运算放大器可以用作比较器
集成运算放大器的非线性应用——比较器
图9-19(a)所示为过零比较器符号。 由于集成运放处于开环状态,uo与ui不再保持线性关系,而是将同相端电压 和反相端电压进行比较。 当u+>u-,即ui<0时,uo=+Uo(sat)。 当u+<u-,即ui>0时,uo=-Uo(sat)。
集成运算放大器的非线性应用——比较器
一、过零比较器
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
图9-21所示为滞回比较器的电路图和波形图。由于电路工作于正反馈状态, 所以电路的输出电压将为负饱和值或正饱和值,uo与ui不再保持线性关系。
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
输入电压ui经电阻R1加在集成运放的反相输入端,参考电压UR经电阻R2接在 同相输入端,此外,从输出端通过电阻Rf引回反馈,引入的反馈类型为电压串联 正反馈。因此,同相输入端的电压uP是由参考电压UR和输出电压Uo共同决定的, Uo有-Uo(sat)和+Uo(sat)两个状态。在输出电压发生翻转的瞬间,运放的两个输入 端的电压非常接近,即uN=uP。因此可用叠加原理来分析它的两个输入触发电平。
把两个门限电平的差值称为回差电压ΔUTH,即
集成运算放大器的非线性应用——比较器
三、滞回比较器(施密特触发器)
回差电压的存在,可大大提高电路 的抗干扰能力,避免了干扰和噪声信号 对电路的影响。消除干扰的原理如图922所示。
集成运算放大器的非线性应用——比较器
四、窗口比较器
图9-23所示为窗口比较器,即电压比较器的基本输入信号。窗口比较器信号之间的关系见表9-1。
集成运算放大器 的非线性应用—
运算放大器的用法
运算放大器的用法运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于各种电路中。
它具有高增益、高输入阻抗、低输出阻抗等特点,使得它在电子设计中扮演着重要的角色。
下面将介绍一些运算放大器的常见用法。
1. 比较器:运算放大器可以用作比较器,将两个输入信号进行比较,并输出一个高电平或低电平的信号。
这种应用常见于电压比较、开关控制等场景。
2. 放大器:运算放大器最常见的用途是作为信号放大器。
通过调整反馈电阻和输入电阻的比例,可以实现不同的放大倍数。
这种应用广泛用于音频放大、传感器信号处理等领域。
3. 滤波器:运算放大器可以与电容和电感等元件组成滤波电路,实现对特定频率范围内信号的增强或抑制。
这种应用常见于音频滤波、通信系统中的滤波等场景。
4. 仪表放大器:运算放大器可以通过调整反馈网络来实现对输入信号进行精确测量和调节。
这种应用常见于仪器仪表、传感器信号调理等领域。
5. 电压跟随器:运算放大器可以实现输入电压与输出电压一致的功能,即输入电压变化时,输出电压也相应变化。
这种应用常见于自动控制系统、反馈控制等场景。
6. 信号发生器:通过在运算放大器的反馈回路中引入RC网络,可以实现正弦波、方波等不同形式的信号发生。
这种应用常见于测试仪器、音频设备等领域。
总之,运算放大器作为一种重要的电子元件,在各个领域都有广泛的应用。
它的高增益、高输入阻抗和低输出阻抗等特点使得它成为了电子设计中不可或缺的工具。
无论是在信号处理、控制系统还是仪表测量等方面,运算放大器都发挥着重要作用,为我们提供了更加精确和稳定的电子系统。
运算放大器可以用作比较器使用
许多人偶尔会把运算放大器当比较器使用。
一般而言,当您只需要一个简单的比较器,并且您在四运算放大器封装中还有一个“多余”的运算放大器时,这种做法是可行的。
只是运算放大器需要相位补偿才能运行,因而把运算放大器用作比较器时其速度会非常低,但是如果对速度要求不高,则运算放大器可以满足需求。
偶尔会有人问到我们运算放大器的这种使用方法,因为他们发现这种方法有时有效,有时却不如人们预期的那样效果好。
为什么会出现这种情况呢?许多运算放大器都在输入端之间有电压钳位,其大多数一般都使用背靠背二极管(有时使用两个或者更多的串联二极管)来实施。
这些二极管保护输入晶体管免受其基极结点反向击穿的损害。
许多IC工艺在差动输入约为6V时便会出现击穿,这会极大地改变或者损坏晶体管。
图1显示了NPN输入级,D1和D2提供了这种保护功能。
图1在大多数常见运算放大器应用中,输入电压均约为零伏,根本无法开启这些二极管。
但是很明显,对于比较器的运行而言,这种保护便成了问题。
在一个输入拖拽另一个输入(以一种讨厌的方式拉其电压)以前,差动电压范围(约0.7V)受限。
尽管如此,我们还是可以把运算放大器用作比较器。
但是,在我们这样做时必须小心谨慎。
在一些电路中,这种做法可能是完全不能接受的。
问题是我们(包括其他运算放大器厂商)并没有总是说明这些钳位的存在,即使有所说明,可能也不会做详细的解释或者阐述。
