y d -<<).20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理 0d 2LB l rB NI πμ⋅==⎰r r Ñ所以02NIB rμπ=. 通过螺绕环截面的磁通量为1200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰r r20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B ρ.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-.电流分布可视为由电流密度为J r、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -r、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==-- 其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =r. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=r r r r,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20-11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v ρ与Bρ成o89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯速率为 726510(m v .===⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯oo半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯o o20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E r 和B r的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E r中的受力为eE -r ,方向竖直向上;在磁场B r 中的受力为ev B -⨯rr ,方向竖直向下;且满足eE evB =所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I ,沿z 轴方向加匀强磁场B ρ,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20-14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==. 求:(1)ABCDE 导线中,AB 、¼BCD 、DE 各段所受1I 产生的磁场的作用力的大小和方向,(2)长直导线在圆心O 处元段d l 上所受2I 的磁场力的大小和方向.解 (1)设直线电流1I 产生的磁感应强度为1B r.求AB 段受1I 的作用力时,令y ξ=-,则01212d d 2R a AB R I F I l B I k μξπξ+=⨯=⋅⎰⎰r r r r012ln 2I I R a k aμπ+=⋅rDE 段受到1I 的作用力为01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y aμμππ++=⨯=⋅-=-⋅⎰⎰r r r r r求¼BCD 段受1I 的作用力时,取电流元2d I l 如图,d d l R θ=.由于Oz 方向的分力会相互抵消(参见图),只需计算Oy 方向的分量,则¼21202cos d BCD F B I R j πθθ=-⋅⋅⎰r r 201202cos d 2cos I I R j R πμθθπθ=-⋅⎰r 0122I I j μ=-r(2)半圆形导线电流2I 在圆心O 点处产生的磁场0224I B i Rμ=r r,所以0121212d d d d 4I I l F I l B I B l j j Rμ=⨯=⋅=r r r r r20-16.有一匝数为10匝,长为0.25m ,宽为0.10m 的矩形线圈,放在31.010T B -=⨯的匀强磁场中,通以15A 的电流,求它所受的最大力矩.解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=⨯⨯⨯⨯⨯337510(N m).-=⨯⋅(第二十章题解结束)。
物理二十章知识点总结
物理二十章知识点总结1. 光的反射反射是光线从一个介质到另一个介质的过程。
当光线从一个介质中穿过到另一个介质时,它会改变方向,这个改变方向的现象就叫做反射。
反射有两种:镜面反射和漫射反射。
镜面反射是指入射光线和反射光线的夹角相等,反射光线在同一平面上;漫射反射是指入射光线照在粗糙表面上,反射光线在不同方向上散射。
2. 光的折射折射是光线从一种介质传播到另一种介质时,由于介质的密度不同,光线的速度也不同,从而产生的偏折现象。
对于介质的折射,有两种定律:1. 斯涅尔定律—入射角、折射角和反射光线都在同一平面内;2. 折射定律—入射角、折射角和折射率之间的关系,也就是折射率的定义。
3. 光的波动光是一种电磁波,它是一种能传播能量的波动。
光的波动特点包括干涉、衍射、偏振、光面和光速的测量方法。
光的波动性对光线的传播、散射、消光等现象都有很好的解释。
要了解光的波动特性,需要掌握光的波长、频率、波速等基本概念。
4. 光的干涉光的干涉是指两束光的波相遇时形成明暗条纹的现象。
干涉分为衬比干涉和自然干涉。
利用干涉可测量光的波长和介质的折射率等量。
干涉现象在工业、科学、生活中有广泛的应用。
5. 光的衍射光的衍射是指光线通过一道狭缝或者物体的边缘时,波的传播方向发生改变的现象。
衍射现象对解释光的波动性和像差的产生有重要作用。
6. 偏振光偏振是指振动方向固定的光波。
偏振光是一种光波,他的振动方向是固定的。
通常可以通过偏振片来产生偏振光,偏振现象对解释光的波动特性有一定的作用。
7. 光面光面是将光线聚焦在一点上,形成的一小部分亮光。
光面通过透镜、反射镜等光学仪器产生,它对光的传播、成像有很好的应用。
8. 光速光速是光在真空中传播的速度,是一个恒定不变的量。
光速的测量方法有多种,例如菲涅尔法、复制法等。
光速的测量对科学研究和技术发展都有很大的意义。
了解以上知识点不仅可以在学业上取得好成绩,也可以在生活中更好的应用物理原理,改善我们的生活品质。
大学物理第二十章题解
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a 。
