(8)偏振现象的观察与分析

合集下载

偏振现象的观察与分析

偏振现象的观察与分析

特角亦称全偏振角.对于空气的折
射率n1=1.00,玻璃的折射率
n2=1.50, 布儒斯特角约为 =56.3.
1.平面偏振光的产生与检验
(2)利用晶体的双折射起偏
当自然光入射到某些各向异性晶体(如冰洲石、石英) 时,在晶体内折射后分解为两束平面偏振光,并以不同速度 在晶体内传播,这种现象称为双折射.在方解石、石英等晶 体内,都有一个特殊方向,光沿这个方向传播时,不发生双 折射,这个方向称为晶体的光轴,通过光轴并与晶体表面正 交的平面称为主截面.若入射面与主截面重合则双折射产 生的两束平面偏振光的振动面互相垂直,其中一束光的振 动垂直于晶体主截面,称为寻常光(简称O光).另一束光 的振动平行于晶体的主截面,称为非常光(简称e光),在 晶体内只有沿光轴方向传播时O光和e光的速度相等,而沿 其它方向传播时它们的速度不相等.
2
no
ne
l
(3)
波片与圆偏振光和椭圆偏振光
O光与e光为两个同频率、有固定相位差,互相垂直的振 动,则两光的波动方程为
x Ae sin t
(4)
y Ao sin( t )
(5)
式中Ao=Asin,Ae=Acos .从(4)、(5)二式中消去t,得
x2 y2 2xy cos sin 2
光强I始终不变,则此入射光为自然光.而圆偏振光经过四分之一
波片后,成为一线偏振光.在旋转检偏器时,可以观察到(1)中所振光与部分偏振光的鉴别
在检偏器的前加一个1/4波片,然后旋转偏振器进行观察,此 时1/4波片的光轴应与只用检偏器观察时透射光为极大或极 小的方向重合,此时若有一位置视场全暗,则入射光为椭圆 偏振光,否则为部分偏振光.
1.平面偏振光的产生与检验
(1)利用反射(或透射)起偏

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析引言:光的偏振现象有法国工程师马吕斯首先发现。

对光偏振现象的研究清楚地显示了光的横波性,加深了人们对光传播规律的认识。

近年来光的偏振特性在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光、光电子器件中都有广泛应用。

本实验利用偏振片和1/4波片观察光的偏振现象,并分析和研究各种偏振光。

从而了解1/4波片和1/2波片的作用及应用,加深对光偏振性质的认识。

实验原理1、 偏振光的种类。

光可按光适量的不同振动状态分为五类:(1)线偏振光 (2)自然光 (3)部分偏振光(4)园偏振光 (5)椭圆偏振光使自然光变成偏振光的装置称为起偏器,用来检验偏振光的装置称为检偏器。

2、 线偏振光的产生。

(1)反射和折射产生偏振自然光以 i B =arc tan n 的入射角从空气入射至折射率为n 的介质表面上时,反射光为线偏振光。

以 i B 入射到一叠平行玻璃堆上的自然光,透射出来后也为线偏振光。

(2)偏振片。

利用某些晶体的二向色性可使通过他的自然光变成线偏振光。

(3)双折射产生偏振。

自然光入射到双折射晶体后,出射的o 光和e 光都为线偏振光。

3、 波晶片4、 线偏振光通过各种波片后偏振态的改变。

在光波的波面中取一直角坐标系,将电矢量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为∆φ,即有E X =A x cos ωt (2)E y =A y cos(ωt +∆φ) (3)由(2)、(3)两式得,对于一般情况,两垂直振动的合成为: e 轴O 轴 θ 光轴图 1E x2 A x2+ E y2A y2−2 E x2 E y2A x2A y2cos∆φ=sin2∆φ(4)注意对于线偏振光通过波片的情况∆φ取决于o光和e光入射时的相位差和由波晶片引起的相位差δ之和;而 E X为线偏振光振幅E在o轴的分量, E y为e轴的分量。