也许我们应该说:“用作比较器时,请小心谨慎!”产品说明书的作者们通常也只是假设您肯定会把运算放大器当作运算放大器用。
TI在美国亚利桑那州图森产品部召开了一个会议,会议决定,TI以后将会更加清楚地说明这种情况。
但是,现在已经生产出来的运算放大器怎么办呢?下列指导建议可能会对您有所帮助:一般而言,双极NPN晶体管运算放大器都有输入钳位,例如:OP07、OPA227和 OPA277等。
uA741是一个例外,它具有NPN输入晶体管,并且有一些为NPN提供固有保护的附加串联横向PNP。
运算放大器作为比较器原理
运算放大器作为比较器原理运算放大器(Operational Amplifier,简称Op Amp)是一种高增益、直流耦合的电子放大器,具有反馈作用,被广泛应用于各种电子电路中。
其中一个常见的应用是作为比较器。
比较器是将输入信号与参考电平进行比较,并输出高电平或低电平的电路。
运算放大器作为比较器具有以下原理:1.输入偏置电压和输入短路电流在实际应用中,运算放大器输入端的电压和电流不为0,会存在输入偏置电压和输入短路电流。
偏置电压是指在输入端接通电压零时,输出电压并不为零的情况。
短路电流是指输入端短路时所产生的电流。
这些因素对于运算放大器作为比较器来说是关键的,因为它们影响了比较器输出的响应时间和精度。
在实际设计中,需要通过调整偏置电压和降低短路电流来减小这些不利影响。
2.开环增益和共模抑制比运算放大器的开环增益很高,通常达到100000或更高,这使得其在负反馈应用中非常有用。
然而,开环放大器不适合直接作为比较器使用,因为如果输入信号与参考电平非常接近,放大器会出现较大的误差。
这称为共模干扰。
为了减小共模干扰,运算放大器可以使用共模抑制比参数来调整输出电压。
共模抑制比表示放大器对共模信号的抑制程度。
3.比较器阈值和迟滞比较器阈值是指当输入信号超过或低于某个电压水平时,比较器会切换其输出状态。
阈值通常是以运算放大器输入电压的一部分来定义。
迟滞是指当比较器输出状态改变时,它需要一定的时间来稳定,以避免输出状态发生了错误的瞬态。
4.负载驱动能力和输出保护作为比较器,运算放大器需要具备一定的负载驱动能力,以保证输出电压的稳定性和可靠性。
运算放大器还需要具备输出保护功能,以保护电路免受过电压、过电流等异常情况的影响。
总之,运算放大器作为比较器的原理是基于其高增益、反馈控制和可调节的共模抑制比等特点。
在实际应用中,需要考虑诸多因素,例如输入偏置电压和短路电流、阈值和迟滞、负载驱动能力和保护等方面。
使用适当的运算放大器可以实现高性能、低功耗的比较器电路设计。
运算放大器用作比较器的技术要求
2/5
确保逻辑接口电平正确无误的另一种方法是使用AD8036 一类的箝位放大器。箝位放大器具有正负基准端子,当 放大器输出超过或低于正负电压限值时,其输出将被限 制在基准电压的30 mV之内。
+VL +VA
AD8036
LOGIC
–VA
–VL
图6
因此,如果将正负逻辑电源连接到基准输入(放大器电源 位于逻辑电源之外),放大器输出将为逻辑提供安全的驱 动。
OP AMP
LOGIC
图3
06125-002
如果逻辑和运算放大器共用同一电源,轨到轨运算放大器 可成功驱动CMOS和TTL逻辑系列,但是,如果运算放大器 和逻辑采用不同电源,则需在两者之间另外设置接口电 路。注意,这种情况采用于采用±5 V电源的运算放大器, 必须用+5 V电源驱动逻辑;如果施加-5 V电源,则可能损 坏逻辑。
如前所述,当将运算放大器用作比较器时,受饱和影 响,其反应速度低于期望水平。正因为如此,要求通过 用作比较器的运算放大器来驱动发射极耦合逻辑(ECL)的 情况并不多见,因为这种逻辑用于要求最高逻辑速度的 应用。
+VA OP AMP
–VA
R1 R3
R2
图7
ECL LOGIC
–5.2V
但是,出于全面考虑,图7显示的是只用到R1、R2和R3三 个电阻的接口电路。选择这些电阻是为了达到以下目 的:当运算放大器输出达到正限值时,使ECL栅极输入 处的电平为-0.8 V;达到负限值时,则使其电压为-1.6 V。 R1、R2和R3的比率取决于这一要求;电阻的绝对值是在 速度和节能两个指标间作出的权衡。
INPUT
不难想像,在比较器应用中,这并不是个好消息。因此, 对于用作比较器的任何运算放大器来说,必须确保不存在 相位翻转(过去十年生产的多数运算放大器均采用这种设 计),或者采用独特的系统设计方式,以使比较器输入永远 不接近可能产生反相现象的电压范围。
运算放大器电路原理
运算放大器电路原理运算放大器(Operational Amplifier,简称Op-Amp)是一种极为重要的电子元器件,广泛应用于各种电路中。
它具有高增益、差分输入、单端输出等特点,能够放大电压、电流和功率等信号,并提供微弱信号的放大和处理功能。
本文将介绍运算放大器的基本原理及其电路结构。