(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B .解 (1)根据毕—萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长"直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里.(2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B .解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IB R μ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B.解 (a )根据毕—萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c)根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I IB R R R μμμππ=++()024I Rμππ=+ ,方向垂直纸面向里.*20—4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B的大小为xa a I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B的大小0220d 2cos 2a I B x y μθπ=+⎰0222202d 22a I y x a x y x yμπ=⋅⋅++⎰ 0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I a a x μπ=*20—5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B.解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NI I l R θππ==此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r I R NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20—6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d SΦ=B S ⋅⎰⎰0d 2baI l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il baμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布.解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰可得10B =.在c r b >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰可得2202222I c r B r c bμπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰可得032IB rμπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰可得0422IrB aμπ=.20—8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20—4,可知,0y >区域B 沿Ox 负方向,0y <区域B 沿Ox 正方向.选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场.在r d <的板内区域,根据安培环路定理,有0d 22LB l B l rlJ μ⋅==⎰内内所以0B rJ μ=内.可表示为0B yJi μ=-内(d y d -<<).20—9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B 沿圆周切向,在到轴线距离r 相同处B 的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理0d 2LB l rB NI πμ⋅==⎰所以02NIB rμπ=. 通过螺绕环截面的磁通量为12200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-. 电流分布可视为由电流密度为J 、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =. 由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20—11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v与B成o 89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯ 速率为 31973122210161026510(m s)91110k E .v .m .--⨯⨯⨯⨯===⨯⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E 和B 的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择?解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E 中的受力为eE -,方向竖直向上;在磁场B 中的受力为ev B -⨯,方向竖直向下;且满足eE evB = 所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I,沿z 轴方向加匀强磁场B,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电?(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型.(2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20—14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ==,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20—15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==。
大学物理第二册习题答案详解
(2)电荷增加,场强变大,电势差不变,电容变大,电容器储能增加。
9-4电容分别为C1,C2的两个电容器,将它们并联后用电压U充电与将它们串联后用电压2U充电的两种情况下,哪一种电容器组合储存的电量多?哪一种储存的电能大?
(1)A板 上电荷守恒,且为等势体
(1)
(2)
=-2.0×10-7C
QB=-1.0×10-7C
=2.26×103V
(2)当A,B两板间充满相对介电常量εr时
(1)
(2)
=0.86×10-7C
QB=-2.14×10-7C
=9.7×102V
=-2.0×10-7C
QB=-1.0×10-7C
=2.26×103V
题8-19图
[ ]
(2) 电荷在 点产生电势,以
同理 产生
半圆环产生
∴
8-20两半径分别为R1和R2(R2>R1),带等值导号电荷的无限长同轴圆柱面,电荷线密度为±λ,求两圆柱面间的电势差.
解:在两圆柱面间的电场强度,根据高斯定理
得:
两导体的电势差,由定义
得:
第九章
9-1若一带电导体表面上某点电荷面密度为σ,则该点外侧附近场强为σ/ε0,如果将另一带电体移近,该点场强是否改变?公式Ε=σ/ε0是否仍成立?
∴2+3= 0 (1)
2= -3
解:题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为 ,另一板受它的作用力 ,这是两板间相互作用的电场力.
8-3一个点电荷q放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E通量是否改变?高斯面上各点的场强E是否改变?