从上面垂直振动合成的一般情况出发可以得出以下结论:(1)线偏振光的振动方向与波片的光轴夹角为θ或π/2,或者通过1/2波片仍为线偏振光。

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析偏振光的观察可以通过一些特定的实验装置来实现。

例如,可以使用偏振片和分析器来检测光的偏振状态。

偏振片是一种光学元件,它能够选择性地通过振动方向与特定方向相同的光,而将其他方向的光消除或减弱。

这样,当光通过偏振片时,只有特定方向的光能通过,其他方向的光被过滤掉了。

而分析器是另一种偏振片,在实验中用于检测偏振光。

当通过偏振片的光到达分析器时,如果它们的振动方向相同,那么光将能够通过分析器,我们可以观察到透过分析器的光强度。

如果它们的振动方向不同,那么光将被分析器阻止通过,我们将观察不到通过分析器的光。

通过使用偏振片和分析器的实验装置,可以进行一系列的观察和分析。

首先,我们可以通过调整偏振片和分析器之间的相对角度来观察最大和最小光强的变化。

当振动方向相同时,光强度最大,当振动方向垂直时,光强度最小。

通过这一观察结果,我们可以得出结论,光强度与振动方向之间存在关联。

其次,我们可以观察光的偏振状态的改变。

例如,可以用线性偏振光源辐射出一个固定方向的偏振光,然后通过一系列的偏振片和分析器来调整光的偏振状态。

通过观察光在不同偏振状态下的传播特性,我们可以了解光的偏振性质以及不同偏振状态下光的行为差异。

除了观察外,我们还可以进一步分析偏振光的性质。

例如,通过使用偏振片和分析器,我们可以测量通过透过分析器的光强度,并进一步计算出偏振光的偏振度。

偏振度是一种度量光偏振状态的物理量,它可以用来描述光的偏振程度。

对于完全偏振的光来说,其偏振度为1,而对于完全偏振的光来说,其偏振度为0。

此外,偏振光的观察和分析还可以应用于实际生活中的一些领域。

例如,在电子显示技术中,液晶显示器使用偏振器和光调制器来控制光的偏振状态,从而实现图像的显示和切换。

在光通信中,偏振光也被广泛应用于光纤传输和光信号处理中,以提高传输速率和信号质量。

总之,偏振光现象的观察和分析可以帮助我们更深入地了解光的性质和行为。

通过观察光的光强度变化以及偏振状态的改变,我们可以探索光的偏振性质和对其进行分析。

偏振现象的观测与研究

偏振现象的观测与研究

偏振现象的观测与研究偏振现象是光波传播过程中的一个重要特性,它是指光波中电场方向的定向性和振动方向的确定性。

偏振现象的观测与研究对于理解光的本质、光的相互作用以及光在各种介质中的传播规律具有重要意义。

下面将从近代光学的发展、偏振现象的观测方法、偏振现象的研究内容三个方面对偏振现象的观测与研究进行详细讨论。

近代光学的发展对偏振现象的观测与研究提供了重要的基础。

19世纪末20世纪初,人们对光波本质的研究取得了重大突破,提出了电磁理论和光的波动性相关的理论。

光的波动性理论解释了光的干涉、衍射等现象,也为偏振现象的观测与研究提供了物理基础。

马克斯韦尔提出的电磁理论揭示了光波的电磁性质,提供了解释偏振现象的理论依据。

偏振现象的观测方法主要包括偏振镜、偏光片、双折射现象的观测以及干涉现象的观测等。

偏振镜是最基本的偏振现象观测仪器,它通过在光波传播过程中选择性地吸收或透射电场振动方向来实现对光的偏振状态的观测。

偏振板也是一个常用的偏振现象观测工具,它具有选择性吸收或透射特定方向光波的功能。

双折射现象是指光在非各向同性晶体中传播时发生的折射率不同的现象,它是偏振现象的重要表现形式之一、通过观察双折射现象,可以直接观测到光波的偏振性质。

干涉现象是指两束或多束相干光波叠加后产生的干涉条纹。

通过观测干涉现象,可以推断出光的偏振状态。

偏振现象的研究内容主要包括偏振光的性质、光的偏振变化以及光的偏振传播等方面。

偏振光的性质研究主要包括偏振光的振动方向、偏振光的强度、偏振光的偏振态等。

偏振光的振动方向是指光的电场方向,通常使用偏振片或偏光镜等偏振现象观测工具来确定。

偏振光的强度是指光的能量或光强在偏振方向上的分布情况。

偏振光的偏振态是指光在空间中的偏振分布状态,可以根据偏振分布函数来描述。

光的偏振变化研究主要包括光的偏振转换、偏振的旋转等。

光的偏振转换是指光在传播过程中由一个偏振状态转变为另一个偏振状态。

例如,当光波从空气垂直射向水平方向的介质时会发生偏振转换。

偏振现象的观察与分析

偏振现象的观察与分析

偏振现象的观察与分析➢引言1809年, 法国工程师马吕斯在实验中发现了光的偏振现象。

对于光的偏振现象研究, 使人们对光的传播(反射、折射、吸收和散射等)的规律有了新的认识。

特别是近年来利用光的偏振性所开发出来的各种偏振光元件、偏振光仪器和偏振光技术在现代科学技术中发挥了极其重要的作用, 在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光和光电子学器件等应用中, 都大量使用偏振技术。

本实验通过一系列的观察与测量, 要求学生学习产生和鉴别各种偏振光并对其进行观察、分析和研究的方法, 从而了解和掌握偏振片、1/4波片和1/2波片的作用和应用, 加深对光的偏振的性质的认识。

➢实验原理1.偏振光的种类1)光是电磁波, 它的电矢量E和磁矢量H相互垂直, 且都垂直于光的传播方向。

通常用电矢量代表光矢量, 并将光矢量和光的传播方向所构成的平面称为光的振动面。

按光矢量的不同振动状态, 可以把光分为五种偏振态:2)自然光: 在与光传播方向垂直的平面内, 包含一切可能方向的横振动, 即光波的电矢量在任一方向上具有相同的振幅。

普通光源发光的是自然光。

3)线偏振光: 在光的传播过程中, 只包含一种振动, 其振动方向始终保持在同一平面内, 这种光称为线偏振光(或平面偏振光)。

部分偏振光: 光波包含一切可能方向的横振动, 但不同方向上的振幅不等, 在两个互相垂直的方向上振幅具有最大值和最小值, 这种光称为部分偏振光。

自然光和部分偏振光实际上是由许多振动方向不同的线偏振光组成。

2.椭圆偏振光: 在光的传播过程中, 空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹, 这种光称为椭圆偏振光。

3.圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光, 是椭圆偏振光的特殊情形。

4.能使自然光变成偏振光的装置或器件, 称为起偏器;用来检验偏振光的装置或器件,称为检偏器。

5.线偏振光的产生1)反射和折射产生的偏振2)根据布儒斯特定律, 当自然光以ib=arctan n的入射角从空气或真空入射至折射率为n的介质表面上时, 其反射光为完全线偏振光, 振动面垂直于入射面, 而透射光为部分偏振光, ib称为布儒斯特角。