一、运算放大器的基本原理运算放大器是一个多元件集成电路(IC),通常由几个晶体管、电阻和电容器等元件组成。
它的核心部分是一个差分放大器,具有高增益特性。
运算放大器的输出电压与输入电压之间的关系可以通过下面的公式表示:Vout = Av (V+ - V-)其中,Vout为输出电压,Av为放大器的开环增益,V+和V-分别为非反相输入和反相输入。
二、运算放大器的电路结构运算放大器的电路图可以简化为以下几个主要部分:1.差动放大器:差动放大器是运算放大器的核心部分,它由两个输入电源、两个输入电容和两个晶体管等电路组成。
它的作用是将输入信号进行差分放大,增益高达几千倍。
2.电流镜:电流镜是一个由晶体管组成的电流源,用于提供稳定的电流输出。
它的作用是保持差动放大器的工作点稳定,使得差动放大器的输出可以线性放大。
3.级联放大器:级联放大器由多个差分放大器组成,用于提高整个运算放大器的放大倍数。
每个差分放大器都会放大之前的放大器的输出信号。
4.反馈网络:反馈网络是运算放大器的重要部分,通过它可以实现对输出信号进行控制和调整。
反馈网络可以分为正反馈和负反馈两种形式,具体的选择取决于应用的要求。
三、运算放大器的应用运算放大器在电子电路中具有广泛的应用,主要包括以下几个方面:1.信号放大:运算放大器可将输入信号放大到所需的幅度,用于增强微弱信号。
2.滤波:运算放大器可以配合电容器和电阻等元件,构成滤波电路,用于滤除不需要的频率成分,提取特定频率的信号。
3.比较器:运算放大器可以作为比较器使用,用于判断输入信号的大小关系,并输出相应的逻辑电平。
运算放大器基础:比较器电路
于检测电压何时上升超过某个点。
在电子电路设计中经常使用比较两个电压并根据两个电压的比较提供数字输出的电路。
对于比较器电路,需要一个高增益放大器,这样即使输入端的微小变化也会导致输出电平牢固切换。
运算放大器用于许多电子电路设计,但特定的比较器芯片可提供更好的性能。
1.比较器应用比较器电路在电子电路设计中有很多用途。
通常需要能够检测到某个电压并根据检测到的电压切换电路。
一个例子可以用于温度检测电路。
这可能会产生取决于温度的可变电压。
当温度低于给定点时,可能需要打开加热,这可以通过使用比较器来检测与温度成比例的电压何时降至某个值以下来实现。
对于这些和许多其他用途,可以使用称为比较器的电路。
2.什么是比较器?顾名思义,比较器意味着这些电子元件和电路用于比较两个电压。
当一个高于另一个时,比较器电路输出处于一种状态,当输入条件相反时,比较器输出切换到另一种状态。
比较器基本部件包括一个具有差分输入的高增益放大器- 一个反相输入和一个同相输入。
在工作方面,比较器根据输入状态在高电平和低电平之间切换。
如果同相输入高于反相输入,则输出为高电平。
如果同相输入低于反相输入,则输出为高电平。
比较器工作摘要3.比较器和运算放大器虽然使用运算放大器作为比较器很容易,特别是当包含多个运算放大器的芯片有一个备用运算放大器时,可能很容易使用。
但是,采用这种方法并不总是可取的。
运算放大器可能无法始终正常工作,或者可能无法提供最佳性能。
也就是说,当应用要求不高时,使用这些电子元件总是很诱人,因为它们可能已经可用。
比较器芯片和运算放大器的性能在许多方面有很大不同:运算放大器闩锁:在某些情况下,特别是当运算放大器被强力驱动时,它可能会闩锁,即即使输入发生变化,输出也保持不变。
比较器设计为在此模式下工作,切勿闩锁。
这是使用比较器而不是运算放大器可能具有明显优势的一个关键领域。
开环操作:运算放大器设计为在闭环模式下使用,其电路针对此类场景进行了优化。
运放触发运算
运放触发运算
运算放大器(Op-Amp)可以用作比较器,但如果不改变阈值,它可能会受到噪声和不需要的输出转换的影响。
为了避免这些问题,人们经常在运算放大器中引入正反馈以实现迟滞或不同的输入切换电平,从而在两种状态之间改变输出。
这种具有迟滞或不同输入切换电平的电路称为施密特触发器。
在施密特触发器中,正反馈的作用是根据比较器或运算放大器的输出状态为电路提供不同的开关阈值。
当比较器的输出为高电平时,该电压被反馈到比较器运算放大器的同相输入端,导致开关阈值变得更高。
相反,当输出以相反的方式切换时,切换阈值会降低。
这种正反馈机制使得施密特触发器对输入噪声具有很高的免疫力,因为只有当输入电压超过特定的阈值时,输出才会改变状态。
在构建施密特触发器时,可以使用如IC741这样的运算放大器。
这个运算放大器使用12V电源轨供电,其反相输入作为信号输入,而反馈网络则围绕同相输入和输出构建。
总的来说,运放触发运算主要是通过构建施密特触发器来实现的,其中正反馈机制是关键。
这种电路对于减少噪声和防止不必要的输出转换非常有效。
运算放大器作为比较器原理
运算放大器作为比较器原理
运算放大器(OperationalAmplifier,简称Op Amp)是一种重要的电路元件,常用于信号放大、滤波、积分、微分等电路设计中。