大学物理答案(渊小春)
第1章质点力学1-1题已知矢量A=3i-4j,B=-3i-2j,C=-3j,D=2i+5j,试用几何方法(多边形法则)和解析方法求A B C D+++解:(1)几何法如1-1题图所示24OD i j=-222(-4) 4.47OD=+=OD与x轴方向夹角设为θ则4tan22θ-==-arctan(2)63.43θ=-=-︒(2)解析法A B C D+++=(3i -4j )+(-3i -2j)+(-3j)+(2i+5j)=(3-3+2)i+(-4-2-3+5)j=2i-4j1-2题一飞机由某地起飞,向东飞行50 km后,又向东偏北60°的方向飞行40 km,求此时飞机的位置。
解:此题是求位置矢量,选取地球为参照系,以起点为坐标原点,建立如1-2题图所示的坐标系,由题意知:50A i =40cos 6040sin 60B i j =︒+︒=20203i j +解得:(5020)203r A B i i =+=++=70203i j +22(70)(203)r i j =+=8.1 kmr 与正东方向(即i )方向夹角设为θ 则203tan 0.4970θ== arctan 0.4926.1θ==︒1-3题 已知A =3i +5j ,B =5i -3j ,求A B ⋅解:由数学上的矢量标积知,()()x y x y x x y y A B A i A j B i B j A B A B ⋅=+⋅+=+, 则(35)(53)15150A B i j i j ⋅=+⋅-=-=1-4题 质点沿y 轴作直线运动,其位置随时间的变化规律为y =5t 2,试求: (1)2.000~2.100 s ,2.000~2.001 s 两个时间间隔内的平均速度; (2)t =2.000 s 时的瞬时速度。
解:(1)由题意知,运动方程为 y =5t 2,分别将t 1 = 2.000 s 与t 2 = 2.100 s 带入运动方程得: y 1 = 20.000000 m y 2 = 22.050000 m 则平均速度的公式得 2.050020.50.100y v t ∆===∆-1m s ⋅ 同理,得:1y '=20.00 m 2y '=20.02 m 0.0220.0000.001y v t '∆==='∆-1m s ⋅ (2)由y = 5t 2求得瞬时速度为10dy v t dt == m将t = 2.000 s 带入上式得220.000t s v ==-1m s ⋅1-5题 矿井里的升降机,在井底从静止开始匀加速上升,经过3 s ,速度达到3-1m s ⋅,然后以这个速度匀速上升6 s ,最后减速上升,经过3 s 到达井口,刚好停止,求: (1)矿井深度(2)给出x-t 图和v-t 图解:(1)矿井深度可用图解法求得其v -t 图如1-5题图(a)所示 矿井深度为图中梯形面积即1(612)32x =+⨯=2 m(2)升降机运动方程为22211(03)223(39)1(912)2at A t x vt t t vt at t ⎧=<≤⎪⎪==≤≤⎨⎪⎪-≤≤⎩ 其x-t 图如1-5题图(b)所示1-6题 一升降机以加速度1.22 2m s -⋅上升,当上升速度为2.44 -1m s ⋅时,有一螺丝自升降机的天花板上松落,天花板与升降机的底板相距2.4 m ,计算: (1)螺丝从天花板落到底板所需要的时间;(2)螺丝相对于升降机外固定柱子下降的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B r .(2)当20A I =,0.05m a =,求B r. 解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224II B a aμμππ==,方向垂直纸面向里.根据叠加原理,P 点的磁感应强度001224II B a aμμππ==方向垂直纸面向里. (2)当20A I =,0.05m a =时75141020410(T)22005B .ππ--⨯⨯=⨯=⨯⨯20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B r.解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122IBRμ=.由叠加原理,圆心O 处的磁感应强度 04I B Rμ=方向垂直纸面向里.20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求各O 点的磁感应强度B ρ.解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加0000111(1)22224224I I I I B R R R R μμμμππππ=++=+ ,方向垂直纸面向外.(b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加000133(1)224242I I I B R R R μμμπππ=+=+ ,方向垂直纸面向里.(c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加000111222222I I IB R R R μμμππ=++()024I R μππ=+ ,方向垂直纸面向里.*20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B ρ的大小为xa a I B arctan 20πμ=解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2II y a=,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成.y 处的细长条在P 点产生的磁感应强度为d B +r,y -处的细长条在P 点产生的磁感应强度为d B -r,二者叠加为沿Oy 方向的d B r .