实验十一-偏振现象的观察与分析

实验十一-偏振现象的观察与分析

实验十一偏振现象的观察及分析光波是电磁波,其电矢量的振动方向垂直于传播方向,是横波.由于普通光源各原子分子发光的随机和无序性,光波电矢量的分布(方向和大小)对传播方向来说是对称的,反应不出横波特点,这种光称为自然光.如果限制了某振动方向的光而使光线的电矢量分布对其传播方向不再对称时,这种光称为偏振光.对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播(反射、折射、吸收和散射)规律有了更透彻的认识,本实验将对光偏振的基本性质进行观察、分析和研究.1. 观察光的偏振现象,掌握产生和检验偏振光的原理和方法,学会确定偏振片的透振方向,验证马吕斯定律;2.用反射起偏法测量平面玻璃的布儒斯特角,求得玻璃的折射率;3.了解λ/4波片、λ/2波片的工作原理和作用(任选其中部分内容);光具座,He—Ne激光器,光点检流计,光电转换装置,GPS-Ⅱ型偏振光实验仪(包括偏振片×2,λ/4波片×2,λ/2波片×2,背面涂黑的玻璃片及刻度支架,小孔光阑,白屏).图1 实验仪器(重拍)偏振片及刻度旋转装置:由直径为2cm的偏振片固定在转盘上制成,转盘上指针的位置不一定是偏振片的透振方向.波片及刻度旋转装置:由直径为2cm 的波片固定在转盘上制成,转盘上指针的位置不一定是波片的快轴或慢轴的位置.从自然光获得偏振光的办法有3种,即利用二向色性的材料制作的偏振片;利用晶体的双折射性质做成的偏振棱镜;利用光学各向同性的两介质分界面上的反射和折射.本实验中所用的偏振片是利用二向色性的材料制作的.一、起偏、检偏及马吕斯定律将自然光变成偏振光的过程称为起偏,检查偏振光的装置称为检偏.按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为:20cos I I θ= (12-1) 式中I 0为入射线偏光的光强,θ为入射光偏振方向及检偏器透振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度I 将发生周期性变化.当θ=00时,透射光强度最大;当θ=090时,透射光强度最小(消光状态);当00<θ<090时,透射光强度介于最大值和最小之间.因此,根据透射光强度变化的情况,可以区别光的不同偏振状态.实验中让入射光共轴依次通过两个偏振片,旋转检偏器,读出不同θ角下出射光的强度,验证马吕斯定律.二、布儒斯特定律和反射光的偏振当自然光在空气中以某角度入射至折射率为n 的透明介质表面时,若反射线及折射线垂直,则其反射光为完全的线偏振光,振动方向垂直于入射面;而透射光为部分偏振光.此规律称为布儒斯特定律,入射角称为布儒斯特角,如图11-2所示.arctgn i b = (12-2)实验中可通过用振动方向垂直于入射面的线偏光入射,再用检偏器检查反射光是否消光来确定布儒斯特角,求出玻璃材料的折射率n.图11-2 布儒斯特定律示意图三、λ/4波片及λ/2波片波片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴.当一束单色平行自然光正入射到波片上时,光在晶体内部便分解为o 光及e 光.o 光电矢量垂直于光轴;e 光电矢量平行于光轴.而o 光和e 光的传播方向不变,仍都及表面垂直.但o 光在晶体内的速度为0v ,e 光的为e v ,即相应的折射率0n 、e n 不同.设晶片的厚度为l ,则两束光通过晶体后就有位相差()r n n e o -=∆λπϕ2 (12-3) ()l n n e -=0λπσ (12-4) 式中λ为光波在真空中的波长.πσk 2=的晶片,称为全波片;ππσ±=k 2的称为半波片(λ/2波片);22ππσ±=k 为λ/4片,上面的k 都是任意整数.不论全波片,半波片或λ/4片都是对一定波长而言.在直角坐标系下,以e光振动方向为横轴,o光振动方向为纵轴,则沿任意方向振动的平行光,正入射到波片的表面后,其振动便按此坐标系分解为e分量和o分量.透过晶片,二者间产生一附加位相差σ,离开晶片时合成光波的偏振性质,决定于σ及入射光的性质.1.偏振态不变的情形:(1)自然光通过任何波片,仍为自然光;(2)若入射光为线偏振光,其电矢量E平行e轴(或o轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光.2.λ/2波片及偏振光(1)若入射光为线偏振光,且振动方向及晶片光轴成θ角,则经λ/2玻片出射的光仍为线偏振光,但及光轴成负θ角.即线偏振光经λ/2片电矢量振动方向转过了2θ角.(2)若入射光为椭圆偏振光,则经λ/2玻片后,既改变椭圆长(短)轴的取向,也改变椭圆的旋转方向;若入射光为圆偏振光,出射的只是改变了旋转方向的圆偏振光.3.λ/4波片及偏振光(1)若入射光为线偏振光,当θ角为450时,经λ/4波片后的出射光为圆偏振光,其余情况下为椭圆偏振光;(2)若入射光为圆偏振光,则出射光为线偏振光;(3)若入射光为椭圆偏振光,则出射光一般仍为椭圆偏振光,(详见利萨如图11-3).图11-3 同频率、振动方向垂直的两振动合成的利萨如图1.定偏振片光轴:把两个偏振片插入光具座,接入光电转换装置及光点检流计,调至共轴.旋转第二个偏振片,使光屏显示消光,此即表示起偏器的透振轴及检偏器的透振轴相互垂直.再从 =00开始到900每隔100读一个光电流值,用坐标纸作图验证(12-1)式马吕斯定律.2.测量玻璃板的布儒斯特角,求得玻璃的折射率:在上述1的基础上,撤掉检偏器,将装有底座的待测玻璃片插入光具座,共轴调节后,使玻璃板的法线方向及入射光线重合,记录指针的位置.旋转玻璃片所在的平面,用白板跟踪接收反射光.当入射角在某个特定角附近,仔细旋转起偏器,观察接收屏上光强变化,当光强最小时固定起偏器,再微旋玻璃片的方位,找到光强最弱位置;重复上述调整至消光,此时读出光线对玻璃片的入射角即为玻璃板的布儒斯特角;测量5次,根据(12-2)式计算玻璃的折射率.且及标称值作比较,计算标准偏差.3.考察平面偏振光通过λ/2、λ/4波片时的现象:(选做)(1)在两块偏振片之间插入λ/2波片,旋转检偏器一周,观察消光的次数并解释这现象.(2)将λ/2波片转任意角度,这时消光现象被破坏.把检偏器转动一周,观察发生的现象并作出解释.(3)仍使起偏器和检偏器处于正交(即处于消光现象时),插入λ/2波片,使消光,再将转150,破坏其消光.转动检偏器至消光位置,并记录检偏器所转动的角度.(4)继续将λ/2波片转150(即总转动角为30度),记录检偏器达到消光所转总角度.依次使λ/2波片总转角为450,600,750,900,分别记录检偏器消光时所转过的角度.(5)使起偏器和检偏器正交,中间插入λ/4波片,转动λ/4波片使消光.再将λ/4波片转动150,300,450,600,读出相应的光电流,并分析这时从λ/4波片出来光的偏振状态.1.马吕斯定律的验证2.布儒斯特角度的测定3.平面偏振光通过λ/2波片时的现象4.平面偏振光通过λ/4波片时的现象1.仔细阅读偏振光实验指导及操作说明书,操作中注意首先做“消除暗电流记录”的测试前准备;每步实验前在光具座上用小孔屏调整光路共轴;2.检测光电流时必须确认表针基本停稳后才可以读数(或指针波动大时估读中间值).偏振光最普遍的来源之一是自然光经电介质表面反射这个无所不在的物理过程.人类生活中来自玻璃、水面等所有表面的反射光和散射光,一般都是部分偏振光.这个规律是马吕斯在1808年开始研究的.巴黎科学院悬赏征求双折射的数学理论,马吕斯就着手研究这个问题.一天傍晚,他站在家中的窗户旁边研究方解石晶体.当时夕阳西照,夕阳从离他家不远的卢森堡宫的窗户上反射到他这里来.他拿起了方解石晶体,通过它观察反射来的太阳的像.使他感到意外的是当转动方解石晶体时,双像中的一个像消失了.太阳下山之后,夜里他继续观察从水面上和玻璃面上反射回来的烛光来核实他的实验.用一支蜡烛和一片玻璃试一试,把玻璃放在θP≈56°时消光效果最显著.但在近掠入射时,两个像都很明亮,无论怎样转动晶体,哪个像都不会消失.马吕斯显然很幸运,站在对着宫殿窗户的一个恰当的角度上.致使他发现了偏振光的规律.普通非晶体材料受到应力时变成各向异性,有双折射.用偏振光的干涉条纹分布的疏密和走向来确定材料的内应力大小.电光开关是指电场使某些各向透明的介质变为各向异性,使光产生双折射,称kerr effect,用电信号控制光信号.光电偏振研究在光调制器、光开关、光学计量、光信息处理、光通信、激光和光电子学器件、晶体性质研究和实验应力分析等技术中有广泛的应用.中学物理课标对偏振及相关内容的要求是:1.通过实验认识光的干涉、衍射、偏振现象以及在生活、生产中的应用;2.用偏振片观察玻璃面反射光、天空散射光的偏振现象;3.用偏振片鉴别普通玻璃和天然水晶,探究这种技术的物理原理.本实验的构思亮点:因为不加布儒斯特窗的半导体激光器发出的光其振动方向及自然光相似,细光束的传播方向集中,使实验操作极大简化,物理思路更加清晰;光具座上可供选择的内容开放,可增加学生的动手动脑兴趣.(零点测量法)操作难点:微电流读数受环境和仪器的影响因素较多,难以准确读数,偏振元件旋转角度最小分度1°,组装粗糙,影响了测量精度. 1.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?2.在确定起偏角时,若找不到全消光的位置,根据实验条件分析原因.3 .三块外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它们区分开来?需要借助什么元件?若能,试写出分析步骤.4. 在透振方向互相垂直的起偏和检偏两片偏振片中插入1/2波片,使光轴和起偏器的透振方向平行,那么透过检偏器的光是亮还是暗?为什么?将检偏器旋转90度,透出的光亮暗是否变化?5.波片加工精度和激光波长漂移会对1/4波片产生的光程差带来误差.试根据波片对线偏振光产生的位相差和光程差公式,对波片厚度和激光波长作一个半定量的估计一般以1/2波长为限.6.已知什么量?哪个是待测量?如何控制变量?关注检流计的量程并做适当调节.按要求处理实验数据,完成实验报告.7.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.尝试设计实验,探究圆偏振光、椭圆偏振光的产生和检验方法,并完成实验.。