除此之外,运算放大器还可以被用作比较器。
本文将着重讨论运算放大器作为比较器的原理。
比较器是一种电路,可以将两个电压进行比较,并输出一个高电平或低电平的信号。
普通的比较器电路可能存在一些问题,例如输入电压的偏移、输出电压的饱和等。
运算放大器作为比较器的优点在于,它可以通过调节电源电压和反馈电阻来消除这些问题。
运算放大器的基本原理是将输入信号放大至一个很高的增益,并将放大后的信号输出到负载中。
但是,当输入信号超过一定的阈值时,运算放大器将会产生饱和现象,输出电压将不能继续增大。
利用运算放大器的这种特性,我们可以将其用作比较器。
比较器电路中,通常会将一个输入信号接在运算放大器的反向输入端,另一个输入信号接在非反向输入端。
当反向输入端的电压大于非反向输入端的电压时,输出电压将会饱和至正极最大值。
反之,当非反向输入端的电压大于反向输入端的电压时,输出电压将会饱和至负极最大值。
因此,运算放大器作为比较器的原理就是利用其饱和特性,将反向输入端的电压与非反向输入端的电压进行比较,并输出相应的高电平或低电平信号。
通过合理设置反馈电阻和电源电压,可以解决偏移和饱和等问题,使比较器电路性能更加稳定和可靠。
综上所述,运算放大器作为比较器的原理是利用其饱和特性,将反向输入端的电压与非反向输入端的电压进行比较,并输出相应的高电平或低电平信号。
通过合理的电路设计和参数调节,可以使运算放大器作为比较器的性能更加优越。
运算放大器跟比较器的作用原理
运算放大器跟比较器的作用原理
运算放大器是一种可以放大、滤波、求和、差分等各种功能的放大器,它的输入端具有高阻抗,输出端电压随着输入端电压的变化而变化,且能够承受大电流输出。
运算放大器通常用于模拟信号处理、精密测量以及电路控制等领域。
比较器是一种将输入信号与参考信号进行比较,输出高或低电平的电路。
通常比较器的输入端具有低阻抗,输出端一般为数字电平(高电平或低电平)形式。
比较器用于模拟信号判定、阈值控制等领域。
两者的主要区别:
1.输入阻抗:运算放大器输入端阻抗高;比较器输入端阻抗低。
2.输出形式:运算放大器可以输出模拟电压信号;比较器的输出一般为数字电平(高电平或低电平)形式。
3.应用领域:运算放大器一般用于模拟信号处理、精密测量以及电路控制等领域;比较器用于模拟信号判定、阈值控制等领域。
4.增益:运算放大器可以设置增益;比较器不能设置增益。
总体上来说,运算放大器和比较器在输入端阻抗、输出形式、应用领域和增益等
方面存在明显的差异。
有时两者也可以互相替换,但其具体使用方式还需根据具体应用要求确定。
运算放大器与比较器有什么区别?
比较器是一种带有反相和同相两个输入端以及一个输出端的器件,该输出端的输出电压范围一般在供电的轨到轨之间。
运算放大器同样如此。
乍看似乎可以互换,实际上,两者之间还是存在一些重要差异…▪比较器用于开环系统,旨在从其输出端驱动逻辑电路,以及在高速条件下工作,通常比较稳定。
▪运算放大器过驱时可能会饱和,使得恢复速度相对较慢。
施加较大差分电压时,很多运算放大器的输入级都会出现异常表现,实际上,运算放大器的差分输入电压范围通常存在限制。
运算放大器输出也很少兼容逻辑电路。
但是仍有很多人试图将运算放大器用作比较器。
这种做法在低速和低分辨率时或许可行,但是大多数情况下结果并不理想。
今天小编就给大家说说这“结果并不理想”的原因~1、速度不同大多数比较器速度都很快,不过很多运算放大器速度也很快。
为什么将运算放大器用作比较器时会造成低速度呢?比较器用于大差分输入电压,而运算放大器工作时,差分输入电压一般会在负反馈的作用下降至最低。
当运算放大器过驱时,有时仅几毫伏也可能导致过载,其中有些放大级可能发生饱和。
这种情况下,器件需要相对较长的时间从饱和中恢复,因此,如果发生饱和,其速度将比始终不饱和时慢得多(参见图1)。
图1:放大器用作比较器时的放大器速度饱和效应过驱运算放大器的饱和恢复时间很可能远远超过放大器的正常群延迟,并且通常取决于过驱量。
由于仅有少数运算放大器明确规定从不同程度过驱状态恢复所需的时间,因此,一般说来,有必要根据特定应用的具体过驱情况,通过实验确定放大器的特性。
对这类实验的结果应持谨慎态度,通过比较器(运算放大器)的传播延迟值(用于最差条件下的设计计算)应至少为所有实验中最差值的两倍。
2、输出作用不同比较器的输出端用于驱动特定逻辑电路系列,运算放大器的输出端则用于在供电轨之间摆动。
通常,运算放大器比较器驱动的逻辑电路不会共用运算放大器的电源,运算放大器轨到轨摆动可能会超出逻辑供电轨,很可能会破坏逻辑电路,引起短路后还可能会破坏运算放大器。
技术科普:什么是比较器
技术科普:什么是比较器一、什么是比较器比较器的功能是比较两个或更多数据项,以确定它们是否相等,或者确定它们之间的大小关系和排列顺序,这称为比较。
可以实现此比较功能的电路或设备称为比较器。