所以P 点的磁感应强度B ρ沿Oy 方向,B ρ的大小02202cos 2a B x y θπ=+⎰02222022a a x y x yπ=⋅⋅++⎰ 0220d 2a Ix y a x y μπ=+⎰001arctan 2aIx y a x x μπ=0arctan 2I aa x μπ=*20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B ρ.解 在14圆周的圆弧ºab上,单位长度弧长的线圈匝数为 224N NR Rππ=在如图θ处,d θ角对应弧长d l 内通过的电流22d d d NI NI I l R θππ==此电流可视为半径为r 的圆环形电流圈,参见教材p80,此圆环形电流圈在O 处产生的222200033d sin 2d d sin d 22r I R NI NI B R R Rμμθμθθθππ=== 所以总磁感应强度 2002200d sin d 4NI NI B B R Rππμμθθπ===⎰⎰20-6.如图所示,载流长直导线的电流为I ,试求通过与直导线共面的矩形面积CDEF 的磁通量.解 用平行于长直导线的直线把矩形CDEF 分成无限多个无限小的面元,距长直导线r 处的面元的面积为d d S l r =,设矩形CDEF 的方向为垂直纸面向里,则d S Φ=B S ⋅⎰⎰r r 0d 2b a I l r r μπ=⎰b 0d 2a Il r r μπ=⎰0ln 2Il baμπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为a ,载正向电流I ,圆筒形外导线的内外半径分别为b 和c ,载反向电流I ,两导线内电流都均匀分布,求磁感应强度的分布. 解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;B r 沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.沿磁感应线建立安培环路L (轴线为圆心、半径为r 的圆),沿磁感应线方向积分.在r c >区域,由安培环路定理110d 2()0LB l rB I I πμ⋅==-=⎰r r Ñ可得10B =.在c rb >>区域,由安培环路定理222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--⋅==-=--⎰r r Ñ可得2202222I c r B r c b μπ-=-.在b r a >>区域,由安培环路定理 330d 2LB l rB I πμ⋅==⎰r r Ñ可得032IB r μπ=.在a r >区域,由安培环路定理 22440022d 2L r r B l rB I I a a ππμμπ⋅===⎰r r Ñ可得0422IrB aμπ=.20-8.如图所示,厚度为2d 的无限大导体平板,电流密度J 沿z 方向均匀流过导体板,求空间磁感应强度的分布.解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,0y >区域B r 沿Ox 负方向,0y <区域B r沿Ox 正方向. 选择如图矩形回路abcda ,ab 与cd 与板面平行、沿Ox 方向,长度为l ,与Oxz 面距离为r .在r d >的板外区域,根据安培环路定理,有0d 22LB l B l dlJ μ⋅==⎰r rÑ外外所以0B dJ μ=外.B 外与到板面的距离无关,说明板外为匀强磁场. 在rd <的板内区域,根据安培环路定理,有0d 22L B l B l rlJ μ⋅==⎰r rÑ内内所以0B rJ μ=内.可表示为0B yJi μ=-r r内(d y d -<<).20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为N ,导线内电流强度为I .(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为012ln 2NIh D ΦD μπ=. 解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同心圆;B r沿圆周切向,在到轴线距离r 相同处B r的大小相等,()B B r =.在螺绕环截面内,沿磁感应线作安培环路(以r 为半径的圆,2122D Dr <<),由安培环路定理0d 2LB l rB NI πμ⋅==⎰rr Ñ所以02NIB rμπ=.通过螺绕环截面的磁通量为12200122d d ln 22D D NI NIh D B S h r r D μμΦππ=⋅==⎰⎰r r20-10.如图所示,半径为5m 的无限长金属圆柱内部挖出一半径为 1.5m r =的无限长圆柱形空腔.两圆柱的轴线平行,轴间距离 2.5m a =.今在此空心导体上通以5A 的电流,电流沿截面均匀分布.求此导体空心部分轴线上任一点的B ρ.解 设空心导体上电流强度为I ,则电流密度22()IJ R r π=-.电流分布可视为由电流密度为J r、半径为R 的实心长圆柱,和填充满挖空区域的、通有反向电流、电流密度为J -r、半径为r 的圆柱的叠加.可用安培环路定理求出半径为R 的实心长圆柱电流在O'处的磁感应强度为2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及OO'垂直,与电流I 成右手螺旋关系.