偏振现象的观察与分析实验报告

偏振现象的观察与分析实验报告

偏振现象的观察与分析实验报告偏振现象的观察与分析实验报告引言:偏振现象是光学中一个重要的现象,它指的是光波在传播过程中,由于光波的电矢量在空间中的振动方向不同,导致光波的偏振状态发生变化。

通过对偏振现象的观察与分析实验,我们可以深入了解光的性质以及光与物质的相互作用。

实验目的:本次实验的目的是通过观察和分析不同光源的偏振现象,探究光的偏振性质,并进一步了解光的传播规律。

实验装置:实验装置主要包括:偏振片、光源、偏振片旋转台、偏振片检偏器、光屏等。

实验步骤:1. 将光源置于实验装置的一端,调整偏振片旋转台,使其与光源之间呈45度夹角。

2. 在光源的另一侧放置一块偏振片,将其与光源之间呈90度夹角。

3. 调整偏振片旋转台,观察光源通过两块偏振片后的光强变化情况。

4. 将偏振片检偏器放置在光屏的一侧,调整其角度,观察光通过检偏器后的光强变化情况。

实验结果与分析:通过实验观察和记录,我们得到了以下实验结果和分析:1. 光源通过偏振片后的光强变化情况:当光源通过第一块偏振片时,我们观察到光强发生了明显的变化。

当两个偏振片的振动方向平行时,光强最大;当两个偏振片的振动方向垂直时,光强最小。

这表明光源发出的光是具有偏振性质的。

2. 光源通过检偏器后的光强变化情况:在第一部分实验的基础上,我们进一步将偏振片检偏器放置在光屏的一侧。

通过调整检偏器的角度,我们观察到了光强的变化。

当检偏器的振动方向与第一块偏振片的振动方向平行时,光强最大;当检偏器的振动方向与第一块偏振片的振动方向垂直时,光强最小。

这说明检偏器可以选择性地通过或阻挡特定方向的偏振光。

实验结论:通过以上实验观察和分析,我们可以得出以下结论:1. 光源发出的光具有偏振性质,其振动方向可以通过偏振片的旋转来调节。

2. 偏振片检偏器可以选择性地通过或阻挡特定方向的偏振光,从而改变光的偏振状态。

3. 光的偏振现象与光的传播方向、振动方向以及介质的性质等因素有关。

偏振现象的观测与分析

偏振现象的观测与分析

实验9 偏振现象的观测与分析光的偏振现象证实了光的横波性。

在光与物质相互作用时,横波振动着的电矢量起主要作用,电矢量的各种振动状态使光具有各种偏振态:自然光、部分偏振光、线偏振光、圆偏振光和椭圆偏振光。

偏振光的用途很广,在某些仪器上用偏振光如“椭圆偏振测厚仪”,“光弹仪”,“测玻璃的应力仪”,“地震预测仪”等。

【实验目的】1.观察光的偏振现象,加深对偏振光的了解;2.掌握产生和检验偏振光的原理和方法。

【实验仪器】手动偏振实验仪、激光源、发光二极管、光电转换接收器。

【实验原理】偏振光的产生与鉴别光的偏振现象比光的干涉和衍射现象更为抽象,不借助于专门的器件和方法,人的眼睛和光学接收器无法鉴别光的偏振特性。

1.自然光转化为线偏振光的方法(1)吸收法:偏振片(起偏镜或检偏镜):常用的偏振片是由聚乙烯醇胶膜在碘溶液里浸泡,在高温下拉伸,在拉伸时这些链状分子被拉直,并平行排列在拉伸方向上,拉伸过的胶膜只允许振动取向平行的分子排列方向(此方向称偏振光的偏振轴)的光通过。

(2)反射法:当自然光在两种媒质的界面上反射或折射时,入射角达到一定的特定值时,反射光为线偏振光,其振动面垂直于入射面,这种特点的角称布儒斯特角,布儒斯特定律满足tgθ=n2/n1。

检验是否是线偏振光,可在其后加一检偏镜,检偏镜后放一白屏。

光线通过检偏镜,旋转检偏镜在白屏上看到有明暗的变化的光场。

(3)晶体起偏法:利用某些晶体的双折射现象来获得偏振光。

如尼科尔棱镜,格兰棱镜等。

2. 线偏振光转化成椭圆偏振光或圆偏振光线偏振光垂直地入射到一块1/4λ波片上,当偏振光的振动方向与1/4波片的光轴的夹角不为450角时,得到椭圆偏振光。

当偏振光的振动方向与1/4波片的光轴的夹角为450角时,即得到圆偏振光。

3.光电转换输出显示系统按照偏振光的特性调好光路后,即可通过光电转换输出显示系统来记录光的特性了。

当无光照射时,表头指示为零。

若不为零,调节调零旋钮,使指针位于零处。

偏振现象的观察与分析实验报告

偏振现象的观察与分析实验报告

偏振现象的观察与分析实验报告偏振现象是光学中一个非常重要的现象,它在生活和科研中都有着广泛的应用。

本次实验旨在通过观察和分析偏振现象,深入理解偏振光的特性和规律。

实验仪器和材料:1. 偏振片。

2. 偏振光源。

3. 旋转台。

4. 偏振光检测仪。

实验步骤:1. 将偏振光源放置在实验台上,并打开电源,使其发出偏振光。

2. 在偏振光源和旋转台之间放置偏振片,调整偏振片的方向,使其与偏振光源的偏振方向垂直。

3. 将偏振光检测仪放置在偏振片的后方,观察偏振光通过偏振片后的光强变化情况。

4. 通过旋转台旋转偏振片,观察偏振光通过偏振片后的光强变化规律。

实验结果:在实验中观察到,当偏振片的方向与偏振光源的偏振方向垂直时,偏振光通过偏振片后的光强最小;而当偏振片的方向与偏振光源的偏振方向平行时,偏振光通过偏振片后的光强最大。