比较器是将模拟电压信号与参考电压进行比较的电路。
比较器的两个输入是模拟信号,输出是二进制信号0或1。
当输入电压的差值增大或减小并且正负符号保持不变时,输出保持恒定。
二、比较器原理在了解了什么是比较器之后,我们再来看看比较器的工作原理。
比较器可用作1位模数转换器(ADC)。
运算放大器原则上可以用作比较器而没有负反馈,但是由于运算放大器的开环增益非常高,因此它只能处理输入差分电压很小的信号。
而且,运算放大器的延迟时间通常较长,无法满足实际需求。
可以调整比较器以提供非常小的时间延迟,但是其频率响应特性将受到限制。
为了避免输出振荡,许多比较器还具有内部迟滞电路。
比较器的阈值是固定的,有些只有一个阈值,有些有两个阈值。
三、比较器性能指标在了解了比较器的工作原理后,我们来看看比较器的5大性能指标,这些性能指标包括:迟滞电压、偏置电流、超电源摆幅、漏源电压和输出延迟时间。
下面,我们来一一解读这几个指标1.迟滞电压:比较器的两个输入端子之间的电压在过零时将改变其输出状态。
由于输入端通常叠加有很小的波动电压,因此这些波动产生的差模电压将导致比较器输出连续变化。
为了避免输出振荡,新的比较器通常具有几mV的磁滞电压。
迟滞电压的存在使比较器的开关点变为两个:一个用于检测上升电压,另一个用于检测下降电压,电压阈值之差(VTRIP)等于迟滞电压(VHYST),磁滞比较器偏移电压是TRIP和VTRIP-的平均值。
没有滞后的比较器的输入电压切换点是输入失调电压,而不是理想比较器的零电压。
失调电压通常随温度和电源电压而变化。
电源抑制比通常用于表示电源电压变化对补偿电压的影响。
2.偏置电流:理想比较器的输入阻抗是无限的,因此从理论上讲,它对输入信号没有影响,但是实际比较器的输入阻抗不可能是无限的。
运算放大器可以用作比较器使用
许多人偶尔会把运算放大器当比较器使用。
一般而言,当您只需要一个简 单的比较器,并且您在四运算放大器封装中还有一个“多余”的运算放大器时, 这种做法是可行的。
只是运算放大器需要相位补偿才能运行,因而把运算放大 器用作比较器时其速度会非常低,但是如果对速度要求不高,则运算放大器可 以满足需求。
偶尔会有人问到我们运算放大器的这种使用方法,因为他们发现 这种方法有时有效,有时却不如人们预期的那样效果好。
为什么会出现这种情 况呢?许多运算放大器都在输入端之间有电压钳位,其大多数一般都使用背靠背 二极管(有时使用两个或者更多的串联二极管)来实施。
这些二极管保护输入 晶体管免受其基极结点反向击穿的损害。
许多 会出现击穿,这会极大地改变或者损坏晶体管。
图 D2提供了这种保护功能。
在大多数常见运算放大器应用中,输入电压均约为零伏,根本无法开启这 些二极管。
但是很明显,对于比较器的运行而言,这种保护便成了问题。
在一 个输入拖拽另一个输入(以一种讨厌的方式拉其电压)以前,差动电压范围(约0.7V )受限。
尽管如此,我们还是可以把运算放大器用作比较器。
但是, 在我们这样做时必须小心谨慎。
在一些电路中,这种做法可能是完全不能接受 的。
问题是我们(包括其他运算放大器厂商)并没有总是说明这些钳位的存在, 即使有所说明,可能也不会做详细的解释或者阐述。
也许我们应该说:“用作 比较器时,请小心谨慎!”产品说明书的作者们通常也只是假设您肯定会把运 算放大器当作运算放大器用。
TI 在美国亚利桑那州图森产品部召开了一个会议,会议决定, TI 以后将会 更加清楚地说明这种情况。
但是,现在已经生产出来的运算放大器怎么办呢? 下列指导建议可能会对您有所帮助:一般而言,双极NPN 晶体管运算放大器都有输入钳位,例如: OP07IC 工艺在差动输入约为6V 时便 1显示了 NPN 俞入级,D1和 In=yA741 mput stage With l4tcrali iPNPs I H I series^ withINFNS.iiTINkorr« ・High breakdown voltage o1 lateralPNiPtiproiecii W :PN 轧使用横向PNP 输入晶体管的通用运算放大器一般没有输入钳位,例如:LM324 LM358 OPA234 OPA2251和OPA244这些运算放大器一般为“单电源” 类型,意味着它们拥有扩展至负电源端(或者稍低)的共模范围。
理想运算放大器工作
理想运算放大器工作
理想运算放大器(Ideal Operational Amplifier,简称理想运放)是一种虚构的电子元件,它被广泛应用于电子电路设计中。
理想
运放的特点是电压增益无限大、输入阻抗无限大、输出阻抗为零、无
限大的带宽和无限大的公共模抑制比。
在理想情况下,理想运放可以被用于各种应用中。
例如,在放大
器电路中,理想运放可以被用来放大电压信号,从而实现信号放大。
在比较器电路中,理想运算放大器可以被用作一个非常高速的比较器,用于比较两个电压大小。
理想运放的原理是利用微调电路来达到以上特性。