由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为20B =r.由叠加原理可得在空心圆柱轴线上的磁感应强度为121B B B B =+=r r r r,770122224105251110(T)2()2(515)Ia.B .R r .μπππ--⨯⨯⨯===⨯--20-11.把一个2.0keV 的正电子射入磁感应强度为0.10T 的均匀磁场内,其速度v ρ与B ρ成o89角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期T 、螺距h 和半径r .解 周期 311019223149111035710(s)1610010m ..T .qB ..π---⨯⨯⨯===⨯⨯⨯ 速率为 31973122210161026510(m s)91110k E .v .m .--⨯⨯⨯⨯===⨯⨯ 螺距为 7104cos 8926510cos 893571016510(m)h v T ...--==⨯⨯⨯⨯=⨯o o半径为 317319sin899111026510sin8915110(m)161001mv ..r .qB ..---⨯⨯⨯⨯===⨯⨯⨯o o20-12.速率选择器如图所示,在粒子穿过的区域V 有相互垂直的匀强电场和匀强磁场,两侧有等高的窄缝S .现有一束具有不同速率的电子束A 从左侧缝穿入,以垂直于E r 和B r的方向进入区域V .若300V U =,10cm d =,4310T B -=⨯.试计算能从速率选择器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场E r中的受力为eE -r ,方向竖直向上;在磁场B r 中的受力为ev B -⨯rr ,方向竖直向下;且满足 eE evB =所以 E U v B dB ==430001310.-=⨯⨯710(m s )= 由于Ev B=与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不影响选择器对它们速率的选择.20-13.一块半导体样品的体积为c b a ⨯⨯如图所示,0.10cm a =,0.35cm b =,1.0cm c =cm .沿x 轴方向有电流I ,沿z 轴方向加匀强磁场B ρ,已测得 1.0mA I =,1310T B -=⨯,样品两侧的电势差 6.55mV AA U '=.(1)问这半导体是p 型还是n 型,即该半导体的载流子是带正电还是带负电(2)求载流子浓度n .解 (1)由电流方向、磁场方向和A 侧电势高于A'侧电势可知,此半导体的载流子带负电,属于n 型. (2)AA'IBn U qa=3319310100365510161010....----⨯⨯=⨯⨯⨯⨯20328610m .-=⨯20-14.如图所示,一条长直导线载有电流130A I =,矩形线圈载有电流220A I =,试计算作用在线圈上的合力.已知:0.01m a =,0.08m b =,0.12m l =.解 线圈左侧边导线受力0111222I F B I l I l aμπ== ,方向向左. 线圈右侧边导线受力()0122222I F B I l I l a b μπ==+ ,方向向右.线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lba ab μπ=+ 741030200120082001(008001).....ππ-⨯⨯⨯⨯⨯=⨯⨯+312810(N).-=⨯方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流1I ,半径为R 的半圆形导线ABCDE 通有电流2I .长直导线过圆心O 且与半圆形导线共面(但不相交),a DE AB ==. 求:(1)ABCDE 导线中,AB 、¼BCD 、DE 各段所受1I 产生的磁场的作用力的大小和方向,(2)长直导线在圆心O 处元段d l 上所受2I 的磁场力的大小和方向.解 (1)设直线电流1I 产生的磁感应强度为1B r. 求AB 段受1I 的作用力时,令y ξ=-,则01212d d 2R a AB R I F I l B I k μξπξ+=⨯=⋅⎰⎰r r r r012ln 2I I R a k aμπ+=⋅rDE 段受到1I 的作用力为01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y aμμππ++=⨯=⋅-=-⋅⎰⎰r r r r r求¼BCD段受1I 的作用力时,取电流元2d I l 如图,d d l R θ=.由于Oz 方向的分力会相互抵消(参见图),只需计算Oy 方向的分量,则¼21202cos d BCD F B I R j πθθ=-⋅⋅⎰r r 201202cos d 2cos I I R j R πμθθπθ=-⋅⎰r 0122I I j μ=-r(2)半圆形导线电流2I 在圆心O 点处产生的磁场0224I B i Rμ=r r,所以0121212d d d d 4I I l F I l B I B l j j Rμ=⨯=⋅=r r r r r20-16.有一匝数为10匝,长为0.25m ,宽为0.10m 的矩形线圈,放在31.010T B -=⨯的匀强磁场中,通以15A 的电流,求它所受的最大力矩. 解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=⨯⨯⨯⨯⨯337510(N m).-=⨯⋅(第二十章题解结束)。