通过旋转偏振片,可以发现光强会随着偏振片旋转角度的变化而周期性地发生变化。

实验分析:这一现象的产生可以通过偏振片的工作原理来解释。

偏振片是一种能够选择性地吸收某一方向光振动分量的光学元件,当偏振片的方向与偏振光源的偏振方向垂直时,偏振片完全吸收了偏振光的振动分量,导致通过偏振片后的光强最小;而当偏振片的方向与偏振光源的偏振方向平行时,偏振片不吸收偏振光的振动分量,通过偏振片后的光强最大。

结论:通过本次实验,我们深入理解了偏振现象的特性和规律。

偏振现象在光学和光电领域有着重要的应用,例如偏振片在液晶显示器中的应用等。

同时,对偏振现象的深入理解也为进一步的光学研究奠定了基础。

在今后的学习和科研中,我们将进一步探索偏振现象的原理和应用,为光学领域的发展贡献自己的一份力量。

偏振光现象的观察与分析

偏振光现象的观察与分析

偏振光现象的观察与分析光的偏振是指光的振动方向不变,或电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象.光的偏振最早是牛顿在1704~1706年间引入光学的;光的偏振这一术语是马吕斯在1809年首先提出的,并在实验室发现了光的偏振现象;麦克斯韦在1865~1873年间建立了光的电磁理论,从本质上说明了光的偏振现象.按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.自然光是各方向的振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动。

部分偏振光可以看作自然光和线偏振光混合而成,即它有某个方向的振幅占优势。

圆偏振光和椭圆偏振光是光矢量末端在垂直于传播方向的平面上的轨迹呈圆或椭圆。

起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件. 利用光的偏振现象在物理学方面可测量材料的厚度和折射率,可以了解材料的微观结构。

利用偏振光的干涉现象在力学上检测材料压力分布,应用于建筑工程学方面可以检测桥梁和水坝的安全度。

1.主窗口:打开偏振光观察与研究的仿真实验,从实验仪器栏中点击拖拽仪器至实验台上,如下图所示:2.正式开始实验:(1)光源调节双击桌面上光源小图标,弹出光源的调节窗体,可以单击光源的开关按钮,切换光源的开关状态;同时可以点击“选择发出光”按钮来选择光源发出光类型,光源默认发出的是“自然光”。

(2)偏振片调节双击桌面上偏振片小图标,弹出偏振片的调节窗体。

初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。

最大旋转范围为360°,最小刻度为1°。

可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片旋转的最小刻度单位为1°。

当鼠标按住选择不放,则偏振片则会不停的旋转,直到鼠标松开。

实验报告电磁波的偏振现象观察与研究

实验报告电磁波的偏振现象观察与研究

实验报告电磁波的偏振现象观察与研究实验报告:电磁波的偏振现象观察与研究一、实验目的本次实验旨在深入观察和研究电磁波的偏振现象,理解偏振的基本概念和特性,探究偏振现象在不同条件下的表现和规律,以及其在实际应用中的重要意义。

二、实验原理电磁波是一种横波,其电场和磁场的振动方向相互垂直,并与电磁波的传播方向垂直。

当电磁波的电场振动方向在一个特定的平面内时,就称其为偏振电磁波。

偏振可以分为线偏振、圆偏振和椭圆偏振等不同类型。

线偏振光的电场振动方向始终保持在一个固定的直线方向上。

圆偏振光的电场矢量端点的轨迹是一个圆,其旋转方向可以是顺时针或逆时针。

椭圆偏振光的电场矢量端点的轨迹是一个椭圆。

通过使用偏振片,可以选择性地让特定方向振动的偏振光通过,从而实现对偏振光的检测和分析。

三、实验仪器1、激光光源2、起偏器3、检偏器4、光功率计5、旋转台四、实验步骤1、搭建实验装置将激光光源、起偏器、检偏器依次放置在旋转台上,并调整它们的位置,使激光能够依次通过起偏器和检偏器。

2、调节起偏器旋转起偏器,使通过起偏器的光成为线偏振光。

使用光功率计测量此时的光功率,记为 P₁。

3、旋转检偏器在保持起偏器位置不变的情况下,缓慢旋转检偏器,并使用光功率计测量不同角度下通过检偏器的光功率 P₂。

4、记录数据以检偏器旋转角度为横坐标,光功率 P₂为纵坐标,记录测量的数据。

5、重复实验改变激光光源的强度和波长,重复上述实验步骤,观察实验结果的变化。

五、实验数据与分析1、当起偏器和检偏器的偏振方向平行时,通过检偏器的光功率最大;当两者的偏振方向垂直时,通过检偏器的光功率最小,几乎为零。

这表明线偏振光通过与其偏振方向平行的检偏器时,光强不发生变化;通过与其偏振方向垂直的检偏器时,光强被完全阻挡。

2、随着检偏器旋转角度的变化,光功率呈现出周期性的变化,符合马吕斯定律:I = I₀cos²θ,其中 I 为通过检偏器后的光强,I₀为通过起偏器后的光强,θ 为起偏器和检偏器偏振方向之间的夹角。