在实际的电路
设计中,理想运放并不存在,但是经过一定的调整和设计,我们可以
将实际运放的性能趋近于理想运放的性能。
理想运放通常有三个输入端,两个输入分别为非反馈输入端和反
馈输入端,还有一个输出端。
其中非反馈输入端一般对应于运放的+输
入端,反馈输入端对应于-输入端。
在运放电路中,负反馈电阻网络可以用来控制电路的输出,从而
使其达到特定的增益。
理想情况下,理想运放的输出电压可以通过此
公式来计算: Vout = A (V+ - V-) ,其中A为电压增益。
如果A趋
近于无限大,那么我们可以得到理想运放的输出电压非常高,甚至可
以使运放输出电压达到电源电压的极限。
总之,理想运算放大器是实际运算放大器的理论基础,有着非常
广泛的应用。
通过对理想运放的研究和应用,我们可以更好地设计实
际电路,从而实现电路的增益、比较等各种功能。
分立元件运算放大器电路工作原理
分立元件运算放大器电路工作原理
运算放大器(Operational Amplifier,简称Op-amp)是一种用于电路设计和信号处理的基本元件。
它是一种高增益、差分输入、单端输出的电子放大器,用于将输入信号放大到一个更高的电压水平。
Op-amp通常被用作反馈放大器、比较器、滤波器等等。
Op-amp的工作原理可以用一个简单的数学模型来描述,其基本性质包括很高的增益、很大的输入阻抗、很小的输出阻抗。
Op-amp的典型运算放大器电路包括一个反馈电阻网络,负反馈将输出信号直接返回到输入端,通过调节输入信号的两个节点之间的电压差实现放大器的功能。
Op-amp的典型工作模式是线性运算,即在输入端的电压信号线性增加时,输出端的电压信号也会以同样的方式增加。
在非线性运算时,输入端的电压信号变化可能会导致输出端的电压信号呈现非线性情况,例如饱和、失真等。
Op-amp在电路设计中有着广泛的应用,常见的电路包括反馈放大器、比较器、积分器、微分器、滤波器等。
其中,反馈放大器是最常见的应用,它通过负反馈网络实现输出信号与输入信号之间的稳定关系,可以实现信号放大、滤波、积分、微分等功能。
Op-amp还具有很多其他优点,例如高输入阻抗、低输出阻抗、低温漂移、高共模抑制比等。
这些特性使得Op-amp在很多应用场合都有着很好的性能表现,因此得
到了广泛的应用。
总的来说,Op-amp是一种功能强大、性能稳定的电子元器件,具有广泛的应用前景。
通过合理地设计Op-amp电路,可以实现很多种不同的功能,满足各种各样的
应用需求。
Op-amp在电子领域具有非常重要的地位,是电路设计师们必不可少的工具。
运放的几种用法
运放的几种用法
运放,全称为运算放大器,是一种常用的电子器件,主要用于放大输入信号,提供给后续电路使用。
它有多种用法,常见的包括如下几种:
1. 放大器:运放最基本的用法就是放大输入信号。
通过调整运放的电路配置和参数,可以实现不同的放大倍数和频率响应。
这使得运放在音频放大、信号调理以及传感器信号放大等领域有广泛应用。
2. 比较器:运放可以将输入信号与一个参考电平进行比较,并输出一个相应的逻辑电平。
这种用法常用于电压判别、信号检测和电路保护等应用中。
通过设定适当的阈值电平,可以实现不同的比较功能。
3. 整流器:运放可以将交流信号转换为直流信号。
在正半周和负半周的运算过程中,运放的输出极性不同,从而实现了信号的整流。
这种用法广泛应用于功率转换、电源供应和通信调制等领域。
4. 仪表放大器:运放具有高精度、低噪声和高输入阻抗等特点,使其非常适合作为测量仪器的前置放大器。
它可以将微弱的信号放大,同时抑制噪声和干扰,提高测量精度。
5. 滤波器:运放配合电感、电容等元件可以构成滤波器电路。
通过调整电路参数,可以实现不同的滤波特性,如低通滤波、高通滤波和带通滤波等。
这种用法常用于音频处理、信号调理和通信系统等领域。
运放作为一种多功能的电子器件,在电子电路设计和信号处理中发挥着重要的作用。
其具有低成本、易获取、易应用的特点,因此被广泛应用于各个领域。
运算放大器当比较器用
运算放大器当比较器用
运算放大器是一种高增益放大器,可以用于线性放大电路中,也可以用于非线性电路中(当比较器用)。
当比较器使用时,其基本原理是将两个输入信号进行比较,并根据比较结果产生一个输出信号。
当一个输入信号大于另一个输入信号时,输出信号为高电平;当一个输入信号小于另一个输入信号时,输出信号为低电平。
需要注意的是,比较器的翻转速度比运算放大器快,比较器在ns级别,运算放大器一般在μs级别,对速率要求较高时不可用运算放大器代替比较器。
若对输出高低电平要求较高时,应选择轨到轨的运算放大器,若不是轨到轨的运算放大器,输出电压有压降,达不到VCC或0。
运算放大器当比较器用在实际电路中有很多应用,例如将正弦波变为同频率的方波或矩形波,以及组成非正弦波形变换电路、应用于模拟与数字信号转换等领域。
三分钟带你搞懂运算放大器与比较器的区别