偏振光现象的观察和分析

偏振光现象的观察和分析

60° 75°
90°
考虑到上面所测得的数据仅仅供定性和简单的定量分析,且关系到无法调零的问题,不作不确定度分析。 II.
表 1 转动 1/ 4 波片对线偏振光透射光的影响
1/ 2 波片的组合
测得:
A(0) 256° 。 =
两片 1/ 4 波片的快(慢)轴位置分别为: 30° 、 120° 、 210° 、 300° ; 68° 、 158° 、 248° 、 338° 。 = = 发现两片波片以 30° − 248° 组合时, 它们偏转 θ 30° 后出现消光, 即组成了 1/ 2 波片。 选取 A 偏转 2θ 60° ,
= 分解为 e 光和 o 光,二者产生一附加相位差 δ
( 2k + 1) π / 2 。此时
这两个分量合成的光矢量就会随时间变化,形成如图的椭圆(圆)轨 迹, 而这个椭圆在坐标轴 (快慢轴) 上的投影 (此时即椭圆的长短轴) 分别为光矢量的两个分量的最大值。当某一轴上分量振幅为零 (θ =
当 θ = (2k + 1) ⋅
π
4
时,能看见杂乱无章的颜色纹路(不同颜色间按红、橙、黄、绿、青、蓝、紫的顺序过渡) ;
当 θ 远离 (2k + 1) ⋅
π
4
时,逐渐观察不到颜色。
保持 θ 不变,转动 A ,同样观察到这一以
π
2
为周期的现象。
VI. 观察液晶显示屏 取用 IPad 等设备的液晶屏,令其显示白色。 (屏幕已经贴膜) 观察到红、橙、黄、绿、青、蓝、紫周期性变化的条纹。偏振片每转动 VII. 观察蓝天 无论使用偏振片还是波片都观察不到任何现象。 VIII. 观察窗台反光 使用偏振片:反射光以
拟合形式: y = 拟合参数:

偏振光的观察与分析实验报告

偏振光的观察与分析实验报告

偏振光的观察与分析实验报告偏振光的观察与分析实验报告引言:偏振光是一种特殊的光,它的光波振动方向在特定平面上进行。

在本次实验中,我们将通过观察和分析偏振光的性质,深入了解它的特点和应用。

实验目的:1. 了解偏振光的基本概念和性质;2. 学习使用偏振片来观察和分析偏振光;3. 探索偏振光在不同材料中的传播和反射规律。

实验材料与装置:1. 偏振片:实验中使用的是线偏振片,它能够通过选择性地吸收光波振动方向,使只有特定方向的光通过;2. 光源:我们选择了一台稳定的白光源,以保证实验的准确性;3. 透明材料:实验中使用了不同材料的透明片,如玻璃、塑料等。

实验步骤:1. 准备工作:将白光源放置在实验台上,并将偏振片放在光源前方;2. 观察现象:逐渐旋转偏振片,观察光的亮度变化;3. 分析结果:记录光的亮度变化情况,并尝试解释其中的原因;4. 材料测试:将透明材料片放置在光源和偏振片之间,观察光的透过情况;5. 分析结果:记录不同材料下的光透过情况,并进行比较和分析。

实验结果与分析:通过观察和分析,我们发现以下几个重要结果:1. 偏振片旋转对光的强度有明显的影响:当偏振片的振动方向与光的振动方向垂直时,光的强度最弱,当二者平行时,光的强度最强;2. 不同材料对光的透过情况不同:玻璃等晶体材料对特定方向的光透过性较好,而塑料等非晶体材料对光的透过性较差;3. 光的偏振性是由光的振动方向决定的:在通过偏振片后,只有与偏振片振动方向平行的光能够透过,垂直方向的光被偏振片吸收。

结论:通过本次实验,我们深入了解了偏振光的观察和分析方法,并得出以下结论:1. 偏振光的强度与偏振片的振动方向有关,旋转偏振片可以改变光的强度;2. 不同材料对偏振光的透过性不同,这种差异与材料的晶体结构有关;3. 偏振片可以选择性地透过特定方向的光,这为光的分析提供了一种有效手段。

实验意义与应用:偏振光的观察与分析在许多领域都有重要的应用价值。

偏振光现象的观察和分析

偏振光现象的观察和分析

偏振光现象的观察和分析摘要本实验用半导体激光通过偏振片来产生线偏振光,使其分别通过1/4波片和1/2波片,通过测量不同方向上检偏器透过的光的强度,判断出出射光的偏振态。

并证实了线偏振光通过1/4波片可以产生线偏振光、圆偏振光、椭圆偏振光,通过1/2波片可以产生线偏正光,验证了马吕斯定律。

一、引言振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。

只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。

在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。

凡其振动失去这种对称性的光统称偏振光。

偏振光的典型应用是偏光式3D 技术,其普遍用于商业影院和其它高端应用。

二、实验原理1.偏振光的种类光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。

图1 电矢量垂直于纸面的偏振光图2 电矢量平行于纸面振光【1】光的五种偏振态:①线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,②部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不等。

③自然光:光波包含一切可能方向的横振动,但不同方向上的振幅相等。

④椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,若它们的频率相同并且有固定的位相差,则该点的合成振动的轨迹一般呈椭圆形。

⑤圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。

2.线偏振的产生(1)偏振片利用某些有机化合物的“二向色性”制成,当自然光透过这种偏振片后,光矢量垂直于偏振片方向的分量几乎完全被吸收,而平行方向的分量几乎完全通过,因此透射光基本上为线偏振光。

偏振光现象的观察与检验

偏振光现象的观察与检验

光偏振现象的观察和检验一、实验目的1.观察光的偏振现象,了解偏振光的种类;2.掌握偏振光的产生及检验方法;3.了解波片的作用。

二、实验器材氦氖激光光源(1个),1/2波片(1片),1/4波片(1片),偏振片(2片) ,底座(4个),光电转换器(1个)。

三、实验原理(一)偏振光的种类光是电磁波,光的偏振现象表明光是一种横波,即电磁振动方向与光的传播方向垂直。

光作为电磁波,光波中含有电振动矢量和磁振动矢量,就光与物质的相互作用而言,起主要作用的是电矢量,通常称电矢量为光矢量。

并将光矢量和光的传播方向所构成的平面称为光的振动面。

根据光矢量的振动状态,可以把光分为五种偏振态,结合图15-1认识下面几种偏振态的概念:1.自然光:如果在垂直于光的传播方向的平面内,光矢量的振动方向是无规则地变化着的,且发生在各个方向的概率均等,即各个方向的平均振幅相等,称此种光为自然光。

2.部分偏振光:如果某些方向光矢量的平均振幅较大,某些方向光矢量的平均振幅较小,则称为部分偏振光。

3.线偏振光:如果光矢量沿着一个固定方向振动,则称此种光为线偏振光或称平面偏振光。

4.椭圆偏振光:光矢量的大小和方向都作规则的变化,在垂直于光的传播方向的平面内,光矢量的矢端运动轨迹是椭圆,称此种光为椭圆偏振光。

5.圆偏振光:当椭圆偏振光中光矢量的大小不变,只是方向作规则的变化,光矢量的矢端运动轨迹是圆,称此种光为圆偏振光。

(二)线偏振光的产生1.用偏振片来获取线偏振光偏振片是一种具有二向色性的晶体,所谓二向色性是指该晶体对两个相互垂直振动的光矢量具有不同的吸收本领。

当自然光通过二向色性晶体时,其中一方向的振动几乎完全被吸收,则透射出来的光为线偏振光。

2.反射和折射产生偏振光根据布儒斯特定律,当自然光以=arctan n的入射角入射到折射率为n的玻璃表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,称为布儒斯特角。