三分钟带你搞懂运算放大器与比较器的区别无论外观或图纸符号都差不多,那么它们究竟有什么区别,在实际应用中如何区分?今天我来图文全面分析一下,夯实大家的基础,让工程师更上一层楼。
先看一下它们的内部区别图:从内部图可以看出运算放大器和比较器的差别在于输出电路。
运算放大器采用双晶体管推挽输出,而比较器只用一只晶体管,集电极连到输出端,发射极接地。
比较器需要外接一个从正电源端到输出端的上拉电阻,该上拉电阻相当于晶体管的集电极电阻。
运算放大器可用于线性放大电路(负反馈),也可用于非线性信号电压比较(开环或正反馈)。
电压比较器只能用于信号电压比较,不能用于线性放大电路(比较器没有频率补偿)。
两者都可以用于做信号电压比较,但比较器被设计为高速开关,它有比运算放大器更快的转换速率和更短的延时。
运算放大器做为线性放大电路,我这里就不多说了(以后有需要单独讨论放大器),这个在主板电路图很常见,一般用于稳压电路,使用负反馈电路它与晶体管配合相当于一个三端稳压器,但使用起来更灵活。
如下图:在许多情况下,需要知道两个信号中哪个比较大,或一个信号何时超出预设的电压(用作电压比较)。
用运算放大器便可很容易搭建一个简单电路实现该功能。
当 V+电压大于 V- 电压时,输出高电平。
当 V+电压小于 V- 电压时,输出低电平。
如下图:分析一下电路,2.5v 经电阻分压得到 1V 输入到 V- 端,当总线电压正常产生 1.2v 时,输入到 V+,此时 V+电压比 V- 电压高,输出一个高电平到 CPU 电源管理芯片的 EN 开启脚。
如果总线电压没输出或不正常少于 1v,此时 V+电压比 V- 电压低,输出低电平。
电压比较器当比较器的同相端电压(V+)低于反相端电压(V-)时,输出晶体管导通,输出接地低电平;当同相端电压高于反相端时,输出晶体管截止,通过上拉电阻的电源输出高电平。
如下图:分析一下该电路,上面的比较器 U8A 当有 VCC 输出时经过分压电阻分压后,输入到同相端(V+),其电压大于 5VSB 经分压后输入到反相端(V-)的电压,内部晶体管截止,输出经上拉电阻的电源 12v(同时下面的比较器 U8B 同相端电压也大于反相端,内部晶体管也是截止),N 沟道场管 Q37 导通,输出 VCC5V。
运算比较器电路
运算比较器电路全文共四篇示例,供读者参考第一篇示例:运算比较器电路是一种常见的电子电路,用于比较两个输入信号的大小,并输出一个相应的电压信号。
它被广泛应用于电子设备中的各种功能模块,如自动控制系统、传感器信号处理、数字信号处理等领域。
本文将介绍运算比较器电路的工作原理、特点、应用和设计方法。
一、工作原理运算比较器电路是由运算放大器和电阻网络组成的电路。
运算放大器是一种特殊的集成电路,具有高输入阻抗、高增益、低输出阻抗等特点。
它的工作原理是将两个输入信号分别连接到运算放大器的两个输入端,通过反馈电阻网络实现信号的比较和放大,最终输出一个比较结果。
在运算比较器电路中,通常将一个输入信号作为比较器的基准信号,另一个输入信号作为被比较的信号。
当被比较的信号大于基准信号时,输出信号为高电平;当被比较的信号小于基准信号时,输出信号为低电平。
通过这种方式,可以实现对输入信号的比较和判断。
二、特点1.高精度:运算比较器电路采用运算放大器作为比较器的核心组件,具有高增益、低漂移、高稳定性等特点,可以实现高精度的比较和判断。
2.快速响应:由于运算放大器具有高速度和快速响应的特点,运算比较器电路可以实现快速的信号比较和输出,适用于对输入信号的实时判断。
3.灵活性:运算比较器电路可以根据实际需求进行灵活设计和调整,可实现不同的比较功能和输出模式,满足不同应用场景的需求。
4.低功耗:运算比较器电路采用集成电路和低功耗元件设计,具有低功耗、高效率的特点,适用于电池供电和功耗敏感的应用。
5.可靠性:运算比较器电路具有简单、稳定、可靠的特点,具有抗干扰、抗干扰能力,适用于工业控制、仪器仪表和传感器领域。
三、应用领域1.模拟比较器电路:用于模拟信号的比较和检测,常用于电压比较、电流检测、阈值控制等应用。
3.自动控制系统:用于实现对输入信号的比较和判断,常用于自动控制、过程控制、传感器信号处理等应用。
4.信号处理系统:用于对输入信号进行滤波、增益、补偿等处理,常用于仪器仪表、音频处理、图像处理等应用。
什么是运算放大器它在电子电路中的作用是什么
什么是运算放大器它在电子电路中的作用是什么运算放大器(Operational Amplifier,简称OP-AMP)是一种集成电路芯片,广泛应用于电子电路中。
它以高增益和宽带宽特性而著称,可以在信号处理、信号放大、滤波和数学运算等方面起到重要的作用。
运算放大器的基本结构包括差分输入级、电压放大级和输出级。
差分输入级负责对输入信号进行差分放大,电压放大级负责对差分放大后的信号进行进一步放大,输出级负责将放大后的信号驱动至负载端。