此时透射光为部分偏振光,如果自然光以角入射到一叠平行玻璃片堆上,则经过多次反射和折射,最后从玻璃片堆透射出来的光也接近于线偏振光。

偏振现象的观察与研究

偏振现象的观察与研究

光学实验报告专业姓名学号报告成绩偏振现象的观察与研究【实验目的】①观察光的偏振现象,加深对理论知识的理解。

②了解产生和检验偏振光的原理和方法及使用的元件。

【实验仪器】(名称、规格或型号)氦氖激光器、偏振片、二分之一波片、四分之一波片、光学平台、照度计、支架等。

【实验原理】1.偏振光的基本概念振动方向对于传播方向的不对称性叫做偏振,它是横波区别于纵波的一个最明显的标志,只有横波才有偏振现象。

光的偏振有5种可能的状态:自然光、部分偏振光、平面偏振光(也称线偏振光)、圆偏振光、椭圆偏振光。

振动在垂直于光的传播方向的平面内可取所有可能的方向,而且没有一个方向占优势的光称为自然光,这种光不能直接显示出偏振现象,通常人们又称它为非偏振光。

在某一方向振动占优势的光称为部分偏振光。

指在某一固定方向振动的光称为线偏振光或平面偏振光。

光波电矢量的方向和大小随时间做有规则的改变,当电矢量末端在垂直于传播方向的平面上的轨迹呈圆形时,称为圆偏振光;呈椭圆形时,称为椭圆偏振光。

圆偏振光和椭圆偏振光都可以看作两个振动面相互垂直的、有一定相位差的线偏振光的叠加。

将非偏振光(如自然光)变成偏振光的装置或器件称为起偏器,用来鉴别光的偏振状态的装置或器件称为检偏器。

实际上,起偏器也可以用作检偏器。

2.平面偏振光的产生产生平面偏振光的方法很多,下面我们主要介绍两种:非金属表面的反射和折射产生平面偏振光,偏振片产生平面偏振光。

1)非金属表面的反射和折射光线斜入射非金属表面(如水、玻璃等)时,反射光和透射光都会产生偏振现象,通常都为部分偏振光,且反射光垂直于入射表面的电矢量分量较强,透射光平行于入射面的电矢量分量较强。

它们的偏振程度取决于光的入射角及反射物质的性质。

当入射角α与反射物质的折射率n满足下面的关系:α=①tan n时反射光为线偏振光,此称为布儒斯特定律。

该入射角称为起偏角或布儒斯特角,如图1(a)所示。

根据式①,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。

偏振现象的观察与分析

偏振现象的观察与分析

实验偏振现象的观察与分析实验人:学号:实验时间:实验概述【实验目的及要求】1.观察光的偏振现象,加深对偏振光的理解.2.掌握产生和检验偏振光的原理和方法.3.观察光的旋光现象,学习用旋光仪测定糖溶液的浓度。

【仪器及用具】氦氖激光器,偏振片(或尼科耳棱镜),半波片,1/4波片,硅光电池,灵敏电流计,减光板,玻璃片.【实验原理】能使自然光变成偏振光的装置或器件称为起偏器.用来检验偏振光的装置或器件称为检偏器.实际上,能产生偏振光的器件,同样可用作检偏器.1.平面偏振光的产生(1)由反射和折射产生偏振自然光在透明介质(如玻璃)上反射或折射时,其反射光和折射光为部分偏振光.当入射角为布儒斯特角(即:入射角满足,为透明介质折射率)时反射光接近于完全偏振光,其偏振面垂直于入射面.(2)由二向色性晶体的选择吸收产生偏振有些晶体(如电气右、人造偏振片)对两个相互垂直振动的电矢量具有不同的吸收本领,称为二向色性.当自然光通过二向色性晶体时,其中一部分的振动几乎被完全吸收,而另一部分的振动几乎没有损失,因此,透射光就成为平面偏振光.利用偏振片可以获得截面较宽的偏振光束,而且造价低廉,使用方便.但偏振片的缺点是有颜色,光透过率稍低.(3)由晶体双折射产生偏振当自然光入射于某些各向异性晶体时,在晶体内折射后分解为两束平面偏振光(o光、e光),并以不同的速度在晶体内传播,可用某一方法使两束光分开,除去其中一束,剩余的一束就是平面偏振光.尼科耳(Nicol)棱镜是这类元件之一.它由两块经特殊切割的方解石晶体,用加拿大树胶粘合而成.偏振面平行于晶体的主截面的偏振光可以透过尼科耳棱镜,垂直于主截面的偏振光在胶层上发生全反射而被除掉.2.圆偏振光和椭圆偏振光的产生如图1所示,当振幅为A的平面偏振光垂直入射到表面平行于光轴的双折射晶片时,若振动方向与晶片光轴的夹角为,则在晶片表面上o光和e光的振幅分别为和,它们的位相相同.在晶片中,o光与e光传播方向相同,由于传播速度不同,经过厚度为d的晶片后,o光与e光之间将产生位相差:其中表示光在真空中的波长,和分别为晶体中o光与e光的折射率.图1(1)如果晶片的厚度使产生的位相差,这样的晶片称为1/4波片.平面偏振光通过1/4波片后,透射光一般是椭圆偏振光,当时,则为圆偏振光;当和时,椭圆偏振光退化为平面偏振光.换言之,1/4波片可将平面偏振光变成椭圆或圆偏振光,也可将椭圆与圆偏振光变成平面偏振光.(2)如果晶片的厚度使产生的位相差,这样的晶片称为半波片.若入射平面偏振光的振动面与半波片光轴的夹角为,则通过半波片后的光仍为平面偏振光,但其振动面相对入射光的振动面转过角.3.平面偏振光通过检偏器后光强的变化强度为的平面偏振光通过检偏器后的光强为其中为平面偏振光偏振面和检偏器主截面的夹角,上述关系称为马吕斯(Malus)定律,它表示改变角可以改变透过检偏器的光强.当起偏器和检偏器的取向使得通过的光量最大时,称它们为平行(此时).当两者的取向使得系统射出的光量最小时,称它们为正交(此时).4.单色平面偏振光的干涉如图2(a)所示,一束自然光经起偏器(尼科耳棱镜或偏振片)N1后,变成振幅为A的平面偏振光,再通过晶片K射到检偏器N2上.图2(b)表示透过N2迎着光线观察到的振动情况,其中、及分别表示起偏器的主截面、检偏器的主截面和晶片的光轴在同一平面上的投影,和分别为N1、N2的主截面与晶片的光轴的夹角.从晶片透过的两平面偏振光的振幅分别为:它们的位相差为.穿过N2后,只存在振动平面平行于N2主截面的分量和,其大小为可见这两束光是同频率、不等振幅、振动平面在同一平面内的相干光.因此,透射光的光强(按双光束干涉的光强计算方法)为式中,它是从起偏器N1透射的平面偏振光的光强,从上式可以看出:(1) 当(或)或时,即透射光强只与N1、N2两主截面的交角的余弦平方成正比,和没有晶片时一样.(2) 当N1、N2正交时,,则如果晶片是半波片,则,当等于的奇数倍时,,即有光透过N2,发生相长干涉;当等于的偶数倍时,,无光透过,发生相消干涉.由此可见,当半波片旋转一周时,视场内将出现四次消光现象.(3) 当N1与N2平行时,,于是有可以看出,这时透过的光强恰与N1、N2正交时互补.实验内容【实验方案设计】(测量及调节方法)1.偏振片主截面的确定将一背面涂黑的玻璃片G立在铅直面内,激光器L射出的一细光束沿水平方向入射到玻璃片上,G的反射光为偏振面垂直于入射面的平面偏振光,使G的反射光垂直射人偏振片N,以反射光的方向为轴旋转偏振片N,从透过光强度的变化和反射光的偏振面,可以确定偏振片的主截面,即透过光强极大时偏振片的主截面和反射光的偏振面一致.并在偏振片上标记其主截面的方向.2.验证马吕斯定律使激光器L射出的光束,穿过起偏器N1和检偏器N2射到硅光电池Pc上,使N1、N2正交,记录灵敏电流计上的示值.将偏振器每转一角度(~)记录一次,直至转动为止.重复以上过程几次.3.考察半波片对偏振光的影响(1)调N1、N2为正交,在N1、N2间和N1平行放置半波片,以光线方向为轴将波片转,记录出现消光的次数和相对应于N2的位置(角度).(2)使N1和N2正交,半波片的光轴和N1的主截面成(~)角,转N2使之再消光,记录N2位置.改变角,每次增加~,同上测量直至等于.4.椭圆偏振光、圆偏振光的产生与检验实验装置同上,将半波片换成1/4波片.(1)使N1、N2正交,以光线方向为轴将波片转,记录观察到的现象.(2)使用起偏器N1和1/4波片产生椭圆偏振光,旋转检偏器N2观察光强的变化.记录波片光轴相对N1主截面的夹角,以及转动N2光强极大、极小时主截面与波片光轴的夹角.取不同值重复观测.(3)使用N1和1/4波片产生圆偏振光(应怎样安置1/4波片?),旋转N2,进行观测并记录.(4)为了区分椭圆偏振光和部分偏振光、圆偏振光和自然光,要在检偏器前再加一个1/4波片去观测,注意1/4波片的放置.(5)设计一实验方案(原理和步骤),说明如何应用一个1/4波片和一个检偏器,去判断椭圆偏振光的旋转方向.5.注意事项(1)应用光电池记录光强时,灵敏电流计应选用低内阻型.读数时,应注意扣除环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏振现象的观察与分析
【实验目的】
1.通过观察光的偏振现象,加深对光波传播规律的认识。