运算放大器的作用主要体现在以下几个方面:1. 信号放大:运算放大器以其高增益特性,可以对微弱的输入信号进行放大,使其达到可以被后续电路处理的水平。
这在信号传输和处理中非常重要,在各类电子设备中广泛应用。
2. 数学运算:运算放大器可以通过反馈电路实现各种数学运算,如加法、减法、乘法、除法等。
通过合理的电路设计和连接方式,可以将运算放大器构成运算器、积分器、微分器等基本数学模块,方便实现各种复杂的信号处理算法。
3. 滤波器:运算放大器可以与电容、电感和电阻等元件组成电路,实现各种滤波功能。
根据不同的电路连接方式和参数设置,可以设计出低通滤波器、高通滤波器、带通滤波器等不同类型滤波器,对不同频率的信号进行筛选和处理。
4. 线性调节器:运算放大器通常具有高输入和高输出阻抗,可以将输入信号以较低的输出阻抗驱动至后续电路。
这对于电压和电流的线性调节非常有帮助,能够提高信号传输的质量和稳定性。
除了以上几个基本作用,运算放大器还可以用于比较器、振荡器、模数转换器等应用中。
通过改变反馈电路的连接方式和参数设置,可以使运算放大器具备不同的功能,满足不同的电路设计需求。
综上所述,运算放大器作为一种重要的电子元件,具有信号放大、数学运算、滤波和线性调节等多种作用。
它在电子电路中的应用非常广泛,为各类电子设备的正常运行和优化性能提供了有效的支持。
通过合理的使用和设计,可以充分发挥运算放大器的特性,实现更加精确和高效的信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器可以用作比较器
许多人偶尔会把运算放大器当比较器使用。
一般而言,当您只需要一个简单的比较器,并且您在四运算放大器封装中还有一个“多余”的运算放大器时,这种做法是可行的。
只是运算放大器需要相位补偿才能运行,因而把运算放大器用作比较器时其速度会非常低,但是如果对速度要求不高,则运算放大器可以满足需求。
偶尔会有人问到我们运算放大器的这种使用方法,因为他们发现这种方法有时有效,有时却不如人们预期的那样效果好。
为什么会出现这种情况呢?
许多运算放大器都在输入端之间有电压钳位,其大多数一般都使用背靠背二极管(有时使用两个或者更多的串联二极管)来实施。
这些二极管保护输入晶体管免受其基极结点反向击穿的损害。
许多IC工艺在差动输入约为6V时便会出现击穿,这会极大地改变或者损坏晶体管。
图1显示了NPN输入级,D1和D2提供了这种保护功能。
图1
在大多数常见运算放大器应用中,输入电压均约为零伏,根本无法开启这些二极管。
但是很明显,对于比较器的运行而言,这种保护便成了问题。
在一个输入拖拽另一个输入(以一种讨厌的方式拉其电压)以前,差动电压范围(约0.7V)受限。
尽管如此,我们还是可以把运算放大器用作比较器。
但是,在我们这样做时必须小心谨慎。
在一些电路中,这种做法可能是完全不能接受的。
问题是我们(包括其他运算放大器厂商)并没有总是说明这些钳位的存在,即使有所说明,可能也不会做详细的解释或
者阐述。
也许我们应该说:“用作比较器时,请小心谨慎!”产品说明书的作者们通常也只是假设您肯定会把运算放大器当作运算放大器用。
TI在美国亚利桑那州图森产品部召开了一个会议,会议决定,TI以后将会更加清楚地说明这种情况。
但是,现在已经生产出来的运算放大器怎么办呢?下列指导建议可能会对您有所帮助:
一般而言,双极NPN晶体管运算放大器都有输入钳位,例如:OP07、OPA227和 OPA277等。
uA741是一个例外,它具有NPN输入晶体管,并且有一些为NPN提供固有保护的附加串联横向PNP。
图2
使用横向PNP输入晶体管的通用运算放大器一般没有输入钳位,例如:LM324、LM358、OPA234、OPA2251和OPA244。
这些运算放大器一般为“单电源”类型,意味着它们拥有扩展至负电源端(或者稍低)的共模范围。
输入偏置电流为负数时,表示输入偏置电流自输入引脚流出。
这时,通常可以认定它们为这类运算放大器。
但是,需要注意的是,使用PNP输入的高速运算放大器一般有输入钳位,而这些PNP是一些具有更低击穿电压的垂直PNP。
图3
高电压(一般大于20V)下工作的JFET和CMOS放大器,可能有也可能没有钳位。
这种不确定性,要求您进行更多仔细的检查。
所用工艺和晶体管类型的特性,决定了其内部是否存在钳位。
大多数低压CMOS运算放大器都没有钳位。
自动归零或者斩波器类型则是特例,其可能具有类似钳位的行为表现。
底线是……
如果您考虑把运算放大器用作比较器,请一定小心谨慎。
仔细阅读产品说明书,不要漏掉任何信息,包括应用部分的一些注解内容。
在电路试验板或者样机中验证其表现,查看一个输入电压对另一个输入电压的影响。
不要依赖SPICE宏模型。
一些宏模型可能并不包括对钳位建模的一些额外组件。
另外,当您笨手笨脚地把运算放大器从一个轨移动到另一个轨时可能出现其他一些现象,则可能无法精确地对这些现象建模。