2.掌握产生与检验偏振光的原理和方法。

【实验仪器】偏振实验箱
【实验原理】
一.偏振光的概念
光的波动的形式在空间传播是一种
电磁波,它的电矢量E与磁矢量H相互垂
直。

矢量E和矢量H均垂直于光的传播
方向Z,属于横波。

实验证明光效应主要由电场引起的,
所以电场矢量E的方向定为光的振动方
向。

自然光源(如日光,各种照明灯等等) 发射的光是由构成这个光源的大量分子或原子发出的光波合成的。

这些分子或原子的热运动和辐射是随机的, 它们所发射的光振动,出现在各个方向的几率相等,
所以这样的光源发射的光对外不显现偏振
性质,称之为自然光。

自然光经过媒质的反射,折射或者吸收
以后,在某一方向上振动加强成为部分偏振
光。

如果光在传播过程中,振动始终被限制
在某一确定的平面内,称为平面偏振光,
也称线偏振光或完全偏振光。

偏振光电矢
量E的端点在垂直于传播方向的平面内运
动轨迹是一圆周的称为圆偏振光,是一椭
圆的则称为椭圆偏振光。

二.获得线偏振光的方法
自然光变成偏振光称作起偏,可以起偏的器件分为透射式和反射式两种。

(1)透射式起偏
如上图,设光强为I 0的自然光照在一偏振片(起偏器)上,则自然光中振
动方向与偏振片透振方向相同的电矢量以及其它方向的电矢量在这个方向的分量才能通过,成为线偏振光,因此光强变为2
1 I 0。

然后再照射在第二块偏振片(检偏器)上,该偏振片的透振方向与起偏器的透振方向夹角为θ,则出射光光强为:
θ20cos 2
1I I = 这就是马吕斯定律 (2)反射式起偏
自然光在两种媒质的界面处,
如玻璃和空气的界面处反射和折
射,当入射角为某一特定值时,反
射光可以成为线偏振光,振动方向
垂直于入射面, 与界平面平行,折
射光为部分偏振光,这种现象由布
儒斯特(Brewster) 首先发现,因
此称为布儒斯特角,即起偏角。


据折射定律可得: 1
2210101010sin sin cos sin n n i i i i tgi === 此式就是布儒斯特定律。

如果自然光的投射在多层的玻璃堆上, 经过多次反射最后透射出的光也接
近于线偏振光,其振动面平行于入射面。

三. 波片
1.寻常光和非常光
光进入某些各向异性的晶体时,同一束入射光折射后被分成两束,称为双折射现象。

一束光遵从折射定律,称为寻常光(简称o 光),另一束光违背折射定律,称为非常光(简称e 光)。

2.半波片
光垂直通过双折射晶体时,o 光和e 光传播速度不同,因而出射时o 光和e 光存在光程差。

如果该晶体
厚度满足光程差:
2
)12()(0λ+±=-K d n n e 为半波长的奇数倍时,则该
晶体称为半波片。

3.四分之一波片
如果该晶体厚度满足光程差:4)
12()(0λ+±=-K d n n e 为四分之一波长的
奇数倍时,则该晶体称为四分之一波片。

四.偏振态的检验
自然光⇒转动
偏振片无变化 线偏振光
⇒转动偏振片明暗交替变化,光强两强两消 入射光⇒转动
偏振片自然光、圆偏振光⇒转动四分之一波片两强两消:圆偏振光无变化:自然光
偏振片
入射光
光强变化,但无消光:椭圆偏振光转动。

相关文档
最新文档